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Abstract 

 

Along the past decade graphene has emerged as an exciting material revealing potential 

applications in various fields. The translation of the graphene outstanding properties 

observed at lab-scale into real-world applications at industrial scale, however, greatly 

depends on the capacity to produce good quality graphene at large scale. The typical large 

scale graphene production processes present disadvantages such as high cost, or the 

formation of graphene with structural defects, or contaminants which are difficult to 

remove. Recently, interesting approaches to produce graphene were proposed, based on 

graphite exfoliation in water using amphiphilic molecules such as pyrene derivatives with 

a polar moiety. Another approach consists in the production of graphene nanoribbons 

(GNR) by unzipping of carbon nanotubes. These methods allow the production of 

graphene sheets (GS) and GNR with negligible structural damage, using low boiling point 

solvents that are easy to remove.  

The present work investigated these two graphene production methods. The exfoliation 

of graphite into GS was achieved by interaction with two different water soluble pyrene 

derivatives, modified with a carboxylic acid moiety bonded to pyrene through semi-

flexible side arms of different lengths. The suspensions produced were formed by 

approximately 80 % of bi-layer and few-layer graphene. The GNR were produced from 

pyrrolidine-functionalized carbon nanotubes, through application of ultrasounds in 

ethanol. Multiwall carbon nanotubes of different diameters, namely with approximately 

10 and 110 nm, were covalently functionalized using a simple, solvent free method, and 

the unzipping was observed to occur in both cases. The unzipping process was assigned 

to the type of functional groups bonded to the nanotubes. The graphene products were 

extensively characterized, and tested for polymer composite applications.  

Graphene has the potential to improve the mechanical, electrical, thermal and barrier 

properties of polymer-based nanocomposites. For that purpose graphene, or graphene 

derivative, has to be homogeneously distributed and dispersed into the polymer matrix, 

and establish good interfacial adhesion. Solution mixing is a good method to produce 

homogeneous graphene/polymer nanocomposites, particularly when using water as a 

solvent. This method is limited to water soluble polymers, however the development of 

waterborne polymer suspensions is an area of intense research. Waterborne polyurethane 



 

x 
 

(WPU) is a good example of an eco-friendly synthetic polymer widely used in the coating 

industry. In this work nanocomposite films were produced incorporating GS formed in 

aqueous suspension. The composite films presented a large decrease of permeability to 

water vapor, of the electrical resistivity, and an increase of the mechanical properties. 

Melt mixing of reinforcing particles in thermoplastic polymers is probably the most 

environmentally and economically attractive technique, and a scalable method, for 

composite production. However, the dispersion of nanoparticles in high viscosity polymer 

melts is a complex process. Several studies reported in the literature used different mixing 

equipment (extruders, internal mixers, prototype mixers) to disperse carbon black, carbon 

nanofibers and carbon nanotubes, in polymer melts. They demonstrated that the 

nanoparticle dispersion varies with factors such as the intensity and type of hydrodynamic 

stresses, residence time, and interfacial adhesion. Few studies report the dispersion of 

graphite-derivatives in polymer melts. In the present work the dispersion in 

polypropylene of graphite nanoplates, with and without functionalization, was studied 

using a small-scale prototype mixer designed to generate high extensional flow. The 

dispersion of the nanoparticles was analyzed along the mixer length, demonstrating the 

initial agglomerated form of the graphite nanoplates and their dispersion into the original 

nanoplate size along the melt processing. 
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Resumo 

 

O grafeno tem sido apresentado como um nano material muito interessante com 

potenciais aplicações em várias áreas. Contudo, a extrapolação das suas excelentes 

propriedades, que são observadas à escala laboratorial, para uma escala industrial 

depende amplamente da capacidade de produção de grafeno em grandes quantidades e 

com boa qualidade. Os processos que normalmente são utilizados para produção de 

grafeno em grande quantidade apresentam algumas desvantagens, tais como, elevado 

custo de produção, a obtenção de grafeno com defeitos estruturais ou com contaminações 

cuja remoção é difícil. Recentemente foram reportadas abordagens interessantes para a 

produção de grafeno baseadas na exfoliação da grafite em meio aquoso utilizando 

moléculas anfifílicas, tais como derivados de pireno com grupos funcionais polares. Outra 

abordagem consiste na produção de nanofitas de grafeno através da abertura longitudinal 

de nanotubos de carbono. Estes métodos permitem a produção de folhas de grafeno e 

nanofitas de grafeno com poucos defeitos estruturais, utilizando solventes com pontos de 

ebulição baixos que são fáceis de remover. 

Neste trabalho foram estudadas estas duas abordagens para a produção de grafeno. A 

exfoliação da grafite para a formação de folhas de grafeno foi obtida através da interação 

com dois derivados de pireno solúveis em água, modificados com um grupo funcional 

ácido carboxílico ligado à molécula de pireno formando cadeias semi-flexíveis com 

comprimentos diferentes. As suspensões produzidas apresentaram cerca de 80% de 

grafeno bicamada e grafeno com poucas camadas. As nanofitas de grafeno foram 

produzidas a partir de nanotubos de carbono funcionalizados com um grupo pirrolidina, 

através da aplicação de ultrassons em etanol. Os nanotubos de carbono multicamada com 

diferentes diâmetros, nomeadamente, 10 e 110 nm, foram funcionalizados 

covalentemente através de uma metodologia simples, sem a utilização de solventes, e a 

abertura longitudinal dos nanotubos de carbono funcionalizados ocorreu em ambos os 

casos. O processo de abertura dos nanotubos de carbono funcionalizados foi 

desencadeado devido ao tipo de grupo funcionais ligados à superfície dos nanotubos. As 

nanofitas de grafeno bem como o grafeno obtido a partir da exfoliação da grafite foram 

caracterizados extensivamente e testados para aplicações em compósitos poliméricos. 

O grafeno tem potencial para melhorar as propriedades mecânicas, elétricas bem como 

propriedades de barreira em nanocompósitos poliméricos. Para tal, o grafeno ou 



 

xii 
 

derivados de grafeno têm que estar distribuídos e dispersos homogeneamente na matriz 

polimérica, e estabelecer uma boa adesão na interface com a matriz. 

A mistura em solução é uma boa técnica para a produção de nanocompósitos poliméricos 

com grafeno de uma forma homogénea, especialmente quando o solvente utilizado é a 

água. Este método é limitado à utilização de polímeros solúveis em água, contudo o 

desenvolvimento de polímeros que formam suspensões estáveis em água tem vindo a ser 

extensamente estudado. O poliuretano de base aquosa representa um bom exemplo de um 

polímero sintético e ecológico que é amplamente usado da industria dos revestimentos. 

Neste trabalho foram produzidos filmes nanocompósitos com a incorporação de folhas de 

grafeno produzidas em suspensão aquosa. Os filmes nanocompósitos apresentaram uma 

diminuição significativa na permeabilidade ao vapor de água, da resistividade elétrica 

bem como um melhoramento das propriedades mecânicas.  

A mistura de partículas de reforço em polímeros termoplásticos fundidos é provavelmente 

a técnica mais atrativa do ponto de vista económico e ecológico, e um método que pode 

ser utilizado para a produção de compósitos poliméricos em escala industrial. Todavia, a 

dispersão de nanopartículas em polímeros com viscosidade elevada é um processo 

complexo.  

Alguns estudos reportados na literatura usaram diferentes equipamentos de mistura (como 

por exemplo, extrusoras e misturadores protótipos) para dispersar nanopartículas de 

carbono, tais como, negro de fumo, nanofibras de carbono e nanotubos de carbono, em 

polímero fundido. Os estudos demonstraram que a dispersão das nanopartículas varia com 

fatores como a intensidade e o tipo de tensões hidrodinâmicas, o tempo de residência, e a 

adesão na interface entre o reforço e a matriz. Poucos estudos reportam a dispersão de 

derivados de grafite em polímero fundido. Neste trabalho foi estudada a dispersão em 

polipropileno fundido de nanoplaquetas de grafite, com e sem funcionalização, utilizando 

um misturador protótipo, que permite o estudo em pequenas quantidades de material, e 

que foi desenhado para gerar fluxos extensionais elevados. A dispersão das 

nanopartículas foi analisada ao longo do misturador, demonstrado que os aglomerados de 

nanoplaquetas de grafite formados evoluíram até às dimensões inicias destas ao longo do 

processamento em polímero fundido. 
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1. INTRODUCTION 

This chapter presents the motivation for this PhD thesis and the outline of the work 

performed in its aim.  

1.1. Motivation 

Since the isolation of graphene by mechanical exfoliation of graphite in 2004 [1] this 

material has been the focus of extensive research among the scientific community. The 

excellent electronic, mechanical, thermal and optical properties of graphene [2] have huge 

potential applications in various fields such as electronics [3-5], energy storage [6-8], 

photonics [9, 10], composite materials [11-13], conductive and barrier protection inks and 

paints [14-17] and sensor technology. [18-20] However, the production of graphene in 

large scale, with controlled quality and reasonable cost, is still a goal to achieve, and thus 

continues to be an important research topic. 

The large scale graphene production processes are typically based on the conversion of 

silicon carbide (SiC) to graphene via sublimation of silicon at high temperature, [21, 22] 

chemical vapor deposition (CVD) growth, [23] oxidation of graphite followed by 

exfoliation and reduction of the oxidation products [12, 24] and exfoliation of graphite in 

organic solvents with high surface tension. [25] These methods allow large scale 

production, however they present disadvantages such as the high cost and the production 

of graphene with structural defects or contaminants which are difficult to remove.  

Recent approaches to produce graphene were proposed, based on graphite exfoliation in 

water using amphiphilic molecules such as pyrene derivatives with a polar moiety. [26-

29] Another approach consists in the production of graphene nanoribbons (GNR) by 

unzipping of carbon nanotubes. [30-32] These methods allow the production of graphene 

sheets (GS) and GNR with negligible structural damage, using low boiling point solvents 

that are easy to remove. The production of GNR is an interesting topic since GNR may 

present a band gap if the width and the edge configuration of the GNR can be controlled. 

[33, 34] 

Graphene has great potential as a reinforcing phase of polymer-based nanocomposites, 

having similar mechanical properties to CNT, but superior thermal and electrical 

properties and larger surface area (table 1). [35, 36] However, the production of such 

polymer nanocomposites requires not only that graphene be produced at a large scale, but 
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also that it may be incorporated and homogeneously dispersed into polymer matrices, and 

develop good interfacial adhesion. [11] The method of solution mixing has been used as 

preparation method for graphene/polymer nanocomposites. [35] This method consists in 

the direct mixture of graphene suspensions into polymer solutions. The drawback of this 

technique is the solubilization of the polymer that, in some cases, involves the use of 

hazardous solvents such as dimethylformamide (DMF), chloroform, dichloromethane 

(DCM), or toluene. However, the use of “green” solvents such water could override this 

problem. For that reason, a large effort has been set over the years to develop stable 

aqueous polymer suspensions, as well as stable suspensions of graphene derivatives in 

water. Water borne polyurethane (WPU) is a synthetic polymer widely used in the coating 

industry and has been presented as an eco-friendly alternative since only water is involved 

during the drying stage. [37] 

Melt mixing is an environmentally and economically attractive technique and scalable 

method for dispersing graphene into polymers. In addition, this process avoids the use of 

hazardous solvents. [35] However, it does not easily lead to optimal nanoparticle 

dispersion. [38, 39] Various studies carried out using a variety of mixing equipment 

(extruders, internal mixers, prototype mixers) for carbon black [40], carbon nanofibers 

[41], and carbon nanotubes [42, 43], have demonstrated that the intensity and type of 

hydrodynamic stresses (i.e., shear versus extensional), residence time, and interfacial 

adhesion play a major part in dispersion. [41, 42, 44] While the dispersion mechanism of 

carbon nanotubes in polymers is well studied, few studies report the dispersion of 

graphite-derivatives in polymer melts. 

1.2. Thesis outline 

This thesis is organized in seven chapters. 

Chapter 1 presents the motivation of this work as well as the thesis outline. 

Chapter 2 presents an overview of the state of art of the preparation strategies used for 

the production of graphene, emphasizing the production of graphene in liquid exfoliation 

and the unzipping of carbon nanotubes. The application of graphene in polymer 

composites will be also reviewed, namely the incorporation of graphene in polypropylene 

by melt mixing as well as in waterborne polyurethane by solution mixing.  

Chapter 3 addresses the detailed investigation of the unzipping of carbon nanotubes to 

obtain functionalized (non-oxidized) graphene nanoribbons using a new approach. The 
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possible application of functionalized graphene nanoribbons, as well graphene 

nanoribbons produced by oxidation of carbon nanotubes, in the production of 

nanostructured films using layer-by-layer assembly with natural polymers was studied.  

Chapter 4 describes the production of few layer graphene in water using a non-covalent 

approach. The amphiphilic molecules used for this purpose were synthesized, to produce 

functionalized pyrene that was used to exfoliate and stabilize few layer graphene in 

aqueous media.  

Chapter 5 comprises the application of the few layer graphene in water suspension on 

the production of waterborne polyurethane nanocomposite films. The mechanical, 

electrical as well as the barrier properties were studied. 

Chapter 6 describes the dispersion of graphite nanoplates in polypropylene matrix by 

melt mixing, and presents the study of the dispersion of graphite nanoplates and 

functionalized graphite nanoplates in the polymer melt, performed on a small-scale 

prototype mixer. The rheological characterization of the nanocomposites is also 

presented. 

Finally, Chapter 7 presents the general conclusions regarding the production of graphene 

and its applications in polymer nanocomposites, and presents considerations for further 

work. 
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2. STATE OF ART 

This chapter presents the state of art of graphene production with emphasis on the 

unzipping of covalently functionalized carbon nanotubes and exfoliation of graphite 

through non-covalent interactions with pyrene derivatives. The more relevant 

characterization techniques will be reviewed. Some potential applications of graphene 

will also be presented. This chapter will include a final section concerning the production 

of graphene/polymer nanocomposites 

 

2.1. Graphene Properties 

The interest in graphene has been growing exponentially along the past few years due its 

excellent properties and wide range of possible applications in various scientific fields. 

Graphene is defined as a planar sheet of sp2 - hybridized carbon atoms in a two - 

dimensional (2D) honeycomb hexagonal lattice. This material presents a unique band 

structure in which the conduction band and the valence band just touch each other, 

forming a zero-band gap material. [33] This characteristic leads to some extraordinary 

properties such as ultra-high carrier mobility, [2, 45, 46] high thermal conductivity [47, 

48] extremely high modulus and tensile strength, [49] and high transparency to incident 

light over a broad wave length range (97.7% of transmittance). [50] Graphene also 

exhibits a high surface area which is much greater than that of graphite and even that of 

carbon nanotubes [51-53]. Table 1 presents a comparison of some properties of carbon 

nanotubes and graphene. 

 

Table 1: Comparison of some properties between carbon nanotubes and graphene 

 Graphene Carbon nanotubes 

Carrier mobility (cm2V-1s-1) 200000 [46] 100000 [54] 

Thermal conductivity (Wm-1K-1) 3000 - 5000 [48] 3500 [55] 

Young’s modulus (TPa) ~1 [49] ~1 [55] 

Surface area (m2g-1) 2630 [52] 1315 [51] 
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2.2. Graphene Production 

Besides the excellent properties of graphene, its application depends on the ability for the 

production of this material in large scale, with controlled quality and reasonable cost. 

Interesting approaches have been reported to produce graphene based on graphite 

exfoliation as well as on unzipping of carbon nanotubes. 

 

2.2.1. Graphene from graphite exfoliation  

The formation of graphene trough exfoliation of graphite has been highly reported along 

the years. Different methodologies have been applied based in the mechanical exfoliation 

of graphite, such as the micromechanical exfoliation [1, 56] of highly oriented pyrolytic 

graphite (HOPG) using scotch tape, and ball milling. During the ball milling process, the 

moving balls apply their kinetic energy to the graphite, breaking the strong van der Waals 

interactions between the graphene layers of graphite promoting its exfoliation. [57] 

Figure 1 presents a schematic representation of this process. The process can trigger the 

formation of defects in graphene, since it is necessary the use of active precursors such 

as melamine, [58] triazine derivatives, [59] ammonia borane [60] and potassium 

hydroxide (KOH) [61]. Dry ice has also been used to exfoliate graphite through ball 

milling process. [57, 62] 

 

Figure 1: Schematic representation of the ball milling process. [63] 

 

2.2.1.1. Liquid phase exfoliation of graphite 

Liquid phase exfoliation (LPE) of graphite is a viable cost effective process which can be 

easily up-scaled to mass production of graphene. [27] LPE of graphite can be achieved 

by using polar organic solvents whose interaction energy with graphene is comparable to 

the van der Waals interactions between of graphene layers. Solvents with a surface 

tension of about 40 mJ m-2, such N-Methyl-2-pyrrolidone (NMP), N,N-

Dimethylformamide (DMF) and ortho-dichlorobenzene (o-DCB) are reported to be ideal 

for the exfoliation of graphite. [25] Other organic solvents were reported to successfully 
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exfoliate graphite, namely, some fluorinated solvents [64, 65] such hexafluorbenzene 

(C6F6), octafluoro-toluene (C7F8), pentafluorobenzonitrile (C6F5CN) and 

pentafluoropyridine (C5F5N) as well as some amine-based solvents, [66] like 3,3′-

iminobis (N,N-dimethylpropylamine) (DMPA), N-[3-(dimethylamino)propyl] 

methacrylamide (DMAPMA), 2-(tertbutylamino)ethyl methacrylate (BAEMA) and 2-

(dimethylamino) ethyl methacrylate (MAEMA). The structures of these solvents are 

presented in the figure 2. 

 

Figure 2: Chemical structure of the organic solvents used in liquid phase exfoliation [67] 

The use of large volumes of such organic solvents has negative environmental 

consequences. Alternative approaches to produce graphene by graphite exfoliation using 

“green” solvents such as water have been investigated. The covalent functionalization of 

graphite with functional groups which are soluble in water, namely the oxidation of 

graphite, has been extensively studied for the production of graphene in aqueous media. 

[35] Strategies based on the methods developed by Brodie, [68] Staudenmaier, [69] 

Hummers [70] and modified Hummers methods [71-73] have been widely used to oxidize 

graphite. These methods require the use of concentrated oxidizing acids and strong 

oxidants which induces the formation of highly oxidized product. The covalent bonding 

of oxygen containing functional groups to the graphite surface is essential for the 

graphene oxide (GO) production and its subsequent dispersion in water. [71, 74, 75] The 
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downside of this process is that the extensive chemical oxidation disrupts the sp2 carbon 

network of the graphite which leads to structural defective graphene oxide sheets with 

poor electrical conductivity. [35] Figure 3 shows the structure of the graphene oxide 

based on solid state 13C NMR (carbon nuclear magnetic resonance) spectroscopy studies. 

[76, 77] 

 

Figure 3: Chemical structure of graphene oxide. [77]  

This problem may be partially solved by the reduction of the GO (r-GO) which means 

the decrease of the oxidation state of the oxygen-containing groups, in order to restore 

the electrical and thermal conductivity of graphene. However, these processes require the 

use of toxic and hazardous chemicals or the use of high temperature (up to 1000ºC) and 

leads to the formation of nanometer size holes on the basal plane. These holes decrease 

the integrity of the material, thereby significantly altering their physical properties namely 

the electrical properties. Furthermore, the reduction of GO sheets leads to the loss of their 

solubility in water and consequently leads to their aggregation and precipitation of the 

graphene aggregates. [35, 78] Nevertheless, in some applications the use of GO and r-GO 

can be beneficial as they feature great chemical complexity which allows its use in various 

scientific areas, such as, catalysis, [79, 80] energy storage [81] and biomedical 

applications. [82] 

The functionalization of graphene with molecules interacting at the non-covalent level 

has recently gathered a great interest. [67] Polycyclic aromatic hydrocarbons (PAHs) 

substituted with various side groups have been widely studied for the exfoliation of 

graphite through non-covalent interactions. Among all PAHs, pyrene derivatives are the 

most studied compounds. The aromatic structure of the pyrene molecule allows its 

intercalation and physisorption on the hydrophobic surface of graphene through π-π 

interactions, while appropriate functional groups attached to the pyrene molecules allows 

the stabilization of graphene in water. [27, 67, 83] 
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Compounds such pyrenebutyric acid [84] and pyrene-sulfonic acid salt [85], have been 

studied for the stabilization of graphene in water. Concentrations of about 10-3 mol dm-3 

of the pyrene derivatives were able to stabilize the graphene in water, although in these 

studies reduced graphene oxide (r-GO) was initially prepared from graphene oxide (GO) 

and then stabilized in aqueous media. Liu et. al. reported the stabilization of previous 

produced r-GO [86] in aqueous media using a pyrene-terminated poly(2-N,N’-(dimethyl 

amino ethyl acrylate) (PDMAEA) which is positively charged, and poly(acrylic acid) 

(PAA) that has negative charge. [87] The self-assembly of the opposite charged graphene 

solutions led to the formation of a graphene/polymer composite that showed to be 

sensitive to pH. Figure 4 shows a schematic representation of the synthesis of this self-

assembled graphene/polymer nanocomposite. 

 

Figure 4: Synthesis of pH sensitive pyrene-polymer composites via π-π stacking interactions for the self-

assembly of functionalized graphene into layered structures. [87] 

Other approaches based on direct exfoliation of graphite in water have been studied. A 

pyrene-functionalized amphiphilic block copolymer, poly(pyrenemethyl acrylate)-b-

poly[(polyethylene glycol) acrylate] (polyPA-b-polyPEG-A) produced by Liu et al. [88] 

was used to exfoliate graphite. Figure 5 present a schematic representation of this 

exfoliation process. After 6 hours of sonication of 400 mg of the polymer and 10 mg of 

graphite in 20 mL of water, the yield of exfoliation was 78 %.  
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Figure 5: Direct exfoliation of graphite to form graphene using amphiphilic block copolymers with multi-

pyrene pendent groups. [88] 

Zheng and co-workers [89] reported the exfoliation of graphite into graphene in aqueous 

media using supercritical carbon dioxide (CO2) as expanding agent and a pyrene-

terminated polyethylene glycol (pyrene-PEG), as stabilizing agent. The process of 

exfoliation occurred in three steps (figure 6). In step 1 the graphite powder and the 

polymer were mixed in water. The pyrene-PEG was able to interact with the exposed 

graphite surface through π-π interactions. However, the limited dangling polymer chains 

were not sufficient to dislodge the graphene sheets due the strong van der Waals 

interactions and so, the graphene polymer dispersion was subjected to supercritical CO2 

(step 2) which promoted the expansion of the non-covalent functionalized graphite. The 

out-of-plane dangling chains of the inserted pyrene-PEG increased the distance between 

adjacent graphene layers and prevented them from re-agglomeration (step 3). The yield 

of graphite exfoliation was 5.1 %. 

 

Figure 6: Schematic illustration of the process of pyrene-PEG functionalized graphene sheets using 

supercritical CO2. [89] 
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Also some biocompatible polymers have been functionalized with pyrene moieties to 

prepare aqueous graphene suspensions for potential use in biomedical applications. [90-

92] Zhang et al. [90] reported the incorporation of pyrene moieties into hyaluronan 

natural polymer (py-HA) (figure 7) and its use in the exfoliation of graphite in water. The 

exfoliated py-HA- graphene sheets showed good stability in water and the concentration 

of graphene in the water suspension was 0.6 mg/mL, 30 % of the initial graphite 

concentration (2 mg/mL).  

 

Figure 7: Pyrene-conjugated hyaluronan polymer synthesis [90] 

Ihiawakrim et al. [91] described the exfoliation of graphite using a biocompatible 

amphiphilic pyrene based hexahistidine peptide (figure 8) which was able to exfoliate, 

functionalize and stabilize few layer graphene flakes in pure water. The yield of 

exfoliation of graphite varied from 20 to 60 %, depending of the sonication time and the 

type of graphite used (expanded graphite or natural graphite). 

 

Figure 8: Structure of the amphiphilic pyrene based hexahistidine peptide [91] 

Liu and co-workers [92] reported the production of single- and bi-layer graphene by a 

direct exfoliation from graphite flakes in the presence of pyrene labelled single stranded 

DNAs (py-ssDNAs) which were synthetized by reacting the 1-pyrenebutyric acid (PyBA) 

(figure 9) with an amino modified DNA. The Py-ssDNA not only enhanced the water 

solubility and dispersion of graphene but it was also used for specific DNA–DNA 

hybridization. Pyrene derivatives can be directly used to exfoliate graphite in water 
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without being functionalized with polymer chains. The process allows the formation of 

stable water suspensions of graphene and few-layer graphene whose applications in areas 

such polymer composites, sensors and energy storage have been reported. [93-95] He and 

co-workers [96] reported the exfoliation of graphite in aqueous dispersion using 1,3,6,8-

pyrenetetrasulfonic acid tetrasodium salt (Py(SO3)4) (see Figure 9) and 

aminomethylpyrene (PyMeNH2), and fabricated transparent conductive films. The 

concentration of the functionalized pyrenes was 0.4 mg/mL (about 10-4 mol dm-3) and the 

yield of exfoliated graphite was about 50 %. Some remaining aggregates could be found 

in the final dispersions which would probably decrease the yield taking into account only 

the formation of single- and few layer graphene. Dong et al. [97] reported the use of 

Py(SO3)4 for the exfoliation of graphite in water. The concentration of the pyrene 

derivative in water was between 2 and 4 mg/mL (about 10-2 mol dm-3) and the initial 

concentration of graphite in aqueous media, before the exfoliation process, was 0.2 

mg/mL. However, the yield of the exfoliation process was not discussed. Kar and co-

workers [94] studied the exfoliation of graphite into stable aqueous suspensions of single- 

and few- layer graphene using 1-pyrenecarboxylic acid (PyCA) (figure 9). The 

concentration of the pyrene derivative in water was 0.33 mg/mL (10-3 mol dm-3) and the 

initial concentration of the graphite, before the exfoliation process, was 2 mg/mL. The 

reported yield of exfoliation was 1%. The authors also showed the potential application 

of this exfoliated graphene in sensitive and selective conductometric sensors as well as in 

ultracapacitors. A variety of pyrenes were employed by Green and co-workers [93] to test 

their performance in the exfoliation of graphite. Among all investigated pyrene 

derivatives, i.e., pyrene (Py), 1-pyrenecarboxylic acid (PyCA), PyBA, 1-pyrenesulfonic 

acid hydrate (PySAH), 1-Aminopyrene (PyNH2), PyMeNH2, 1-pyrenebutanol (PyBOH), 

1-pyrenesulfonic acid sodium salt (PySO3) and (Py(SO3)4) (see figure 9) the PySO3 was 

found to be the most efficient, yielding graphene dispersion concentration of 1 mg/mL. 

To quantify the amount of single layer graphene (SLG) and few layer graphene (FLG) in 

the dispersions, the PySO3 -stabilized graphene samples were characterized by high 

resolution transmission electron microscopy (HRTEM), which revealed the presence of 

2–4 layer thick sheets. Besides the graphene concentration of 1 mg/mL seems to be high, 

the yield of the exfoliated material was 2%, since the initial concentration of graphite 

(before the exfoliation process) was 50 mg/mL. In addition, the concentration of the 

pyrene derivatives in water was 3 mg/mL (about 10-3 mol dm-3). Casiraghi et al. [26] 
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reported the exfoliation of graphite in water using the pyrene derivative Py-SO3. The 

authors described the production of stable water suspensions of graphene in which about 

70 % was identified as few-layer graphene, using a statistical analysis based on Raman 

spectroscopy. The concentration of the Py-SO3 in water was 1 mg/mL (10-2 mol dm-3) 

and the yield of exfoliated graphene in water was 2.5 %.  

 

1-aminomethyl pyrene 

(Py-MeNH2) 

 

1-pyrenecarboxylic acid 

(PyCA) 

 

1-pyrenebutyric acid 

(PyBA) 

 

1-pyrenesulfonic acid hydrate 

(Py-SAH) 

 

1-pyrenesulfonic acid sodium 

salt 

(Py-SO3) 

 

1,3,6,8-pyrenetetrasulfonic 

tetra acid tetra sodium salt 

(Py-(SO3)4) 

 

6,8-dihydroxy-1,3-

pyrenesulfonic acid disodium salt  

(Py-(OH)2(SO3)2) 

 

8-hydroxy-1,3,6-pyrenesulfonic 

acid trisodium salt  

(Py-OH(SO3)3) 

 

2-Oxo-2-(pyren-1-

yl)ethanesufonate, Sodium salt 

Figure 9: Molecular structure of pyrene derivatives used to exfoliate graphite 

Viinikanoja and co-workers [98] studied water dispersed graphene prepared directly from 

natural graphite using some pyrene derivatives, namely, PyMeNH2, and the synthetized 

2-Oxo-2-(pyren-1-yl)ethanesufonate sodium salt and 1-Methyl-3-[2-oxo-2-(pyren-1-

yl)ethyl)]-3H-imidazolium Bromide (according to a procedure described in [99]). The 

better yield of exfoliation (2.4 %) was obtained for the 2-Oxo-2-(pyren-1-yl) 
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ethanesulfonate sodium salt (figure 9). The concentration of the pyrene derivatives in 

water was 2 mg/mL (10-3 mol dm-3) and the initial concentration of natural graphite in 

water was 1 mg/mL). Palermo and co-workers [28] investigated the thermodynamics of 

the exfoliation of graphite. In particular, the authors studied the mechanism of 

physisorption of various pyrenes on the graphene surface, and successive exfoliation in 

water. A detailed analysis was performed on pyrenes functionalized with sulfonic groups, 

in particular, PySO3, 6,8-Dihydroxy- 1,3-pyrenedisulfonic acid disodium salt (Py(OH)2 

(SO3)2), 8-Hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (PyOH(SO3)3), and 

Py(SO3)4 were tested. Experimental results collaborated with molecular dynamics 

simulations, providing evidence for a correlation between molecule-graphene adsorption 

energy and the amount of dispersed graphene sheets. The results obtained imply that the 

performance of pyrene-assisted exfoliation is indirectly driven by the molecular dipoles, 

which are not important per se, but since they facilitate the adsorption of pyrenes on 

graphene sheets, they promote the lateral displacement of the solvent molecules 

intercalating between the graphene sheets and pyrene molecules. 

2.2.2. Unzipping of carbon nanotubes 

Graphene is a zero band gap material [2] and thus it is a metallic conductor. An area of 

graphene research that is showing interest is search for chemical or physical strategies to 

open an energy band gap in this material, and to change its behavior to semi-conductor. 

The graphene materials with an energy gap are expected to be formed by controlled 

oxidation of few layers of graphene, or by fabrication of graphene nanoribbons (GNR). 

Currently it is difficult to oxidize a few layers of graphene in a controlled way. [35] For 

GNR the band gap may be achieved by controlling their width and the edge configuration. 

[33, 34] Carbon nanotubes, which can be viewed as folded graphene sheets or 

nanoribbons, may be classified in two main types: multiwalled carbon nanotubes 

(MWNT) and single walled nanotubes (SWNT) Figure 10 shows the structure of SWNT 

and MWNT. [100] 

 

Figure 10: Structure of single walled nanotubes and multiwalled nanotubes [100] 
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MWNT are composed of a concentric arrangement of graphene cylinders, forming tubes 

containing from two to several layers and reaching diameters up to 100 nm. SWNT can 

be visualized by rolling a single graphene sheet into a cylinder. The orientation of the 

hexagonal lattice with respect to the tube axis defines its chiral vector (figure 11), which 

is denoted by the chiral indices (n, m). The classification of the nanotubes as armchair 

(n=m) or zigzag (m=0) has its origin from the geometric arrangement of the carbon atoms 

at the seam of the cylinders. While both these types of tubes possess mirror symmetry, 

nanotubes with m ≠ n are chiral. The latter kind of tubes exists as two enantiomers with 

right- and left-handed helicity. All armchair SWNT present metallic behavior while 

zigzag as well as chiral SWNT are semiconductors. [101, 102]  

 

Figure 11: Schematic representation of armchair, zigzag and chiral CNT [101] 

Since CNT can be viewed as folded graphene sheets or nanoribbons, it is thus natural to 

seek the reverse process which is the unzipping of carbon nanotubes to obtain GNR. Many 

efforts have been made to achieve the synthesis of graphene nanoribbons. 

2.2.2.1. Oxidation processes 

The oxidation of CNT in the presence of concentrated acids and strong oxidants is a 

methodology highly used to produce GNR. Tour and his group [103] have studied the 

unzipping of CNT using the oxidation process. The procedure involves the suspension of 

CNT in concentrated sulphuric acid (H2SO4) followed by treatment with 500 wt.% of 

potassium permanganate (KMnO4), which is an oxidizing agent. The proposed 

mechanism for the unzipping comprises the oxidation of the carbon – carbon double 

bonds in the CNT induced by KMnO4 (figure 12). The reduction of the oxygen containing 

groups was performed using hydrazine (N2H4), a reducing agent, as well as thermal 

treatment, under hydrogen (H2) to restore the electrical conductivity of the GNR. 
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Figure 12: The Proposed chemical mechanism of CNT unzipping [103] 

 

Later, the same group reported [104] that the addition of a weaker acid, such H3PO4 

(phosphoric acid) or TFA (trifluoracetic acid) to the H2SO4 followed by treatment with 

KMnO4 led to the formation of GNR with fewer defects and/or holes in the basal plane. 

The proposed mechanism for the effect of the weaker acid was based in the improvement 

of chemoselectivity by minimizing the oxidation process. After the initial manganite ester 

(1 in figure 13) the vicinal diols 2 that are formed could cleave at the carbon-carbon bond 

between them, giving the dione 3 and a new hole in the nanoribbon. Destructive oxidation 

throughout the structure then could occur and lead to the defects and irreversible changes 

in the basal planes that cannot be repaired with chemical reduction. However, when an 

acid such H3PO4 was present, it protects the vicinal diols by forming cyclic structure 4, 

thus preventing or retarding over oxidation to the diones. Moreover, the authors also 

demonstrated that controlling the amount of KMnO4 could lead to a partially unzipped 

CNT resulting in a mixture of GNT and GNR. The oxygen groups in GNR can easily 

react with other compounds, leading to the formation of new functional groups that may 

find novel applications. The reaction of oxidized GNR (o-GNR) with diazonium salts has 

been reported to improve the electrical properties of the GNR. [105, 106] 
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Figure 13: Proposed mechanism for the CNT unzipping when a second weaker acid is used [104] 

The oxidative unzipping of CNT also depends on the type of pristine carbon nanotubes 

used. Castillo-Martinez et al. [107] reported that for CVD grown CNT with diameters of 

5-15 nm (6-12 walls) and lengths approximately 0.5 µm only partial unzipping of CNT 

occurred when 500 wt.% of KMnO4 was used, and the total unzipping was attained when 

800 – 850 wt.% was used. In the case of CNT with smaller diameter (1-4 walls) and 

lengths up to 3 mm, 500-700 wt.% of the oxidant agent led to the total longitudinal 

opening of CNT. The oxidative unzipping of nitrogen-doped (N-doped) CNT has also 

been studied. [108] The N-doped CNT were previously synthetized by CVD using a 

benzylamine as carbon/nitrogen source. The presence of nitrogen atoms made the CNT 

more reactive toward oxidation when compared with undoped CNT. Also the nitrogen 

content of the unzipped N-doped CNT decreased as a function of the oxidation time, 

temperature and KMnO4 concentration, controlling this way the concentration of nitrogen 

within the GNR. Since the N-doped CNT were more reactive, the amount of KMnO4 used 

varied between 100 - 500 wt.% leading to the total unzipping of CNT. The bamboo 

structured nitrogen doped CNT was also tested for the oxidative unzipping. [109] The 
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graphene shells of the bamboo CNT have a “stacked cone” morphology (figure 14) and 

its synthesis has been reported. [110-112] 

 

Figure 14: Bamboo carbon nanotubes: a) schematic representation, b) and c) TEM images [110] 

The bamboo structured nitrogen doped CNT were unzipped by a chemical oxidation route 

using potassium permanganate in the presence of trifluoracetic acid or phosphoric acid 

resulting in the formation of N-doped GNR. The absence of the second weaker acid 

resulted in the distortion of the bamboo caps and, in these cases, no unzipping occurred. 

On the basis of the high resolution transmission electron microscopy studies, the authors 

considered that the bamboo compartments were unzipped via helical or dendritic 

mechanisms, which are different from the longitudinal unzipping of open channel CNT. 

[109] The schematic representation of these mechanisms is presented in the figure 15. 

 

Figure 15: Proposed a) helical and b) dendritic unzipping of bamboo structured nitrogen doped CNT [109] 

Other oxidative unzipping processes have been reported in which a mixture of 

concentrated sulphuric acid and nitric acid (HNO3) is used. After intercalation of H2SO4 

and HNO3 molecules between the coaxial cylinders of the CNT causing its expansion, the 
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unzipping of the CNTs can occur under sonication [113] or thermal treatment at high 

temperature. [114]. Figure 16 represents the proposed mechanism for the unzipping of 

CNT. The unzipping of these CNT, after the oxidation and intercalation process, can also 

occur by abrupt heating, where the CNT are frozen in liquid nitrogen and then boiling 

water is added rising the temperature from ca.-200 to 45ºC in a few seconds (5 to 10 s). 

[115, 116] 

 

Figure 16: Proposed mechanism for the intercalation of H2SO4 and HNO3 followed by mechanical or thermal 

unzipping [114] 

The Hummer’s method [70] and modified Hummer’s methods are methodologies 

frequently applied for the unzipping of CNT. Here, the oxidative unzipping occurs by 

mixing concentrated H2SO4 and sodium nitrate (NaNO3) [117, 118] or potassium nitrate, 

(KNO3) [119] followed by treatment with KMnO4. KMnO4 is the most used oxidizing 

agent, however sodium hypochlorite (NaOCl) has also been studied for the unzipping of 

CNT previous oxidized using H2SO4. [120] Regarding the reduction of the oxygen 

containing groups of the GNR, hydroionic acid (HI) [121] and lithium aluminium hydride 

(LAH) [122] have also been used as reducing agents to produce reduced GNR (r-GNR). 

Gas-phase oxidation has also been studied for the unzipping of CNT. The method is based 

on the calcination of the CNT in air at 500 ºC which removes impurities and etch/oxidize 

the CNT at defect sites and ends without oxidizing the side walls. The dispersion in 1,2 

dichloroethane (DCE) organic solution of poly(m-phenylenevinylene-co-2,5-dioctoxy-p-

phenylenevinylene) (PmPV) followed by sonication promoted the unzipping of the 

calcinated CNT. [123, 124] Manual grinding [125, 126] of previous oxidized CNT also 
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showed to be efficient in the unzipping of CNT. The oxidation was performed to obtain 

CNT with different reactive functionalities of COOH and OH groups by treating them 

with a mixture of H2SO4:HNO3 [127] and sodium hydroxide (NaOH) [128] respectively. 

The unzipping occurs in three steps by grinding equal weights of CNT-COOH and CNT-

OH. The first step (figure 17) is the formation of hydrogen bonds, the second step is the 

fast proton-transfer that is followed by the third step, the formation of water and carbon 

dioxide (CO2) as the products of the exothermic reaction. The released heat can induce 

the breaking of the carbon-carbon bonds leading to the unzipping. [125] 

 

Figure 17: Proposed mechanism for the hydrogen bond-mediated proton transfer unzipping of CNT [125] 

 

The intercalation of oxalic acid followed by the oxidative unzipping of the CNT with 

H2SO4 and KMnO4 was also reported.  [129] The oxalic acid was selected owing to its 

ability to diffuse through the walls of the CNT because it has a molecular length that 

equals the space between the carbon walls. The intercalation of the oxalic acid among the 

CNT layers inhibited the destruction of CNT during the unzipping process which enabled 

potassium permanganate to homogeneously unzip the CNT one by one, until to the 

interior tube. 

2.2.2.2. Intercalation processes 

Besides oxidation processes, other methodologies have been studied for the unzipping of 

CNT to obtain GNR. Cano-Márques et al.  [130] reported the longitudinal unzipping of 
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CNT by intercalation of lithium (Li) and ammonia (NH3) followed by exfoliation with 

acid treatment using hydrochloric acid (HCl) and abrupt heating at 1000ºC. Also, Tour’s 

group [131] reported the unzipping of CNT by intercalation of potassium vapor (figure 

18a). The method comprises the exposure of the CNT to hot potassium vapor followed 

by protonation with ethanol (figure 18b). The obtained stacked GNR was then sonicated 

in chlorosulfonic acid (ClSO3H) to induce the exfoliation of the GNR.  

 

Figure 18: Unzipping of CNT by intercalation of potassium vapour: a) schematic representation, b) 

protonation of the aryl potassium edges with ethanol. [131] 

 

Later, the same group  [132] reported the replacement of the intercalated potassium with 

haloalkanes by in situ functionalization and intercalation with alkyl groups leading to the 

formation of hexadecyl-, octyl- and butyl-GNR (figure 19). Shinde and co-workers [133] 

reported a hydrothermal approach for the unzipping of CNT. The method involves the 

use of several counter ions from potassium sulphate (K2SO4), potassium nitrate (KNO3), 

potassium hydroxide (KOH) and H2SO4 in aqueous media, where selective intercalation 

followed by exfoliation led to the formation of GNR. The sulphate and nitrate ions acted 

as co-intercalant along with potassium ions resulting into exfoliation of CNT in an 

effective manner. [133]  
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Figure 19: In situ intercalation replacement and selective functionalization of GNR [132] 

 

2.2.2.3. Catalytic processes 

Catalytic unzipping of CNT using metal nanoparticles has also been studied to obtain 

graphene nanoribbons. Terrones’s group [134] reported the use of nickel (Ni) and cobalt 

(Co) to longitudinally unzip CNT (figure 20). The process consisted of catalytic 

hydrogenation of carbon, in which the metal particles “cut” sp2 hybridized carbon atoms 

along CNT. [134] Parashar et al.[135] also reported the unzipping of CNT using a one-

step method that involves the in situ grow of Ni nanoparticles that longitudinally cut the 

CNT walls. Janowska and co-workers [136] reported the catalytic unzipping of CNT in 

the presence of palladium (Pd) nanoparticles under microwave irradiation, cutting the 

CNT lengthways. 

 

Figure 20: Catalytic unzipping of the CNT using Ni or Co nanoparticles [134] 
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2.2.2.4. Plasma etching processes 

Plasma etching is another methodology described for the unzipping of carbon nanotubes. 

Jiao et al. [137] reported the unzipping of CNT by Argon (Ar) plasma etching of partially 

embedded CNT in a poly(methyl methacrylate) (PMMA) matrix. The plasma etching 

applied directly to the CNT (without being embedded in polymer matrix) was also 

reported by Valentini, [138] where the CNT were treated with tetrafluoromethane (CF4) 

plasma etching. As the plasma bombarded the entire CNT, this procedure led to the 

formation of shorter GNR as well as some unzipped CNT. [138] Nonetheless, the direct 

plasma etching to the CNT to form GNR by controllable unzipping of the nanotubes has 

been reported. [139, 140] The process is comprised of two steps, the passivation and the 

etching. During the passivation, oxygen (O2), hydrogen (H2) and sulphur hexafluoride 

(SF6) gases were applied under plasma. The etching was achieved by plasma 

hydrogenation. In the passivation step a thin layer of polymeric carbon-fluorine was 

formed on the outer layers of the CNT acting as a protective layer in the etching process. 

[139].  

 

2.2.2.5. Electrochemical processes 

The unzipping of CNT by electrochemical processes have also been reported. Pillai’s 

group [141] reported the electrochemical unzipping of CNT at controlled potential, using 

CNT as working electrode (a glassy carbon electrode modified with CNT). The applied 

electric field on the CNT electrode in diluted H2SO4 initiates the breaking of the sp2 

carbon bonds that continues in the longitudinal direction. The reduction of the oxidized 

GNR was then performed by applying a negative potential. Figure 21 shows the 

schematic representation of the unzipping process. [141] 

 

Figure 21: Schematic representation of the electrochemical transformation of GNR from CNT [141] 

Latter the same group [142] reported the electrochemical unzipping of CNT using a solid 

electrolyte that consisted in a sandwich structure containing copper electrodes separated 
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by a solid polymer electrolyte (Nafion membrane) modified with CNT on both sides. The 

unzipping occurred by applying a gradient electric field. [142] The group also reported 

an in situ Raman spectroscopy study [143] of the electrochemical unzipping of SWNT, 

suggesting that the mechanism of unzipping includes the formation of epoxide at the 

surface of SWNT followed by their successive transformation to graphene nanoribbons. 

The authors reported that the unzipping of metallic SWNT occurred faster and at lower 

potential than semiconducting SWNT. 

 

2.2.2.6. Electrical current processes 

Electrical current has been also used to unzip carbon nanotubes. Kim and co-workers 

[144, 145] reported the unzipping of CNT using a high direct current (DC) pulse (about 

1500 and 2500 A). The high DC flows through the surface of CNT breaking the sp2 carbon 

bonds starting at the tip of CNT and following the current direction. Controlled current 

induced electrical unzipping of CNT was also reported. [146] The method implies the 

application of electrical current, under high vacuum, inside a TEM equipment. Using a 

movable electrode, a CNT was contacted and the unzipping of the outer layer was induced 

via an applied electrical current through the contact with the CNT. With a proper voltage 

bias control only part of the CNT outer layer is severed and the GNR is formed. The GNR 

was then removed from the CNT via sliding between the GNR and the CNT. Figure 22 

shows the proposed mechanism.  

 

Figure 22: Proposed mechanism for the unzipping of CNT using controlled electrical current [146] 

Partially unzipped CNT was also achieved via in situ Joule heating inside a TEM 

equipment. [147] The formation of these partially unzipped CNT was suggested to be 
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induced by the sequential and spontaneous unzipping of the outmost wall of the CNT 

under uniformly thermal etching and voltage pulse of 0.2 - 1.0 volts. [147] 

 

2.2.2.7. Other processes 

Other methodologies have been reported to obtain graphene nanoribbons by the 

unzipping of CNT. Controlled unzipping of CNT was reported by Wei et al. [148] by 

sputtering the CNT with zinc (Zn) followed by dissolution in HCl aqueous solution. The 

SWNT were grown on a silicon/silicon dioxide (SiO2/Si) substrate, then PMMA was 

patterned on one side of the SWNT, protecting it from Zn sputtering. After the zinc 

sputtering, the PMMA was removed by HCl and acetone treatments resulting in a 

SWNT/GNR intramolecular junction at the interface. Figure 23 depict this patterned 

unzipping mechanism. 

 

Figure 23: Schematic representation of the patterned unzipping of SWNT for producing SWNT/GNR 

intramolecular junction. [148] 

Hydrogenation reactions have been studied for the unzipping of CNT. Talzin et al. [149] 

reported the unzipping of SWNT by reaction with hydrogen gas. Firstly, the reaction was 

performed at 400-450 ºC under pressure and H2 flow. Then the unzipping occurred by 

hydrogen treatment at higher temperature (550 ºC). Using the microwave irradiation as 

external energy source, Vadahanambi et al. [150] reported the unzipping of CNT in an 

ionic liquid –assisted splitting method. The authors dispersed the CNT in 1-ethyl-3-
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methyl imidazolium tetrafluoroborate (EMIM BF4) using sonication followed by 

microwave irradiation to form GNR. 

Ozden et al. [151] reported the unzipping of CNT using a hypervelocity impact of CNT 

against a metal target. Through this mechanical impact a large number of defects was 

produced in CNT as well as rapid atom evaporation resulting in their unzipping. The 

resulting structures were GNR with various widths (depending on the CNT used) and 

lengths. The same group [152] later reported the unzipping of carbon nanotubes using a 

cryo-milling method. The cryo-milling machine was developed by the group and can 

deform the CNT using a vibrating ball with the weight of 500 g and a frequency of 50 

Hz. The deformation rate was calculated to be about 108 s-1 and to avoid the local melting 

a constant temperature of 150 K (-123ºC) was maintained throughout by a liquid nitrogen 

flow. The proposed mechanism for the unzipping was given by experimental and 

molecular dynamics simulations in which radial and shear loading resulted in the 

unzipping of CNT. Figure 24 shows the possible loading conditions in the ball milling 

experiment. 

 

Figure 24: Possible loading conditions in ball milling experiment [152] 

Fan and co-workers [153] reported the unzipping of CNT using a microexplosion method. 

The procedure was based on the filling of CNT with K and then exploding them with 

water. When the CNT were effectively filled with K, the microexplosion generated by 

reaction between water and K unzipped the CNT from the weakest point to form GNR. 

Huang et al. [154] reported the unzipping of CNT by a slicing process. The authors 

prepared perpendicularly aligned CNT/olefin composite films through a conventional 

slicing technique in which the olefin was infiltrated into a CNT array to produce the 

composite that was then cut into composite films with thickness varying from about fifty 
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nanometers to fifty microns. The GNR were produced after the CNT were separated from 

the polymer matrix by sonication, since the slicing process generated defect at the end of 

the CNT. The process is illustrated in figure 25. The unzipping of flattened carbon 

nanotubes has been reported, based on the production of flattened CNT which are then 

unzipped either by oxidation (using H2SO4 and KMnO4) [155] or by spontaneous collapse 

during their grow. [156] 

 

Figure 25: Schematic illustration of the fabrication of GNR by a slicing process [154] 

Laser irradiation was also reported to unzip CNT. Kumar et al. [157] showed that the 

irradiation of CNT by an excimer laser with energy of about 200-300 mJ yielded graphene 

nanoribbons Also, Bang and co-workers [158] reported the unzipping of CNT using 

pulsed laser irradiation in ethanol with 100 mJ of energy and with a repetition rate and 

pulse of 30 Hz and 10 ns, respectively.  

The formation of graphene nanoribbons by unzipping of carbon nanotubes was achieved 

on a scanning tunneling microscope (STM) under ultra-high vacuum [159]. The carbon 

nanotubes were previously functionalized by the 1,3-dipolar cycloaddition (DCA) 

reaction of azomethine ylides using a one-step and solvent-free approach. [160] The 

proposed model for the unzipping is based on the perturbation of π-conjugation along the 

CNT surface induced by the cycloaddition reaction (figure 26). The unzipping of the 

outer layer of the functionalized CNT resulted in a clean and non-oxidized GNR, and the 

degree of functionalization can be controlled by varying the functionalization conditions. 

[160]  
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Figure 26: Proposed model for the unzipping of functionalized CNT induced under STM conditions [159] 

 

2.2.2.8. Applications of graphene nanoribbons from carbon nanotubes 

The production of GNR by unzipping of CNT has been extensively studied, and their 

application in various scientific fields has also been the target of extensive research. 

Applications such as photovoltaic devices, [161] fuel cells, [162-170] supercapacitors, 

[171-182] radio frequency transmission, [183] optical limiting, [184, 185] lithium-ion 

batteries, [186-199] electronic devices, [200-207] solar cells, [208-211] tissue 

engineering, [212] medical imaging, [213, 214] and cancer therapy [215] have been 

studied for the application of GNR obtained from CNT. Also, textile [216-218] and 

polymer nanocomposites applications [219-238] have been reported. In fact, GNR 

obtained from unzipping of carbon nanotubes were used as reinforcement in polymers 

such polyvinyl alcohol (PVA), [219-221] polyurethane (PU), [222, 223] 

polydimethylsiloxane (PDMS), [224] polyamide (PA), [225] high-density polyethylene 

(HDPE), [226] polymethyl methacrylate (PMMA), [227, 228] polyvinylidene fluoride 

(PVDF), [229] polylactic acid (PLA), [230] polyimide (PI), [231] fluor [232] and silicon 

[233] elastomers as well as epoxy [234-237] and other thermoset polymers [238] with the 

aim to improve their mechanical, thermal, electrical and gas barrier properties. Another 

field of application GNR obtained from CNT is the preparation of sensors. An example 

is the detection of dopamine [239-245] which has been extensively studied. Dopamine is 

a neurotransmitter and may be used in the treatment of disorders of the central nervous 

system, such as Parkinson’s disease. Another example is the detection of urea, [246] a 

biomolecule that is usually monitored in blood analysis, since its early detection can help 

to preventing various diseases leading to kidney and hepatic failure. The detection of 

other well-known biomolecules such glucose [247, 248] and cholesterol [249] has also 

been studied using GNR based sensors. The detection of some contaminants in the 

environment have also been the target of research. An electrochemical sensor for the 
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detection of 4-nonyl phenol was investigated. [250] This molecule is an intermediate for 

the production of polyethoxylate surfactants, however it is also an endocrine disruptor. 

Moreover, the detection of polycyclic aromatic amines, [251-253] that may be chemical 

carcinogens, brevetoxin B, [254] which is a toxin that can be detected in seafood, 

pesticides (carbaryl pesticide), [255] 2,4,6-trinitrotoluene (TNT), [256, 257] used in 

explosives and that may have harmful effects as toxic and mutagenic substances, have 

also been reported. Furthermore, graphene nanoribbons obtained from carbon nanotubes 

has been studied for gene [258, 259] and drug [260, 261] delivery.  

Concerning the biomedical applications, cytotoxic studies of the graphene nanoribbons 

have been performed, however the results are still controversial. While some research 

works point to the concentration dependence showing viability at low concentrations of 

o-GNR (below 10 µg/mL), [262-265] others demonstrated that o-GNR could be cytotoxic 

materials. [266-268] In spite of the great potential of GNR in the biomedical area, the use 

of these materials in such applications should be carefully considered, its cytotoxicity 

being still under extensive research. 

 

2.3. Graphene characterization 

The characterization of graphene is an essential step for all the graphene research areas, 

involving measurements based on various microscopy and spectroscopy techniques. 

Typically, the characterization of graphene involves the determination of the number of 

layers of stacked graphene in the material as well as the evaluation of its quality in terms 

of the presence or absence of defects and contaminants. Optical contrast of graphene is a 

simple method which has been used for the identification of the number of layers. Single 

layer graphene, bilayer- and few layer graphene (<10 layers), placed on a silicon wafer 

covered with a 300 nm thick layer of SiO2, are differentiated using contrast spectra 

generated from the reflection of light using a white light source. [269] Atomic force 

microscopy (AFM) is currently used to determine the number of graphene layers stacked 

within the graphene flakes. The topographic contrast of AFM images allows the 

determination of the height of the graphene sample. The number of graphene layers may 

be estimated through the ratio between the total flake height and the graphite interlayer 

distance. [27, 35, 270] Figure 27a) shows an AFM image of single layer graphene. Other 

useful techniques normally used to characterize graphene are scanning tunneling and 
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transmission electron microscopies (STM and TEM, respectively). These techniques may 

provide high resolution images of graphene which allow the morphology study, the 

structure of graphene and a qualitative analysis of the chemical composition. The STM 

applies the tunneling current between a sharp metallic tip and a conductive sample. This 

technique may provide information about the morphology and structure of graphene 

giving access to the topography of the sample at atomic resolution. STM can be used 

under ultra-high vacuum, in air and inert atmosphere, at different temperatures ranging 

from near zero Kelvin to a few hundred of Celsius degrees. [35, 159] This technique 

requires extremely clean and stable surfaces, and despite that fact STM has been 

extensively used to image graphene at atomic resolution and to observe its electronic 

characteristics and its topography. [271, 272] The results greatly depend on the quality of 

the prepared samples, and the experimental conditions to test them are complex.  

Electron microscopy is based on the interaction of the sample with a high-energy electron 

beam ranging from a few KV to several 100 KV. These interactions may be observed as 

images of the topography by scanning electron microscopy (SEM) and morphology of 

the material (TEM). Higher energy beam leads to better resolution, however the operation 

under high voltage damages the monolayer of graphene. Energy beams of 80 KV and 

lower have been successfully used to obtain high resolution images of graphene by 

transmission electron microscopy. [35, 273, 274] Figures 27b) and 27c) show TEM and 

high resolution TEM (HR-TEM) images of graphene.  

 

Figure 27: a) AFM image of single layer graphene; b) TEM and c) HR-TEM images of graphene. [25] 

Through TEM electron diffraction technique it is possible to observe the typical 

hexagonal pattern of the graphene structure. [270] In addition, this technique allows 

distinguishing single- from double- and few- layer by comparing the intensities of the 

first and the second ring of the diffraction spot. For single layer graphene the intensity of 

the outer hexagon spot is the same or less than that of the inner one. Conversely, double 
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layer graphene exhibits higher intensity for the outer hexagon spot. [275] Figure 28 

shows diffraction patterns for single- and double layer graphene as well as their intensity 

profiles.  

 

Figure 28: Diffraction patterns of a) single layer and b) double layer graphene 

The transmission electron microscopy may also be assisted with energy-dispersive X-ray 

spectrometry (EDS) which enables a qualitative analysis of the sample identifying its 

chemical elements. The spectra can be acquired in a short time allowing a rapid evaluation 

of the specimen.  

A quantitative analysis of the chemical elements may be achieved using X-ray 

photoelectron spectroscopy (XPS). This technique allows the determination of the 

binding energy of the photoelectrons ejected when the samples are irradiated with X-ray. 

The binding energy of the inner shell electrons is specific of each element allowing its 

identification. Furthermore, XPS can also provide information about the chemical 

functional groups and the electronic structure of the surface molecules based on the 

“shifts” of the binding energy for each element, measured in eV, induced by its chemical 

neighborhood. [276, 277]  

X-ray diffraction (XRD) may be used to distinguish graphene and graphene derivatives 

from the original graphite. The pristine graphite exhibits a basal reflection (002) peak at 

2θ = 26.6º in the XRD pattern corresponding to a d spacing of 0.335 nm. After its 

oxidation process the interlayer spacing of graphite increases due the presence of 

functional groups resulting in a shift to lower 2θ of the 002 reflection peak (figure 29). 

Single layer graphene as well as single layer graphene oxide typically exhibit a straight 

line with no apparent diffraction peak in the XRD pattern indicating that the periodic 

structure of graphite, due to graphene regular stacking, has been eliminated. [270, 273] 
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Figure 29: X-ray diffraction patterns of pristine graphite, graphite oxide and graphene [270] 

Ultraviolet-visible spectroscopy (UV-Visible) has been used to characterize graphene in 

suspension. Graphene has a sp2 structure typical of aromatic compounds which gives a 

characteristic absorption in the UV-Visible. Typically, graphene and graphene oxide 

show an absorption peak from 230 to 270 nm. [74, 270, 278, 279] The estimate of the 

weight concentration, c (g L-1), of graphene may be carried out applying the Lambert-

Beer Law (equation 1): 

A=αlc           (1) 

Where A is the measured absorbance, l (m) is the length of the optical path, and α (L g-1 

m-1) is the absorption coefficient. [27] This technique has been highly used to quantify 

graphene in suspension. [25, 278, 280] Raman spectroscopy is an important technique for 

the structural description of carbon-based materials, and is of fundamental importance for 

the characterization of graphene samples. Raman spectroscopy is based on the inelastic 

scattering of light which is usually associated to the emission and absorption of phonons. 

A photon ωL impinging to a sample causes vibrations of the atoms at their natural 

vibrational frequencies. When the incident photon loses energy in creating a phonon 

(emission) the process is designated as Stokes process. Conversely, when the photon 

gains energy by absorbing a phonon (absorption) the process is designated as anti-Stokes 

process. Both processes result on the emission of a scattered photon ωSc (figure 30). [281] 

 

Figure 30: Raman scattering: a) Stokes process; b) anti-Stokes process; and c) Raman scattering resonant 

conditions [281] 
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Among all possible phonon modes for sp2 carbons, only a limited number of phonons are 

Raman active modes leading to characteristic bands on the Raman spectra, which enables 

to distinguish differences in the structure of the carbon materials. For a single-layer 

graphene, which is the fundamental sp2 carbon material, the Raman spectra present three 

main characteristic bands. The G band which appears near 1580 cm-1 is related to the 

planar configuration of carbon the sp2 lattice forming the graphene structure. Due to the 

strong C-C bonding the G band has a relatively high Raman frequency in comparison to 

other materials and very small perturbations to the frequency of the G band can be 

measured. The frequency of the G band is independent of the laser excitation energy 

(Elaser), however it is sensitive to the temperature, strain and doping of the graphene 

sample. The D band is known as a disorder, or defect band. It represents a ring breathing 

mode from sp2 carbon rings, although to be active the ring must be adjacent to a graphene 

edge or a defect. The D band occurs about 1350 cm-1 at 2.41 eV (514 nm) laser excitation 

energy and is highly dispersive as a function of the Elaser. Since the intensity of the D band 

is directly proportional to the level of defects (or edges) of the sample, the D / G band 

intensity ratio (ID / IG) may provide a sensitive metric for the degree of disorder in the sp2 

carbon structure. Another characteristic band of the graphene Raman spectrum, is the G’ 

or also called 2D band. The 2D band is a second order band and sometimes is referred as 

an overtone of the D band. However, it is not related to the defects of graphene structure 

and, as a result, the 2D band is always a strong band in graphene even when the D band 

is not present. Furthermore, the intensity ratio (I2D / IG) and the shape of the 2D band may 

be used to identify the number of stacked graphene layers. [273] In the case of single 

layer graphene the 2D band is twice the intensity of the G band while in two-layer 

graphene the G band is stronger than the 2D band. Moreover, the 2D band is shifted to 

higher frequency in two-layer graphene and has a different shape. As the number of 

stacked layers is increased the 2D band moves to higher wave number and becomes 

broader and more asymmetric in shape. In multilayer graphene presenting more than 10 

layers the 2D band becomes very similar to that of graphite. [282, 283] Figure 31 shows 

the Raman spectra of single-, two- and multilayer graphene.  
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Figure 31: Raman spectra of single-layer, two-layer and multilayer graphene. [273] 

Raman spectroscopy technique is useful as an in situ, non-contact and non-destructive 

analysis tool that can be used at room temperature and under ambient operating 

conditions.  

 

2.4. Graphene polymer nanocomposites 

Graphene is a carbon nanomaterial that can potentially improve the properties of polymer-

based nanocomposites, as it possesses similar mechanical properties to CNT but superior 

thermal and electrical conductivity and larger surface area (table 1). [35, 36] However, 

the production of such polymer nanocomposites requires not only that graphene be 

produced at a large scale, but also that it may be incorporated and homogeneously 

dispersed into polymer matrices with good interfacial adhesion. [11] These requirements 

are crucial in order to produce graphene polymer nanocomposites with enhanced 

mechanical and electrical properties. Concerning the electrical conductivity of the 

nanocomposites, the concentration of graphene needs to be above the electrical 

percolation threshold, where a conductive network of graphene is formed. Both 

conductivity and the percolation threshold may be affected by various factors such as the 

volume fraction, the orientation and aspect ratio of graphene, its interlayer spacing and 

the interfacial adhesion with the polymer matrix, its dispersion in the matrix as well as 

the crystallinity of the matrix. [284] At the nanometer scale, the van der Walls forces 

between carbon nanoparticles become extremely significant due to their large specific 

surface area, [285] and so nanoparticles such as graphene or CNT tend to form stable 

agglomerates. Thus, to achieve uniform dispersion of nanoparticle agglomerates in a 

polymer matrix, it is necessary to overcome their agglomerate cohesion strength. 

However, the energy applied to promote their deagglomeration must be carefully 



Chapter 2. State of Art 

 

  39 
  

controlled. A low energy input may not induce the breakup of the nanoparticle 

agglomerates. Conversely, excessive energy input may cause the fragmentation of the 

primary nanoparticles (the breakage of CNT or the decrease of graphene size, for 

instance) which may not induce any beneficial effect. [286] Figure 32 shows a schematic 

representation of the different stages of the reduction of the particle agglomerate size 

versus the energy applied to induce agglomerate dispersion. 

 

Figure 32: Schematic diagram showing reduction in particle size with the increasing dispersion energy [286] 

 

The fabrication method and processing conditions of the nanocomposites play an 

important role in the final properties of the nanocomposite, since the energy applied to 

promote the dispersion of the nanoparticles depend of such parameters. [284] The method 

of solution mixing and in situ polymerization has been used as synthesis strategies for 

graphene/polymer nanocomposites. In fact, solution mixing is a vastly used technique to 

fabricate graphene/polymer nanocomposites as the suspension of dispersed graphene can 

be directly mixed into soluble polymers. The drawback of this technique is the 

solubilization of the polymer that frequently involves the use of hazardous solvents such 

as dimethylformamide (DMF), chloroform, dichloromethane (DCM), or toluene. Melt 

mixing, in contrast, is a most environmentally and economically attractive technique and 

scalable method for dispersing graphene into polymers. In addition, this process avoids 

the use of hazardous solvents. [35]  
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2.4.1. Melt mixing method 

The melt mixing technique is frequently used for the preparation of polymer 

nanocomposites, however it does not easily lead to optimal nanoparticle dispersion. [38] 

[39] Various studies carried out using a diversity of mixing equipment (extruders, internal 

mixers, prototype mixers) for carbon black [40], carbon nanofibers [41], and carbon 

nanotubes, [42, 43] have demonstrated that the intensity and type of hydrodynamic 

stresses (i.e., shear versus extensional), residence time, and interfacial adhesion play a 

major part in dispersion. [41, 42, 44] The pioneering work of Taylor [287] and Grace, 

[288] followed by several other studies, [289-291] showed the importance of extensional 

flow on the elongation and the break-up of the agglomerates of nanoparticles in polymers 

and its effectiveness compared with shear flow. [292, 293] 

In the specific case of the dispersion of carbon nanotubes Pötschke et al. [43, 44, 285] 

performed several experiments to study their mechanism of dispersion into polymer 

melts. During the dispersion stage, the size reduction of the large agglomerates was 

attributed to two main mechanisms, namely rupture and erosion of the CNT agglomerates. 

The rupture mechanism consists in the rapid breakage of the large CNT agglomerates into 

smaller ones, while in the erosion mechanism the individual CNT located at the 

agglomerate surface are slowly eroded into the bulk polymer melt by the polymer wetting 

action. Figure 33 present a schematic representation of these mechanisms.  

 

Figure 33: Schematic descriptions of CNT agglomerate dispersion mechanism. [43] 

These studies led to a proposed model to estimate the contribution of rupture and erosion 

mechanisms during the CNT agglomerate dispersion. At low mixing speeds, it was 

observed that both mechanisms contributed to dispersion, whereas rupture dominated 

with increasing mixing speed. [43]  
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Covas et al. [41, 42] studied the mechanism of dispersion of CNT in polypropylene (PP) 

matrix using extensional flow. They developed a prototype small scale mixer, inspired by 

the concept developed by Nguyen et al. [294]. The mixing device created repetitive 

converging–diverging flow sequences along its length generating a strong extensional 

flow component, while precisely controlling flow rate and temperature. In addition, the 

device allowed to collect samples at various axial locations along the mixer for further 

characterization. Figure 34 shows the schematic representation of the mixer device. 

 

Figure 34: Schematic representation of the prototype small-scale mixer [41] 

 

The studies performed showed that the application of converging-diverging flow 

improved the dispersion of the nanoparticle agglomerates producing smaller 

agglomerates and dispersing a larger fraction of the individual CNT when compared with 

twin screw extrusion. [41] The same authors studied the influence of the chemical 

functionalization of the CNT and carbon nanofibers (CNF) on their dispersion in PP 

matrix. [41, 295] The functionalization route lead to bonding of PP grafted with maleic 

anhydride on pyrrolidine functionalized CNT PP improving the dispersion of both CNT 

and CNF in the PP matrix. While the dispersion mechanism of carbon nanotubes in 

polymers is well studied, for graphite and graphene it is far from being well understood. 

However, the incorporation of graphene and graphite based materials into PP may convey 

interesting properties to the composite. [296, 297] Table 2 presents mechanical and 

electrical properties reported in the literature for graphene or graphite related materials in 

polypropylene matrix, produced by melt mixing. 

 

 

Table 2: Mechanical and electrical properties of PP composites with graphene or graphite related materials 
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Graphene/graphite type 

(Supplier) 

Equivalent 

diameter 

(µm) 

Treatment Tensile modulus 

ratio(1) 

Electrical 

percolation 

threshold (wt.%) (2) 

Highest 

conductivity 

(S cm-1) 

Ref. 

GnP 

(XG Sciences Inc., USA) 

5 

15 

25 

Used as 

received 

1.09 (8wt.%) 

1.08 (8wt.%) 

0.94 (8wt.%) 

- - [298] 

GnP 

(UCAR International Inc.) 

1 

15 

Used as 

received 

- 15 10-3 

(55wt.%) 

[284] 

Natural graphite flake 

(grade 3061, Sigma Aldrich)  

500 Thermal 

expansion 

2.12 (10wt.%) 1 – 3 10-7 (3wt.%) [299] 

GnP 

(XG Sciences Inc., USA) 

5 

10 

Used as 

received 

2.3 (22wt.%) 

1.9 (22wt.%) 

13 

9 

10-3 

(18wt.%) 

[300] 

Graphite  

(Alfa Aesar Co., Ltd.) 

45 r-GO  1.74 (1wt.%) 1 - 2 10-6 (5wt.%) [301] 

Grafite 

(Merck) 

50 r-GO - 11 10-3 

(22wt.%) 

[302] 

Graphite  

(Sigma Aldrich) 

20 r-GO 2.0 (3wt.%) - - [303] 

GnP 

(Asbury Carbon) 

2 Used as 

received 

1.5 (5wt.%) 1 – 3 10-3 

(10wt.%) 

[304] 

GnP 

(XG Sciences Inc., USA) 

1 

15 

Used as 

received 

- 18 - 20 10-3 

(55wt.%) 

10-2 

(55wt.%) 

[305] 

GnP 

(Angstron Materials Inc.) 

40-50 Used as 

received 

- 8 - 10 10-4 

(15wt.%) 

[306] 

GnP 

(XG Sciences Inc., USA) 

5 Used as 

received 

1.5 (10wt.%) 5 10-4 

(20wt.%) 

[307] 

GnP 

(Nanjing Kefu nano-Tech Co. Ltd.) 

(Suzhou Hengqiu Graphene Tech. Co. Ltd.) 

(Nanjing Jichang Kefu Nano-Tech Co. Ltd.) 

<10 

0.5-20 

10-50 

Used as 

received 

2.2 (0.5wt.%) 

1.9 (0.5wt.%) 

1.5 (0.5wt.%) 

- - [308] 

Graphene nanosheets 

(Enerage Inc., Taiwan) 

- Used as 

received 

2.5 (20wt.%) 5 10-3 

(20wt.%) 

[309] 

Natural graphite 

(grade 2369, from Graphexel Ltd.) 

- Electrochemical 

exfoliation 

5µm (eq. diameter) 

20µm  

 

 

1.1 (20wt.%) 

1.9 (20wt.%) 

- - [310] 

Graphite 

(grade KFL, Graphite Kropfmuhl GmbH) 

100 r-GO - 2 - 5 10-6 

(7.5wt.%) 

[311] 

GnP 

(XG Sciences Inc., USA) 

5 As received 

r-GO 

1.2 (3wt.%) 

1.2 (3wt.%) 

- 10-10 

(3wt.%) 

10-9(3wt.%) 

[312] 

EG 

(SGL Technologies GmbH) 

- Used as 

received 

- 6 - 8 10-5 

(20wt.%) 

[313] 

GnP 

(XG Sciences Inc., USA) 

25 Used as 

received 

- 5 - 10 10-4 

(40wt.%) 

[314] 

(1) Ratio between the tensile modulus of the composite and the polymer (PP) 

(2) When loading was reported in volume percent, the density of bulk graphite (2.2 g cm -3) was used to convert to a weight percent 

loading 
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Graphite nanoplates (GnP), a thin form of graphite flakes with thickness ranging from 

that of graphene to approximately 100 nm, have recently attracted attention as an 

economically viable alternative for the development of functional and structural 

nanocomposites. [315] Normally these materials are obtained by expansion process, using 

heat or microwave irradiation, resulting in GnP or expanded graphite (EG) with an 

interlayer spacing higher than that of graphite (0.335 nm).[38, 305, 316] The 

incorporation of graphene and graphite related materials in PP matrix have been studied 

showing to improve the final properties of the composite, namely the mechanical and 

electrical properties. However, even when using the same type of nanoparticles and 

composite processing technique, the properties of the corresponding composites may vary 

considerably depending on the process parameters. 

 

2.4.2. Solution mixing 

Solution mixing, as mentioned before, presents the disadvantages of the large volume of 

volatile organic solvents (VOCs) that is released to the atmosphere during the drying stage 

that leads to composite consolidation, causing pollution problems. However, the use of 

“green” solvents such water could override this problem. For that reason, a large effort 

has been set over the last years to develop stable aqueous polymer suspensions, as well 

as stable suspensions of graphene derivatives in water. 

Polyurethane (PU) is a versatile polymeric material which has been extensively used as 

paints, adhesives and coatings in a wide variety of applications in the field of construction, 

textiles, foot wear, furniture, packaging, electronics, automotive and aerospace, among 

others. [222, 317-323] The methods for the production of PU can be differentiated by the 

process of preparation: solvent free, in solution (using organic solvents) and in water. 

[317] The latter is denominated as waterborne polyurethane (WPU) and has been 

presented as an eco-friendly alternative to other solvent-borne PU since only water is 

involved during the drying stage. The basic components of WPU are similar to those 

which are known from solvent-borne polyurethanes. Mainly they are diisocyanates 

(containing two –NCO groups per molecule), polyols (containing a plurality of hydroxyl 

-OH groups), amines, catalyst and aditives. [37] The addition polymerization reaction of 

diisocyanates and polyols leads to the formation of polyurethane (figure 35). 
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Figure 35: Reaction of diisocyanate and polyol to form polyurethane 

Predominantly, aliphatic diisocyanates like the linear hexamethylene diisocyanate (HDI) 

and cycloaliphatic dicyclohexylmethane diisocyanate (H12MDI) and isophorone 

diisocyanate (IPDI) are used. The structure of these compounds is presented in figure 36. 

Concerning the polyols, a wide range can be found and the variation of its molecular 

weight, structure and functionality are critical for the performance of the final product.  

 

Figure 36: Chemical structures of IPDI, HDI and H12MDI 

The waterborne polyurethane is obtained by the modification of the polyurethane chains 

with hydrophilic groups which allows the dispersion and stabilization of PU in water. [37] 

Various processes have been developed for the preparation of WPU. In all of these 

processes, a medium molecular weight polymer (the prepolymer) is formed by the 

reaction of suitable diols or polyols (usually macrodiols such as polyethers or polyesters) 

with a molar excess of diisocyanates or polyisocyanates in the presence of an internal 

emulsifier. The emulsifier is a diol with hydrophilic groups that can be designated as 

anionic, cationic and non-ionic depending on their ionic non-ionic nature and they will 

be responsible for the stabilization of the WPU chains in water. Depending on the 

emulsifier used the resulting WPU can be designated as anionic, cationic and non-ionic 

WPU. [317] The most common produced WPU are anionic which normally has 

carboxylic acid groups or sulfonic acid groups in the polymer chains. The cationic groups 

frequently used to produce cationic WPU are quaternary ammonium salts while the non-

ionic group commonly used for the production of non-ionic WPU is [poly(ethylene 

oxide)]. [37, 324] Figure 37 illustrates examples of those WPU structures. 
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Figure 37: Examples of WPU polymer structures: Non-ionic WPU (from ref. [325]); cationic (from ref. [326]) 

and anionic WPU (from ref. [327]). 
 

WPU typically presents excellent elasticity, abrasion resistance and flexibility. [37, 317, 

324, 328] Some of the properties of WPU such as water resistance, thermostability and 

mechanical properties are inferior to those of solvent-borne PU. The incorporation of 

carbon based reinforcing materials in the WPU matrix has been used to improve the 

mechanical, thermal, electrical and barrier properties of the composites, relative to WPU. 

Carbon Black (CB) has been studied as reinforcement in WPU matrix to improve 

mechanical and water resistance of the nanocomposite, regarding its application as 

functional coatings on leather and textiles. [329]. CNT have been incorporated to improve 

the properties of WPU nanocomposite films. Oxidation [330-334] and functionalization 

of CNT with ethylenediamine (EDA) [335] and isophorone diisocyanate (IPDI) [336] has 

been performed as strategy to improve the dispersion of CNT in the WPU matrix and 

consequently enhance the final properties of the composites like the mechanical and 

electrical properties as well as the water resistance. The applications of WPU/CNT 

composites films as actuators [337], sensors [338], electromagnetic interference shielding 

(EMI) [339, 340] devices as well as textile [341, 342] and antistatic [343] coatings have 

been studied.  
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Reduced graphene oxide (r-GO) has also been highly used to improve the properties of 

the WPU nanocomposites. Ding et al. [344] reported the incorporation of thermally 

reduced graphene oxide into WPU matrix that demonstrated to improve the thermal and 

electrical properties of the nanocomposite, showing a percolation threshold between 1 

and 2 wt.%. Yousefi and co-workers described [345] the in situ production and reduction 

of GO/WPU nanocomposites. The resulting nanocomposite films showed very good 

conductivity with a percolation threshold of about 0.2 wt.%. Later the same group [346] 

reported the application of those r-GO/WPU nanocomposites as water vapor barrier, 

resulting in an enhancement of 73 % of the barrier effect for 3 wt.% of r-GO 

incorporation. Li et al. [347] also reported the in situ reduction of the GO during its 

mixture with WPU. The resulting nanocomposites showed good electrical properties 

achieving to 10-3 S cm-1 of conductivity at 10 wt.% of r-GO incorporation. The oxygen 

barrier properties were tested showing an improvement of barrier effect of 92 % for the 

same content of r-GO. Anjanaputa and co-workers [348, 349] reported the improvement 

of electrical and mechanical properties of the thermally reduced GO/WPU 

nanocomposites. The group studied the in situ incorporation of the r-GO (during the 

synthesis of the WPU) versus the physical mixing concluding that the former promoted 

larger improvement of the final properties of the nanocomposites. GnP was also reported 

to improve the mechanical, thermal and the electrical properties of WPU nanocomposites, 

showing a percolation threshold of 1 wt.%. [350, 351] The functionalization of graphene 

may induce a better interaction with the polymer matrix. As so, the graphene oxide has 

also been studied for the improvement of the physical properties of WPU 

nanocomposites. Kim et al. [352] reported the incorporation of GO into a silanized WPU. 

The GO/WPU nanocomposites were synthesized from polycaprolactone diol, isophore 

diisocyanate, dimethylol butanoic acid and (3-aminopropyl) triethoxysilane with GO as 

a multifunctional crosslink as well as reinforcement. The covalently incorporated GO into 

the silanized WPU highly improved the mechanical properties of the nanocomposite. 

Furthermore, the oxygen groups of GO may also be used for chemical reactions with other 

compounds [353]. Li et al. [354] reported the in situ functionalization of GO with IPDI 

during the WPU synthesis. The resulted nanocomposite showed a good dispersion of the 

functionalzed GO with enhanced mechanical and thermal properties as well as improved 

water resistance. Following a similar approach, Lou and co-workers [355, 356] showed 

that the IPDI functionalized GO improved the thermal, mechanical and electrical 
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properties of the WPU nanocomposite, describing an enhancement of three orders of 

magnitude for the electrical conductivity (from 10-12 to 10-9 S cm-1) with the incorporation 

of 2.5 wt.% of IPDI-GO. The functionalization of the GO with a titanate coupling agent 

was also reported. [357] The incorporation of 0.4 wt.% of these functionalized GO into 

WPU matrix led to an improvement of the corrosion of a steel surface. Wang et al. [358] 

reported the incorporation of GO functionalized with 3-aminopropyl triethoxysilane 

(APTES) in WPU by physical mixing. The resulting nanocomposites showed better 

mechanical properties with an enhancement of 50 % of the Young’s modulus and 56 % 

of the tensile strength for 1.0 wt.% of APTES-GO incorporation. Using the same 

functionalization approach, Lei et al. [359] described the in situ incorporation of APTES-

GO in WPU matrix. The mechanical properties of the resulting nanocomposites 

improved, showing an enhancement of the 279 % of the Young’s modulus, although the 

tensile strength improvement was only 10 %, for the same amount of APTES-GO 

incorporation (1.0 wt.%). Pan and co-workers [360] reported the functionalization of GO 

with different hydramines, namely monothanolamine (MEA), diethanolamine (DEA) and 

triethylamine (TEA), which are weaker reducing agents when compared with hydrazine. 

The reaction of the GO with these compounds induced some reduction of the oxygen 

containing groups of the graphene but also some surface modification. The incorporation 

of these functionalized GO in WPU matrix resulted in nanocomposites with enhanced 

mechanical properties, showing an improvement of the tensile strength of 49 %, 36 % for 

MEA-GO and DEA-GO, respectively, and a decrease of 21 % for TEA-GO (for 1.0 wt.% 

of incorporation). In addition, the non-covalent functionalization of r-GO with 

surfactants, namely the sodium dodecyl sulphate (SDS), was reported to produce WPU 

nanocomposites with improved mechanical and electrical properties. The incorporation 

of 4.0 wt.% of these functionalized r-GO led to an enhancement of 100 % of the Young’s 

modulus and an electrical conductivity of 10-6 S cm-1. The combination of GO and carbon 

nanotubes was also studied for the improvement of WPU nanocomposites performance. 

The ratio of 1:1 (GO:CNT) showed to improve the tensile strength by 25 % when 

compared with the same amount of only GO in WPU nanocomposite. [361] Some of the 

WPU nanocomposites properties described above are presented in the table 3. The 

applications of graphene (r-GO, GO or functionalized GO) / WPU composites as EMI 

shielding devices, [355, 362, 363] and textile [364], anticorrosive [357, 365, 366] and 

flame retardant [367] coatings have been studied. 
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Table 3: Mechanical and electrical properties of CNT and graphene in WPU matrix 

Carbon based material 
Tensile modulus 

ratio(1) 

Electrical 

percolation 

threshold (wt.%) (2) 

Highest 

conductivity   

(S cm-1) 

Permeability 

decrease (%) 
Ref. 

Oxidized CNT - 0.24 10-6 (0.4wt.%) - [330] 

Oxidized CNT 1.2 (1.5wt.%) 0.5 - 1.0 10-4 (1.5wt.%) - [332] 

Oxidized CNT  - 0.98 101 (20.0wt.%) - [333] 

EDA functionalized 

CNT 

1.7 (4.0wt.%) - - - [335] 

IPDI functionalized CNT 2.7 (3.0wt.%) 0.3 10-1 (3.5wt.%) - [336] 

CNT and surfactant 

(aromatic modified 

polyethyleneglycol) 

- 4.8 102 (76.2wt.%) - [339] 

Oxidized CNT 2.2 (2.0wt.%) - - - [341] 

Oxidized CNT 1.2 (1.5wt.%) 0.5 – 1.0 10-3 (1.5wt.%) - [343] 

GnP 2.4 (2.0wt.%) 1.0 10-7 (2.0wt.%) - [351] 

r-GO 2.0 (4.0wt%) 1.0 – 2.0 10-6 (4.0wt.%) - [368] 

r-GO 1.1 (6.0wt.%) 1.0 – 2.0 10-4 (6.0wt.%) - [348] 

GO 7.2 (1.0wt.%) - - - [352] 

r-GO 21.2 (3.0wt.%) - - 73 (3.0wt.%) 

water vapor 

[346] 

r-GO - - 10-3 (10wt.%) 92 (10.0wt.%) 

oxygen  

[347] 

r-GO  1.0 – 2.0 10-4 (6.0wt.%) - [344] 

IPDI functionalized-GO - - 10-9 (2.5wt.%) - [355] 

APTES functionalized r-

GO 

7.2 (0.5wt.%) - - - [359] 

r-GO 

AEMEA(3) 

functionalized-GO 

- 1.0 10-2 (11.0wt.%) 

10-1 (11.0wt.%) 

- [362] 

MPTMS(4) 

functionalized-GO  

- 1.5 – 2.0 10-7 (2.5wt.%) - [355] 

(1) Ratio between the tensile modulus of the composite and the pristine polypropylene 

(2) When loading was reported in volume percent, the density of bulk graphite (2.2 g cm-3) was used to convert to a weight percent 

loading 

(3) 2-aminoethylmathacrylate hydrochloride monomer 

(4) (3-mercaptopropyl)trimethoxysilane 
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3. GRAPHENE NANORIBBONS FROM CARBON NANOTUBES 

3.1. Introduction 

The unzipping of carbon nanotubes to obtain graphene nanoribbons have been 

extensively studied (see section 2.2.2. in chapter 2). The outstanding properties of the 

GNR make these materials interesting for application in a wide range of scientific fields, 

including electronic, sensors and biomedical applications (section 2.2.2.8., chapter 2). 

Implants and biodevices such as bone fixation devices or scaffolds for regenerating 

cardiac tissue, may lead to severe immunological reactions in the host body, and therefore 

reduce the performance of the implant/device. [369-372] In this context, natural polymers 

are promising materials to overcome such issues due to their inherent biodegradability 

and biocompatibility, however, they lack mechanical and electrical properties. [373, 374] 

These properties may be improved by the preparation a nanocomposite material, 

combining synergies of natural polymers with a reinforcing material like graphene or 

graphene nanoribbons. Chitosan (CHI) is a natural-derived polysaccharide obtained from 

the N-deacetylation of chitin which can be extracted from the exoskeleton of insects and 

crustaceans, and is an interesting polymer for biomedical applications. This natural 

polymer has a nontoxic, antibacterial, antifungal, mucoadhesive, haemostatic and 

biocompatible behavior. [375, 376] Alginate (ALG) is another abundant low cost natural 

polymer derived from brown algae, also used in the biomedical area. This natural 

polysaccharide is hydrophilic, biocompatible and non-immunogenic, with the ability to 

absorb 200 to 300 times more water than its own weight. [377, 378] This is another 

interesting property of these polymers, that make them widely explored for biomedical 

purposes. [376, 378]  

Layer-by-Layer (LbL) assembly has emerged as a simple and environmentally friendly 

technique to obtain materials with a nanometer or micrometer scale control of the size, 

morphology and molecular structure. This method is based in the sequential adsorption 

of oppositely charged macromolecules (polycations and polyanions) on a substrate 

surface, via electrostatic forces, hydrophobic interactions, hydrogen bonds, van der Waals 

forces, charge transfer interactions or covalent bonds. Depending on the substrate, 

different structures may result, including free-standing membranes (FS). [379, 380]  

In this work a method was developed to produce functionalized (non-oxidized) graphene 

nanoribbons from carbon nanotubes. Inspired by the observation of the unzipping of 
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functionalized CNT under ultra-high vacuum scanning tunneling microscopy (UHV 

STM), [159] where the type of functionalization played a key role in the unzipping 

process [381], an alternative method to produce GNR in solution was developed and 

presented. The CNT were functionalized by the 1,3-dipolar cycloaddition reaction of 

azomethine ylides, and their surface chemistry characterization was described elsewhere. 

[160] The unzipping of the functionalized outer layer was achieved in ethanol solution, 

producing stable suspensions of functionalized GNR (f-GNR). The stacking of the f-

GNR, obtained from large and small diameter functionalized CNT upon solvent 

evaporation, generated stacks with a large interlayer spacing required to accommodate 

the functional groups at the GNR surface, as confirmed by molecular modelling. 

The unzipping of carbon nanotubes through oxidation route has been widely used, leading 

the production of oxidized GNR (o-GNR) in high concentration (see section 2.2.2. in 

chapter 2). In this work o-GNR was also produced using a modified Hummer’s method. 

Both f-GNR and o-GNR were used to study the formation of LBL membranes with 

natural polymers. The build-up of multi layered membranes with chitosan and o-GNR 

(CHI/o-GNR) as well as chitosan and f-GNR-alginate (CHI/f-GNR-ALG) was 

investigated in situ by quartz crystal microbalance with dissipation monitoring (QCM-

D). The QCM-D studies showed that these materials could be used to prepare free-

standing membranes by LBL technique, which might be potentially used in different 

biomedical applications, such tissue engineering and drug delivery. 

3.2. Experimental 

3.2.1. Preparation of functionalized graphene nanoribbons  

Two types of CNT were investigated, NC7000 from Nanocyl® and MWNT SA from 

Sigma-Aldrich (catalog reference 659258), both produced by Chemical Vapor Deposition 

(CVD). NC7000 has a diameter of 7-10 nm and MWNT SA has a diameter of 110-170 

nm. The CNT were functionalized by the 1,3-dipolar cycloaddition reaction of 

azomethine ylides using a one-pot functionalization procedure described elsewhere [160] 

leading to the formation of pyrrolidine-type groups bonded to the CNT surface. The 

functionalization was carried out at 250 ºC during 5 hours.  

The unzipping of the f-CNT was performed using an Ultrasonic processor UP100H from 

Hielscher, equipped with a sonotrode MS2. CNT suspensions were prepared by mixing 5 

mg of functionalized CNT in 8 mL of ethanol. A blank test was conducted using 5 mg of 
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pristine CNT in 8 mL of ethanol. Ultrasound energy was applied to the suspensions during 

15 minutes at maximum power. The suspensions were centrifuged to separate the 

unzipped CNT, and the GNR supernatant solutions were collected. 

3.2.2. Preparation of oxidized graphene nanoribbons 

o-GNR were synthetized by a modified Hummers’ method. Briefly, 4 g of CNT NC7000 

were added to 500 mL of H2SO4 and stirred for 4 h. Secondly, in an ice bath, 32 g of 

KMnO4   were slowly added to the previous mixture and kept stirring for 2 h. The mixture 

was then heated up to 60 ºC and stirred overnight. After that 300 mL of distilled water 

was added, followed by 30 mL of hydrogen peroxide (H2O2). All steps were performed 

with the solution placed in an ice-bath. Afterwards, the solution was distributed into 50 

mL tubes and centrifuged under 3500 rpm in a Labofuge 400 (Heraeus Instruments, USA) 

for 15 min and the supernatant was discarded. The precipitate was washed with distilled 

water for a total of 3 cycles. The resulting precipitate was then collected, followed by the 

addition of 250 mL of HCl, and it was left stirring for 15 min. The mixture was again 

centrifuged and washed for 3 cycles. After the centrifugation procedure, the supernatant 

was discarded and distilled water was added to the solid part and then filtered with a nylon 

membrane filter (Whatman, UK). The solid was dried for 48 h at 100 ºC and finally 

milled. At this stage, the resultant powder consists mostly of oxidized carbon nanotubes 

(o-CNT). In order to achieve extensive exfoliation, o-CNT were dispersed in distilled 

water and submitted to 4 h ultrasound treatment in the ultrasonic bath, where exfoliation 

of o-CNT occurred. The final suspensions had a concentration of 0.25 mg/mL and the pH 

was adjusted to a basic value of 8. 

3.2.3. Graphene nanoribbons characterization 

The solutions of f-GNR and o-GNR were analyzed by UV-visible spectroscopy on a 

Shimadzu UV-240 1 PC, using 10 mm path length quartz cells. The thermogravimetric 

analysis (TGA) analysis was performed on a Modulated TGA Q500 from TA 

Instruments. The samples were heated at 10 ºC/min under a constant flow of N2. The 

Fourier transform infrared (FTIR) spectra were collected in transmission mode using a 

Jasco 4100 spectrophotometer. 

The micro Raman analysis was performed on a LabRAM HR Evolution Raman 

spectrometer (Horiba Scientific, Japan) using a laser excitation wavelength at 532 nm. 

The results treatment was performed by LabSpec6 software. 
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TEM of the f- GNR obtained from functionalized MWNT SA (GNR MWNT SA) was 

performed on an Energy Filtered 200kV Transmission Electron Microscope HR-

(EF)TEM - JEOL 2200FS. TEM analysis of the GNR obtained from functionalized 

NC7000 (GNR NC7000) was carried out on a Titan ChemiSTEM 80-200 kV probe Cs 

corrected microscope. Low-magnification TEM and high-resolution TEM (HRTEM) 

images were acquired with a GATAN ULTRASCAN 1000 P camera controlled with a 

Digital Micrograph software integrated in the microscope’s user interface. The samples 

were prepared by adding a drop of the GNR solution onto a lacey carbon Cu grid (300 

mesh, Ted Pella) and allowing it to dry under vacuum.  

X-rays diffraction experiments were performed on a PANalytical X´Pert PRO XRD 

System using the Cu Kα1 wavelength of 0.15406 nm from a copper X-ray tube operated 

at 45 kV and 40 mA. A PIXcel-3D detector was used, and the scan range was from 4 to 

40 ° in 2θ. The GNR samples were deposited on glass lamellae by solvent evaporation.  

The unzipping process produced functionalized GNRs with widths equal or larger than 

35 nm for the GNR NC7000 and 350 nm for the GNR MWNT SA. For this reason, a 

model of functionalized graphene (see Scheme 1), as opposite to finite GNR, was chosen. 

Graphene layers and their intermolecular interactions were modelled with the MM3 force 

field that has been found to give accurate intermolecular structures. [382] All the 

calculations were performed with the TINKER molecular mechanics suite [383] using 

three dimensional periodic boundary conditions. [384] The shape and dimensions of unit 

cells containing five functionalized graphene layers with different concentrations of 

functional groups were systematically obtained by energy minimization. 

The stability of the o-GNR and f-GNR solutions was assessed with a Zetasizer Nano-Zs 

equipment (Malvern Instruments, UK), and at least three zeta potential measurements 

were performed for each sample. The results presented are the average of these 

measurements.  

 

3.2.4. Quartz crystal microbalance with dissipation monitoring (QCM-D) 

The build-up of the multilayered membranes was followed in situ by quartz crystal 

microbalance with dissipation monitoring (QCM-D; Q-Sense). The resonant frequency 

(Δf) and dissipation (ΔD) variations were recorded as function of time in the QCM-D. 

The QCM-D experiments started with alternating deposition of CHI and o-GNR, or, GHI 
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and f-GNR-ALG. Fresh solutions were deposited for 6 min and a washing step with 

distilled water for 4 min at a flow rate of 50 µL/min. A temperature of 25 ºC was used for 

all measurements and the experiments were performed in triplicate. Two different 

multilayer membranes were obtained, (CHI/o-GNR) and (CHI/f-GNR-ALG) 

The results obtained for the multilayer films prepared on the QCM-D were modeled in 

the QTools software using a Voigt based model, which allowed to estimate the shear 

modulus and thickness of the films, using the flowing equations: 

∆𝑓 ≈ −
1

2𝜋𝜌0ℎ0
{

𝜂𝑆
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where Δf is the resonant frequency variation, ΔD is the dissipation variation, ω is the 

angular frequency of the oscillation, ρ0 and h0 the density and thickness of the crystal, 

respectively, ηS the solution viscosity, δS the viscous penetration depth of the shear wave 

in the solution, given by (ηS/ρS), ρS the solution density, and hL, ηL, µL and ρL the 

thickness, viscosity, elastic shear modulus and density of the adsorbed layer, respectively. 

[385, 386] 

 

3.3. Results and Discussion 

3.3.1. Production and characterization of the functionalised graphene 

nanoribbons 

The functionalization reaction of the pristine CNT (NC7000 and MWNT SA) is expected 

to bond mainly pyrrolidine-type groups at the CNT surface (Figure 38, compound 1), 

although some functional groups may retain the protective group R of the amino acid used 

in the functionalization reaction (R=COOCH2C6H5, in Figure 38, compound 2), as 

discussed in [160]. 
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Figure 38: CNT functionalization products (N- dark blue; O- red; H- light blue). 

The thermogravimetric analysis (TGA) of the pristine and functionalized CNT (figure 

39) presented a weight loss of about 14% and 17% for the f-NC7000 and f-MWNT SA 

respectively. The thermal decomposition was observed above 350 ºC. The TGA of the 

functionalized GNR was obtained by first subjecting the GNR sample to an isothermal 

stage at 150 ºC for 1 h, to eliminate remaining ethanol, and then heating from 150 ºC to 

700 ºC at 10 ºC/min, under a constant flow of N2. The weight loss of the GNR at 600 ºC 

was approximately 76 % for GNR NC7000 and 69 % for GNR MWNT SA. Thermal 

degradation of the GNR starts at approximately 250 ºC (lower than the corresponding f-

CNT), and proceeds up to 500 ºC that may correspond to the degradation of the 

pyrrolidine functional groups bonded to the GNR (degradation temperature similar to that 

observed for the corresponding functionalized CNT). It should be noticed that while the 

CNT contain one functionalized graphene layer (the outer layer), the stacked GNR are 

expected to have all layers functionalized. Another difference to notice is the presence of 

edges in the GNR, that are almost absent in the f-CNTs. These edges may be decorated 

with different functional groups (see reference [74]), and may also present some oxidation 

level. 

 

Figure 39: TGA curves of a) functionalized and non-functionalized carbon nanotubes; b) functionalized 

graphene nanoribbons. 
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Equal volumes of ethanolic solutions of GNR MWNT SA and GNR NC7000 with similar 

concentration were deposited on NaCl crystal windows and dried at 150 ºC during 4 hours 

in an oven. The Fourier transform infrared (FTIR) spectrum (figure 40) of the GNR 

NC7000 present a broad peak centered near 3300 cm-1that may be related to O–H 

stretching mode. The small peaks located at 3030-3060 cm-1
 may be associated to 

aromatic C-H stretching, possibly from edge terminations of the GNR. The peaks near 

2920 cm-1
 and 2850 cm-1

 correspond to aliphatic C–H stretching vibrations and may be 

due to CH2 in the pyrrolidine groups. The peak at 1715 cm-1 corresponds to the C=O 

stretching vibration, presenting two well defined shoulders towards lower wavenumbers, 

indicating the presence of carboxylic groups and other carbonyl forms (quinone, for 

example) bonded to the GNR, possibly due to original oxidation of the CNT surface, and 

to some degree of oxidation during unzipping of the CNT. The spectrum of GNR MWNT 

SA shows a similar pattern compared to the NC7000 spectrum, although presenting lower 

intensity, and lower background transmission, that may result from the higher number of 

layers stacking observed in GNR MWNT SA. Thus, FTIR shows that both GNR types 

present a similar chemistry 

 

Figure 40: FTIR spectra of graphene nanoribbons 

The UV-visible absorption spectra obtained for the GNR solutions are presented in 

Figure 41. The spectra of the solutions of GNR NC7000 and GNR MWNT SA show two 

shoulders, at approximately 250 nm and 300 nm, similar to the spectra of graphene oxide 

nanosheets reported elsewhere. [278, 283] These signals were considered indicative of 

the presence of graphene nanoribbons in solution. The spectra obtained for the blank tests 

(GNR NC7000 pristine and GNR MWNT SA pristine, Figure 41) reveal an absorption 

spectrum similar to that of the solvent near λ = 230 nm indicating that the sonication 
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process does not induce the unzipping of the pristine CNTs, or the formation of a 

detectable amount GNR.  

 

Figure 41: UV-visible spectra of GNR solutions produced from pristine and functionalized NC7000 and 

MWNT SA, in ethanol. The insert shows a picture of the solution of GNR NC7000 in ethanol. 

The weight absorptivity of the GNR in solution was measured by UV-visible 

spectroscopy at 250 nm, and the values determined were (1600 ± 200) L.g-1m-1 for the 

GNR from f-NC7000 (GNR NC7000) and (2000 ± 100) L.g-1m-1 for the GNR from f-

MWNT SA (GNR MWNT SA). These results are in the same range of values reported in 

the literature for graphene solutions. [278, 280] GNR concentrations of 50 and 40 mg.L-

1 were measured for the solutions obtained by ultrasonication of the f-NC7000 and f-

MWNT SA in ethanol, respectively. 

GNR were deposited from solution on Si wafers, as well as samples of NC7000 and 

MWNT SA and analyzed by Raman spectroscopy. The acquired Raman data was typical 

of sp2 hybridized carbon, as illustrated in Figure 42 for all the systems studied. For the 

carbon nanotubes, the G and D bands appear as prominent features compared to a weaker 

2D band. Notably, the spectrum of MWNT SA shows intense G and 2D bands and a 

smaller D band indicating that these large diameter nanotubes have lower defect contents. 

[387] The spectra obtained for GNR shows a sharp intense symmetric G band and an 

asymmetric and blue shifted 2D band, typical of the formation of few-layer GNR. This 

result is compatible with the stacking of the GNR deposited by solvent evaporation. [283]  

Transmission electron microscopy (TEM) images of samples obtained from concentrated 

ethanol solutions showed the presence of films that likely arise from GNR agglomeration 

during solvent evaporation. The films from GNR NC7000 samples form smaller domains 

(Figure 43a) compared to those from GNR MWNT SA samples (Figure 43d).  
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Figure 42: Raman spectra of the CNT (insert) and of the GNR deposited on Si from ethanol solutions. HOPG 

spectrum is included for comparison 

 

 

Figure 43: TEM micrographs of GNR formed in ethanol by unzipping of NC7000 (a; b) and MWNT SA (d; e); 

FFT calculated on the area A, for GNR NC7000, and B for GNR MWNT SA are shown in c) and g), 

respectively; magnification of the area B in micrograph e) showing the regular pattern (f) 
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Images from GNR NC7000 were obtained on an 80 kV high resolution TEM, and showed 

areas with few layers of graphene, such as represented in Figure 43b. Fast Fourier 

transforms (FFT) obtained at the spot marked with A, shown in Figure 43c, revealed 

hexagonal patterns typical of graphene. GNR MWNT SA present larger ribbons and their 

stacks were robust enough to be imaged on a 200 kV TEM (Figure 43d and 43e). The 

TEM image of Figure 43e shows the presence of large stacks of GNR that hamper the 

observation of the 110 graphene plane. Magnification of the image at the spot marked 

with B illustrates the GNR stacking through the regularly spaced parallel lines (Figure 

43f). The FFT pattern obtained at the spot B, shown in Figure 43g, provides a measure 

of the interlayer spacing of approximately 0.49 nm. The micrographs also show remaining 

CNT fragments entangled in the GNR formed. 

X-rays diffraction of the GNR NC7000 and GNR MWNT SA was performed on samples 

deposited on glass slides by solvent evaporation. The X-ray intensity profiles for both 

GNR NC7000 and GNR MWNT SA exhibited a single peak at 31.68 ° (2θ). This peak is 

not present on the starting functionalized CNT material (Figure 44). The peak obtained 

for the GNR MWNT SA is sharper than the peak of the GNR NC7000. The average 

thickness of the crystallites (perpendicular to the crystallographic planes) estimated using 

the Scherrer equation, was calculated to be 0.81 nm and 2.49 nm for GNR NC7000 and 

GNR MWNT SA, respectively. 

 

Figure 44: X-ray intensity profiles of the GNR NC7000 and GNR MWNT SA deposited on glass lamella from 

ethanol solutions (full lines), and of the corresponding f-CNT starting material (dotted lines). 

 

Molecular models were applied to study the effect of the functionalization degree in the 

interlayer distance, Figure 45. Interestingly, very similar distances were found for the 

highest functionalization densities, namely: 0.54 to 0.51 nm for 8 to 72 graphene layer 
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carbon atoms per functional group. In contrast, lowering the concentration reduces 

abruptly the interlayer distance to 0.41 nm for 98 carbon atoms per functional group. This 

is due to the fact that, at lower densities, the graphene sheets are able to flex to 

accommodate the functional groups decreasing more efficiently the interlayer density. By 

further reducing the functional group concentration the graphite spacing is asymptotically 

approached. At the experimental functional group concentration of 1 group per 50 

graphene carbon atoms, an interlayer distance of 0.51 nm is obtained, see Scheme 1.  

Considering the structure found with molecular modelling (Scheme 1), the X-ray 

diffraction peak observed can be assigned to the 002 set of crystallographic planes 

considering the c dimension of the unit cell defined as the graphene-to-graphene 

interlayer distance. From the X-ray data this distance is calculated to be 0.56 nm which 

is close to the estimated values from molecular modeling, 0.51 nm, and to the value of 

0.49 nm measured from TEM micrographs. The average number of graphene layers in 

these self-assembled stackings, calculated from the X-ray crystallite thickness, is 2-3 for 

GNR NC7000 and 5-6 for GNR MWNT SA. 

It should be remarked that the GNR deposited by solvent evaporation remain soluble, that 

is, addition of ethanol to the deposited GNR leads to their complete re-solubilization. This 

phenomenon is probably associated with the larger separation between graphene sheets 

that allow solvent molecules to readily enter the interlayer void space (see Scheme 1) 

facilitating the exfoliation. 

 

 

Scheme 1: Computer model of functionalized graphene (one functional group per 50 graphene carbon atoms). 
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Figure 45: Average interlayer distance (Angstrom) versus functional group concentration (number of 

graphene carbon atoms per functional group). 

 

3.3.2. Production and characterization of oxidized graphene nanoribbons 

The oxidation process by the modified Hummers’ method was evaluated on o-CNT (o-

NC7000) powders. Figure 46 a), shows that the thermal degradation of o-NC7000 occurs 

in three steps. A continuous slow degradation was verified until approximately 490 ºC. 

The weight loss increases at a faster rate in the range of 490 ºC to 590 ºC. These values 

are in agreement with the results shown by Chen et al. [388]. In accordance with the 

authors, the stability of the slope along the degradation process reveals a high purity of 

the material. Above 590 ºC, the o-NC7000 degradation decreases slowly, originating a 

residual weight loss of ≈5%, that may be assigned to metal or metal oxide present in the 

CNT before the thermal degradation [388]. Below 150 ºC the weight loss may be 

attributed to the evaporation of strongly adsorbed water. Above this temperature the 

thermal degradation of the oxygen-containing functional groups (-OH, -COC-, -CO, -

COOH, etc) takes place, producing mainly CO and CO2, leading to a thermal degradation 

of 39.7%. The residual weigh observed above 800 ºC is mostly constituted by sp2 carbon. 

[35, 388, 389]  

Raman spectroscopy is a useful technique for graphene-based materials characterization. 

Figure 46 b) reveals three major peaks for the CNT NC7000 pristine (NC7000). The first, 

near 1350 cm-1 (D band), is due to the presence of disorder in the sp2 carbon lattice of 

graphene atoms; the second peak at 1580 cm-1 (G band) is assigned to the E2g  phonon 

mode of graphite, and results from the in-plane bond-stretching motion of the ordered sp2 

bonded carbon atoms; and the peak at 2700 cm-1 (2D band) has almost the double 

frequency of the D band and results from the second order Raman scattering. Typically, 

this last peak can be used to determine the number of stacked layers (<10 layers) in few-

layer graphene, by the shape, width and position of the peaks. [281, 283, 390] The o-GNR 
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are characterized by broader D and G bands compared to the NC7000 pristine. The o-

GNR show a decrease of ID/IG  (0.84) compared to NC7000 pristine (1.38). The ratio 

between these peaks has been used as a method to predict the disorders caused by 

chemical covalent modification, ripples, edges and charged impurities [391]. In 

particular, it was reported that the D peak reveals a weak intensity for edges in a zigzag 

conformation and a stronger intensity if an armchair edge is formed [391]. The behavior 

observed for the NC7000 pristine may be explained by the high concentration of defects 

in the pristine form caused mostly by the production technique. As explained previously, 

the low D peak intensity present on the oxide state may suggest a zigzag edge 

conformation. The 2D band of o-GNR spectrum show a large decrease in the intensity 

after oxidation. This is indicative of a significant loss of regular hexagonal sp2 carbon 

lattice after the oxidation procedure. Besides, it reveals that the oxidized graphene 

nanoribbons lost their carrier mobility, as suggested by Zhu et al. [391]. 

 

 

Figure 46: (a) TGA thermogram of o-NC7000, under a heating rate of 10 °C/min; (b) Raman spectra obtained 

at 532 nm for o-NC7000 and pristine NC7000. 

The UV-visible spectra of o-GNR in Figure 47 a) shows an absorption band at 247 nm. 

The UV-visible spectra may be attributed to π→π* and n→π* electronic transitions of 

the conjugated bonds. The obtained values are in agreement with those reported in 

literature. [74, 103, 278] FTIR analysis was carried out to characterize the chemistry of 

the functional groups on the oxidized materials. The resulting spectrum is presented in 

Figure 47 b). The peak at 1708 cm-1 for o-GNR is related with the C=O stretching 

vibration of carboxyl and carbonyl groups that may originate in ketone [392]. Also, o-

GNR present a peak at 1583 cm-1 corresponding to the sp2 C=C stretching vibrations, and 

therefore this peak is associated with the non-oxidized graphene domains [393]. The peak 

present at approximately 1420 cm-1 may be assigned to the deformation vibrations of C-
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OH groups [393]. The peaks observed in the range between 1226-1110 cm-1 may be 

assigned to stretching vibrations of C-O in alkoxy or epoxy groups [394]. Regarding the 

wide peak observed near 3403 cm-1,  it is associated to the O-H stretching vibration and 

may be due to the presence of intercalated water [395] 

 
Figure 47: (a) UV-visible spectra of o-GNR (black line) and o-GF (red line) aqueous solution at a 

concentration of 0.25 mg/mL. (b) FTIR spectra of dried o-GNR (black line) and o-GF (red line). 

 

3.3.3. Layer-by-Layer assembly of graphene nanoribbons and natural 

polymers: Quartz crystal microbalance with dissipation monitoring 

(QCM-D) 

The stability of the colloidal suspensions of GNR (o-GNR and f-GNR) was characterized 

by zeta potential (ζ) measurements. o-GNR presents a zeta value of -37±8 mV. According 

to the literature these ζ values are indicative that o-GNR is capable to form stable 

suspensions in water, mainly due to the electrostatic repulsion between the particles, 

provided by the negative charge, which is caused by the ionization of the carboxylic acid 

and phenolic groups under basic pH conditions. [73, 396] Since the f-GNR (GNR 

NC7000) solutions are characterized by a low ζ (+2.1 ± 1.3 mV) that does not favor 

electrostatic interactions with polyelectrolytes required for LbL deposition, a solution of 

f-GNR and ALG (f-GNR/ALG) was prepared. ALG is a polyanion at pH>3 [385], and 

may be conjugated with CHT under acidic conditions. [385, 397] A solution of f-GNR-

ALG in 25 % ethanol /75 % distilled water was prepared, and its ζ was found to be suitable 

for LbL deposition (-21.8 ± 0.8 mV). CHT presents a positive ζ of around +13 mV at pH 

5.5. 

To demonstrate the possibility of assembling multilayers to form membranes using 

particular of the of CHI/f-GNR-ALG and CHI/o-GNR layers QCM-D technique was 
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used. This technique is capable of measuring the frequency and dissipation variations in 

real time. A frequency decrease is the indication of the adsorption of the polyelectolyte 

and thus demonstrates the possible construction of the multilayer film. The dissipation 

factor is useful to investigate the viscoelastic properties of the built multilayer film. [398] 

As shown in Figure 48, the decrease of Δf/υ indicates that after either CHI or o-GNR or 

f-GNR-ALG deposition the polyelectrolyte adsorbs to the crystal surface.  

 
Figure 48: QCM-D results showing the build-up of the (a) CHI/f-GNRs-ALG and (b) CHI/o-GNR membranes 

as function of the layer number. The normalized frequency (Δf) is represented by circles, and the dissipation 

(ΔD) by the triangles. 

Comparing both formulations, it is clearly observed that the membranes containing o-

GNR show the highest frequency decrease and at the same time higher ΔD, which in fact 

indicates that the o-GNR containing membranes may present higher shear modulus. In 

order to verify this hypothesis, the QCM-D data were modelled using a Voigt based 

model. Figure 49 shows the final shear modulus and thickness of the multilayer films 

produced. As hypothesized, the multilayer film containing o-GNR presented higher shear 

modulus (318 KPa). The CHI/f-GNR-ALG also presented a high shear modulus (250 

KPa) when compared with the control CHI/ALG multilayer film (80 KPa), indicating that 

f-GNR may also improve the mechanical properties of these films. The thickness of the 

multilayer films containing GNR (o-GNR or f-GNR) tend to decrease when compared to 

the CHI/ALG flms. While the CHI/ALG films showed a final thickness (after 8 layers) 

of 75 nm, the CHI/ o-GNR and CHI/ f-GNR-ALG multilayer films presented a thickness 

of 65 and 31 nm, respectively (after 8 layers). The decrease of the thickness of the 

composite fims (containing o-GNR or f-GNR) may arise from their strong interaction 

with the natural polymer, since these GNR are functionalized, and may result in a denser 

structure of the composite film, enhancing the mechanical properties. [399] Also, the 

incorporation of the GNR, which is a rigid material, may affect the adsorption of the CHI 

leading to a decrease of the amount of adsorbed material and consequently a decrease in 

the thickness of the composite film. Similar results were obtained by Guzmán et al.  [400] 

in where the adsorption of cationic polysaccharide polymers onto negatively charged 



Chapter 3: Graphene Nanoribbons from Carbon Nanotubes 

 

 

66   

substrates was limited by the rigidity of the chains, leading to a decrease of the number 

of adsorbed chains. Nevertheless, both membrane formulations (CHI/ o-GNR and CHI/ 

f-GNR-ALG) showed that the sequential deposition process was successfully achieved 

and it presented a stable and reproducible behavior with the possibility to obtain thicker 

free-standing membranes. 

 

Figure 49: final shear modulus and thickness of the multilayer films produced 

3.4. Conclusions 

In summary, self-assembled f-GNR stacks were observed and characterized by TEM, X-

ray diffraction and Raman. The f-GNR were successfully produced in solution by 

unzipping of functionalized CNT of different diameters. The CNT were functionalized 

with pyrrolidine-type groups, originating pyrrolidine-functionalized GNR. Raman 

spectroscopy evidenced the sp2 character of the f-GNR. TEM illustrated the formation of 

larger GNR from CNT with larger diameter, and a tendency of the deposited GNR to 

form regular stacks with an interlayer distance of approximately 0.5 nm. The formation 

of regular stacks was confirmed by X-ray diffraction, calculating the stack length as 2-3 

f-GNR layers when formed from NC7000, and 5-6 f-GNR layers when formed from 

MWNT SA. Computer models estimated interlayer distances of similar magnitude and 

showed that the interlayer distances depend on the concentration of functional groups. o-

GNR were successfully produced by oxidation of CNT. The assembly of the multilayered 

membranes of CHI/f-GNR-ALG and CHI/o-GNR layers was studied by QCM-D 

technique. Both membrane formulations showed that the sequential deposition process 

was successfully achieved and it presented a stable and reproducible behavior with the 

possibility to obtain thicker free-standing membranes with improved mechanical 

properties. 
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3.5. Supporting information 

Electron microscopy of the carbon nanotubes was performed on a 200 kV Transmission 

Electron Microscope HR-(EF)TEM - JEOL 2200FS. Figure 50 shows the TEM images 

of the multi-wall carbon nanotubes used in this study, illustrating the differences in 

diameter. 

 

Figure 50 TEM images of a) pristine CNT NC7000 and b) Pristine CNT SA 

  

100 nm 100 nm 

a) b) 
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4. FEW LAYER GRAPHENE IN WATER 

4.1. Introduction 

Along last decade, graphene has emerged as an exciting material revealing potential 

applications in various fields. [35, 401, 402] However, the extrapolation of these 

outstanding properties observed at lab-scale into large-scale industrial applications is 

limited by the lack of effective methods for graphene production. Liquid phase exfoliation 

(LPE) of graphite is a potentially viable cost effective process, which can be easily up-

scaled to mass-production of graphene and few layer graphene (see section 2.2.1. in 

chapter 2). Typically, LPE processes occur in organic solvents, although its use in large 

volumes has negative environmental consequences. Water is a “green” solvent that could 

overcome this problem. However, it has a high surface tension (72 mJ m-2) which limits 

its interaction with graphite and graphene, and the ability to form stable suspensions. In 

fact, solvents with surface tension of near 40 mJ m-2 [403] are reported to be ideal for the 

exfoliation of graphite into graphene [25]. Moreover, due the hydrophobic nature of 

graphene sheets they tend to re-aggregate in aqueous dispersions. However, the 

performance of water for LPE of graphite can be largely increased with the aid of 

amphiphilic molecules that strongly interact with water and with graphene 

simultaneously. These molecules help the dispersion of graphite flakes and graphene, 

preventing their aggregation. Polycyclic aromatic hydrocarbons such as pyrene 

derivatives have been studied for the exfoliation and stabilization of graphene and few 

layer graphene in water (see section 2.2.1. in chapter 2). The adsorption of pyrene 

derivative molecules onto the graphene surface occurs via π-π interactions between the 

planar π-conjugated surfaces while appropriate functional groups attached to the pyrene 

molecules, which are soluble in water, allows their stabilization in aqueous media. 

Normally, the pyrene derives reported in the literature, which are used for the exfoliation 

and stabilization of graphene in water are commercially available. However, the high cost 

of these compounds may be a limitation for their use. In this chapter, the synthesis of two 

pyrene derivatives through a simple and low cost functionalization methodology is 

presented, using as starting compound the pyrene molecule itself. This synthesis 

methodology lead to a high yield of the final compounds, and can potentially be scaled-

up for large scale production. These two pyrene derivatives were soluble in water and 

they were tested for the exfoliation and stabilization of two different types of graphite 

nanoplates (GnP) [315] in aqueous media, at low pyrene concentration (5x10-5 mol dm-
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3). The procedure allowed the stabilization in water of about 90 % of the initial amount 

of the GnP in which up to 60 % were found to be few layer graphene (< 10 layers). The 

very low concentration of pyrene derivatives used in this work (to our knowledge, the 

lowest reported in the literature) to exfoliate graphite in water opens perspectives to an 

efficient process to obtain few layer graphene.  

 

4.2. Experimental 

4.2.1. Materials 

Two grades of GnP were purchased from XG Siences, grade C (GnPC) and grade H5 

(GnPH5). GnPC has, according to the manufacturer, a size distribution ranging from very 

small (100 nm) to relatively large flakes (1-2 µm), an average thickness of approximately 

2 nm and a typical average surface area of 750 m2/g, while GnPH5 has a nominal 

equivalent diameter of 5 µm, thickness of 15 nm, and an average surface area of 60 - 80 

m2/g. Copper (II) nitrate trihydrate (Cu(NO3)2.3H2O), anhydrous copper (II) sulphate 

(CuSO4) and potassium hydroxide pellets (KOH) were purchased from Sigma Aldrich. 

Maleic anhydride 99 % pellets and pyrene 98 % were purchased from Acros Organics. 4-

nitrobenzaldehyde was purchased from Merck. Acetic anhydride (Ac2O) and sodium 

borohydride (NaBH4) were purchased from VWR chemicals. Ethyl acetate (EtOAc), 

petroleum ether 40-60 ºC, ethanol absolute (EtOH) and acetonitrile (ACN) were 

purchased from Fisher Scientific. Anhydrous magnesium sulphate (MgSO4), 

dicholoromethane (CH2Cl2) and diethyl ether were purchased from Panreac. Deuterated 

dimethyl sulfoxide (DMSO-d6, 99.80 %) was purchased from Euriso-top. 

The detailed information about the synthesis of the pyrene derivatives is presented in the 

supporting information. 

4.2.2. Preparation and characterization of the exfoliated graphite 

suspension  

The pyrene derivatives were dissolved in distilled water at a concentration of 5x10-5 mol 

dm-3, adjusting the pH to 7 by addition of potassium hydroxide (KOH). GnP suspensions 

were prepared by mixing approximately 5.0 mg of GnP in 10 mL of each pyrene 

derivative solution using an Ultrasonic processor UP100H from Hielscher, equipped with 

a sonotrode MS2. Ultrasound energy was applied to the suspensions during 1 h at 

maximum power. The suspensions were centrifuged (8000 rpm, 1 h) to remove larger 
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aggregates and the supernatant was collected. These stable suspensions were analyzed by 

UV-visible spectroscopy on a Shimadzu UV-240 1 PC, using quartz cells with 10 mm 

pathlength. The concentration was determined using Lambert Beer’s Law and the 

extinction coefficient for these materials was calculated using a procedure reported 

elsewhere. [25] 

The suspensions were sprayed on a glass slide using a XL2000 Airbrush with a 0.4 mm 

nozzle and analyzed by Raman spectroscopy. Raman spectra were obtained on a Horiba 

LabRAM HR Evolution confocal microscope using a laser excitation of 532 nm (2.33 

eV). A 100x objective lens was used to focus the laser onto the sample. For each sample, 

60 spectra were collected and analyzed using the LabSpec 6 software. Lorentzian 

functions were used to fit the spectra characteristic peaks 

Transmission electron microscopy (TEM) samples were prepared by deposition of liquid 

suspensions of exfoliated GnP samples on 400 mesh carbon coated copper grids (Electron 

Microscopy Sciences, CF400-Cu) and dried using a heat plate. A voltage of 200 kV was 

used to image the samples on a CM200 Philips, Holland. The samples were also analyzed 

by scanning transmission electron microscopy (STEM) using a NanoSEM FEI Nova 200 

microscope. The powder samples obtained from solvent evaporation of the same liquid 

suspensions of exfoliated GnP samples as well as the pristine GnP were analyzed by 

scanning electron microscopy (SEM) using the same equipment. The thermogravimetric 

analysis of these powder samples was performed on a Modulated TGA Q500 from TA 

Instruments. The samples were heated at 10 ºC/min under a constant flow of N2. The 

pristine graphite was also analyzed for comparison. 

 

4.3. Results and Discussion 

The exfoliation of graphite to generate stable aqueous suspensions of graphene required 

the preparation of a molecule combining a core unit that would allow an effective  

interaction with the graphene layer and a functional group exhibiting a strong affinity for 

the water molecule. The approach that was used involved the combination of a pyrene 

ring with a carboxylic acid moiety. The distance between these polar and non-polar 

groups was adjusted through semi-flexible side arms of different length (structures 2a and 

2b in scheme 2) 
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4.3.1. Synthesis of pyrene derivative 

The water-soluble pyrene derivatives were prepared from pyrene, where the amino 

substituent was incorporated by nitration (compound 1) using copper nitrate [404] 

followed by reduction with sodium borohydride (compound 2). The 1-aminopyrene 2 was 

directly combined with maleic anhydride generating a carboxylic acid 3-carbons away 

from the pyrene core (compound 2a). Compound 2 was also further reacted with p-

nitrobenzaldehyde leading to the imine 3. Reduction of 3 allowed the transformation of 

the water-labile imine into a stable secondary amine and the simultaneous evolution of 

the nitro group to the primary amine (compound 4). Finally, reaction with maleic 

anhydride generated the same end-group with the carboxylic acid function further 

separated from the pyrene ring by a benzyl group (compound 2b). The sample used in the 

exfoliation studies was obtained by a one-pot reaction from imine 3, where the reaction 

mixture containing amine 4 was directly reacted with maleic anhydride. The product was 

identified by 1H NMR as a mixture of 2a and 2b in a 1:2 ratio. 

 

These two pyrene rings decorated with side-arms of different length ended by a carboxylic 

acid function and their precursors were fully characterized by FTIR spectroscopy and by 

1H and 13C NMR analysis (including bidimensional techniques of HMBC and HMQC). 

 

Scheme 2: Schematic representation of the pyrene derivatives synthesis  

The spectra are available as supporting information (Figures 60, 62, 64, 66 and 68). The 

structure of compound 2a was confirmed by the presence of the amide and the carboxylic 
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acid protons at  10.84 and 13.26 ppm, respectively in the 1H NMR spectrum. The cis 

configuration of the exocyclic alkene was supported by the coupling constant between 

both protons of this functional group (J=12.1 Hz) typical for this isomer. [405] The two 

carbonyl groups were visible in the 13C NMR spectrum at  164.46 ppm (for the amide) 

and  166.84 ppm (for the carboxylic acid). Compound 2b shows a more elaborate side 

chain where it is also possible to identify the amide and carboxylic acid protons, by 1H 

NMR, as singlets at  10.39 ppm and at  13.08 ppm (broad signal). The methylene group 

that appears at  4.64 ppm in the 1H NMR spectrum, together with the AB pattern of the 

neighbouring aromatic ring (two doublets at  7.42 and 7.56 ppm) confirm the presence 

of the benzyl group. The cis configuration of the alkene was maintained, as evidence by 

the coupling constant that remains in the typical range for this isomer (J=12.4 Hz). [405] 

In the 13C NMR spectrum, the signals at  163.08 and 166.78 ppm were assigned to the 

carbonyl groups. The FT-IR spectra are also presented as supporting information 

(Figures 59, 61, 63, 65, 67 and 69). Compounds 1 and 3 present the two characteristic 

bands of the nitro groups at 1506 and 1331 cm-1 and at 1511 and 1338 cm-1 respectively, 

corresponding to the –NO2 asymmetric and symmetric stretching vibrations. After 

reduction to 2 and 4 respectively, the characteristic symmetric and asymmetric stretching 

vibrations of the primary amino group can be seen at 3445 and 3379 cm-1 (for 2) and at 

3436 and 3376 cm-1 (for 4). Reaction of 2 and 4 with maleic anhydride leads to the final 

products 2a and 2b showing the characteristic intense bands for the stretching vibration 

of the carbonyl groups at 1711 and 1703 cm-1 respectively. 

 

4.3.2. Exfoliation of graphite 

The final compounds 2a and 2b were tested for their ability to exfoliate the GnP grade 

H5 (GnPH5) and grade C (GnPC) in water and stabilize the few layer graphene (FLG) 

formed. Aqueous solutions of these synthesized compounds were prepared at very low 

concentration (5x10-5 mol dm-3). GnPH5 and GnPC were added to the 2a and 2b solutions 

and their exfoliation was carried out by application of ultrasounds. The dispersions were 

centrifuged and the supernatant was collected analyzed. The same procedure was applied 

to GnPH5 and GnPC in distilled water without the pyrene derivatives (blank tests). 

Figure 51 shows the UV-Visible spectra of these dispersions and their comparison with 

the initial pyrene derivatives solutions.  
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Figure 51: UV-visible spectra of the stable dispersions of exfoliated graphite and the comparison with the 

initial pyrene derivatives solutions 

The initial solutions of the pyrene derivatives show the characteristic peaks between 200 

and 600 nm. [98] In general, compared to the absorption of the initial pyrene derivatives 

solutions, the baseline absorption of all exfoliated GnP dispersions (GnP PY) absorbs 

over the whole wavelength range, as it was expected for graphene dispersions. [73, 94] 

Furthermore, the absorption of the GnP PY dispersions showed to be stable along the time 

even after 6 weeks. For the GnPH5 PY dispersions the original peaks of the pyrene 

derivatives remain visible, although broader and with lower intensity. This is the 

fingerprint of the π-π interactions between these functionalized aromatic compounds and 

exfoliated graphite. [98] This observation was also reported for single walled carbon 

nanotubes dispersed in water/pyrene-derivative solutions. [406] For the GnPC PY, the 

suspensions obtained after centrifugation were highly concentrated, resulting in the 

saturation of the absorption peaks. The spectra presented in the figure 51 were obtained 

for the diluted suspensions (10x dilution), producing an absorption peak with a similar 

shape as the absorption peaks reported for graphene and graphene oxide in solution. [71, 

98, 407] Moreover, the original peaks of the pyrene derivatives are not visible probably 

due the high concentration of GnPC in suspension. The absorption observed for the blank 

tests (dashed lines) showed very low intensity in the whole wavelength range indicating 

that the pyrene derivatives play an important role in the stabilization of these GnP in 

water. The extinction coefficient of the exfoliated GnP in water was measured from UV-

visible spectra, at 660 nm, yielding the values of 2100 ± 100 Lg-1m-1 for GnPH5 and 2200 
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± 100 Lg-1m-1 for GnPC. These results are in the same range as other values reported in 

the literature [25, 98] Based on the extinction coefficient values obtained, the estimated 

concentration of GnP in suspension along the time varies as represented in (figure 52).

 

Figure 52: concentration of GnPH5 and GnPC in water. 

Immediately after the suspensions were prepared the concentration of GnPH5 using the 

pyrene derivative 2a and 2b was 90 µg/mL (18%) and 62 µg/mL (13%), respectively. For 

GnPC the concentration in suspension using the same pyrene compounds was 454 µg/mL 

(90 %) and 254 µg/mL (51 %), respectively. The % yield of GnP in suspension was 

calculated taking into account the initial concentration of GnP prior to exfoliation 

(approximately 500 µg/mL). The GnPC has a higher yield of nanoparticles in aqueous 

suspension probably due to their smaller dimensions, compared to GnPH5, that facilitate 

the exfoliation process. Furthermore, the GnPC atomic concentration of oxygen is 

approximately 7 %, while for GnP H5 it is lower than 1 %, according to the producer. 

Thus, GnPC present a higher oxidation degree compared to GnP H5, a fact that may also 

influence its dispersibility in water. However, it should be noted that in the absence of the 

pyrene derivatives the GnP C per se is not stable in aqueous dispersion, as was 

demonstrated by the UV-visible analysis (blank tests, figure 51). 

In any case the yield of 13 % and 18 % obtained for the GnPH5 suspensions is quite 

relevant when compared with the values reported in the literature for similar systems 

showing yields from 1.0 to 2.5 %. [26, 93, 94, 98]  

Figure 53 shows the thermogravimetric curves of the pristine and exfoliated GnP as well 

as the pyrene derivatives. Both compounds 2a and 2b show a residue that remains at 800 

°C with a total weight loss at this temperature of 76 ± 2% for pyrene 2a and 63 ± 1% for 

pyrene 2b. Considering the boiling point of pyrene to be approximately 400 °C, this 
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residue indicates that the functionalized pyrenes can combine during heating under 

nitrogen, forming heavier molecules that remain stable at 800 °C. The TGA curve of 

pristine GnPH5 is characteristic of a thermally stable material, with a weight loss of 3,5 

% at 800 °C. At the same temperature, the weight loss of the exfoliated GnPH5 using 2a 

and 2b compounds is 20 ± 1% and 25 ± 2%, respectively, and these weight losses are 

related with the decomposition of the pyrene derivative molecules adsorbed on the GnP 

surface. The weight loss of pristine GnPC at 800 ºC is 7.5 %, larger than that observed 

for GnPH5, possibly due to the larger content of oxygen containing groups of the former. 

The GnPC exfoliated using both pyrene derivatives presented a weight loss at 800 ºC of 

27 ± 4 % for compound 2a and 18 ± 2% for compound 2b, values that are similar to those 

observed for GnPH5 in spite of the much larger surface area of GnPC. 

 

Figure 53: TGA curves of the pristine and the exfoliated GnP 

The weight of PY2a and PY2b adsorbed at the surface of each GnP was estimated by a 

simple mass balance, considering the TGA residual weights at 800 ºC. The results, 

expressed in terms of the weight of PY (in mg) adsorbed on the GnP (per mg of pristine 

material) are as follows: GnPH5 adsorbed 0.29 mg/mg of PY2a and 0.61 mg/mg of PY2b, 

while GnPC adsorbed 0.38 mg/mg of PY2a and 0.23 mg/mg of PY2b. 

Raman spectroscopy is an important tool for the characterization of graphene samples. 

For a single-layer graphene, which represents the fundamental sp2 carbon hexagonal 

lattice, the Raman spectrum presents three main characteristic bands, associated to the G, 

D and G’ (or 2D) modes. The G mode, observed near 1580 cm-1, has E2g symmetry, and 

reflects the in-plane bond stretching motion of pairs of C sp2 atoms, [390] relating to the 

planar configuration of the sp2 bonded carbon typical of the graphene structure. Due to 

the strong C-C bonding in graphene the G band is observed at a relatively high Raman 

frequency in comparison to other materials, and very small perturbations to the frequency 



Chapter 4: Few Layer Graphene in Water 

 

 

  79 
 

of the G band can be measured. The frequency of the G band is independent of the laser 

excitation energy (Elaser), however it is sensitive to the temperature, strain and doping of 

the graphene sample. The D mode, observed near 1350 cm-1 at 2.41 eV (514nm) laser 

excitation energy, is a breathing mode of A1g symmetry, forbidden in perfect graphene, 

becoming active in the presence of disorder. Its presence indicates the existence of a 

hexagonal sp2 carbon network disturbed by chemical bonding that reduces the hexagonal 

network symmetry, such as observed adjacent to a graphene edge or a defect. Thus, the 

D band is known as a disorder mode, or defect band The D mode is highly dispersive as 

a function of the Elaser. The 2D mode is the second order of the D mode, sometimes 

referred as an overtone of the D band. However, it is not related to the defects of graphene 

structure and thus the 2D band is always strong in graphene even when the D band is 

absent. Furthermore, the shape and the position of the 2D band can be used to identify the 

number of graphene layers. [273] In the case of the single layer graphene the 2D band is 

twice the intensity of the G band. Also, this band may be fitted with a single Lorentzian 

function with a full width at a half maximum (FWHM) near 24 cm-1. Bilayer graphene 

typically displays a G band with higher intensity compared to the 2D band. The fitting of 

the 2D band in bilayer graphene requires four characteristic Lorentzian functions, each 

with a FWHM of ~24 cm-1. Moreover, the 2D band is shifted to higher frequency in 

bilayer graphene and has a different shape. As the number of layers increases the 2D band 

moves to higher wave number and becomes broader and more asymmetric in shape. Its 

deconvolution becomes more complex, and for few-layer graphene (less than 10 layers) 

it may be fitted with three Lorentzian functions with a FWHM higher than 24cm-1 each. 

For more than 10 layers the 2D band becomes very similar to that of graphite, that can be 

deconvoluted in two Lorentzian functions. [282, 283]. 

Figure 54 shows the Raman spectra of pristine GnP and non-covalently exfoliated GnP 

using the pyrene derivatives 2a and 2b. 
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Figure 54: Raman spectra of pristine graphite and non-covalently exfoliated graphite using the different 

pyrene derivatives. 

The Raman spectrum of the pristine GnPH5 has the typical shape of graphitic materials. 

The D band, at 1350 cm-1 is almost inexistent compared to the G band (at 1581 cm-1) 

which indicates the good structural quality of the pristine graphite. The 2D band position 

of the pristine GnPH5 occurs at 2722 cm-1. After the exfoliation process with pyrene 

derivatives 2a and 2b in solution (figure 54a and 54b) the Raman spectra obtained for 

the materials deposited on a glass slide showed the presence of FLG and higher 

exfoliation products such as bilayer graphene. The bilayer graphene presents a symmetric 

2D band centered at 2702 cm-1 that may be deconvoluted using four Lorentzian functions 

(figure 55b). The D band of the exfoliated material presents higher intensity than the 

pristine GnPH5 flakes and this fact can be related with the presence of the pyrene 

derivatives on the surface of the exfoliated GnP. [97] Also, the characteristic peaks of the 

pyrene derivatives can be observed in these spectra. The Raman spectra of the exfoliated 

GnPH5 in powder from, obtained from solvent evaporation of the stable suspensions 

(after the exfoliation process), showed a more symmetric 2D band compared to the 

pristine GnPH5, centered near 2712 cm-1. This 2D band can be fitted with three 

Lorentzian functions (figure 55b), which is consistent with the presence of few-layer 

graphene. Figures 54c and 54d show the Raman spectra of the pristine and exfoliated 

GnPC, obtained using the pyrene derivatives 2a and 2b. The spectra of the pristine GnPC 

shows a prominent D band near 1350 cm-1, with a slightly higher intensity than the G 
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band (at 1581 cm-1) which may be related to the smaller flake size, and thus higher edge-

to-basal plane ratio, as well as to a higher initial oxidation, in agreement with the TGA 

analysis. The 2D band position occurs near 2692 cm-1 showing high symmetry, although 

with lower intensity compared to the G band. After the exfoliation process, the D band 

has a lower intensity relative to the G band, which may result from the selective 

adsorption of the more graphitic (less oxidized) flakes by the pyrene derivatives. The less 

“defective” GnPC may adsorb higher amounts of pyrene, and thus are more stable in 

aqueous suspension. A statistical analysis of the GnPC spectra shows the presence of 2D 

bands similar to those of the pristine material, but also typical of FLG, for the exfoliated 

GnPC. [282]. 

A statistical analysis of the flakes formed was reported by Schlierf et al. [28] that studied 

the exfoliation of graphite in water using pyrene derivatives with different functional 

groups. The distribution in sheet thickness and the presence of monolayers were measured 

by a statistic analysis of the 2D band performed on 60 to 70 different flakes for each 

pyrene derivative used. Also, Jang and co-workers [408] performed a statistical analysis 

and studied the deconvolution of the 2D band of about 105 different sample spots to 

identify mono layer and few layer graphene. The authors reported the exfoliation of 

graphite using the 1-pyrene sulfonic acid sodium salt by in situ supercritical fluid ethanol 

exfoliation. In the present work, a statistical analysis of the graphene flake structure was 

performed by collecting the Raman spectra of sixty different flakes across each sample 

(GnPH5 PY2a, GnPH5 PY2b, GnPC PY2a and GnPC2b). After the exfoliation 

procedure, the spectra of bilayer and FLG were identified. Figure 55a shows the yield of 

bilayer, FLG, and pristine flakes after the exfoliation process, for all samples. 
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Figure 55: a) Yield of exfoliation process for the GnPH5 and GnPC; b) Lorentzian features of the 

deconvoluted 2D band of the pristine materials, bilayer and few layer graphene. 

The spectra identified as “pristine” quantifies the fraction of non-exfoliated material. It 

should be noted that the pristine GnP C is an expanded graphite already formed by thin 

flakes, as demonstrated by its Raman spectrum. The FLG and bilayer graphene spectra 

were identified based on the position of the 2D band and its deconvolution. Typically, the 

2D band of bilayer graphene occurred at 2702 cm-1, presenting a symmetric shape that 

could be deconvoluted using four Lorentizan functions with a FWHM of about 24 cm-1, 

shown in figure 55b. For FLG the 2D band position occurred between 2706 cm-1 and 

2712 cm-1, with a more asymmetric shape compared to bilayer graphene, and 

deconvoluted using three Lorentizan functions (figure 55b). The analysis demonstrated 

that the pyrene derivative 2a led to 12 % of bilayer graphene, 68 % of FLG and 20 % of 

non-exfoliated GnPH5, while for GnPC it led to 8 % of bilayer, 25 % FLG and 67 % of 

the pristine material. The pyrene derivative 2b led to 7 % of bilayer graphene, 60 % of 

FLG and 33 % of non-exfoliated GnPH5, while for GnPC it led to 7 % of bilayer 

graphene, 37 % of FLG and 56 % of the pristine material. The results are summarized in 

figure 55a, showing that the pyrene derivative 2a was more effective for the exfoliation 

of GnPH5 leading to the formation of overall 80 % of bi- and few-layer. Schlierf et al. 

[28] reported a similar result for the exfoliation of graphite using a mono substituted 

pyrene derivative (1-pyrene sulfonic acid). The authors obtained a yield of exfoliation of 

86% (a total of single- to few-layer), however using a higher concentration of pyrene 

a) 
b) 
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derivative (3.3x10-4 mol dm-3) and longer sonication time (5 to 35 hours) compared to the 

conditions used in this work.  

In the case of the GnPC, PY 2b led to the formation of a higher amount of bi- and few-

layer graphene, however, being the pristine GnPC an exfoliated material, the formation 

of few layer graphene may result from some stacking of layers, although it is still less 

than 10 layers. 

Figure 56 shows SEM and STEM images of the pristine GnPH5 as well as the exfoliated 

GnPH5. The SEM images show GnPH5 flakes that appear thinner after exfoliation. 

STEM images also show thin flakes of GnPH5 treated with both pyrene derivatives.  

 

Figure 56: SEM and STEM images of the pristine and exfoliated GnPH5 

 

Figure 57 shows SEM and STEM of the pristine and exfoliated GnPC. The GnPC flakes 

are small and agglomerated, and may be dispersed forming suspensions in water. 
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Figure 57: SEM and STEM images of the pristine and exfoliated GnPC 

 

The GnP suspensions obtained using the pyrene derivative 2a were analysed by TEM 

(figure 58). The images revealed the formation of few layer graphene and the electron 

diffraction of the amplified TEM image showed the typical hexagonal pattern of graphitic 

materials. 
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Figure 58: TEM image a) and amplified TEM image b) of exfoliated graphite using pyrene derivative 1;  

 

4.4. Conclusions 

In summary, two pyrene derivatives were synthetized (PY 2a and PY 2b) through a 

simple and low cost functionalization methodology which lead to a high yield of the final 

compounds, and can potentially be scaled-up for large scale production. These two pyrene 

derivatives were soluble in water and they were tested for the exfoliation and stabilization 

of two different types of graphite nanoplates (GnP) in aqueous media. The pyrene 

derivative 2a showed to be more effective in the exfoliation process leading to a formation 

of 80% of a total of bi- and few-layer graphene for GnPH5. The few layer graphene was 

also confirmed by STEM images. The very low concentration of pyrene derivatives used 

in this work (to our knowledge, the lowest reported in the literature) to exfoliate graphite 

in water opens perspectives to an efficient process to obtain few layer graphene.  

 

4.5. Supporting information 

Synthesis of the pyrene derivatives 

The NMR spectra were recorded on a Varian Unity Plus (1H: 300MHz, 13C: 75MHz) or 

on a Bruker Advance III 400 (1H: 400Mz, 13C 100 Mz) including the 1H – 13C correlation 

spectra (HSQC). Deuterated DMSO-d6 was used as solvent. The chemical shifts are 
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expressed in δ (ppm) and the coupling constants, J, are reported in hertz (Hz). The peak 

patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet 

and br, broad. Fourier Transform Infra-red spectra were recorded on a Spectrum 100 

Perkin-Elemer apparatus in transmission mode using NaCl pellets.  

1-Nitropyrene (1) was prepared according to a reported procedure. [404] Briefly, 

Cu(NO3)2.3H2O, (6.20 g, 27.70 mmol) was added to a mixture of pyrene (4.00 g, 19.80 

mmol) and acetic anhydride (5.20 mL, 55.40 mmol) in ethyl acetate (50 mL). The mixture 

was stirred at 55ºC for 20 h and a thick yellow precipitate formed. The reaction mixture 

was cooled to room temperature and the inorganic materials were filtered off. The crude 

product obtained by removal of the solvent in the rotary evaporator was purified by 

column chromatography using a silica gel column (3.20 cm x 19.00 cm, 10 -60% CH2Cl2/ 

petroleum ether) to give the pure product (3.70 g; 75 %). The FTIR spectrum is presented 

in figure 59. 

 

 

Figure 59: FTIR spectra of the 1-Nitropyrene (1) 

1-Aminopyrene (2): 1-Nitropyrene (1) (13.50 mmol, 3.30 g) was dissolved in ethanol 

(200 mL), the mixture was cooled in an ice bath, and copper (II) sulfate (32.40 mmol, 

5.20 g) was added. After stirring for 10 min, sodium borohydride (67.50 mmol, 3.80 g) 

was added slowly during 15 min. The mixture was refluxed overnight, cooled to room 

temperature and the solvent was removed in the rotary evaporator. The reaction mixture 

was dissolved in dichloromethane (100 mL) and water (100 mL) was added. The aqueous 

layer was extracted with dichloromethane (3 x 30 mL), and the organic layers were 

washed with brine (2 x 30 mL) and dried with MgSO4. Removal of the solvent in the 

rotary evaporator gave compound 2 (2.40 g, 82 %). 1H NMR (400 MHz, DMSO-d6): δ 

(ppm) 6.32 (s, 2H, -NH2), 7.40 (d, J = 8.3 Hz, 1H, H2), 7.71 (d, J = 8.8 Hz, 1H,H5), 7.86 

(t, J = 7.7 Hz, 1H, H7), 7.88 (d, J = 8.8 Hz, 1H, H4), 7.92 (d, J = 9.3 Hz, 1H, H10), 7.97 

(d, J = 8.4 Hz, 1H, H2), 7.98 (d, 1H, H6), 7.99 (d, 1H, H8), 8.29 (d, J = 9.2 Hz, 1H, H9). 
13C NMR (100 Mz, DMSO-d6): δ (ppm) 113.13 (C2), 114.72 (C3a), 121.39 (C10a), 121.76 
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(C5), 122.13 (C9), 122.37 (C6), 122.91 (C8), 124.14 (C10), 125.14 (C3a1), 125.70 (C5a1), 

125.85 (C7), 126.52 (C3), 127.70 (C4), 131.67 (C8a), 132.02 (C5a), 144.36 (C1).  

The NMR spectra is presented in figure 60. 

 

 

 

a) 

b) 
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Figure 60: NMR spectra of 1-Aminopyrene (2): a) 1HNMR; b) 13C NMR; and c) 2D HSQC (Heteronuclear 

Single Quantum Correlation). 

 

The FTIR spectra is presented in figure 61. 

 

Figure 61: FTIR spectra of the 1-Aminopyrene (2) 

c) 
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(Z)-4-oxo-4-(pyren-1-ylamino)but-2-enoic acid (2a): Maleic anhydride (16.60 mmol, 

1.60 g) was added to a solution of 1-aminopyrene (11.10 mmol, 2.40 g) in acetonitrile 

(200 mL) and the mixture was stirred at room temperature. The reaction was followed by 

TLC (20% ethyl acetate/petroleum ether) and after 4 hours the precipitate was filtered. 

Compound 2a (3.00 g, 86 %) was obtained as a yellow solid. 1H NMR (400MHz, DMSO-

d6): δ (ppm) 6.43 (d, 1 H, J = 12.4 Hz, CH), 6.77 (d, 1 H, J = 12.4 Hz, CH), 8.08 (t, 1 H, 

J = 7.6 Hz, H7), 8.13-8.18 (m, 2 H, H5 and H10), 8.22 (d, 1 H, J = 9.2 Hz, H4), 8.29-8.34 

(m, 4 H, H2, H3, H6 and H8), 8.41 (d, 1 H, J = 9.2 Hz, H9), 10.84 (s, 1 H, NH), 13.27 (s 

broad, 1 H COOH). 13C NMR (100 Mz, DMSO-d6): δ (ppm) 122.45 (C9), 123.19 (C2), 

123.84 (C3a), 124.04 (C3a1), 124.36 (C5a1), 124.98 (C3), 125.05 (C6 or C8), 125.34 (C6 

or C8), 126.47 (C7), 126.79 (C5 and C10), 128.54 (C10a), 130.49 (C8a), 130.83 (C5a), 

130.85 (CH), 131.10 (C1), 164.53 (COOH), 167.05 (C=O).  

The NMR spectra is presented in figure 62. 

 

 

a) 
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Figure 62: NMR spectra of (Z)-4-oxo-4-(pyren-1-ylamino)but-2-enoic acid (2a): a) 1HNMR; b) 13C NMR; and 

c) 2D HSQC (Heteronuclear Single Quantum Correlation). 

The FTIR spectrum is presented in figure 63. 

b) 

c) 
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Figure 63: FTIR spectra of the (Z)-4-oxo-4-(pyren-1-ylamino)but-2-enoic acid (2a) 

(E)-N-(4-nitrobenzylidene)pyren-1-amine (3): 4-Nitrobenzaldehyde (1.38 mmol, 0.21 

g) was added to a solution of 1-aminopyrene (1.38 mmol, 0.30 g) in ethyl acetate (20 mL) 

and the mixture was stirred at 85ºC. The reaction was followed by TLC (20% ethyl 

acetate/petroleum ether). When all the reagents were consumed the solvent was removed 

in the rotary evaporator. Recrystallization with diethyl ether gave compound 3 (0.45 g, 

93 %) as a brown solid.1H NMR (400MHz, DMSO-d6): δ (ppm) 8.04 (d, 1 H, J= 8.0 Hz, 

C2-H py), 8.07 (t, 1 H, J = 7.6 Hz, H7 py), 8.13-8.19 (m, 2 H, H5 and H6 py), 8.23 (d, 1 

H, J = 9.2 Hz, H9 py), 8.27-8.30 (dd, 2 H, J = 7.6 Hz, H6 and H8 py), 8.32-8.38 (m, 5 H, 

CH Ph and H3 py), 8.69 (d, 1 H, J = 9.2 Hz, H10 py), 9.07 (s, 1 H, CH). 13C NMR (100 

Mz, DMSO-d6): δ (ppm) 115.70 (C2 py), 125.79 (C10 py), 123.92 (C5a1 py), 124.05 (CH 

Ph), 124.40 (C3a1 py), 125.35 (C8 py), 125.45 (C6 py), 125.48 (C10a py), 125.85 (C3 

py), 126.58 (C7 py), 127.14 (C4 or C5 py), 127.28 (C4 or C5 py), 127.47 (C9 py), 129.80 

(CH Ph), 129.89 (C3a py), 130.81 (C8a py), 130.98 (C5a py), 141.80 (C Ph), 143.60 (C1 

py), 148.82 (C Ph), 159.23 (CH).  

The NMR spectra is presented in figure 64. 
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Figure 64: NMR spectra of (E)-N-(4-nitrobenzylidene)pyren-1-amine (3): a) 1HNMR; b) 13C NMR; and c) 2D 

HSQC (Heteronuclear Single Quantum Correlation). 

 

The FTIR spectrum is presented in figure 65. 

 

Figure 65: FTIR spectra of the (E)-N-(4-nitrobenzylidene)pyren-1-amine (3) 

 

c) 
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N-(4-aminobenzyl)pyren-1-amine (4): Compound 3 (1.0 mmol, 0.35 g) was dissolved 

in ethanol (10 mL), the mixture was cooled in an ice bath, and copper (II) sulfate (2.4 

mmol, 0.38 g) was added. After stirring for 10 min, sodium borohydride (5.00 mmol, 0.19 

g) was added slowly during 15 min. The mixture was refluxed overnight and cooled to 

room temperature. The solvent was removed in the rotary evaporator. The reaction 

mixture was dissolved in dichloromethane (50 mL) and water (100 mL) was added. The 

aqueous layer was extracted with dichloromethane (3 x 30 mL), and the organic layers 

were washed with brine (2 x 30 mL) and dried with MgSO4. Removal of the solvent in 

the rotary evaporator gave compound 4 (0.24 g, 73%) as a brown solid. 1H NMR 

(400MHz, DMSO-d6): δ (ppm) 4.48 (d, 2 H, J = 5.6 Hz, CH2), 4.89 (s broad, 2 H, NH2), 

6.51 (d, 2 H, J = 8.4 Hz, CH-Ph), 7.12 (d, 2 H, J = 8.4 Hz, CH-Ph), 7.20 (d, 1 H, J = 8.8 

Hz, H2 py), 7.30 (t, 1 H, J = 5.6 Hz, NH), 7.68 (d, 1 H, J = 9.2 Hz, H9 py), 7.83 (d, 1 H, 

J = 8.8 Hz, H3 py), 7.86 (t, 1 H, J = 7.6 Hz, H7 py), 7.92-8.01 (m, 4 H, H5, H6, H8 and 

H10 py), 8.42 (d, 1 H, J = 9.2 Hz, H4 py). 13C NMR (100 Mz, DMSO-d6): δ (ppm) 46.18 

(CH2), 109.00 (C2 py), 113.95 (2CH Ph), 115.95 (C10a), 121.07 (C3a), 121.44 (C4 py), 

121.95 (C9 py), 122.54 (C8 py), 123.02 (C6 py), 124.53 (C10 py), 125.12 (C8a py), 

125.49 (C5a py), 125.97 (C7 py), 126.56 (C5 py), 126.51 (C Ph), 127.76 (C3 py), 127.83 

(2CH Ph), 131.53 (C5a1 py), 132.08 (C3a1 py), 143.52 (C1 py), 147.40 (C Ph).  

The NMR spectra is presented in figure 66. 

 

 

 

a) 
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Figure 66: NMR spectra of N-(4-aminobenzyl)pyren-1-amine (4): a) 1HNMR; b) 13C NMR; and c) 2D HSQC 

(Heteronuclear Single Quantum Correlation). 

 

The FTIR spectra is presented in figure 67. 

b) 

c) 
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Figure 67: FTIR spectra of the N-(4-aminobenzyl)pyren-1-amine (4) 

 

(Z) 4-oxo-4-((4-((pyren-1-ylamino)methyl)phenyl)amino)but-2-enoic acid (2b): 

Maleic anhydride(1.8 mmol, 180.0 mg) was added to a solution of compound 4 (1.50 

mmol, 0.48 g) in acetonitrile (20 mL) and the reaction was stirred at room temperature. 

The reaction was followed by TLC (20% ethyl acetate/petroleum ether) and after 4 hours 

the precipitate was filtered. The compound obtained (0.56 g) was a mixture of compound 

2a and 2b in a 1:2 ratio.1H NMR (400MHz, DMSO-d6): δ (ppm) 4.64 (s, 2 H, CH2), 6.28 

(d, 1 H, J = 12.0 Hz, CH), 6.41 (d, 1 H, J = 12.4 Hz, CH 2a), 6.45 (d, 1 H, J = 12.4 Hz, 

CH), 6.81 (d, 1 H, J = 12.0 Hz, CH 2a), 7.16 (d, 1 H, J = 8.4 Hz, H-Ph), 7.42 (d, 2 H, J = 

8.4 Hz, H-Ph), 7.57 (d, 2 H, J = 8.8 Hz, H-Ph), 7.69 (d, 1 H, J = 8.8 Hz, H-Ph), 7.83 (d, 

1 H, J = 8.8 Hz, H-py), 7.88 (t, 1 H, J = 7.6 Hz, H-py), 7.94 (d, 1 H, J = 8.4 Hz, H-py), 

7.98-8.04 (m, 3 H, H-py), 8.08 (t, 1 H, J = 7.6 Hz, H-py 2a), 8.16 (s, 2 H, NH and H-py 

2a), 8.22 (d, 1 H, J = 9.2 Hz, H-py 2a), 8.28-8.30 (m, 3 H, H-py 2a), 8.37 (d, 1 H, J = 9.2 

Hz, H-py 2a), 8.45 (d, 1 H, J = 9.2 Hz, H-py 2a), 10.38 (s, 1 H, NH), 10.85 (s, 1 H, NH 

2a), 13.04 (s broad, 1 H, COOH 2a and 2b). 13C NMR (100 Mz, DMSO-d6): δ (ppm) 

46.02 (CH2), 108.88 (CH Ph), 115.61 (C), 119.55 (CH Ph), 119.67 (CH Ph), 121.25 (C), 

121.36 (CH py), 122.09 (CH Ph), 122.42 (CH py 2a), 122.62 (C-H Py), 123.09 (C-H py), 

123.33 (C-H py 2a), 123.78 (C 2a), 124.15 (C 2a), 124.31 (C 2a), 124.65 (C-H py), 

124.93 (C-H py 2a), 125.03 (C), 125.05 (CH py 2a), 125.34 (C-H py 2a), 125.44 (C), 

125.97 (C-H py), 126.45 (C-H py 2a), 126.52 (C-H py 2a), 126.83 (C-H py 2a), 127.20 

(C-H py), 127.35 (C-H Ph), 127.69 (C-H py 2a), 128.61 (C 2a), 130.03 (C-H 2a), 130.44 

(C),130.60 (C-H), 130.78 (C 2a), 130.87 (C 2a), 131.46 (C), 131.54 (C-H), 132.74 (C-H 

2a), 135.54 (C), 137.08 (C), 143.17 (C), 163.08 (C=O), 164.46 (C=O 2a), 166.77 

(COOH), 166.83 (COOH 2a). 

The NMR spectra is presented in figure 68. 
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Figure 68: NMR spectra of (Z) 4-oxo-4-((4-((pyren-1-ylamino)methyl)phenyl)amino)but-2-enoic acid (2b): a) 
1HNMR; b) 13C NMR;  

a) 

b) 
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The FTIR spectra is presented in figure 69. 

 

Figure 69: FTIR spectra of the 4-oxo-4-((4-((pyren-1-ylamino)methyl)phenyl)amino)but-2-enoic acid (2b) 
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5. WPU/ FEW LAYER GRAPHENE NANOCOMPOSITE FILMS 

5.1. Introduction 

In the last decade graphene has emerged as an exciting material revealing potential 

applications in various fields including in the polymer nanomaterials science. [35] 

Recently, the production of graphene based on graphite exfoliation through non-covalent 

interactions with pyrene derivatives was reported (see section 2.2.1.1. in chapter 2). [93] 

[28] This approach was used for the exfoliation and stabilization of graphene in water, 

leading to the production of few- and single- layer graphene without structural damage. 

The suspension of graphene in water allows its easy mixture with water-soluble polymers 

and with polymers that form stable suspensions in water. Waterborne polyurethane 

(WPU) is a synthetic polymer used as high quality surface coating, providing an eco-

friendly process without emission of volatile organic compounds (VOCs). The potential 

applications of graphene/WPU thin films in antistatic coatings, electromagnetic shielding 

and corrosion-resistant coatings have been reported. (see section 2.4.2. in chapter 2). 

In this work we prepared FLG/WPU, CNT/WPU and FLG/CNT/WPU nanocomposites 

and evaluated the mechanical, electrical and barrier properties of the nanocomposite 

films. The production of FLG was performed by non-covalent exfoliation of three 

different types of pristine graphite and graphite nanoplates in aqueous media using the 

pyrene derivative 2a (chapter 4). The stable aqueous suspensions were constituted by 

more than 70 % of FLG and bi-layer graphene, and produced WPU composites with 

improved mechanical properties compared to the corresponding pristine graphite 

composites. The composite barrier properties increased by approximately 40 % relative 

to pure polymer films, for composites with 0.5 wt.% content of FLG. The electrical 

conductivity of the FLG/CNT/WPU is highly improved, showing an increase of 6 orders 

of magnitude when compared with WPU film, and 3 orders of magnitude when compared 

with the FLG/WPU composite, for 0.5 wt.% of reinforcement.  

5.2. Experimental 

5.2.1. Materials 

Graphite and graphite nanoplates were obtained from three different suppliers: 

XGSciences, USA (grade GnP C); Nacional de Grafite, Brasil (grade Micrograf HC11); 

Graphexel Ltd., UK (graphexel grade 2369). The nomenclature adopted in this work is 

GnP C, Micrograf and Graphexel, respectively. Multiwalled carbon nanotubes (CNT), 

grade NC7000, were supplied by Nanoyl SA, Belgium. Waterborne polyurethane, grade 
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ICO-THANE 10, was purchased from I-Coats N. V., Belgium. The pyrene derivative was 

synthetized according the procedure described in chapter 4. 

5.2.2. Preparation and characterization of few layer graphene suspensions 

The preparation of the few layer graphene and their suspensions was carried out as 

described previously in section 4.2.2. of chapter 4.  

 

5.2.3. Preparation and characterization of the WPU composites films 

Water suspensions of FLG obtained from GnPC, Micrograf, Graphexel as well as CNT 

were dispersed in WPU at loadings of 0.025, 0.05, 0.1 and 0.5 wt.%, using an Ultrasonic 

processor UP100H from Hielscher, equipped with a sonotrode MS7D during 1H. The 

mixtures were then cast onto a polypropylene plate mould and dried at ambient conditions 

for 48 h. The dried films (typically about 50 µm thick) were cured at 80 ºC for 6 h in a 

convection oven. Composite films were also prepared with the pristine graphite-based 

materials and WPU for comparison purposes, using the same procedure. Hybrid 

composite films FLG/CNT/WPU with 0.5 wt.% overall content (0.25 wt.% FLG and 0.25 

wt.% CNT) were also produced. 

The mechanical property measurements were performed on a universal testing machine 

Instron 4505 at a crosshead speed of 25 mm/min, according to ASTM D 882. The values 

quoted were the average of 10 specimens tested. Thermogravimetric analysis was 

performed on a Modulated TGA Q500 from TA Instruments. The samples were heated at 

10 ºC/min under a constant flow of N2(g). The Raman spectra and the Raman mapping of 

the composite films were acquired on a Horiba LabRAM HR Evolution confocal 

microscope using a laser excitation of 532 nm. The measurements of volume resistivity 

were carried out on a picoammeter Kethley 6487 with Kethley electrodes 8009. Three 

nanocomposite films were prepared and analyzed for each composition. At least 3 

measurements were acquired for each sample. For each applied voltage the corresponding 

current value was the average of 100 measurements. The water vapor transmission 

(WVT) tests were performed using the desiccant method according to the standard of 

ASTM E96-66. Scanning electron microscopy (SEM) of the cryo-fractured composite 

films was performed on a NanoSEM FEI Nova 200 microscope after platinum coating. 
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5.3. Results and Discussion 

5.3.1. Few layer graphene suspensions 

The synthetized pyrene derivative (Py2a described in chapter 4), represented in figure 

70, was used to test the exfoliation of the three different pristine graphite and graphite 

nanoplates in water. 

 

Figure 70: Pyrene derivative used in the exfoliation process. 

The pristine graphite-based materials purchased from different suppliers present different 

morphologies in terms of particle size (or equivalent diameter), as shown in the figure 

71. GnPC morphology and oxygen content was described previously in section 4.2.1. of 

chapter 4. Micrograf is an expanded graphite with equivalent diameter between 3 and 60 

µm and Graphexel is a natural crystalline graphite with a large equivalent diameter of 

approximately 180 µm. 

 

Figure 71: Scanning electron microscopy of the pristine graphite and graphite nanoplates: a) GnP C, b) 

Micrograf, c) Graphexel 

The thermogravimetric analysis of the pristine GnPC (figure 72) presents a weight loss 

of about 7.5 % at 800 ºC, a large value compared to the weight loss observed for Micrograf 

and Graphexel. This larger weight loss results from the thermal degradation of the oxygen 

containing groups of GnPC. The weight loss at 800ºC for Micrograf and Graphexel are 

0.7 % and 1.7 %, respectively. 

H
N

O
HO O
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Figure 72: Thermogravimetric analysis of the pristine GnPC, Micrograf and Graphexel 

 

The GnPC, Micrograf and Graphexel were added to Py aqueous solution (5x10-5 mol dm-

3) and the exfoliation of the pristine materials was carried out by ultrasound application. 

The dispersions were then centrifuged to remove large aggregates and the supernatant 

was collected, resulting in stable aqueous suspensions of few layer graphene. The FLG 

suspensions were analyzed by UV-visible spectroscopy and their stability along the 

storage time was studied (figure 73). The Py solution shows the typical absorption peaks 

between 200 and 600 nm. [98]. The FLG suspension spectra show an absorption over the 

whole wavelength range as it was expected for the graphene dispersions. [73, 94] 

Moreover, the suspensions demonstrated good stability along the time. The aqueous 

suspensions of FLG produced from GnPC and Micrograf (figure 73a and 73b) were 

diluted 10x and 2x, respectively, to perform the UV-visible analysis. The spectra of these 

stable FLG suspensions showed an absorption peak at about 265 nm typical of graphene 

and graphene oxide suspensions. [71, 98, 407] Graphexel FLG suspensions still present 

some of the Py peaks, although at very low intensity. This effect was reported to be due 

the π-π interactions between pyrene derivatives and exfoliated graphite [98] 
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Figure 73: UV-visible spectra of the few layer graphene suspensions: a) GnPC, b) Micrograf, c) Graphexel; 

and their scanning transmission electron microscopy images d), e) and f), respectively. 

The STEM images of the FLG formed in Py aqueous suspension (figure 73d, 73e and 

73f) show the formation of thin flakes with sizes within the reported initial equivalent 

diameter of the pristine materials. The concentration of these FLG suspensions was 

calculated using the extinction coefficient values obtained in previous work, (chapter 4) 

and it is shown in figure 74. The yield of exfoliation was calculated relative to the initial 

concentration of the graphite-based material, which was 500 µg/ml. The concentration of 

FLG obtained from GnPC was 450 µg/ml, representing 90 % of the initial concentration 

of the pristine material. The concentration of FLG from Micrograf was 91 µg/ml (18 % 

yield) and from Graphexel it was 31 µg/ml (6 % yield).  

 

Figure 74: Concentration of FLG suspensions along the shelf time 
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The higher yield of FLG in aqueous suspension was obtained with GnPC probably due to 

their smaller flake dimensions and thickness in the pristine material. Additionally, the 

pristine GnPC is an expanded material with some residual oxidation, which may be an 

advantage for the exfoliation and stabilization in water. Micrograf, also obtained from an 

expansion process but having a larger equivalent diameter than GnPC, presents a yield of 

18 % in aqueous suspension. The pristine Micrograf presents a negligible weight loss at 

800ºC indicating a stable graphene structure with few functional groups attached to its 

surface. Graphexel is distinct from the other two materials as it is a natural graphite (not 

expanded) with large equivalent flake diameter and thickness, and thus its expected yield 

of exfoliation in water was very low. In this context, the yield of 6 % of FLG produced 

from Graphexel in water is quite relevant, when compared with other results reported in 

the literature. [94, 98] 

The Raman spectrum of the pristine Graphexel (figure 75 c) presents the typical shape of 

graphite. The G band is observed at 1581 cm-1 and the D band, which normally is 

observed at about 1350 cm-1, is barely identified indicating the good structural quality of 

the pristine graphite. The 2D band position occurs at 2722 cm-1, presenting the typical 

asymmetric shape that can be fitted using two Lorentzian functions (figure 76a). After 

the exfoliation process with the pyrene derivative, the Raman spectra obtained for the 

Graphexel water suspension deposited on a glass slide showed the presence of FLG and 

higher exfoliation products such as bilayer graphene. The bilayer graphene presents a 

symmetric 2D band centered at 2702 cm-1 that may be deconvoluted using four Lorentzian 

functions (figure 76c). The D band of the exfoliated material presents higher intensity 

than the pristine Graphexel flakes and this fact can be related with the presence of the 

pyrene derivatives on the surface of the exfoliated material. [97] Also, the characteristic 

peaks of the pyrene derivatives can be observed in these spectra.  

 

Figure 75: Raman spectra of the pristine and FLG: a) GnPC, b) Micrograf, c) Graphexel 
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Similarly to the observations reported for the FLG obtained from Graphexel, the 

exfoliated Micrograf in suspension also presented a Raman spectrum typical of bi-layer 

graphene (figure 75 b). The pristine Micrograf material presents a more symmetric 2D 

band compared to the pristine Graphexel, which may be due to its previous expansion 

procedure. The Raman spectra of the pristine and exfoliated GnPC is presented in the 

figure 75c, showing a prominent D band near 1350 cm-1 with a slightly higher intensity 

than the G band (at 1581 cm-1) which may be related to the smaller flake size, and thus 

higher edge-to-basal plane ratio, as well as to the initial oxygen content. The 2D band 

position occurs near 2692 cm-1 showing high symmetry, although with lower intensity 

compared to the G band. The large downshift of the 2D band of the pristine GnPC relative 

to the other pristine graphites indicates that this material is already formed by thin flakes 

itself. After the exfoliation process the D band presents a lower intensity relative to the G 

band, indicating the selective adsorption of Py on the less oxidized flakes. The less 

“defective” GnPC may adsorb a higher amount of pyrene, and thus are more stable in 

aqueous suspension. Furthermore, the 2D band position is upshifted and similar to the 2D 

band of FLG produced from Micrograf and Graphexel. 

 

Figure 76: Lorentzians features of the deconvoluted 2D band: a) pristine graphite, b) few layer graphene and 

c) bi-layer graphene; d) Yield of few layer and bi-layer graphene in the exfoliated GnPC, Micrograf and 

Graphexel suspensions. 
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After the exfoliation procedure, the spectra of bilayer and FLG were identified. A 

representative analysis of the graphene flake structure was performed by collecting the 

Raman spectra of sixty different flakes across each sample, as described in chapter 4. 

Figure 76d shows the results obtained for the yield of bilayer, FLG, and pristine flakes 

after the exfoliation process, for all samples. The spectra identified as “pristine” quantifies 

the fraction of the spectra which are similar to the pristine material. The FLG and bilayer 

graphene spectra were identified based on the position of the 2D band and its 

deconvolution. Typically, the 2D band of bilayer graphene occurred at 2702 cm-1, 

presenting a symmetric shape that could be deconvoluted using four Lorentizan functions 

with a FWHM of about 24 cm-1, shown in figure 76c. For FLG the 2D band position 

occurred between 2706 cm-1 and 2712 cm-1, it is less symmetric compared to bilayer 

graphene, and may be deconvoluted using three Lorentizan functions (figure 76b). [281] 

The analysis demonstrated that the Graphexel water suspensions presented 16 % of bi-

layer graphene, 57 % of FLG and 27 % of non-exfoliated material. The Micrograf 

suspensions contained 23 % of bi-layer graphene, 54 % of FLG and 23 % pristine 

material. Finally, the GnPC aqueous suspensions presented 8 % of bi-layer graphene, 25 

% of FLG and 67 % of pristine material. In the latter case, the pristine material is itself 

considerably exfoliated, as discussed in chapter 4. The total amount of few-layer graphene 

(corresponding to the sum of bi- and FLG) for Graphexel and Micrograf water suspension 

was 73 % and 77 %, respectively. These values are in agreement with the results reported 

by Schlierf et al. [28] , that performed a similar analysis, concluding that 86 % of 

exfoliated material (corresponding to the overall single- to few-layer graphene) was 

obtained by exfoliation of graphite in water using 1-pyrene sulfonic acid. However, both 

concentration of pyrene derivative (3.3x10-4 mol dm-3) and the sonication time (5 to 35 

hours) were higher than those used in this work.  

 

5.3.2. Few layer graphene/ waterborne polyurethane composite films 

The GnPC, Micrograf as well as Graphexel FLG suspensions were mixed with 

waterborne polyurethane. Thin films of WPU/FLG at low loading level, from 0.025 wt.% 

to 0.5 wt.%, were prepared and the production of WPU films using the pristine graphitic 

materials was also performed for comparison. The mechanical properties of all produced 

WPU composite films were tested and the results are depicted in the figure 77. In general, 

the mechanical properties are enhanced with the incorporation of the pristine graphite and 
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graphite nanoplates as well as the FLG (obtained from GnPC, Micrograf and Graphexel). 

The Young’s modulus, yield strength and tensile strength increased with increasing 

content of the reinforcement for the pristine material and for FLG. 

 

Figure 77: Variation of the Young’s modulus, yield strength, tensile strength and elongation at break of the 

WPU composite films with the increase of the pristine material and FLG content 

 

Micrograf and Graphexel tend to reach their maximum mechanical properties already at 

0.1 wt. of FLG loading. The elongation at break tends to slightly decrease for all 

composite films, however it is always above 150 %.  

Table 4 compares the mechanical properties of the WPU composite films produced in 

this work, namely the Young’s modulus, with results reported in the literature.  
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Table 4: Young’s Modulus increase/ decrease of waterborne polyurethane reinforced with graphene/ graphite 

related materials 

WPU composite films reinforcement Young’s Modulus 

increase/ decrease (%) 

Ref. 

Graphene nanoplates (GnP) (0.5wt.%) -48% [350] 

r-GO (0.5wt.%) -42% [348] 

GO (0.5wt.%) 330 [352] 

f-graphene with APTES(1) (0.5wt.%) 620 [359] 

r-GO + SDS (2) (1.0wt%) 4 [368] 

GnPC (0.5wt.%) 39 This work 

GnPC Py (0.5wt.%) 38 This work 

Micrograf (0.5wt.%) 26 This work 

Micrograf Py (0.5wt.%) 41 This work 

Graphexel (0.5wt.%) 23 This work 

Graphexel Py (0.5wt.%) 42 This work 

(1) (3-aminopropyl)triethoxysilane 

(2) sodium dodecyl sulphate 

While for non-functionalized GnP [350] and r-GO [348] incorporated in WPU matrix 

(0.5wt.%) the reported Young’s modulus values decreased 48 % and 42 %, respectively, 

for covalent functionalized graphene such as GO [352] the improvement of the Young’s 

modulus can achieve to 330 % (for 0.5 wt.% of incorporation). Also, the in situ 

incorporation of functionalized graphene with (3-aminopropyl)triethoxysilane (APTES), 

during the WPU synthesis, led to an improvement of the Young’s modulus of 620 %. 

[359]. Thus, covalent functionalization of graphene may be a viable alternative to obtain 

good mechanical properties of WPU, however the disruption the sp2 carbon network of 

the graphene leads to structural defective graphene sheets with poor electrical properties 

[35], which was not reported in the examples given in table 4. Conversely, non-

functionalized r-GO with sodium dodecyl sulphate (SDS) led an improvement of 4 % of 

the Young’s modulus, for the incorporation of 1.0 wt.% of r-GO. [368] In the present 

work, the FLG obtained by non-covalent functionalization with the pyrene derivative led 

to better results, inducing an enhancement of 38 to 42 % of the Young’s modulus, for the 

loading of 0.5 wt.%. Furthermore, the incorporation of the pristine graphitic materials 

(GnPC, Micrograf or Graphexel) improved the Young’s modulus in the range of 23 – 39 
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%, which are interesting results compared with non-functionalized graphene related 

materials reported in the literature, for the same loading (0.5 wt.%). [348, 350] 

The mechanical properties are closely related with the interfacial adhesion between 

reinforcement and polymer matrix. Figure 78 shows SEM images of the composite films 

with 0.5 wt.%. The images showed a good interfacial adhesion between the graphite-

based reinforcement and the WPU matrix, in agreement with the mechanical 

characterization. The larger agglomerates were observed for the pristine Graphexel 

composites, as illustrated in the SEM images, affecting the its mechanical properties when 

compared with the pristine GnPC and Micrograf however, there is still an enhancement 

relative to WPU film. 

 

Figure 78: SEM images of the pristine and few-layer graphene: a) and b) GnPC, c) and d) Micrograf, e) and f) 

Graphexel composite films at 0.5wt.% of content. 

 

The Raman spectra of the WPU composite films with 0.5 wt.% and its comparison with 

the pristine graphite-based materials, as well as the WPU itself, is presented in the figure 

79. The D and G bands of the Raman spectra of GnPC, Micrograf and Graphexel, when 

incorporated into the WPU matrix, is very similar with the spectra of the pristine 

materials. Also, the WPU film presents a characteristic band between 1400 and 1500 cm-

1 quite distinct from the typical bands of the graphite nanoplates, which allows its easy 

identification in the composite films. In fact, in the WPU composite films both signals 

(WPU and graphitic materials) are identified, which enables the construction of a Raman 
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map of the distribution of FLG on a previously selected area of the composite films. The 

same area (25 x 25 µm) was used for the analysis of each sample: a Raman spectrum was 

acquired at each 0.5 µm, and for each spectrum the area of the WPU band (from 1400 

and 1500 cm-1) and the G band of the graphite nanoplates (from 1550 to 1650 cm-1) were 

measured. The map was built based on the calculated ratio of the area of the WPU band 

to the area of the G band of the graphite material (AWPU band /A G band). In the Raman 

mapping image (figure 79) the green spots corresponds to large value of the ratio, 

corresponding to the detection of mostly WPU, while the black spots correspond to a ratio 

near zero.  

 

Figure 79: Raman spectra and optical microscopy image of the selected area for the Raman mapping analysis 

of the WPU composite films (0.5wt.%) 

 

The optical microscopy images of the GnPC composite (WPU 0.5 wt.%) and FLG 

obtained from GnPC (WPU PY 0.5 wt.%), presented in the figure 79, showed to be very 

uniform and the GnPC particles are difficult to detect. However, when the Raman 

mapping is performed, a good dispersion of GnPC in the WPU matrix is identified. For 

all the analyzed areas of these composite films no significant differences are observed for 

the distribution of GnPC WPU and FLG GnPC WPU. Both showed a good distribution, 

and this may be related with the similar mechanical properties of both composite films. 

For Micrograf and Graphexel composites, the dispersion seems to improve when FLG is 

used. This may be in agreement with the significant enhancement of the mechanical 
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properties of FLG Micrograf and Graphexel composites when compared with the pristine 

Micrograf or Graphexel composites. The thermogravimetric analysis results obtained for 

the same samples is presented in the figure 80. The designation of WPU GnPC 

corresponds to the pristine GnPC WPU composite film and the identification of WPU 

GnPC PY corresponds to the GnPC FLG WPU composites, since the FLG was obtained 

by non-covalent exfoliation process using the pyrene derivative (PY). Similar 

designations are used for the Micrograf and Graphexel WPU composites. 

 

Figure 80: Thermogravimetric analysis of the: a) and b) GnPC, c) and d) Micrograf and e) and f) Graphexel 

WPU composites, at 0.5 wt.% and its comparison with WPU and FLG WPU films. 

 

The results showed that the incorporation of the pristine graphitic material as well as FLG 

did not affect the thermal properties of the WPU films, since the weight loss as well as 

the derivative weight loss curves of the composite films are very similar to the WPU film.  

A property of particular practical importance and interest in the present study was the 

moisture permeability or water vapor transmission (WVT), which is a measure of the rate 

at which water vapor passes through a polymer film. The WVT rate was calculated 

according to the specifications of ASTM E96:  

WVT = G/tA = (G/t)/A              (4) 

where G is the weight change, t is the testing time and A is the test area (dish mouth area). 

The moisture permeance was calculated from the known WVT rate using the following 

equation: 
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Permeance = WTV/ΔP = WTV/S(R1 - R2)           (5) 

where ΔP = vapor pressure difference (in mmHg (1.333x102 Pa)); S = saturation vapor 

pressure at test temperature; R1 = 90% and R2 = 0%, relative humidity values inside the 

test chamber and dish, respectively. The saturation water vapor pressure at 38 ºC was 

considered as S = 49.692 mmHg. The coefficient of moisture permeability, P(H2O), was 

calculated as follows: 

P(H2O) = Permeance x Thickness             (6) 

Where Thickness corresponds to the thickness of the WPU films. The results of P(H2O) 

for the WPU and WPU composites at 0.5 wt.% loading (GnP and FLG GnP, Micrograf 

and FLG Micrograf, Graphexel and FLG Graphexel) are presented in figure 81.  

 

Figure 81: Coefficient of moisture permeability of the WPU composite films with 0.5wt.% of content. 

The incorporation of the graphite-based materials (pristine and FLG) reduced the P(H2O). 

For GnPC no significant difference is observed between the films with pristine GnPC and 

FLG GnPC, presenting a decrease of 20 % of P(H2O) relative to WPU, in both cases. This 

difference is more accentuated for Micrograf and Graphexel materials. A decrease of 

about 10 % is observed for both pristine Micrograf and Graphexel, but this percentage is 

higher for FLG Micrograf (29 %) and FLG Graphexel (40 %). The effectiveness of the 

FLG WPU composites as moisture barrier was clearly demonstrated, showing to be more 

effective than the pristine graphitic materials. Furthermore, the FLG WPU composite 

films prepared in this work presented a superior performance when compared with values 

reported in the literature, namely for GO/WPU 0.5 wt.% composite, that showed a 
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decrease of 25 % of P (H2O) [346] and 2D layered material molybdenum disulfide 

(MoS2)/ WPU 0.5 wt.% composite in which P(H2O) decreased 6 %. [409].  

The electrical properties of the composite films were analyzed. Typically, the 

conductivity of the GnPC and Micrograf composite films (for pristine and FLG materials) 

were found to be very similar, showing an increase of about two orders of magnitude 

when compared with the WPU itself. The pristine Graphexel WPU composites 

demonstrated an increase only about one order of magnitude, although the FLG 

Graphexel WPU composite improved the electrical conductivity value by 3 orders of 

magnitude. These results are presented in the figure 82. Despite all conductivity values 

are in the range of the insulating materials, these results showed that the electrical 

properties are enhanced with the incorporation of the graphite-based materials. Moreover, 

0.5 wt.% of incorporation is a low content for the improvement of electrical properties, 

since the percolation threshold for graphene WPU composite is typically above 1.0 wt.% 

[351, 362, 363] Carbon nanotubes typically present a lower percolation threshold that, in 

the case of CNT WPU composite films, was reported to be above 0.2 wt.%. [330, 336] 

Possible synergetic effects of mixing graphene and CNT to form WPU composites were 

also studied, since this approach has the potential to improve the mechanical, thermal and 

electrical properties of the composite films. [361] Taking this as motivation we prepared 

FLG / CNT / WPU composite films and the mechanical, electrical and barrier properties 

were studied. 

 

Figure 82: Conductivity of the WPU composite films with 0.5wt.% of content. 

The results obtained showed that the FLG Graphexel WPU composite presented better 

mechanical, electrical and barrier properties. For that reason this graphite-based material 
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was selected to prepare FLG Graphexel / CNT / WPU films, with the total incorporation 

of 0.5 wt.%, in which 0.25 wt.% was FLG Graphexel and 0.25 wt.% was CNT. Also, 

CNT WPU 0.5 wt.% composite films were produced to evaluate the synergistic effect of 

mixing FLG and CNT. Table 5 shows the comparison of the mechanical, electrical and 

barrier properties of all 0.5 wt.% WPU composites produced. As depicted in this table, 

the mechanical and barrier properties are not significantly changed when CNT are mixed 

with the FLG. However, the electrical conductivity shows an increase of 6 orders of 

magnitude relative to WPU film, and 3 orders of magnitude when compared with the 

Graphexel FLG WPU composite. Despite the electrical conductivity of CNT WPU 

composite is in the same order of magnitude (10-8 Sm-1), there is a clear synergistic effect 

of the FLG and CNT, since only 0.25 wt.% of CNT content was added in the 

FLG/CNT/WPU composite, and the composite with Graphexel FLG WPU presents lower 

conductivity. 

Table 5: Mechanical, electrical and barrier properties of the WPU composite films at 0.5wt.% loading. 

WPU films 0.5wt.% 

Young’s 

Modulus 

(MPa) 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Elongatio

n at break 

(%) 

Conductivity 

(Sm-1) 

WVT 

decrease 

(%) 

WPU 575±22 17.7±0.5 22±3 252±58 (8.5±0.8)x10-15 0 

WPU/GnPC 800±22 22.1±0.8 24±3 186±49 (1.0±0.4)x10-12 20 

WPU/GnPC Py 792±44 23.7±0.6 29±2 235±58 (1.2±0.2)x10-12 20 

WPU/Micrograf 724±43 20.6±0.5 27±3 251±40 (1.0 ±0.4)x10-12 9 

WPU/Micrograf Py 811±52 23.1±0.9 24±2 155±41 (1.2±0.4)x10-11 29 

WPU/Graphexel 706±55 18.9±0.7 19±3 159±23 (8.3±0.8)x10-14 10 

WPU/Graphexel Py 818±35 24.3±0.7 27±2 223±41 (1.2±0.8)x10-11 40 

WPU/Graphexel/CNT Py 812±20 24.4±0.7 24±2 179±41 (5.1±0.7)x10-8 39 

WPU/CNT Py 843±55 23.1±0.9 22±1 113±38 (3.8±0.9)x10-8 35 

 

5.4. Conclusions 

In summary, aqueous FLG suspensions were produced from different graphite and 

graphite nanoplate materials using a pyrene derivative. The water suspensions showed to 

be stable along the storage time. The as-prepared suspensions were formed by up to 70% 

of FLG (considering from bi- to few- layer graphene) as identified by Raman 
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spectroscopy. The formation of FLG was imaged by STEM analysis. Composites were 

produced with GnPC, Micrograf or Graphexel and WPU as matrix, as well as FLG GnPC, 

FLG Micrograf or FLG Graphexel/WPU. The composites presented improved 

mechanical properties as the reinforcement content was increased up to 0.5 wt.%. For 0.5 

wt.% of incorporation the FLG/WPU composites showed higher mechanical properties 

compared with the pristine graphite or graphite nanoplates/WPU composites. The 

electrical conductivity and barrier properties of FLG Graphexel/WPU composites 

presented higher performance, showing and increase of 3 orders of magnitude in electrical 

conductivity and 40 % of P(H2O) decrease, respectively, demonstrating the importance 

of flake size for these properties. The mechanical and barrier properties are not 

significantly changed when CNT are mixed with the FLG Graphexel. However, the 

electrical conductivity is highly improved, showing an increase of 6 order of magnitude 

when compared with WPU film, and 3 orders of magnitude when compared with the FLG 

Graphexel/WPU composite. Despite the electrical conductivity of CNT/WPU composite 

is in the same order of magnitude (10-8 Sm-1), there is a clear synergistic effect of the FLG 

and CNT, since only 0.25 wt.% of CNT was added in the hybrid FLG/CNT/WPU 

composite. 
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6. DISPERSION OF GRAPHITE NANOPLATES IN A 

POLYPROPYLENE MATRIX 

6.1. Introduction 

Exfoliated graphite in the form of thin flakes with a large surface area and nanometric 

thickness may be considered a 2D nanomaterial. These graphite nanoplates [315] (GnP) 

tend to agglomerate due to Van der Waals interactions, similar to other graphitic carbon 

nanoparticles such as nanotubes or fullerenes. Since GnP exhibit similar mechanical and 

electrical properties to carbon nanotubes (CNT) and may present larger surface area, [38, 

296] they have great potential to be used in polymer nanocomposites for structural and 

functional applications. [13, 38, 39, 296, 297] However, in most practical situations, 

maximum performance is expected when the GnP agglomerates are dispersed into their 

primary 2D particles (or even further exfoliated into smaller thinner particles) in the 

polymer matrix and have good interfacial adhesion [296]. While the problem of interfacial 

bonding with the polymer may be solved by tailored chemical functionalization of the 

graphite surface, [410-412] the dispersion of these particle agglomerates in polymers is 

complex. The technique adopted to produce the nanocomposites may largely affect the 

dispersion of the agglomerated GnP into their individual flakes. Solution blending and in 

situ polymerization associated to sonication can achieve good dispersion, but involve the 

use of solvents. [13, 39] Melt compounding is economically attractive and successfully 

used in industry to prepare polymer blends and composites but, so far, has not always 

been able to achieve optimal nanoparticle dispersion. [13, 38] Previous studies carried 

out using a variety of mixing equipment (extruders, internal mixers, prototype mixers) 

for carbon black [40], carbon nanofibers [41], and carbon nanotubes [42, 43] have 

demonstrated that the intensity and type of hydrodynamic stresses (i.e., shear versus 

extensional), residence time, and interfacial adhesion play a major part in dispersion. [41, 

42, 44, 413] However, while the dispersion mechanism of carbon black and carbon 

nanotubes in polymers is well studied, for GnP it is far from being well understood. 

This work reports the dispersion of GnP in polypropylene by melt mixing using a small-

scale continuous prototype mixer. The focus is to study the progression of the dispersion 

of GnP, a process that is not well understood. Composites were prepared with 2 and 4 

wt.% of GnP, as-produced and functionalized by grafting polypropylene modified with 

maleic anhydride to the GnP surface. The processability of the composites was similar to 

that of polypropylene, as assessed by capillary rheometry. The nanoparticle dispersion 
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was analyzed by optical microscopy. The progression of the number of agglomerates and 

their size, for pristine and functionalized nanoparticles, was observed along the mixer. 

The final agglomerate dimensions were found to be similar for pristine and functionalized 

GnP, and indicated that agglomerate dispersion progressed toward individual 

nanoparticles. The interface improvement of functionalized GnP with polypropylene was 

observed by scanning electron microscopy.  

 

6.2. Experimental 

6.2.1. Materials 

Polypropylene ICORENE PP CO14RM from ICO polymers, with a density of 0.900 

g/cm3 and an MFI of 13 g/ 10 min (190 ºC/2.16 kg) was selected as matrix. Polypropylene 

grafted with maleic anhydride (PP-g-MA), containing 8–10 wt.% of maleic anhydride, 

with an MFI of 28 g/10 min (2.16 kg/155ºC) and density of 0.934 g/cm3 was purchased 

from Sigma Aldrich. The GnP was a commercial grade from XG Sciences Inc., 

designated by the producer as “graphene nanoplatelets,” xGnP  - grade H, with nominal 

equivalent diameter of 5–25 µm, thickness of 15 nm, and an average surface area of 60–

80 m2/g. According to the recommended nomenclature [315], flakes formed by more than 

10 stacked graphene layers (corresponding to flake thickness in the range 3–4 nm 

considering the interlayer spacing of graphite) should not be designated as “graphene”. 

The nominal thickness of xGnP  - grade H is approximately 15 nm, thus the designation 

“graphite nanoplates” (GnP) will be used here, according to Ref. [315], which indicates 

the following reference names: graphite “nanoplates,” “nanosheets,” or “nanoflakes”. The 

GnP were functionalized by the 1,3-dipolar cycloaddition reaction of azomethine ylides 

as described elsewhere [160], by heating GnP with the reagents at 250 ºC during 3h, 

resulting in GnP with covalently bonded pyrrolidine-type groups. Then, reaction of these 

groups with maleic anhydride grafted in PP was carried out under the conditions described 

in Ref. [295], leading to the covalent modification of the GnP surface with PP-g-MA, 

yielding PP-functionalized GnP (F-GnP). 
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6.2.2. Composite Preparation 

Polypropylene with 2 or 4 wt.% of GnP or F-GnP in powder form were premixed and 

melt mixed at 200ºC at various rates, using a prototype small-scale continuous mixer [41] 

[42]. Simultaneously, a continuous filament is extruded. As illustrated in Fig. 83, the 

mixer consists of a vertical stack of circular rings having the same external diameter, but 

with alternate inner diameters of 1 and 8 mm. This assemblage sits at the bottom of the 

barrel of a ROSAND RH10 capillary rheometer; the velocity of the descending ram 

defines the flow rate, the set temperature being also precisely controlled. Consequently, 

the melt is subjected to repetitive 8:1 and 1:8 converging/diverging flows, which create a 

strong extensional component near to the longitudinal symmetry axis [292]. Since the 

pioneering work of Grace for liquid suspensions [288], it is well recognized that 

extensional flows are much more efficient for dispersion purposes than pure shear flows. 

A pressure transducer (Dynisco PT420A; 0–3000 psi) was flush mounted at the entrance 

of the mixer and connected to a Dynisco 1390 strain gage indicator with analog 

retransmission output accuracy span of 0.2 %. In turn, the indicator was connected to a 

DAQPad6020E data acquisition system from National Instruments and driven by custom 

written LabViewTM routines. The latter perform on-the-fly oversampling of the acquired 

data, which results in a significant improvement of sensitivity of the pressure transducer 

[414]. After each run, the stack of rings was quickly removed from the rheometer and the 

material present inside the rings with larger inner diameter was collected, quenched in 

water, and retained for subsequent characterization. Since each pair of rings with distinct 

inner diameters yields one material sample, the latter is identified relative to its creator 

pair (e.g., sample 2 relates to material collected from the second pair of rings). The 

experiments were performed using 2–8 stacked pairs of rings and the average shear rates 

at the small (capillary) channels varied between 200 and 3500 s-1. 
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Figure 83: Schematic representation of the prototype small-scale continuous mixer and of the samples 

collected for optical microscopy observation 

 

PP was characterized by capillary rheometry to obtain the viscosity at high shear rates 

(typically 102–104 s-1). PP in powder form was fed into the reservoirs of the dual bore 

(equipped with 2 capillary dies with 1mm diameter and lengths of 2 and 8 mm to allow 

online Bagley corrections) Rosand RH10 capillary rheometer, pre heated to 200ºC. After 

10 min at 200ºC to attain thermal equilibrium, the step ramps of piston velocities (from 

small to large) were performed and the steady pressure drop reading was recorded for 

each velocity. 

6.2.3. Composite Characterization 

The dispersion of GnP and F-GnP in the PP matrix at various axial locations of the mixer 

was analyzed by optical microscopy, using a BH2 Olympus optical transmission 

microscope coupled to a LEICA DFC 280 digital camera. Sections of 5 µm thickness 

were cut longitudinally through the thickness of the samples collected, using a Leitz 1401 

microtome, as schematically presented in Fig. 83. Image J software was used to measure 

the number of GnP or F-GnP agglomerates and their area. Twenty images were captured 

per sample, meaning that approximately 3000 agglomerates were analysed per collected 

sample. The initial size of the GnP and F-GnP powders was measured by optical 

microscopy, using the following procedure: approximately 5 ppm of each powder was 

mixed manually with epoxy resin, spread on a glass slide and cured at room temperature 

for 48 h. Four samples were prepared for each powder mixture and 100 images were 
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captured as described above, thus enabling the analysis of approximately 800 

agglomerates per type of GnP. Scanning electron microscopy (SEM) of cryofractured 

samples was performed on a NanoSEM FEI Nova 200 microscope after platinum coating. 

 

6.3. Results and Discussion 

6.3.1. Rheological Characterization 

The variation of pressure drop (DP) with the number of pairs of rings utilized in the mixer 

was monitored for the PP matrix, PP with 2 wt.% GnP and PP with 2 wt.% F-GnP. The 

results for a corrected shear rate of 500 s-1 are presented in Fig. 84a. All materials exhibit 

a linear increase of pressure with the increase in the number of pairs of rings. This 

behavior demonstrates that appending pairs of rings has an additive effect, i.e., there is 

no stress build-up in the mixer, nor any significant structural orientation at the shear rate 

tested (see for instance, Ref. [415]). Appending pairs of rings is equivalent to increasing 

mixing time. As such, the curves in Fig. 84a are reminiscent of Bagley plots used in 

capillary rheometry to correct pressure drop measurements from die entrance or exit 

effects. Thus, shear-flow curves (Fig. 84b) were built using the pressure data and the 

usual set of equations for capillary rheometry [292] (error bars would be smaller than the 

symbols). The shear stress is given by, 

𝜎 =
𝛥𝑃𝑅𝑐

2𝐿
           (7) 

where ΔP is the pressure drop in the mixer, Rc and L are the apparent radius and length 

of the mixer, respectively. Since in the prototype small-scale mixer the contribution to 

pressure drop should come predominantly from the flow along the smaller channel, Rc is 

0.5mm and the apparent length depends on the number of stacked pairs of rings. The shear 

rate can be estimated using the Weissenberg– Rabinowitsch equation: 

  𝛾̇ =  
𝑄

𝜋𝑅3  (3 +
𝑑 𝑙𝑛 𝑄

𝑑 𝑙𝑛 ∆𝑃
)        (8)  

where Q is the volumetric flow rate. 
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Figure 84: Shear flow behavior of PP and its composites with graphite nanoplates: (a) melt pressure axial 

profile; (b) shear flow curves. 

Experiments using a conventional capillary rheometer were performed for PP, at the same 

temperature (200 ºC) and shear rate range from 50 to 11,000 s-1. As shown in Fig. 84b, 

the flow curve obtained for PP in this experiment is closely matched by that obtained with 

the prototype mixer, thus validating the approach followed here to obtain rheological 

information. Additionally, the flow curves indicate that the viscosity of PP is essentially 

similar to that of the composites with 2 wt.% of GnP and F-GnP, which is relevant for 

extrusion and compounding. Small deviations are observed: a slight viscosity increase 

with the incorporation of GnP and a slight decrease with F-GnP. Further work is required 

to confirm this observation. Nonetheless, a similar relative response was observed for a 

polystyrene/CNT system subjected to step shear experiments and interpreted in terms of 

the functional groups bonded to the carbon nanotubes inducing a free volume increase 

that lead to a melt viscosity decrease [416]. The extrudate-swell of the filaments 

(computed as the ratio between their diameter and the diameter of the die orifice, which 

is 1 mm) is depicted in Fig. 85a for three distinct shear rates. At constant shear rate, the 

elasticity of PP varies negligibly with the number of pairs of rings stacked inside the 

rheometer. In the case of the composites, such stability is attained around the fourth pair. 

This response could be interpreted as equivalent to the progression of dispersion in the 

mixer, but this has to be taken cautiously, as the question remains whether there is a direct 

correlation between dispersion and extrudate-swell. As expected, extrudate-swell 

increases with increasing shear rate for all materials (Fig. 85a and b). It is important to 

note that the surface of the extrudates remained smooth and rheological defects were 

absent in the range of shear rates applied. As observed for other polymer composites 

containing different types of fillers, [417-420] addition of graphite nanoplates decreased 
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extrudate-swell. The nanocomposite containing F-GnP exhibits a slightly higher elasticity 

than that with GnP. 

 

Figure 85: a) Effect of the number of pairs of rings on the extrudate-swell of PP and PP nanocomposites 

measured at 500 s-1 (squares), 800 s-1 (circles), and 2000 s-1 (upward triangles); (b) variation of the extrudate-

swell of PP and PP nanocomposites with shear rate (prototype mixer equipped with 6 pairs of rings). 

 

6.3.2. Dispersion of Graphite Nanoplates 

The progression of the dispersion of GnP and F-GnP in the polymer matrix along the 

mixer was monitored using a setup formed by eight pairs of stacked rings. Although these 

graphite nanoplates (or primary nanoparticles) are characterized by the producer as 

having an equivalent diameter of about 5–25 µm and thickness of 15 nm, they strongly 

interact with each other due to Van der Waals forces, yielding large agglomerates. The 

aim is to disperse these large agglomerates into the primary nanoparticles, or even further 

exfoliate these into thinner flakes. Considering the producer’s data, the primary 

nanoparticles may have a maximum projected area, as observed by optical microscopy, 

in the range of 20–500 µm2. Increasing the angle between the particle and the observation 

direction, the measured projected areas will be smaller. The typical GnP powder size was 

experimentally measured (see the section titled “Experimental”) and compared with the 
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dimension of the particle agglomerates observed in the nanocomposites collected along 

the mixer. The composites with 2 wt.% of nanoparticles were forced through the mixer at 

the shear rates of 500 and 2000 s-1, while the composites containing 4 wt.% of 

nanoparticles were tested at 500 s-1. Figure 86 shows the representative optical 

micrographs of the samples collected along the mixer, for all the compositions and 

conditions tested. In general, dispersion improves along the mixer, particularly up to pair 

of rings no. 4, which is consistent with the behavior of extrudate-swell. No preferred 

orientation of the filler particles is apparent. 

 
Figure 86: Optical microscopy images illustrating the progression of the dispersion of GnP and F-GnP in the 

PP matrix along the mixer. 

 

Defining an agglomerate area ratio, AR, as the ratio of the sum of the areas of all surviving 

agglomerates to the total area of composite analyzed, the highest dispersion level will 

correspond to the lowest AR value computed. Area ratio is extensively adopted in the 

literature to characterize dispersion in polymer nanocomposites. [41, 43] However, its 

exclusive use could, in some situations, convey misleading evidence (for example, 4 

smaller particles occupying the same area as a single larger one would produce the same 

AR). Therefore, it seems advisable to use simultaneously various descriptors of dispersion 
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in order to circumvent their individual limitations. For this reason, Fig. 87 characterizes 

the progression of dispersion along the mixer (samples 2, 4, 6, and 8) of the various 

nanocomposites manufactured in terms of AR (Fig. 87a and b), average agglomerate area 

(Aav) (Fig. 87c and d), number of agglomerates per unit area (NA/mm2) (Fig. 87e and f), 

and area of the largest agglomerate (Fig. 87b, g and h). A decrease of AR and Aav 

indicates higher dispersion of the GnP and F-GnP agglomerates into primary particles. 

As the agglomerates are subjected to shear in the polymer melt, they become 

progressively smaller, and this process may develop until they reach the lower possible 

dimensions. The dispersion limit is reached when the dimensions of the primary GnP 

particles are attained (or ideally, with lower flake thickness, if the shear applied is enough 

to further exfoliate the GnP). The nanocomposite properties are expected to improve with 

the extent of dispersion. As measured by AR, Av, and NA/mm2, dispersion of GnP 

develops gradually along the mixer, whereas that of F-GnP seems to level off between 

pair of rings 4 and 6. The values of AR of the latter are systematically higher than those 

for the pristine counterpart. Although F-GnP presents a smaller Aav compared to GnP 

(Fig. 87c), a larger number of agglomerates is formed (Fig. 87e). These trends were 

observed consistently along the mixer for GnP and F-GnP at 2 and 4% wt compositions. 

The larger number of smaller agglomerates observed for the F-GnP may be related to 

lower cohesion of the polymer-functionalized primary F-GnP particles under melt 

processing conditions, compared to pristine GnP. Further studies are necessary to clarify 

this observation. It is also interesting to note that the progressive dispersion witnessed 

here contrasts with the progression detected for the same matrix reinforced with 

comparable CNT content, processed in the same device. [42, 295] In the case of CNTs, 

initially dispersion develops steadily, followed by a sharp increase and another gradual 

regimen. These stages could be associated with the onset of erosion and rupture 

mechanisms [43], although this is difficult to prove given the small dimension of these 

particles. Despite the quite distinct geometry of GnP, it could be reasoned that their 

dispersion seems to follow predominantly a single mechanism, although further 

experimental evidence is necessary to support this hypothesis. The rate of dispersion of 

GnP seems to be nearly independent of shear rate. Again, while AR shows that composites 

subjected to higher shear rate are coarser, the remaining indices reveal that a larger 

number (NA/mm2) of smaller particles (Aav) are present at high shear rates. 
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Figure 87: Characterization of the (a) progression of the dispersion of PP– graphite nanoplate composites 

along the mixer and (b) area ratio (AR); (c) and (d) average agglomerate area (Aav); (e) and (f) number of 

agglomerates per unit area (NA/mm2); (g) and (h) largest agglomerate area. Left column: 2% wt. of GnP and 

F-GnP; right column: 4% wt. of GnP and F-GnP. 
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It is generally believed that, similar to polymer blends, dispersion in solid suspensions 

takes place when sufficient stress and residence time levels are attained [285]. In this case, 

higher shear rates promote higher stress levels at the cost of residence time (202 s for the 

shear rate of 500 s-1 and 54 s for the shear rate of 2000 s-1); therefore, they seem to be the 

dominant factor. As expected, higher incorporation levels of graphite cause an increase 

in AR, but the evolution of all dispersion indices is qualitatively, and in some cases 

quantitatively, similar to that of the less filled composite. 

The measured average size of the GnP and F-GnP powder agglomerates was 287 ± 47 

and 381 ± 93 µm2, respectively, corresponding to an equivalent diameter of 

approximately 19 µm for GnP and 22 µm for F-GnP. If these numbers are compared with 

the sizes of the largest agglomerates present in sample 2 (Fig. 87g), it becomes evident 

that nanoparticle agglomeration occurred as the material was kept in the reservoir of the 

capillary rheometer in order to attain thermal stability (under quiescent conditions). 

Analogous agglomeration phenomena have been observed for CNT [42]. Figure 88 

presents the progression of the equivalent diameter along the mixer.  

 

Figure 88: Progression of the equivalent diameter of GnP and F-GnP agglomerates from powder form to the 

final nanocomposite: (a) optical microscopy images of the GnP and F-GnP agglomerates; composites with (b) 2 

wt.% nanoparticles and (c) 4 wt.% nanoparticles. 
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The final values obtained for the various materials and processing conditions remain 

within 8–11 µm (with the composites with 4 wt.% staying in the lower range). Thus, the 

mixer was able to prepare nanocomposites containing exfoliated graphite nanoplates 

within the lower range of the typical sizes of the powder form of GnP. 

Figure 89 illustrates the SEM images of the pristine GnP (Fig. 89a and b) and the 

cryofractured sections of sample 8 of the nanocomposites reinforced with 2 wt.% of GnP 

(Fig. 89c) and F-GnP (Fig. 89d). The F-GnP showed better interfacial adhesion with the 

PP matrix when compared with no functionalized GnP. These results are in agreement 

with the higher elasticity of F-GnP nanocomposites which may have caused the decrease 

of the extrudate-swell of these nanocomposites, as discussed above (Fig. 85). 

 

Figure 89: SEM images of (a) and (b) pristine graphite nanoplates at two magnifications; (c) cross-section of 

the nanocomposite reinforced with 2 wt% GnP collected from the eigth pair of rings, and (d) the same as (c) 

for the nanocomposite with F-GnP. 

 

6.4. Conclusions 

The dispersion of GnP and F-GnP in polypropylene was studied as well as its progression 

during the mixing process achieved with a small-scale prototype. The viscosity of the 

nanocomposites produced with 2 wt.% of nanoparticles was similar to that of the 

polypropylene matrix. The extrudate-swell increased with increasing shear rate and 

decreased with the addition of GnP and F-GnP. A slight decrease of extrudate-swell was 

observed for the F-GnP nanocomposites relative to GnP nanocomposites, which may 

result from the higher interfacial compatibility between F-GnP and the PP matrix, and 
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thus improved F-GnP surface wetting, also illustrated by the SEM images. The dispersion 

of GnP and F-GnP progressed gradually along the mixer length and for the FGnP, the 

dispersion seems to stabilize between pair of rings 4 and 6. Moreover, Aav and NA/mm2 

are smaller for the latter, which may also be related with better interfacial adhesion. The 

equivalent diameter of the dispersed GnP and F-GnP also decreased along the prototype 

mixer and attained final values in the range of the GnP individual nanoparticle dimensions 

stated by the manufacturer, indicating that the GnP agglomerates were extensively 

dispersed along the composite formation process. 
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1. General Conclusions 

The focus of this thesis was the production of graphene and its applications in polymer 

nanocomposites.  

The production of functionalized GNR (non-oxidized) and oxidized GNR by unzipping 

of CNT was successfully achieved. The f-GNR were produced by unzipping of 

functionalized CNT of different diameters. The CNT were functionalized with 

pyrrolidine groups, originating pyrrolidine-functionalized GNR. Raman spectroscopy 

evidenced the sp2 character of the f-GNR. Self-assembled f-GNR stacks were observed 

and characterized by TEM and X-ray diffraction. TEM illustrated the formation of larger 

GNR from CNT with larger diameter, and a tendency of the deposited GNR to form 

regular stacks with few layers of GNR and an interlayer distance of approximately 0.5 

nm. This observation was confirmed by X-ray diffraction and computer modeling. o-

GNR were produced by oxidation of CNT showing a Raman spectrum with a high 

intensity D band, which indicates its extensive oxidation. The o-GNR formed stable 

aqueous suspensions of the exfoliated material, presenting a Zeta Potential large enough 

to allow its application on nanostructured film-forming using layer-by-layer deposition. 

This capacity was demonstrated by the assembly of multilayered membranes of CHI/f-

GNR-ALG and CHI/o-GNR on a Quartz Crystal Microbalance. The technique showed 

the successful sequential deposition of the different layers, their stability and process 

reproducibility.  

The liquid phase exfoliation of graphite was attained using two pyrene derivatives (PY2a 

and PY2b) which were synthetized through a simple and low cost functionalization 

methodology that lead to a high yield synthesis of the final compounds, and can 

potentially be scaled-up. These two pyrene derivatives were soluble in water and were 

tested for the exfoliation and stabilization of two different types of graphite nanoplates 

(GnPC and GnPH5) in aqueous media. The pyrene derivative 2a showed to be more 

effective in the exfoliation process leading to a formation of 80% of a total of bi- and few-

layer graphene for GnPH5. The few layer graphene was also confirmed by STEM images. 

The very low concentration of pyrene derivatives used (to our knowledge, the lowest 
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reported in the literature) to exfoliate graphite in water opens perspectives to an efficient 

process to obtain few layer graphene.  

The pyrene derivative 2a was used to exfoliate different graphite (Graphexel) and graphite 

nanoplates (Micrograf) in aqueous media. The stable aqueous suspensions obtained were 

constituted by more than 70 % of FLG and bi-layer graphene. They were mixed with 

WPU to form composite films with improved mechanical properties compared to the 

corresponding pristine graphite composites. The composite water vapor barrier properties 

increased by approximately 40 % relative to the polymer films with only 0.5 wt.% content 

of FLG. The electrical conductivity of the hybrid FLG/CNT/WPU composites films 

increased by 6 orders of magnitude relative to WPU film, and 3 orders of magnitude 

relative to the FLG/WPU composite, for 0.5 wt.% of reinforcement (0.25 wt.% of each 

reinforcement).  

The dispersion of GnP and F-GnP in polypropylene was studied using a small-scale 

prototype mixer. The mixer was designed to generate high extensional flow and allowed 

the collection of samples along the mixer length, and thus to study the progression of the 

GnP dispersion. The dispersion of GnP and F-GnP was observed to progressed gradually 

along the mixer length and, for the F-GnP, the dispersion stabilized at an earlier stage 

compared to GnP.  Moreover, the average agglomerate size and number of agglomerates 

are smaller for F-GnP, which may be related with better interfacial adhesion. The 

equivalent diameter of the dispersed GnP and F-GnP reached final values in the range of 

the individual nanoparticle dimensions stated by the manufacturer, indicating that the 

GnP agglomerates were extensively dispersed along the composite formation process. 

 

7.2. Future work 

The results obtained along the different lines of work reported here provide new 

perspectives and motivations for future work. The following paragraphs present 

suggestions that may be considered for further research. 

The functionalized graphene nanoribbons (f-GNR) obtained by unzipping of 

functionalized carbon nanotubes (f-CNT) are an interesting material with ample potential 

applications. To make it possible, the optimization of the production method should be 

studied, in order to improve the yield of f-GNR. The parameters that could be explored 

are the sonication time, temperature, the CNT exfoliation in the presence of molecules 
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that could help to stabilize the f-CNT in water and perform the unzipping process in 

aqueous media. Other energy sources could be tested to induce the unzipping of the f-

CNT, such as electrochemical methods. The formation of free-standing membranes with 

chitosan and alginate using f-GNR could be studied, considering the good results obtained 

in the QCM-D technique. Furthermore, due the extensive research in the application of 

GNR as sensors, the f-GNR could be tested, taking the advantage of the functional group 

(pyrrolidine or another group bonded to it) that could be used for selective interactions 

with specific compounds. 

The liquid phase exfoliation of graphite in aqueous media could be studied using other 

amphiphilic molecules. Perylene derivatives have been used for the stabilization of CNT 

in water, and could be tested for the exfoliation and stabilization of graphene. Also, the 

modification of the functional groups bonded to the synthetized pyrene derivatives could 

be experimented. Furthermore, the exfoliated graphite materials obtained in this work, 

and its FLG, could be studied for sensor applications, or modification of already existing 

sensors to improve their selectivity and sensitivity. The non-covalent functionalization 

effect as well as the functional groups of the molecules adsorbed on the surface of the 

exfoliated graphite could be beneficial for this purpose.  

In the field of nanocomposites, extensive research can still be done to achieve the 

maximum performance of the barrier properties of nanocomposite films. The increase of 

the incorporation loading of few layer graphene, the formation of hybrid structures with 

few layer graphene and CNT, as well as the combination of different types of few layer 

graphene with different equivalent diameters, other functionalization strategies (including 

the covalent and non-covalent functionalization) could be applied to enhance the 

performance of the polymer nanocomposites. This development would also benefit the 

electrical and mechanical properties of the composite films. 

The FLG materials obtained could be tested in the melt mixing with thermoplastic 

polymer matrices, as well as hybrid FLG/CNT composites, to evaluate their dispersion 

and final composite properties.  
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