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E-32004, Spain
∥Centro de Investigaciones Biomed́icas (Centro Singular de Investigacioń de Galicia), Campus Universitario Lagoas-Marcosende,
Vigo E-36310, Spain
⊥CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
#Life Science Department, Barcelona Supercomputing Centre (BSC-CNS), C/Jordi Girona, 29-31, Barcelona E-08034, Spain
∇Joint BSC-IRB-CRG Program in Computational Biology, Parc Científic de Barcelona, C/ Baldiri Reixac 10, Barcelona E-08028,
Spain
■Institucio ́ Catalana de Recerca i Estudis Avanca̧ts (ICREA), Passeig de Lluís Companys 23, Barcelona E-08010, Spain

ABSTRACT: Efficient access to chemical information contained in scientific literature,
patents, technical reports, or the web is a pressing need shared by researchers and patent
attorneys from different chemical disciplines. Retrieval of important chemical information
in most cases starts with finding relevant documents for a particular chemical compound
or family. Targeted retrieval of chemical documents is closely connected to the automatic
recognition of chemical entities in the text, which commonly involves the extraction of the
entire list of chemicals mentioned in a document, including any associated information. In
this Review, we provide a comprehensive and in-depth description of fundamental
concepts, technical implementations, and current technologies for meeting these
information demands. A strong focus is placed on community challenges addressing
systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of
BioCreative IV and V, respectively. Considering the growing interest in the construction
of automatically annotated chemical knowledge bases that integrate chemical information
and biological data, cheminformatics approaches for mapping the extracted chemical
names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with
biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for
research in this emerging field.
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1. INTRODUCTION

Because of the transition from printed hardcopy scientific
papers to digitized electronic publications, the increasing
amount of published documents accessible through the Internet
and their importance not only for commercial exploitation but
also for academic research, data mining technologies, and
search engines have impacted deeply most areas of scientific
research, communication, and discovery. The Internet has
greatly influenced the publication environment,1 not only when
considering the access and distribution of published literature,
but also during the actual review and writing process. In this
respect, chemistry is a pioneering domain of online information
representation as machine-readable encoding systems for
chemical compounds date back to the line notation systems
of the late 1940s.
Currently, efficient access to chemical information (section

1.1) contained in scientific articles, patents, legacy reports, or
the Web is a pressing need shared by researchers and patent
attorneys from different chemical disciplines. From a
researcher’s viewpoint, chemists aim to locate documents that
describe particular aspects of a compound of interest (e.g.,
synthesis, physicochemical properties, biological activity,
industrial application, crystalline status, safety, and toxicology)
or a particular chemical reaction among the growing collection
of published papers and patents. In fact, chemists are among
the researchers that spend more time reading articles, and after
medical researchers are the ones that overall read more articles
per person.2 For example, there are approximately 10 000
journals publishing “chemistry” articles.3 Every year, over
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20 000 new compounds are published in medicinal and
biological chemistry journals.4 Together with journals, patents
constitute a valuable information source for chemical
compounds and reactions:5 the Chemical Abstracts Service
(CAS) states that 77% of new chemical compounds added to
the CAS Registry are disclosed first in patent applications,6 and
the percentage of new compounds added to the CAS
REGISTRY database from patents raised from 14% in 1976
to 46% in 2010, with 576 new compounds being added to the
CAS REGISTRY after CAS analysis of a standard Patent
Cooperation Treaty (PCT) application.7 By the middle of
2015, the number of published patents was 13 510 for inorganic
patents (International Patent Classification, IPC, code C01),
54 075 for organic patents (IPC C07), and 12 524 for
metallurgy patent (IPC C22), as consulted in Espacenet.8

Besides being an important source of information, from a
legacy perspective,9 different patent searches (e.g., state-of-the-
art or prior art, patentability, validity, freedom to operate, and
due diligence searches) directly influence the work carried out
by researchers, patent examiners, and patent attorneys. In
summary, these text collections represent a considerable
fraction of the overall data generated not only in chemistry
but science in general.10

Despite the differences in focus and scope of the diverse
chemistry branches, final end users have common information
demands: from finding papers of relevance for a particular
chemical compound, chemical family, or reaction (chemical
information retrieval, section 2) to extracting all chemicals or
chemical entities mentioned in a document (chemical entity
recognition, CER, section 3), including any associated
information (e.g., chemical and physical properties, preparatory
steps, or toxicological data).
Information retrieval (IR) is defined as finding within a

(large) collection of documents the subset of those documents
that satisfies a particular information user demand, also known
as user information need.11 A particularity of chemical
information retrieval is that these information demands can
be expressed as natural language text (text search queries,
section 2.4) or can take into account structural information
(structure-based search queries, section 5.3) or being a
combination of both (hybrid searches, section 2.4). In fact,
the main concerns of chemists when searching the literature is
using the chemical structure or substructure as query input
and/or retrieving the chemical structure as the result of
document processing software. Given the multiple representa-
tions of chemicals or chemical entities (CE) in documents, with
different name nomenclatures and synonyms (section 1.1), as
chemical diagrams (images) that require conversion to
structures (section 4.3) or with different notations capturing
structural information such as line notations (SMILES),
connectivity tables, and InChi codes (section 4.4), the quest
for the discovery of chemically relevant information in
documents is considerably more complex than general-purpose
web searches or queries using generic electronic search tools.12

Thus, there are recent concerns in providing a more formal
training to chemists, to instruct them how to construct
chemical search queries and acquire the necessary skills for
effectively searching chemical information using various search
strategies.12 A survey of the most popular chemical document
repositories and search platforms available to the community is
presented in section 1.2. Most of them query against
unstructured data repositories (without any predefined
structure or organized in a predefined manner) and/or access

to items of structured data repositories (i.e., defined database
fields such as already indexed chemicals) or document metadata
(data about the document itself). Metadata attributes of a
document (or data in general) do usually provide some
descriptive information associated to the document, such as
author, publication dates, author names keywords, or journal
information, which can be also exploited for retrieval purposes.
Metadata attributes are usually much more structured than the
actual document content. In the case of chemical documents,
chemical compound structure metadata associated to a given
document can be regarded as a special type of chemical
metadata. For example, to provide a machine-readable version
of the key data presented in the articles,13 in 2014, the Journal
of Medicinal Chemistry invited authors to submit a spreadsheet
with the SMILES and basic information of the compounds
presented in the articles. For the inexpert reader, it is important
to highlight that IR systems (as well as CER) primarily deal
with unstructured or semistructured machine-readable free text
(sections 1.2 and 2.1), which require a previous preprocessing
(section 2.2) to enable effective indexing and determination of
similarities between input query and document contents
(section 2.3). This Review focuses on content-based retrieval,
that is, the textual content that forms part of the actual
documents, rather than only metadata searches, as searching
the whole document in addition to indexed fields is crucial to
improve the quality of the information obtained. With that
purpose, different text search strategies (boolean, subject,
keyword, proximity, etc.), common to all IR systems beyond
chemistry, are described and exemplified in the context of
chemical IR (section 2.4). Here, the impact of CER in the
context of IR, for example, to add semantics meaning (knowing
that the query is a chemical concept and detecting this
concept), is discussed. Also, IR methodologies to enable
document classification and clustering, for example, according
to a certain topic, are described in section 2.5. Finally, an
overview of evaluation metrics for assessment of retrieval
efficiency and current state of the art assessments (BioCreative)
is discussed in section 2.6.
As commented above, a second goal of chemists when

reading a document (e.g., a patent) is extracting all chemical
entities mentioned in it, as unstructured data repositories host
essential characterizations of chemical compounds obtained
through experimental studies that describe their targets, binding
partners, metabolism, or, in the case of drugs, the therapeutic
use and potential adverse effects.14,15 Researchers working on
diverse chemical topics can benefit from systematic extraction
of information on chemicals from document repositories, in
particular the scholarly literature, patents, and health agency
reports.16 The term chemical entity recognition (CER) or
chemical entity mention recognition refers to the process of
automatic recognition of chemical entity mentions in text.
Section 3 provides a deep overview of current challenges
(section 3.3.3), strategies (sections 3.3−3.5), and available
chemical corpora (section 3.8) for CER and ends with
assessments on the quality of current methodologies (section
3.9), with an especial focus on BioCreative.
CER does not only constitute a key step within IR systems.

Recognized chemical entities can be mapped to their
corresponding structural representation (section 4.4) by name
to structure conversion software (section 4.1) or by looking up
names within the contents of structure chemical entity
databases (section 4.2) and then stored, ideally in its canonical
form (section 4.5), in chemical knowledge bases supporting
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structural searches (section 5). These structural databases can
be implemented as part of IR systems having chemical
intelligent search capability that allows grouping all of the
hits relevant to a specific chemical entity, regardless what alias,
synonym, or typographical variant is used in the text to refer to
the very same chemical object. Alternatively, these chemical
knowledge bases can be integrated with, for example, biological
data, and accessed by specialized search engines that query
specific well-defined database fields. In the field of chemical-
biology, the construction of chemical knowledge bases that
integrate chemical information and biological data (targets and
the associated phenotypic data and toxicological information)
extracted from documents is becoming a common task both in
academia and industry with a remarkable impact on drug
discovery, as discussed in section 6. Although manual
information extraction can be very accurate, data mining
systems can speed up and facilitate the process, making it more
systematic and reliable.17−19 Automatic information extraction
and mining technologies can complement arduous handcrafted
annotations and extract chemical entities scattered across
multiple data sources. Notwithstanding, automatically finding
relations between chemical and biological entities in text can
only be achieved efficiently through prior, fine-grained
detection of chemical mentions in documents.
The possibilities and limitations of the current resource for

decision-making in multifactorial drug discovery will be
presented, as well as the main efforts dealing with
unprecedented amounts of chemical data generated by the
new mining methods. Finally, this Review (covering literature
from the mid 1990s to date) is organized to serve as a practical
guide to researchers entering in this field but also to help them
to envision the next steps in this emerging data science field.

1.1. Chemical Information: What

To fully understand the issues associated with chemical IR and
CER, an overview of the multiple representations of chemicals
or chemical entities in documents is required. Although
obvious, chemical entities can appear in documents either as
text (names or chemical structure representations such as line
notations) or as chemical diagrams (images) representing its
chemicals structure. While this Review is oriented toward text
mining (TM), a brief overview on how to extract chemical
structures from images is provided in section 4.3.
Chemical entity mentions in text or chemical names can be

expressed in many alternative ways, generally classified into
systematic (e.g., “propan-2-ol”), semisystematic (e.g., “diac-
etylmorphine”), trivial/common or generic (e.g., “morphine”),
trade/brand names (e.g., “MScontin”), acronyms/abbreviations
(e.g., “CPD”), formulas (e.g., “C17H19NO3”), names of groups,
names of fragments or plural names (e.g., “diacetylmorphines”),
chemical families (e.g., “ketolides”), verbs (e.g., “demethy-
lates”), adjective forms (e.g., “pyrazolic”), chemical database
identifiers either from the public domain (e.g., “CAS registry
number: 57-27-2”; “MDL number: MFCD00081294”), or as
company codes (e.g., “ICI204636”). Most of the chemical
names described above do not contain information on the
underlying chemical structure (i.e., connectivity between atoms
and bonds) and therefore are not directly amenable to IR user
demands accounting for structural information. Line notations
such as SMILES20,21 (e.g., “C1CCCCC1”) and InChi/
InChIKey22,23 codes (e.g., “InChI = 1S/C6H12/c1-2-4-6-5-3-
1/h1-6H2”), addressed in more detail in section 4.4, do capture

this structural information and are therefore suitable for that
purpose.
With the aim of standardizing the naming of entities in

natural sciences, the definition of formal nomenclature and
terminological rules to constrain how entities are correctly
expressed in natural language has been proposed. Initially,
chemicals were named using trivial names. To avoid issues
related to the use of trivial names for chemical entities, the
International Union of Pure and Applied Chemistry (IUPAC)
was formed in 1919 to more systematically consider and review
chemical information representation and apply standardization
in chemical compound notation. Since 1921, the IUPAC has
been organizing committees to deal with chemical nomencla-
ture, aiming to write down rules for systematically naming
chemical compounds.24 Formal attempts to define chemical
compound nomenclatures started over a hundred years ago. A
milestone in this context was the international Geneva
Conference in 1892 on Standardization of Names, which
resulted from a series of previous events promoted initially by
Friedrich August Kekule ́ von Stradonitz in 1860.25 Such
systematic names, sometimes also called IUPAC chemical
names, are intended to be unambiguous representations of
chemical structures. This property is the underlying assumption
exploited by name to structure conversion algorithms (see
section 4.1).26 Despite continuous improving, nomenclature
rules are not conclusive, with updates being compiled in the
Gold Book compendium of technical nomenclature (which
interestingly is structure-based searchable).27 For example,
IUPAC names are not sufficient to describe a molecule with
complex stereochemistry. In addition to IUPAC names, there
are also other efforts to provide some kind of systematic
chemical names, like the CAS28 index names and Beilstein-
Institute.29 Underlying the chemical nomenclature rules is a
sort of chemical name grammar, which strengthens regularity in
chemical names through the use and combination of building
block name segments (e.g., substrings and terminal symbols).
Such substrings, like “propyl”, “alkyl”, or “benzo”, are very
distinct from regular English words and are thus a useful
property for automatic CER.
Manually assigned chemical names provided in publications

are sometimes incorrect or misleading in the sense that they
contain “mistakes” that make it impossible to generate a
structure from the name as published by authors. Such an issue
can be, in part, addressed by using computational nomenclature
services.30 Among this kind of chemical mentions are
semisystematic names that present some characteristics of
systematic names, such systematic chemical substrings, but also
include portions of nonsystematic elements often correspond-
ing to common or trivial names of chemicals.
Systematic chemical names, especially in the case of larger

molecules, might be lengthy and difficult to read, remember,
and construct for nonchemical experts. Therefore, in the
scientific literature and, in particular, journal abstracts, more
compact chemical entity names are widely used, especially
common, trivial, and trade names as well as chemical
abbreviations. Health care professionals including pharmacists
and prescribers commonly use generic drug names.31 There are
expressly devoted councils, such as the United States Adopted
Names (USAN) council32 and the World Health Organization
International Nonproprietary Name (WHO INN) effort,33,34 to
coordinate the official and unique naming of nonproprietary
pharmaceutical drugs or active ingredients (i.e., official generic
and nonproprietary names). The INN system can be regarded
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as a standardization of drug nomenclature, providing logical
nomenclature criteria to construct and select informative
unique names for pharmaceutical substances. The underlying
criteria often take into account pharmacological or chemical
relationships of the drug. The INN system makes use of specific
name stems (mostly suffixes and, in some cases, also prefixes)
that group drugs according to certain attributes; for example,
the suffix “-caine” is usually used for local anesthetics.
In addition to the previously characterized chemical name

types, there are also some more exotic chemical name types,
chemical “nicknames”, or chemical substances named after their
inventor’s name, like in the case of “Glauber’s salt” (i.e., sodium
sulfate), “Jim’s juice” (i.e., Cancell), and “Devil’s Red” (i.e.,
Doxorubicin)35,36 as well as company codes (e.g., ICI204636).
Together with single chemical compounds, chemical

reactions and Markush structures are also targets of interest
for mining technologies. Markush structures are used to claim a
family of related compounds in patents and receive their name
after the first successfully granted patent in 1924 by Eugene
Markush containing a chemical compound having generic
elements. Together with their application in patents, Markush
formulas are commonly found in scientific papers describing
structure−activity relationships (SAR) of a family of com-
pounds and combinatorial libraries. Markush structures contain
a core, depicted as a diagram, having generic notations,
normally defined as R-groups, that comprise enumerations of
atom lists, bond lists, and homology groups (“heteroaryl”, “a
bond”, “C1−C8 alkyl”). Also, there are variations in the
attachment positions for substituents and its frequency of
appearance (repeating units).37

1.2. Chemical Information: Where

As introduced, with the goal of providing the interested reader
a broad vision of the available chemical information sources,
this section covers some of the common resources exploited by
chemists while seeking information, regardless of whether they
are unstructured or indexed repositories, as most complex
document retrieval systems (search engines) do in fact
aggregate them.
The major types of chemical documents include (i) scientific

publications, (ii) patents, (iii) gray literature (conference
reports, abstracts, dissertations, and preprints), and (iv) a
plethora of regulatory, market, financial, and patent intelligence
tools. Each of them has different degrees of format uniformity
(Table 1) that greatly influence its preprocessing for TM and
IR purposes (document segmentation, section 2.2.3). Patents
are highly uniform in structure and consist of a bibliographic
section with information on the title, applicant(s), inventor(s),

filing date, publication date, patent classification codes, and
abstract, which is followed by a description section with
background information and exemplary data and ends with a
set of claims about the scope of the invention. Scientific
journals tend to share a general arrangement (Title, Abstract,
Introduction, Materials and Methods, Experiments, Results,
Discussion, and Summary and Conclusion sections)38 although
with great variability across publishers and themes. The rest of
the document types lack a uniform structure, and each provider,
especially commercial ones, arranges the data following its own
format.
Other important aspects differing between these three major

information sources are availability of full text, public
accessibility, and level of data aggregation in search systems
(Table 1), that is, to what extent a single search system
aggregates different sources (e.g., patents from different patent
authorities or journals from different publishers), thereby
reducing the need of running separate searches.
Figure 1 shows a selected set of the largest and most popular

document repositories of each type. As indicated, these
repositories can be directly accessed online through specialized
web interfaces and be accessed through a huge number of
search systems and platforms, which connect to different
repositories linking (or not) a variety of entities besides
documents, such as chemical structures, chemical reactions, and
Markush formula, thereby also enabling structural searches
(covered in detail in section 5). In fact, as was recently
highlighted by Ellegaard,39 a main difference between the most
popular repositories and search engines is how they index
chemical data (if they do). Thus, in an attempt to clarify some
common misinterpretations and commonly asked questions
regarding highly accessed repositories (e.g., the difference
between the user interface PubMed,40,41 which accesses the
repository MEDLINE,42,43 or the relationship between the
search platform SciFinder44,45 and the CAplus46 database), we
present search engines and platforms (Table 2) connecting
different repositories (with several entities or not) separately
from document repositories in Figure 1.

1.2.1. Journal Literature and Conference Papers,
Reports, Dissertations, Books, and Others. Repositories
for journal literature include some of the established, standard
references in their field: MEDLINE,42 Embase,47 and BIOSIS
Previews48 in biomedicine, TOXLINE49 in pharmacology/
toxicology, Inspec50 in physics/engineering, as well as broader
content databases covering different sources from all areas of
chemistry, biochemistry, chemical engineering, and related
sciences (CAplus) and nonlife science domains (Scopus51 and
Directory of Open Access Journals, DOAJ52). In the biomedical
field, MEDLINE (public) and Embase, a product by Elsevier,
are the two most prominent resources, with different
publications over the last years emphasizing their complemen-
tarity,53−56 while Thomson Reuters includes BIOSIS Previews
to complement MEDLINE within their search platform Web of
Science57 (formerly ISI Web of Knowledge). Most of them are
bibliographic repositories, containing abstracts (e.g., MED-
LINE42 and TOXLINE49), indexed terms extracted from
abstracts alone (e.g., Scopus51) or from full-texts (e.g.,
Embase47 and CAplus46), and citations (or are connected to
a citations database such as SCI-EXPANDED58). In most cases,
especially for nonpatent literature, the search services
connected to these repositories do not provide the possibility
to access documents identified through searches in their full-
text version, but have links to the corresponding journal (e.g.,

Table 1. General Characteristics of Main Chemical
Information Sources

scientific journals patents

conference
proceedings
reports

uniform format medium high low
content availability abstracts (most),

some full-text
full-text variable

depending on
the provider

accessibility in the
public domain

low, except for
some open
initiatives

high
(patent
offices)

medium

level of data
aggregation in
search systems

low high low
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SciFinder44,45). Oppositely, some smaller repositories such as
PubMed Central (PMC59,60), for the life science domain, and
the Directory of Open Access Journals,52 for different subject
areas, provide full-text document access. Apart from these
compiled resources, text-based searches can be run over fee-
based journal databases or open access publishers. Of interest,
some of the public document repositories can be accessed by
researchers with TM noncommercial purposes. MEDLINE
allows text mining entirely its content, while TOXLINE and
PubMed Central restrict full-access to their entire content.
ScienceDirect61 can be accessed via the ScienceDirect API’s.
Chinese Science Citation Database (CSCD),62,63 in English
and Chinese, and Scientific Electronic Library Online
(SciELO),64 in English, Spanish, and Portuguese, exemplify
available resources in other languages besides English.
As seen in Figure 1, the most relevant databases (e.g.,

CAplus, Embase, and Scopus) do also include other types of
documents such as books, conference proceedings, and
dissertations, although there exist dedicated resources such as
the Conference Proceedings Citation Index-Science (CPCI-
S)65 for the most significant conferences worldwide. Of note,
IP.com66 is a full-text database for companies and individuals to
publish and search technical disclosures (defensive publica-
tions).
1.2.2. Patents. Patents, including applications and granted

patents, are also included and indexed in the largest commercial
repositories listed above (i.e., CAplus, Scopus, Biological
Abstracts, BIOSIS, and Inspec). In the public domain, national

and regional offices track patent applications and granted
patents as images of text documents, and either provide
Internet access to their internal collections (PatFT,67 AppFT68

by the United States Patent and Trademark Office, USPTO) or
offer patents in semistructured formats, like XML (DOCDB69

by the European Patent Office, EPO). This has favored the
emergence of many different repositories and search engines
(most of them commercial, as listed in Table 2) aggregating
patent documents from several offices, which are exclusively
specialized in patents, for prior art searching and intellectual
property valorization. An interesting feature of patent databases
is that they are organized by patent families (e.g., INPADOC,70

Derwent World Patents Index (DWPI),71 FAMPAT,72 and
PatBase73) rather than single patent records. A patent family is
a set/group of published patent documents taken in multiple
countries that disclose the same invention and are linked by
one or more common priority numbers (the application serial
number for the earliest application). Patent family information
is useful for determining the scope of international patent
protection for a specific patented product or process,
identifying the translation of a patent document, and
overcoming problems associated with spelling variations and
transliteration of inventor names and applicants. Besides
manual indexing and data curation (i.e., misspelling corrections,
optical character recognition (OCR) errors), some commercial
vendors clean up and enhance patent data. For example, the
DWPI,71 by Thomson Reuters, includes enhanced titles and
abstracts, and the search engine SciFinder44,45 proposes a more

Figure 1. Largest and most popular document repositories. “(1)” indicates that it supports text-based searches, with online access to query the
database. Prepared in September 2016.
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descriptive patent title. As discussed below, these two major
database services have chemical structure indexing, reaction
indexing (SciFinder), and Markus indexing, thereby also
allowing to perform structural searches. SureChEMBL74,75 is
included in Figure 1 as it is a freely accessible chemically
annotated patent document database that enables full-patent
searching against both structurally annotated (thereby also
enabling structural searches) and unannotated patents. IFI
claims76 provide access to worldwide coverage full-text patents
in XML format to different clients, such as SureChEMBL.75

1.2.3. Regulatory Reports and Competitive Intelli-
gence Tools. Chemical information can also be found in
regulatory documents distributed by government agencies:
DailyMed77 and New Drug Application (NDA) by FDA78 or
the European Public Assessment Reports (EPAR)79 for

marketed drugs in the United States and Europe, respectively.
Information on clinical trials can be found at the Clinical Trials
Web site80 in the public domain. Additionally, Adis Insight81

provides fee-based access to sound profiles of drug programs,
clinical trials, safety reports, and company deals.
As mentioned above, Table 2 presents different public and

commercial search engines and platforms connecting to the
majority of the document repositories in Figure 1. Together
with information on the proprietary/institution responsible for
the tool and launch year, this table tells whether the platform
supports structural searches as a result of the aggregation of the
annotated/indexed document with a chemical database, as in
the case of SciFinder,44 Reaxys,82,83 STN,84 and Web of
Science.57 Notably, all four major standard tools are
commercial, highlighting the need and interest in disposing of

Table 2. Search Systems and Platforms Connecting To Document Repositories (in Figure 1)a

service provider/company launched Struct J P URL

Public
PubMed U.S. NLM 1996 √ http://www.ncbi.nlm.nih.gov/pubmed
Europe PMC Europe PMC

Consortium
2012c √ √ http://europepmc.org

PMC Canada CIHR/NRC-
CISTI/NLM

2009 √ http://pubmedcentralcanada.ca/pmcc

TOXNETb U.S. NLM N/A √ http://toxnet.nlm.nih.gov
Google Scholar Google 2004 √ √ http://scholar.google.com
Google Patents Google 2006 √ www.google.com/patents
BASE Bielefeld

University
2004 √ http://www.base-search.net

aRDi WIPO/publishers 2009 √ √ http://www.wipo.int/ardi/en
PatentScope WIPO 2003 √ http://www.wipo.int/patentscope/en
Global Patent Search
Network

USPTO N/A √ http://gpsn.uspto.gov

Espacenet EPO 1998 √ http://worldwide.espacenet.com
SIPO Patent Search SIPO N/A √ http://211.157.104.77:8080/sipo_EN/search/tabSearch.do?method=init
FreePatentsOnline
(FPO)

Patents Online,
LLC

2004 √ http://www.freepatentsonline.com

SumoBrain Patents Online,
LLC

2007 √ http://www.sumobrain.com

Patent Lens Cambia 2001 √ https://www.lens.org/lens
PriorSmart PriorSmart 2007 √ http://www.priorsmart.com
iScienceSearch AKos Consulting 2010 √ √ √ http://isciencesearch.com/iss/default.aspx
Commercial
SciFinder CAS 1995 √ √ √ http://www.cas.org/products/scifinder
STN CAS-FIZ-

Karlsruhe
1984 √ √ √ https://www.cas.org/products/stn

Reaxys Elsevier 2009 √ √ √ http://www.elsevier.com/solutions/reaxys
OvidSP Wolters Kluwer 2007 √ https://ovidsp.ovid.com
Thomson Innovation Thomson Reuters 2007 √ √ http://info.thomsoninnovation.com
Web of Science Thomson Reuters 1997 √ √ http://thomsonreuters.com/en/products-services/scholarly-scientific-research/

scholarly-search-and-discovery/web-of-science.html
ProQuest Dialog
(PQD)

ProQuest LLC 2013 √ √ http://www.proquest.com/products-services/ProQuest-Dialog.html

TotalPatent LexisNexis 2007 √ https://www.lexisnexis.com/totalpatent/signonForm.do
PatBase Minesoft Ltd. 2003 √ http://www.patbase.com/login.asp
Orbit QUESTEL 2009 √ http://www.questel.com/index.php/en/product-and-services/prior-art-search
PatSeer Gridlogics

Technologies
2012 √ http://patseer.com

WIPS Global WIPS Co. 2003 √ http://www.wipsglobal.com/service/mai/main.wips
JP-NET Japan Patent Data

Service
2007 √ http://www.jpds.co.jp/eng

Academic Search EBSCO
publishing

2007 √ https://www.ebscohost.com

aStruct = supports structure-based searches; J = journals; P = patents. bFonger, G. C.; Stroup, D.; Thomas, P. L.; Wexler, P. TOXNET:A
Computerized Collection of Toxicological and Environmental Health Information. Toxicol. Ind. Health 2000, 16, 4−6. cPreviously UKPMC; N/A =
not available. Prepared in November 2016.
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publicly available annotated databases, as was also demon-
strated by the recent release of SureChEMBL, which was
included in Figure 1 as a patent repository with its own access
interface. iScienceSearch85,86 is an open-access federated search
service that allows searching over 86 free chemistry databases,
scientific journals, and patents (e.g., using Google Patents87),
although its retrieval capabilities are not comparable to those of
SciFinder. Moreover, Scopus database (Elsevier) and Web of
Science (Thomson Reuters) are commonly regarded as
equivalent resources,88 although the latter has the clear
advantage of incorporating chemistry and reaction databases,
besides being a bibliographic repository.
Commercial systems combine nonpatent literature from

different sources and patent collections of one or more patent
authorities (Table 2). Because of the vast number of connected
databases (e.g., the case of STN84 with over 180 databases or
Web of Science57 and Thomson Innovation),89 both
distributed by Thomson Reuters until very recently, and since
October 2016, by Clarivate Analytics, the interested reader
should refer to the link provided in Table 2 to gain deeper
insight about their content. In the open-access domain, a few
systems merge scientific literature with patents, Europe
PubMed Central (Europe PMC)90,91 and Google Scholar,92,93

although a commonly criticized aspect of Google Scholar is that
it does not provide a clear criteria on the selected journal
publications that are indexed.94 Interestingly, the Access to

Research for Development and Innovation (aRDI)95 program
facilitates access (free of charge or with a nominal fee) to
scholarly journals from diverse fields of sciences for patent
offices and scientific institutions in developing countries. For
patents alone, WIPO and national and regional offices (in
Table 2 only patent offices with the largest collections WIPO,
EPO, USPTO, and SIPO are listed) as well as public free-of-
charge patent database producers (e.g., FreePatentsOnline,96

Patent Lens,97 and PriorSmart98) offer a number of search
interfaces. For commercial, private sector databases, only those
more commonly used are shown. Recently, closed free-of-
charge services, such as Scirus,99 provided by Elsevier, and
Microsoft Academic Search100 are not tabulated.
Apart from all of these repositories, ontologies and thesauri

play a key role in chemical information retrieval, especially in
the context of the Semantic Web and query expansion (section
2.4.3) and in CER strategies based on dictionary lookup of
chemical names (section 3.4) as they provide standardized
explicit descriptions of concepts and entities, providing wealthy
vocabularies to index different terms.

2. CHEMICAL INFORMATION RETRIEVAL
The concept information retrieval was first introduced by
Mooers in 1950,101 although it was only in the 1970s when full
text analysis and document indexing became common. Before
that, most searches could be considered metadata searches,

Figure 2. Simplified flowchart of chemical IR systems.
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querying for well-defined fields such as title, authors, or
keywords. Research related to chemical IR systems had an
important initial event in 1951, when IBM did a first
presentation on an electronic information-searching machine
based on a punched-card equipment for coding and sorting
cards that allowed a search rate of 1000 cards per minute. This
system was presented back then to the American Chemical
Society Committee on Scientific Aids to Literature. Sanderson
and Croft provided a short historical description of IR systems,
introducing also mechanical and electro-mechanical devices for
searching entries in catalogues and early preweb computer-
based retrieval systems.102

In the following, we provide a comprehensive overview of the
core concepts of information retrieval technologies with a focus
on those aspects that are specific to chemical search
applications, because a deep review of all aspects of information
retrieval systems is out of scope.11

This section is organized according to the common
components of an IR system (Figure 2): (i) unstructured
data repositories and characteristics (section 2.1), (ii) docu-
ment preprocessing to enable effective indexing (section 2.2),
(iii) the generation of a new separate representation of the
documents optimized for retrieval (section 2.3), (iv) query
construction, understood as the actual expression of the user
information demand that is provided as an input to the IR
system (section 2.4), and (v) result representation, which is the
collection of documents returned by the IR system, often
presented as a ranked or sorted list of query hits or alternatively
as a classification of documents (section 2.5). Figure 2
illustrates a simplified flowchart of chemical IR systems.

2.1. Unstructured Data Repositories and Characteristics

Chemical IR systems can be characterized according to the
underlying data sources or document repositories processed.
The hits returned by IR systems are tightly linked to the

indexed data and document repositories. As existing online
chemical document and literature databases are directly
coupled to a user query interface, the practical distinction
between databases and search engines at the application level
becomes blurry for these complex document retrieval systems.
The document collection, referring to the set of documents that
are searched/processed by the retrieval system, might be either
an in house collection or documents hosted and accessed by
some of the existing online retrieval tools. Good understanding
of the primary information landscape is crucial to determine
which collection of journals and other document types might
be relevant (see section 1.2).
For mining in house chemical documents, the combination

of existing relational database management systems (e.g.,
PostgreSQL103), modules for handling chemical queries and
integrating structural data (e.g., RDKit104), and indexing and
retrieval components like the popular Lucene library105 or
Lucene-based systems like ElasticSearch106 can be used in
prototypical in house retrieval settings.
The hits returned by chemical search engines might vary due

to intrinsic differences in the underlying document databases,
and sometimes document collections need to be revised to
describe the queries on the basis of documents and their
specialized subdomains. For instance, SciFinder, Inspec,
Compendex, Web of Science, Scopus, and PubMed index and
abstract journal literature, but they show differences in terms of
subject coverage for the indexed journals,12 and therefore, for
certain search types, the combination of multiple retrieval tools

might yield more exhaustive or relevant results.107 Typical
literature aggregators like PMC Europe address the storage of
content from multiple journal sources.59

2.2. Preprocessing and Chemical Text Tokenization

Preprocessing of unstructured documents is a key step for both
(i) subsequent IR and (ii) in the context of TM technologies,
particularly CER.
In practice, chemical documents are available in a range of

different input formats, but they are mainly distributed either as
electronic text or as image files. With respect to electronic text
documents, unfortunately, they are often not directly available
as plain text files but do correspond to PDF (portable
document format), HTML (HyperText Markup Language),
XML (Xtensible Markup Language), or other common file
formats.108 The first step is thus to convert those files into a
format that can be better processed by TM software, which is
normally plain text. This document transformation step,
sometimes also referred to as the document standardization
process, may require the conversion of PDF files into plain text,
or to select the actual running text content from metadata
contained in HTML or XML tags. For both PDF and HTML
input, there is a range of open source as well as commercial
software tools available, including PDF text parsers like
PDFBox,109 pdftotext, IntraPDF,110 PDFTron,111 UTOPIA,112

and ABBYY PDF Transformer.113 Since the introduction of the
PDF format in 1993, scholarly articles have been increasingly
distributed in this format, and it has become nowadays the
most commonly used file format for online scientific
publications, being a sort of de facto standard format for
scientific communication together with HTML. To be able to
extract correctly the text content from PDF files in a layout-
aware manner, and identify correctly blocks of contiguous text,
is still an ongoing field of research.114 Among the most
common errors occurring in PDF transformation are misplaced
paragraph separations, sequential layout of tables, and wrong
sentence handling of two-column layout articles. Moreover, in
the case of scholarly literature, considerable formatting changes
may be observed by examining articles published between 1966
and 2007, which represents an additional hurdle for layout-
aware PDF transformation.114

2.2.1. Document Transformation. The document trans-
formation step is usually carried out as an offline process
through analysis of static documents. When text is contained in
an image (e.g., derived from scanned papers used to digitize
printed documents), optical character recognition (OCR)
software, such as Tesseract115 or CuneiForm, is used to
transform images into machine-encoded text. Especially, full
text patent documents are often available as images of text
documents.116

Errors during this step are critical for downstream text
processing in general, and particularly in the case of chemical
documents. For instance, differences in just a single character
between two chemical names result in associated structures that
are very different, as in the case of “methylamine” and
“menthylamine”.117 Also, the presence or absence of a single
space between two chemical word tokens can result potentially
in different interpretations of chemical mentions, for example,
“methyl ethyl malonate” versus “methyl ethylmalonate”.118

Noisy chemical text documents, corresponding to text
generated from scanned image files of patents or historical
scientific literature, present additional challenges due to the
presence of spelling errors, typographical errors (typos), space
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errors, truncated words/names, and OCR errors. Letters that
resemble numeric characters often result in OCR mistakes, for
example, the symbol aluminum Al and its wrong conversion to
A1.108 This type of error is called homoglyphic substitution and
occurs when two characters are very similar (e.g., 1 and I, O
and 0).119 In the case of human typos, the distance between
characters in a QWERTY keyboard may be a useful strategy to
detect potential sources of errors commonly called fat finger
syndrome.119

OCR software is known to work well for most fonts and is
capable to return formatted output that resembles the original
page layout for most scenarios. In the case of chemical
documents, among frequently encountered errors are wrong
line and word detections (word boundary recognition errors)
and issues resulting from special characters used in chemical
language. This is partially due to the fact that OCR software
commonly uses dictionaries of words for the characters
segmentation step, and within chemical documents there is a
great number of specialized, technical terminologies that do not
match dictionary entries. Some attempts have been carried out
to detect and correct errors due to OCR failures, or even
human spelling errors, encountered in chemical texts.119

Even though a considerable fraction of chemical literature
and patents is available in English, it is useful, when processing
large heterogeneous document sets, to sometimes run language
detection tools on the document contents to determine the
actual language in which the documents have been written.
This can be achieved by applying language detection software,
for instance, the widespread Tika tool that can detect 18
different languages.120

2.2.2. Character Encoding. A very basic but important
aspect that should not be neglected, especially when trying to
integrate results from various text processing platforms, or
when text is sequentially handled by different modules or
systems, is character encoding, that is, the way text characters
are represented. The use of character encodings that
correspond to internationally accepted standards allows more
efficient interchange of text in electronic form. Checking the
type of encoding used in text documents and whether the
program of choice supports it is one of the first issues that
needs to be examined when applying TM strategies. The
underlying representation of text by computers is done in the
form of binary data.121 This implies that all of the characters
inside text documents have to be represented by numeric
codes, or, in other words, they are stored using a particular type
of character encoding (generally encoded as bytes). One simple
and popular format is ASCII (American Standard Code for
Information Interchange, also called US-ASCII), introduced in
1963,122 which consists of a seven-bit encoding scheme that can
be used to encode letters, numerals, and some symbols. ASCII
is supported by nearly all text editors and was the most
widespread encoding of the World Wide Web until 2007, when
it was surpassed by the UTF-8 (8-bit Unicode Transformation
Format) encoding,123 which supports a larger set of characters.
UTF-8 is also among the preferred encodings for chemical
documents, and it is advisable to make sure that within a given
collection all documents use the same encoding. Many
literature repositories, such as ScienceDirect, support the
UTF-8 character set, making it possible to use search queries
that contain UTF-8 characters. Specifically, by using the UTF-8
encoding, it is possible to represent most chemical names,
formulas, equations, notations, and expressions, including
characters such as Greek letters, subscripts, superscripts, and

nonalphanumeric chemically relevant characters (e.g., hyphens,
bullets, arrows, daggers, plus/minus signs, and symbols to
denote stoichiometric relation, net forward reactions, reactions
in both directions, and reactions in an equilibrium).
Another characteristic that should be observed carefully

when performing text processing at the level of characters and
letters relates to ligatures. Ligatures typically refer to symbols
that represent the fusion of more than one character and can
thus be regarded as being a sort of character combination or
conjoining of letters. Moreover, ligatures are also a common
source of OCR errors. Depending on the used representation/
encoding model, ligatures can be considered as a single
character (composed form), or they can be decomposed into a
set of separate characters (decomposed form) resulting in
normalized ligatures.

2.2.3. Document Segmentation. For some TM applica-
tions, the use of the entire chemical document, regardless of its
underlying internal structure, is not practical, requiring
document segmentation as a step to handle the documents
more efficiently. This is particularly the case when considering
lengthy documents such as entire patents or full text scientific
papers. Segmenting documents into various sections and
identifying chemical entities within those sections enables a
more focused contextual search, for instance, by facilitating
search constraints that limit hits to figure captions,116

something supported by tools such as CLIDE.124,125 Some
sort of enhancement of document semantics can be obtained by
exploiting document structure and defining structurally relevant
units like sections and paragraphs.
Records structured by markup languages like HTML or XML

are generally easier to process, as they already often provide
explicit tags that can be used to identify section and subsection
headers. XML-formatted patent documents from the EPO and
USPTO employ explicit delimitation of the major sections and
headings of the documents, overall following a patent structure
defined by the Common Application Format (CAF).38 CAF
specifies some basic patent anatomy, such as patent abstract,
claims, and description sections. Nevertheless, the identification
of section and paragraph boundaries within the body of patent
documents is not an easy task due to under-specification and
the use of implicit document structures that are not directly
machine interpretable. Attempts to automatically determine
where sections in the patent begin and end have been done, for
instance, by matching regular expressions (regexps) based on
those headings.38

Regular expressions are also used for document segmentation
purposes of scientific literature, which follows a more general
organization (section 1.2). Beyond segmenting documents into
main sections, only limited research has been carried out to
process chemical literature to detect topically coherent
multiparagraph segments,126 a process called TextTiling.127

This requires defining a common schema to represent the
structure of scientific articles as well as the exploration of the
discourse structure of papers.126

A very valuable resource for chemical information are tables,
which may contain both textual data as well as structure
diagrams.35 Mining tables is still a very preliminary field of
research, and despite its importance, there are only few
published systems that can handle tables, for instance, the
Utopia application.112 Most of the noncommercial chemical
TM software neglects table processing.

2.2.4. Sentence Splitting. Document segmentation can be
viewed as a coarse level text processing step. At a more granular
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level, written chemical documents often need to be divided
using text segmentation methods into smaller subunits (tokens)
such as sentences and words. Sentence boundary disambigua-
tion (SBD, also known as sentence splitting, sentence
tokenization, or sentence segmentation) is a low-level text
processing step that consists of separating running written text
into individual sentences. Sentences are a foundational unit for
most natural language processing (NLP) pipelines, such as
assignment of part-of-speech labels to words (POS-tagging),
syntactic and semantic processing, or even machine translation.
They form logical units of thought. When text is not properly
delimited into sentences, the resulting errors propagate upward
in the text processing pipeline. In particular, chemical named
entity recognition (discussed in section 3) is very sensitive to
SBD errors.
Automatic SBD methods are usually rule-based or rely on

data-driven machine learning (ML) techniques trained on
manually tagged sentence boundaries, although some attempts
have been made to also apply unsupervised methods and
exploit syntax-based information using POS labels.128 In
English and most other Indo-European languages, using
punctuation marks, particularly the full-stop dot character is a
reasonable approximation for a very crude SBD strategy.
Nevertheless, it is worth noticing that not all written languages
contain punctuation characters that could be exploited for
approximating sentence limits. One of the most basic rule-
based SBD methods, often applied to newswire documents,
defines sentence tokenization patterns as periods followed by
an upper case letter (and not followed by an abbreviation).
Regular expression-based sentence tokenizers have also been
tested in the context of patent documents.129

Punctuation marks do not always correspond to sentence
boundaries; they show ambiguity, for instance, with initials,
numbers (decimals, floating points), personal titles, ellipsis,
delimiters (e.g., filename extensions, URLs, e-mail addresses),
bibliographic references, and especially abbreviations.130−132 In
the case of chemical texts, punctuation marks can also be
encountered inside chemical entity mentions (e.g., “ZnSO4·
7H2O”, “1,3,8-triazaspiro[4.5]decan-4-one”, or “2,5-diazabicy-
clo-[2.2.2]-octane”) and mentions of genes/gene products
(e.g., “TNF.alpha” or “Kv3.1 channel”), enzyme codes (e.g.,
“EC 3.4.14.5”), or chromosome locations (LEN.PK113-78). A
narrow definition of SBD would consider only the disambigua-
tion of full stop characters as either being a sentence delimiter
or not (splitting at a closed set of special characters), while a
broader definition of the SBD task would examine every
character as a potential sentence delimiter.128 For more formal
written text, such as scientific abstracts and articles, a narrow
SBD definition is usually competitive enough, while for
spontaneous language, web content and noisy texts like
scanned patents, less formal chemical documents, and
electronic health records, it is common to encounter missing
punctuation marks, and thus a broader SBD definition might
sometimes be more appropriate.
Machine learning (ML) approaches have increasingly

become the method of choice for many text classification
tasks (section 2.5). In the case of SBD, the problem can be
viewed as a binary classification task, which requires
determining whether a given character in running text does
correspond or not to a sentence delimiter. For supervised ML
techniques to work well, manually annotated sentence
boundaries are required as a training data. From a given set

of training examples, a statistical model is then learned and
subsequently applied to assign labels to previously unseen data.
For SBD, commonly used annotated corpora in the

biomedical domain are the GENIA133 (16 392 sentences), the
PennBioIE134 (23 277 sentences), and the JULIE135 (62 400
sentences) corpora. The JULIE corpus also provides more
detailed guidelines for the manual annotation of sentence
boundary symbols (SBS). Proper guidelines together with
corpora for the annotation of chemical document sentence
boundaries are not available, and thus most of the existing
chemical text processing pipelines use either SBD tools
developed using domain-independent data sets or are based
on SBD systems tuned for biomedical literature. Overall, SBD
algorithms work very well on scientific articles, and even though
there are differences in terms of performance depending on the
used tool and evaluation corpus, the variability in performance
is rather low. Experiments done to evaluate the performance of
SBD tools against the GENIA corpus sentence boundary
annotations yield a F-score (harmonic mean of precision and
recall, described in section 2.6) between 98.3 and 99.6.128

Among the SBD tools adapted to scientific literature are the
LingPipe sentence chunker,136 the GENIA sentence splitter
(GeniaSS),137,138 and Med-Post.139 The JULIE sentence
boundary detector (JSBD)135,140 has also been used by both
chemical141 and biomedical text processing pipelines. It yields
an F-score between 99.58 and 99.62, depending on the used
evaluation corpora. JSBD is based on a ML algorithm very
popular for labeling text, called conditional random fields
(CRFs),135 which will be discussed in more detail in section
3.6. Another widely used sentence detector is distributed as part
of the openNLP toolkit,142 and it has been adapted to split
sentences derived from chemical patent abstracts.143 Domain
adaptation is worthwhile to obtain a more competitive result for
SBD systems, as has been shown for the LingPipe sentence
splitter evaluated using the GENIA corpus.128

Among common error sources of current SBD tools are the
lack of an exhaustive examination of the range of Unicode
characters that encode for punctuation marks, the inherent
variability of the various text types, and the fact that some SBD
tools ignore paragraph boundaries.128 Applying some simple
rule-based pre- or postprocessing steps (e.g., checking balancing
of opened and closed parenthesis) can result in performance
gain for some SBD systems.
Formal scientific language is characterized by the use of long

and complex descriptive phrases, which do represent a
challenge for some NLP tasks. Rule-based approaches have
been explored for automatic sentence simplification to generate
simplified text by exploiting syntactic clues, such as
coordinations, relative clauses, and appositions. Sentence
simplification has been particularly useful for improving the
performance of relation extraction systems (see section 6).
Those techniques have been effective for detecting protein−
protein interactions from text144,145 or drug resistance
information.146 bioSimplify147 and iSimp148 represent two
popular sentence simplification approaches applied to bio-
medical literature, while the Cafetiere Sentence Splitter has
been tested on chemical abstracts.149,150

2.2.5. Tokenizers and Chemical Tokenizers. The most
critical text preprocessing step is usually tokenization (word
segmentation). It consists essentially of the problem of dividing
each sentence or string of written language into its constituent
tokens (i.e., component words, numbers, punctuations,
expression sequences) and therefore requires detecting where
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word breaks exist. Word tokenization is usually carried out after
the SBD step. Tokenization has a deep impact on tasks such as
POS tagging (an important task for the recognition of named
entities) as well as for text indexing and information retrieval.
Splitting of written text into a sequence of word tokens might
at first sight seem a trivial undertaking, but tokenizers face
several challenges. One of the tokenization challenges is
language related, while among other difficulties one can
encounter domain-specific language issues. Some scientific
domains demand the use of special tokenization approaches,
because they contain chemical or mathematical formulas, or
have entity names showing internal naming structures like
systematic chemical compound names.151 Although most of the
chemical TM work (and as a matter of fact, TM and NLP work
in general) has been carried out using English language texts,
there is an increasing interest in processing chemical docu-
ments in other languages, for instance, the growing number of
chemical patents written in Chinese. Unlike Western languages,
major East Asian Languages (e.g., Chinese, Japanese, Korean,
or Thai) are written without spaces between words. This
implies that for these languages it is necessary to run a word
boundaries detection program prior to any word-based
linguistic processing attempt.108 In the case of Chinese word
segmentation, common tokenization strategies either make use
of large vocabulary resources, taking the longest vocabulary
match to detect word boundaries, or they apply supervised ML
methods trained on manually tagged word boundaries to reach
satisfactory results.152

Other languages such as German also show particular
tokenization intricacies due to the usage of compound nouns
without spaces, which can have an effect on the performance of
information retrieval systems. To handle compound nouns, a
common approach is to apply compound-splitter modules that
determine whether a given word can be segmented into
multiple subwords that, in turn, appear in a predefined
vocabulary list.
Chemically aware text-tokenization approaches have been

studied in more detail for documents written in English. For
general English texts, tokenization is often done by exploiting
punctuation marks and whitespaces or by simply splitting on all
nonalphanumeric characters, often also requiring some addi-
tional preprocessing to handle apostrophes used for possession
and contractions. Efficient tokenization in the case of chemical
texts shows considerable differences when compared to general
purpose tokenizers.119 In the case of chemical names and
documents describing chemical entities, it is important to take
into consideration that chemical names do contain whitespaces,
commas, hyphens, brackets, parentheses, digits, and also
apostrophes. Therefore, chemical text tokenization is a more
demanding process that requires using specially adapted
tokenizers able to cope with the peculiarities of chemical
expressions, complex naming conventions, and domain-specific
terms.
The output of various tokenizers can be greatly different, for

instance, depending on how characters such as hyphens are
being handled. It has been observed that in biomedical
documents, symbols that usually correspond to token boundary
symbols (TBS), such as + ’/+ %, do not always denote correct
boundary elements.135 Parentheses represent another character
type that, while in normal running text do correspond usually
to TBS, in the case of chemical texts they are part of the
chemical name and require special treatment. Studies have been
carried out to make it easier to choose suitable tokenizers by

comparing various tokenization algorithms on PubMed
abstracts.153 Especially, hyphens represent a tokenization
challenge for chemical texts as they can appear within a
chemical name (e.g., “tert-butyl peroxide”) and in other cases
occur between different entities (e.g., “hexane-ethyl acetate”),
corresponding to true TBS.154 Hyphens are also common
within chemical expressions and formula (“C−H”) and thus
require custom chemical tokenization.155 Word-boundary
hyphens were defined by Zamora et al. only as those hyphens
that were flanked by alphabetic characters.156 Corbett and
colleagues, in turn, exploited a list of strings that corresponded
to nonword boundaries if they were found before a given
hyphen (e.g., “tert-”) with the assumption that they were part of
chemical names. They also used certain strings that
characterized word boundaries only if they occur after hyphens
(e.g., “-induced”).154

ML-based token boundary detection has also been
implemented for biomedical literature.157 Token boundary
detection using the conditional random field algorithm has
been used to tokenize PubMed abstracts135 by training the
classifier on semantically motivated word boundary annota-
tions. This resulted in the JULIELab tokenizer module.135,140

Currently, the most widely used chemical text tokenizer is
the OSCAR4 tokenizer, which employs segmentation rules
specifically constructed for chemical texts.158 For instance, it
was used by the ChER chemical mention tagger developed by
Batista-Navarro and colleagues.150

Another chemical text tokenizer that uses manually defined
rules is ChemTok, relying on the examination of the
BioCreative CHEMNDER task data set (described in more
detail in section 3.8).159 Dai et al. evaluated both a more fine-
grained and a coarse-grained tokenization in the context of
chemical entity mention recognition and concluded that a more
granular tokenization resulted in better performance for their
task.160 Other chemical text tokenization modules are part of
the tmVar module adapted by the tmChem chemical mention
tagger161 and the ChemSpot tokenizer.162

2.3. Document Indexing and Term Weighting

Two key initial aspects underlying IR systems are the definition
of the document units (i.e., what constitutes a document) and
the logical view of how documents are represented internally
(i.e., the text representation model). Choosing the appropriate
document unit is important for search engines in terms of how
granular the returned hits will be. For instance, depending on
the underlying end user requests, large documents such as
chemical books or thesis could potentially be segmented into
mini-documents comprised of individual chapters. Likewise, in
the case of separate files, such as a scientific article and its
Supporting Information, those files could be merged into one
larger document for retrieval purposes.
The entire set of text items, that is, documents on which the

search will be performed, is commonly known as document
collection (also sometimes referred to as corpus, or body of
text). Documents can in principle be represented just as a
consecutive stream of plain text characters, which are then
searched sequentially through linear scanning of the query text
characters against target documents. Command line utilities
such as grep163 enable string matching or regular expression
based search approaches, including case-sensitive or -insensitive
matching and global wildcard pattern matching, usually
returning the matching lines. These linear scanning approaches
are considered useful when dealing with small or medium sized
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document collections and semistructured or structured data-
base contents. However, linear scanning presents serious
efficiency limitations when dealing with large data sets.
Term indexing is considered the best solution to process

large document collections, allow more flexible matching
operations, and support ranked retrieval. This approach
consists of viewing the text of the document as a collection
of indexing terms, also sometimes called keywords.11 IR
systems index the documents in advance to generate a term-
document incidence matrix, where terms, usually words (the
results of the previously described tokenization process),
correspond to the indexed units. So, in this representation
model, documents are viewed as a set of words. Figure 3
illustrates a simplified example process for building an inverted
index. As was already described, tokens correspond to the
sequence of characters that are grouped together after the
tokenization step and denote the basic semantic unit for
document processing. That is, they instantiate sequences of
characters in document. All tokens that display the same
sequence of characters are grouped into a type (or token type).
For instance, let us assume that within a given article there are
three mentions of the word “sulfobromophthalein”. Each of the
individual occurrences would correspond to the “sulfobro-
mophthalein” tokens, while the actual unique string, regardless
of the mentions within the documents, would correspond to
the token type “sulfobromophthalein”. Finally, a term is a

(token) type that is incorporated in the dictionary of the IR
system. Commonly, IR systems do not use the tokens directly
as they appear in the documents. Instead, they carry out a
normalization process of the token types to improve retrieval
efficiency. In particular, the same tokenization and term
normalization process is carried out on both documents and
user query words to guarantee that a potential match can be
detected. Various normalization procedures will be detailed
later in this section.
In the previously introduced term−document incidence

matrix, each row corresponds to a particular term, while each
column corresponds to a document. This implies that for each
term t, there is a vector of document occurrences, and,
conversely, for each document d there is a vector representing
the terms that are found in this document. In the most basic,
binary term−document incidence matrix, term matches in a
particular document are recorded as 1; otherwise, a zero is
stored. A binary term−document incidence matrix representa-
tion model for large document collections does result in a
considerably large and very sparse matrix; that is, most of the
values would correspond to zero. This phenomenon can be
explained in part by a very well-known statistical property of
human language known as Zipf’s law,164,165 which holds true
for general language documents as well as domain specific
collections.166,167 In essence, Zipf’s law states that for a
sufficiently large document collection, the frequency of use of a

Figure 3. Simplified example process for building an inverted index.
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word n is inversely proportional to its rank r, that is, the
position of that word when sorting all words by their absolute
frequency. The mathematical representation of this character-
istic would correspond to n ∝ 1/r. This implies that the most
frequent word appears approximately twice as often as the
second most frequent word, and so forth. A more general
formulation of Zipf’s law incorporates an exponent α, that is, a
parameter with a value usually close to one, resulting in a rank-
frequency relation that takes the form of a power law: n ∝ 1/rα.
For large document collections, most words occur only a few

times, and about 40−60% of the words are estimated to occur
just once.168 One common explanation for this language
characteristic is based on the principle of least effort, where the
speaker (the person or system coding the information) and the
listener (the person or system trying to decode the
information) try to minimize the effort needed to reach
understanding through a tradeoff between the usage of
nonspecific/general terms (those that can be easily retrieved
but are highly ambiguous) and very specific terms (those that
require more effort to be selected, but are less ambiguous and
more precise). Figure 4 shows an example Zipf’s plot for
scientific abstracts and medicinal chemistry patent abstracts.
As a large fraction of words appear at a low frequency, and

many often only occur once, a more compact data
representation is usually used to capture term−document
associations; that is, only the actual matches of terms in
documents are stored. This results in a so-called inverted index
(also known as inverted file), which comprises for each term a
vector corresponding to the set of documents where it occurs.
The data structure used by IR systems associated to the
resulting collection of terms is commonly called dictionary,
while the actual set of terms is usually known as its
corresponding vocabulary.
For the sake of efficiency, documents are usually identified in

the inverted index by unique serial document identifiers (doc
IDs), which are assigned to them during the index construction
by simply using successive integers for each new document that
is added. The list of documents associated to a given term is
called a postings list, while an individual document in this list is
named posting and the entire collection of all posting lists that
are part of an inverted index are known as postings. In a
nonpositional inverted index, postings are just the document

identifiers (term−document identifier pairs), while in a
positional inverted index, information relative to the position
of the term in the document is also stored. The terms
comprised in the dictionary are then sorted alphabetically;
duplicate terms are merged into a single unique term and, in
the posting list, the document identifiers are sorted
incrementally. For each dictionary record, the absolute
frequency of the term (document frequency corresponding to
the length of the postings list) is usually stored. Modern IR
systems usually also store within the inverted index a list of all
occurrences of the terms (i.e., positions in text) in each
document (positional index), which is critical to allow phrase
and proximity searches (section 2.4). An exhaustive description
of the various indexing and index compression methods is
beyond the scope of this Review, and thus only the core
concepts relevant to understanding the underlying methodo-
logical infrastructure of chemical text search engines are
provided.
The tokens, before being added to the term list, are usually

normalized; that is, a linguistic preprocessing step is carried out
to generate a modified token representing the canonical form of
the corresponding term. Typically, this step refers to either
stemming or lemmatization. The reduction in size of the term
dictionary significantly depends on how rich morphologically is
the target language. For instance, Spanish texts are morpho-
logically richer than English, and thus, when applying
stemming, the resulting vocabulary reduction is greater than
in the case of English texts. The reduction of the dictionary size
helps improve the chemical IR systems in terms of processing
time and memory, as well as increase recall. However, a detailed
analysis of the effect of linguistic preprocessing in chemical IR
has not been carried out so far.
For an inflected or derived word, stemming programs, also

known as stemming algorithms or stemmers, output its
corresponding stem.169 Word stems often (but not always)
correspond to the word base form or morphological root. For
example, for the word list “oxidable”, “oxidate”, “oxidation”,
“oxidatively”, “oxidize”, and “oxidizing”, the Porter stemmer
returns the word stem “oxid”. By grouping those word variants
under a common stem, the underlying assumption is that those
variants in practice should be semantically related (have a
similar meaning) and can therefore be used by search engines

Figure 4. Example Zipf’s plot for scientific abstracts and medicinal chemistry patent abstracts.
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as synonyms for query expansion (section 2.4.3), a process
named conflation. Stemmers usually apply language-specific
rules to generate the word stem. Stemming can be based on
simple lookup tables of correspondences between inflected and
word stems, apply suffix stripping rules, or even explore
statistical language analysis techniques. English stemming
algorithms have been implemented since the 1960s.170 The
most popular English stemming algorithm is the Porter
Stemmer,171 which has been applied not only to general
English texts but also for the processing biomedical, chemical,
and scientific literature,161,172 eventually incorporating domain-
specific rules.173,174 Stemming programs present two common
types of errors that can be problematic when processing
chemical texts: one is overstemming (i.e., words that have
different meanings are grouped together through a common
stem) and the other is understemming (i.e., words that are
inflectional/derivational variants of the same base form are not
linked to the same stem). In the case of chemical named entity
recognition strategies (section 3), there is some evidence that
applying stemming is detrimental for the performance of
systems identifying chemical mentions.175 One possible
explanation for this characteristic is that suffixes can be suitable
cues to determine if a word corresponds to a chemical entity.
Indeed, suffixes and prefixes are usually examined by chemical-
text aware hyphenation systems, which apply heuristic rules for
short hyphenated suffixes/prefixes and only carry out token
splitting for longer word forms.
A more sophisticated alternative to stemming is to apply

lemmatization algorithms. Usually, lemmatizers do not operate
just on single words as do stemmers, but they also take into
account the sentence context and part-of-speech information to
return the linguistic base form (lemma) of an inflected word.
The pair formed by the word base form and its corresponding
part-of-speech is called lexeme. The biolemmatizer is a domain-
specific tool that is able to process biological and biomedical
documents mentioning chemicals. It was able to achieve an F-
score of 96.37% when evaluated against a gold standard of
manually labeled life sciences full text articles.176

Other strategies to normalize texts for indexing purposes
include case-folding and spelling normalization. Case-folding
stands for the process of converting all letters of a token into
lowercase letters. This process can generate ambiguous words
for proper nouns or person names. In the case of the English
language, spelling normalization refers to the conversion of
spelling variations, that is, British and American spelling, into
one single spelling type.
Reduction of the size of the inverted file index can be

achieved by grouping morphological word variants, but also
through removal of noninformative words (words with low
discrimination power) that do not contribute to the retrieval of
relevant documents. Such words, known as stop words, usually
correspond to prepositions, articles, or determiners. For most
search applications, precompiled lists of stop words are used,
although sometimes high frequency words are inspected
manually to generate a more tailored set of stop words.
However, and because exclusion of stop words from the
dictionary might affect phrase searches (see section 2.4), not all
IR systems are able to actually eliminate stop words.
Linguistic preprocessing approaches can also be viewed as a

sort of lossy compression approach,177 a concept more
commonly used for textual images, and which refers to a
reduction of vocabulary that results in a more compact
document representation with the cost of losing some marginal

information, which in principle does not affect retrieval
efficiency noticeably.

2.3.1. Term Weighting. A typical chemical text search
engine not only needs to retrieve the documents that mention
terms matching the user query, but additionally it should be
able to rank or order the returned document hits efficiently,
that is, returning the most relevant documents on the top of the
result list. To meet this goal, it is fundamental to weight or
score the importance of terms on the basis of statistical
attributes that model the discriminative power of the terms. A
detailed description of term weighting schemes is beyond the
reach of this Review, but both tf (term frequency) and tf-idf
(term frequency-inverted document frequency), which are two
widespread term weighting approaches, will be introduced here.
The most simple term weighting is called term frequency tf t,d,

consisting of the number of occurrences of term t in document
d, that is, its raw term frequency. Documents are represented by
the set of contained words without acknowledging word
ordering. This document representation form is known as a
bag-of-word (BOW) document model, and it is used for IR as
well as for document classification and document clustering
purposes (see section 2.5). Raw term frequencies are not
sufficient to determine the discriminating power of terms, and
therefore some additional weighing factors are being used to
scale down the weight of terms using mechanisms that go
beyond the level of a single document. The most common
document-level statistic is the document frequency df t,
consisting of the number of documents in the collection that
contain a particular term t. To return a higher weight for
relatively rare terms as opposed to very frequent terms in the
document collection N, the inverse document frequency idf t of
a term t is used as follows:

=idf
N
df

logt
t (1)

The tf t,d and the idf t are combined into the so-called tf-idf
weighting scheme to generate a score that down-weights terms
that are very frequent in the entire document collection: tf −
idf t,d = tf t,d·idf t.
Documents (and also the user query) can be seen as a vector

with one component corresponding to each dictionary term
together with its corresponding tf-idf score. The score for a
document d would then be the sum over all query terms q:

∑= −
∈

q d tf idfscore( , )
t q

t d,
(2)

Representing the set of documents in a collection as a set of
vectors in a common vector space is called the vector space
model, and it is widely used for free text retrieval.178

Documents are represented as t-dimensional vectors in term
space (t corresponds to the vocabulary size), and the query is
treated as a short document (i.e., a set of words without
specifying any particular query operators between the individual
words). The sequential order in which terms appear in the
documents or the query is lost when using the vector space
representation. Vector operations are then used to compare
documents with queries. The standard way to quantify
similarity between documents and between a document and a
query is to calculate the cosine similarity179 of their vector
representations (defined by distance in vector space using the
cosine of the angle between the vectors), as shown in Figure 5.
The numerator of the similarity equation is given by the inner
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product of the document and query vectors (dot product),
while the denominator is essentially the product of their
Euclidean distances. After computing the similarity scores
between the query−document pairs, the documents are ranked
by decreasing similarity scores (cosine scores) with respect to
the user query. The popular Apache Lucene indexing and
search technology105 supports this model representation and
cosine similarity scoring.
2.4. Information Retrieval of Chemical Data

Figure 6 illustrates the basic IR cycle. There are different ways
of characterizing chemical IR systems. They can be examined in

terms of (i) underlying data sources or document repositories
processed, (ii) types of search query specifications and options
supported, (iii) the system performance when evaluating
retrieval efficiency, and (iv) the document ranking method-
ologies used. Points (i) and (iii) are addressed in sections 2.1
and 2.6, respectively. This section mainly focuses on the kind of
search requests (ii).
Before moving into the kind of search request, a few general

aspects of IR systems must be addressed.
When considering the actor launching a query against the IR

system, we need to distinguish between machine-focused and
human-focused IR infrastructures, with machine-focused
retrieval being primarily characterized by the automatic
transformation, classification, or processing of collections of
unstructured data (typically documents of running text) into
some sort of structured or labeled data, for example, chemical
entries indexed and organized into a chemical knowledgebase

or labeled/grouped document sets. In turn, human-focused
information retrieval requires manually defined search queries
provided by the information-seeking user.
Retrieval systems can also be divided into those that are

characterized in terms of short- versus long-term representation
types of user information needs.180 For somewhat static, long-
term information demands, a common approach is to use
filtering systems.181 Basically, the user has a predefined
information model about the kind of documents that considers
relevant and wants to retrieve new relevant documents as they
enter the document repository. Filtering can also be regarded as
a classification problem where relevance to a class, with respect
to the user information needs, requires assignment of labels to
each document.182 For instance, the ChemXSeer search engine
classifies, Web site no longer available, scientific articles into
those that correspond to chemical documents and those that do
not.183,184

Filtering systems often require an iterative search process
with the aim of tuning the provided query. Some filtering
systems allow periodic query execution, returning the obtained
hits through some sort of alert mechanism. For example, the
My NCBI system allows registered users to set up e-mail alerts
for particular search queries on specified topics at a periodical
basis (e.g., monthly, once a week, or daily email schedule).40

Routing represents another form of long-term IR, similar to
filtering, but with the peculiarity that the documents are only
ranked according to the relevance to the information need, and
without assigning an actual class label.
The most conventional IR system deals with short-term

(mostly one-time) user initiated queries consisting of searches
executed generally through short queries (usually written in
natural language) against large document collections. Often, the
document collection is rather static when compared to the
typical filtering task. The system then returns the relevant
documents as a result to a specified query, and the end user
usually inspects the top hits. Ad hoc retrieval tools are
concerned with current (short-term) and specific retrieval
problems of arbitrary user information demands. The most
prevalent examples of ad hoc retrieval are Internet search
engines, but there are also search engines that are specialized on
chemical document repositories.
Coming back to the kind of search requests (ii), and, as

introduced, chemistry-related information needs, that is, the
topic of issues in which the user is interested, can be
represented through a range of quite heterogeneous query
specifications and their combinations: for instance, through
examination of complex search syntax, by using controlled
vocabulary of thesaurus terms, by means of simple free text
natural language query inputs (all of them being text search
queries) by attempting structure, substructure, and reaction
searches (structure-based chemical searches) or even by
combining/integrating the former (hybrid searches).12 Each
kind of query type used, and the way it is conveyed to the
retrieval system, implies specific technical development in terms
of the chemical information infrastructure. Additionally, search
tasks are associated to particular search objectives and often
subjected to a number of constraints. Thus, in the case of IR
applied to chemical data, it is clear that a single search engine
fitting all user needs might not always be the optimal solution,
as each type of search task implies a particular tuning and IR
setting, and often requires adaptation to attain the most suitable
retrieval efficiency. This section focuses on different text search
queries consisting of natural language text (i.e., words of

Figure 5. Cosine similarity.

Figure 6. Basic IR cycle.
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combinations of words), while structural searches (regardless of
whether the input query is a chemical entity name or its
chemical structure) are described in section 5.3. Chemical text
search systems rely mostly on standard information retrieval
methodologies, described below.
2.4.1. Boolean Search Queries. Boolean search queries

are characterized by precise semantics, computational speed,
and a retrieval strategy that is based on binary decisions (given
a document, the query expression is either satisfied or not). The
Boolean search model, one of the first types of search models
introduced in IR, represents a classic model of retrieval
characterized by an exact match search strategy based on classic
set theory. It is also sometimes referred to as set-based
searching185 or terms and connectors search,186 because
document sets (represented as a collection of words) are
handled using Boolean operators and the search query connects
content-bearing words or terms with content free, logical
operators. The Boolean logic expressions (named after the
mathematician George Boole) rely on the Boolean operators
AND, OR, and NOT. Most chemical and biomedical search
engines support Boolean operation searches. Boolean AND
search implies the co-occurrence of the search terms in a given
document. Boolean OR search is inclusive; that is, it requires
the occurrence of, at least, one of the specified query terms in
the document. Boolean NOT corresponds to the negation of
the query terms, and it is usually included to support more
restrictive queries where a specific term should be absent (i.e.,
setting up filters to narrow the search). It is possible to
construct complex Boolean queries through the nested
combination of multiple query terms connected by Boolean
operators and specifying the order of the constraints. Typically,
queries are processed from a given direction (usually, left to
right), and the operators are applied according to precedence to
avoid ambiguous interpretations of Boolean expressions.
Nested Boolean queries are conventionally expressed by
enclosing the search terms in parentheses, where terms inside
a set of parentheses are handled as a unit.
Complex Boolean search queries are commonly used to

perform a very specialized type of professional ad hoc search,
called technical survey or prior art searches in the domain of
intellectual property and patent search.187

For example, the search “troglitazone AND CYP3A4” would
retrieve all documents containing both of these terms, and it is
obtained by intersecting the postings for “troglitazone” and
“CYP3A4”, that is, POSTINGtroglitazone ∩ POSTINGCYP3A4. The
query “rezulin OR troglitazone” would return all of the
documents that mention at least one of these terms, either
“rezulin” or “troglitazone” or both. It corresponds to the union
of the postings for “rezulin” and “troglitazone”, that is,
POSTINGtroglitazone ∪ POSTINGrezulin.
2.4.2. Using Metadata for Searching and Indexed

Entries. Documents are primarily described through their
actual content, using the BOW representation model (section
2.3) and automatically generated content-based term indices.
As introduced, in most cases documents also have metadata.

Document textual metadata show different degrees of
organization; that is, it can correspond to a field with a small
set of possible finite values or fixed vocabularies (e.g., date/year
of publication, page numbers, source name), but it can also
contain in principle any arbitrary free text (e.g., chemistry
article or patent titles). In the first case, there is usually only a
single so-called parametric index for each field. If metadata
contains free text, the resulting zone index is often comparable

to a regular inverted index. A typical practical use case of
publication metadata is citation searching by bibliographic
retrieval systems, where bibliographic information such as
author names represents a classical user query.
Queries that search against both the textual content and

metadata information require the merge of the results obtained
when scanning the query terms against the standard inverted
index (posting) and parametric indices associated to the
metadata fields. A similar principle is applied for hybrid
searches using queries consisting of chemical structures
combined with textual search terms. Those searches merge
results from chemical intelligence software for the structural
search component with the hits of text search engine strategies
and examine the intersection between the documents satisfying
the structural search and those that satisfy the term mention
constraint.188

Chemical document metadata can be generated manually,
automatically, or semiautomatically (i.e., TM assisted). On the
other hand, index entries can be content-derived or noncontent
based, and they can correspond to controlled vocabulary terms
or uncontrolled vocabulary entries. To ensure consistency and
quality of manually generated document indexes, the
consideration of well-specified indexing rules, that is, how to
extract and manually index documents, is crucial. Resources
such as the Chemical Abstracts Service (CAS) have carried out
manual indexing of chemistry content with keywords and
chemical substance entities for many years. In fact, the first
issue of CAS was published back in 1907, while the CAS
Chemical Registry System to support indexing for Chemical
Abstracts dates back to 1965. Since the mid-1990s, CAS has
provided access to its content through SciFinder (presented in
detail in section 5.3).44

The PubMed database indexes scientific citations using the
Medical Subject Headings189−191 (MeSH) terms. MeSH
consists of a collection of hierarchically structured vocabulary
terms (MeSH Tree Structures) that cover topics relevant for
biomedical subject analysis of the literature. PubMed searches
can include combinations of multiple MeSH terms. In practice,
PubMed translates basic searches into enhanced searches that
take into account automatic mapping of query terms to MeSH
terms and include in the resulting search more specific MeSH
terms (child terms), according to the underlying MeSH
hierarchy.
Chemistry-relevant terms for indexing PubMed records

include the so-called “Supplementary Concept”, which are
keywords that correspond to chemical names, protocols, or
disease terms. “Butyric acid (PubChem CID: 264)” and
“chloroquine (PubChem CID: 2719)” are examples of
Supplementary Concepts indexed by PubMed/MeSH. Since
1996, PubMed indexers have also associated drug and chemical
MeSH terms to their corresponding pharmacological action
(under the pharmacological action MeSH heading). For
instance, the pharmacological action terms indexed for “aspirin”
include “cyclooxygenase inhibitors” and “antipyretics”.

2.4.3. Query Expansion. The use of thesauri, structured
vocabularies, and chemical compound registries facilitates the
capture of synonyms and aliases of each of the concepts or
chemical entities and, as a result, enables the expansion of the
original search query, a process often referred to as query
expansion. The search term is traditionally looked up in the
structured vocabulary list, and its corresponding canonical form
or concept identifier is used to select all of the hits for
equivalent terms or entities that share the same canonical form
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or concept identifier. Thus, query expansion exploits some sort
of predefined term relationships (explicit equivalence classing),
for example, in the form of a query expansion dictionary. When
a query term cannot be found in the query expansion
dictionary, one common alternative is to normalize the query
term (using stemming or case folding) and retrieve equivalent
tokens in the inverted index (implicit equivalence classing);
another alternative is to carry out a fuzzy/approximate string
matching of the query term against the vocabulary list to
retrieve the most similar term string.
Several publishers, including the Royal Society of Chemistry

(RSC), have tried to complement strategies based on manual
indexing of documents with automatic indexing approaches (by
using chemical named entity recognition software, discussed in
more detail in section 3), aiming to systematically mark/tag
publication contents and aid in chemical entity searches. This
strategy can be regarded as a way of semantically enriching
publications with chemical information and enables content-
derived indexing, specifically chemical compound indexing.
2.4.4. Keyword Searching and Subject Searching. The

annotation of documents with chemical information, obtained
either through automatically recognized chemical entities or by
manual indexing, is commonly used to populate databases,
which host the chemical metadata information, including
chemical names, connection tables, and referring documents.
Chemical metadata can be used directly to generate chemistry-
aware searchable indices and to support chemical semantic
searches or substance searches. Automatic chemical concept-
based indexing can thus be regarded as a strategy to yield
semantic enrichment of documents, and constitutes a key
element of subject searches.
In this context, it is noteworthy to distinguish between two

types of search classes, between keyword searching, which does
not depend on predefined indexing concepts (uncontrolled
vocabulary), and subject searching, where search queries rely on
predefined indexing concepts (controlled vocabulary).
Subject searches (also known as topic or thesaurus searches)

return only those document records that have the search term
in the subject heading field. This implies that subject searches
examine only specific subject terms rather than the content of
the document itself. Subject searching enables one to retrieve
particular categories of information encoded as predefined
(controlled) vocabulary terms or subject heading terms
assuming that all items concerning the same subject are
prearranged and searchable together. A single, unifying term is
used for an abstract concept or chemical entity, and a set of
related concepts or a class of compounds are mapped to this
unifying concept. This empowers search flexibility, charac-
terized by the underlying way in which subject terms are
structured and by the use of more specific subheadings that
allow focusing the searches. Subject searches may rely on the
name of a specific chemical compound or words that stand for
classes of compounds, as exemplified earlier for PubMed
(MeSH) and SciFinder searches. This implies that the key
concept of interest has to be expressed via a subject term, which
for complex search types might require the combined use of
multiple subject terms. Occasionally, the actual wording used to
encode subject terms might not be very intuitive, and therefore
may require the identification of the preferred indexing term
when the subject query is somewhat different from its
corresponding subject term. Strategies to aid users in building
a subject search include autocompletion searches, partial
matches of query terms and thesaurus entries, and browsing

the subdivision lists or hierarchically structured term lists. The
thesaurus internally connects alternative expressions or
interchangeable terms for a specific concept. The MeSH
headings linked to a particular document represent concepts
that are a major focus (main topic) of the article. On the other
hand, SciFinder employs a CA thesaurus to organize controlled
search terms. The CAS vocabulary control system (CA Lexicon
on STN thesaurus) is structured as a hierarchy of broader and
narrower terms, as well as linked terms, previously used terms,
and related terms. Scientific terms are grouped into scientific
concept families, and chemical substances for frequently
indexed chemicals are organized into compound classes
together with their common synonyms. SciFinder automatically
processed subject searches account for both singular and plural
subject words, spelling variants, and common subject term
abbreviations. Concept-based retrieval systems that support
synonymy searches also include the Essie search engine, which
lets nonmedical experts search using less technical terms (e.g.,
“heart attack” for the clinical term “myocardial infarction”).192

Subject searches represent a powerful retrieval strategy for
topics well covered by indexing subject terms.
When there is little information about a given chemical topic,

users want to look for words wherever they may occur in the
documents, or when multiple query terms need to be combined
in complex ways, keyword searches provide a superior search
flexibility. Keyword search queries, also called free text searches,
express the query through free text natural language
expressions, as opposed to predefined controlled vocabulary
terms. They are overall similar to Internet searches carried out
by search engines like Google, in the sense that the query terms
are directly compared to the words contained in the target
documents.

2.4.5. Vector Space Retrieval Model and Extended
Boolean Model. The classical Boolean search model is an
overall binary classification strategy that assumes equal weight
for all query terms. Therefore, it provides unordered result lists.
On the other hand, the vector space retrieval model facilitates
the calculation of query−document similarity scores as a base
for result ranking, but lacks the structure inherit in standard
Boolean query formulations. The extended Boolean model, also
known as ranked Boolean retrieval or p-norm model, can be
regarded as a compromise between the classical Boolean model
and the vector space query model.193 This strategy preserves
the properties of Boolean algebra and the underlying query
structure while incorporating the use of partial matching and
term weights to compute query−document similarities. Addi-
tionally, query expansion approaches are commonly integrated
together with the extended Boolean query processing for recall
improvement.

2.4.6. Proximity Searches. A refined search strategy that
allows reducing the number of potentially irrelevant hits is
proximity search. Proximity searches have been explored by
chemical information retrieval systems to look for words that
appear close to each other in a given document.188 The
underlying assumption of this approach is that proximity
between search terms implies a relationship between those
words, and thus documents where the query terms appear close
to each other should have a higher relevance. For instance,
particular scientific ideas or topics might be discussed in
documents within a single sentence, sentence passage, or into
paragraphs. Proximity search allows retrieval of documents
where two or more separately matching term occurrences are
mentioned within a specified distance. Proximity distance is
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typically measured as the number of intermediate words (or
sometimes characters) between query terms, and thereby
constraining returned hits to those documents where specified
terms are within the particular maximum proximity distance
(proximity-search limit). Proximity searches are powerful to
filter results where the query terms are scattered across the
entire document, that is, merely co-occur anywhere in the
document.
In principle, it is possible to distinguish between implicit/

automatic and explicit proximity searches. In the case of implicit
proximity searches, the retrieval system automatically applies
proximity information to generate the search results, while in
the case of explicit proximity searches, the user needs to specify
proximity constrains in the query. General Internet search
engines normally employ implicit proximity searches. The
retrieval results are essentially the same for implicit and explicit
searches when only two query terms are used. Nevertheless,
when more than two search terms are used, explicit searches
enable the definition of subsets or groups of keywords (state
the order of term relations) to be considered for the proximity
search. In practice, this is particularly important for prior art
searches. Another classification of proximity search types is
based on word order constraints, that is, whether the order
specified in the search query is preserved in the returned hits or
not (query terms are in any order in the searched text).
Search engines and chemical information retrieval systems

use different query syntax to express proximity searches.
Overall, special sets of predefined proximity operators or
connectors are used to join together search terms. Among
widespread syntax types used to express proximity searches are
term1 NEAR/n term2 (used by the Web of Science search
system, the Cochrane Library search,194 or Exalead195), term1
W/n term2 (used by the Scopus online retrieval tool), term1
/n term2 (used by Yandex196), term1 near:n term2 (used by
Bing197), term1 AROUND(n) term2 (Google198), and S
term1(nA)term2 (used by CAS STN199), where n in all cases
corresponds to the number of maximum words separating the
query terms, and term1 and term2 do correspond to user
entered search terms. The use of proximity operators has also
been explored as a feature for chemical search engines.188

Several retrieval systems allow left-to-right ordered proximity
search; that is, query terms are near each other in the order
specified by the search query. For instance, in the Scopus online
retrieval tool, ordered proximity search is specified by the query
syntax term1 PRE/n term2, and in CAS STN searches by using
S term1(nW)term2, where n is the number of words separating
the first term from the second term. Moreover, search engines
specify the order or preference of the various operators, usually
assigning a higher strength to the order proximity term pairs.
CAS STN searches support additional co-occurrence con-
straints between query terms, such as those where search terms
have to co-occur within the same sentence or within the same
paragraph.199

To support proximity searches, information retrieval systems
require indexing of word position information for individual
word occurrences found within the documents; that is, they
need the index information to capture term position
information in the documents. So, the indices are organized
in a manner that information relative to whether words appear
near each other in a document is captured. Search engines may
exploit term offset information to provide word-in-context
snippets for online display or for query term mention visual
highlighting. Positional indices are also important for KWIC

Keyword in Context searches, a term introduced by Hans Peter
Luhn who was also one of the pioneers in the development of
early chemical compound search engines.200 KWIC systems
require sorting and aligning all occurrences of the matched
query word together with the surrounding context on both
sides of the word.
Proximity searches are very sensitive with respect to the used

tokenization software. Section 2.2 provides a detailed character-
ization of the various tokenization strategies with emphasis on
chemical texts. Hyphenation and quotes pose a challenge for
many existing retrieval systems that are unaware of chemical
naming characteristics. For instance, the chemical entity name
“1,1-diphenyl-2-picrylhydazyl” would not be directly found by
search engines depending on how they handle hyphen
characters. The PubMed database preserves certain characters,
such as hyphens and quotes, during the indexing step to handle
chemical names better and improve retrieval of substances.

2.4.7. Wildcard Queries. Partial chemical names searches
and tolerant retrieval approaches, based on wildcard and regular
expression queries, are an alternative to complete chemical
name searches. Wildcard queries can be efficient to account for
typographical errors, cases of unclear spelling, and variants of a
particular search terms, and to achieve term expansion using
wildcard searches. There are an increasing number of retrieval
engines that support various types of wildcard searching.
Wildcard searches are sometimes referred to as truncation
searches, because the most frequent type of wildcard search
corresponds to queries using a shortened form of the original
search term, commonly its word root, combined with
truncation symbols or operators.
IR tools employ different special characters that are

interpreted by each system as truncation operators. Wildcard
symbols can be regarded as a type of meta-character. The most
widespread truncation symbols are *, $, and also !, ?, #, and l.
The hash mark (#) traditionally matches one or zero characters
at the end of the search term, while the exclamation point (!)
usually matches one character at the end or within a term. The
* (asterisk) truncation operator (also known as Kleene star)
constitutes the most extensively supported truncation symbol
and is used to allow searching for alternate word forms. The ?
operator usually matches exactly one nonspace character; that
is, it matches all terms that have any single character or no
character in the position occupied by this symbol (single
character replacement or truncation).
Special data structures need to be implemented in retrieval

engines to enable wildcard searches, usually exploiting character
n-grams for partial matching. A character n-gram can be
represented through a sliding character string or window
against terms in the inverted index. Search trees and hashing
algorithms can also be used for wildcard matching. Trailing
wildcard queries are often implemented through normal B-tree
searches201 and leading wildcard queries through reverse B-tree
algorithms using a term index dictionary written backward. For
example, the wildcard query “succin*” will match any word
starting with the string “succin”, such as “succinate”, “succinic”,
or “succinates”. Searching with a long prefix reduces the
number of terms that need to be visited by the candidate term
index dictionary matching strategy. In practice, users should
define meaningful truncated query terms to avoid unwanted
matches. Noteworthy, prefix queries do not usually enable
relevance scoring. The SciFinder chemical search engine applies
autotruncation of query words, which means that common
wildcard symbols like the asterisk are ignored. The PubMed
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database supports wildcard asterisk searches, but only for search
term end-truncation (e.g., “toxicol*”), and it does not support
single character truncation; also, in the case of phrase searches,
only the final word in the phrase can contain the truncation
operator (“ammonium succin*”). PubMed does not recom-
mend using truncation searches because it does not allow
automatic term mapping to MeSH terms and may result in a
search time out. Moreover, PubMed limits retrieval to only the
first 600 variations of the truncated term. Currently, SciFinder
does not support truncation in research topic searches, but
command-driven searches in STN do.
2.4.8. Autocompletion. Autocompletion, autosuggestion,

or automatic phrase completion algorithms aim to retrieve the
most suitable completion for a user-provided search prefix
consisting of the first few letters of some query term.202 The
autocompletion method suggests automatically (or after some
predefined key stroke) appropriate words and phrases to
continue the typed sequence of input characters. Autocomple-
tion relies ultimately on computation of string similarities
between the user search and a range of candidate
corresponding words. Depending on the actual implementa-
tion, these autocompletion candidates typically correspond to
previously entered text strings/searches, particular controlled
vocabulary terms, and inverted index terms. Simple autocom-
pletion methods compute the edit distance of the user query
against an index of controlled vocabulary terms, while more
advanced autocompletion mechanisms integrate statistical
models of frequent user mistakes through weighted edit
distances and expected input by a character language model.
The PubMed database offers autocompletion search features
based on query log analysis. Sections 2.3 and 3.4 provide a
more detailed description of text string similarity calculation
techniques.
2.4.9. Spelling Corrections. User queries often contain

misspelled or alternative spelling variants of words or chemical
names. In fact, around 26% of the query terms entered to Web
search engines have been estimated to contain misspellings.203

Efficient chemical information retrieval tools need to be
tolerant to spelling mistakes and inconsistent word selection.
Chemical entity recognition approaches (section 3) have also
to deal with spelling variations and errors when finding
chemical mentions.
Spelling correction can be regarded as a practical application

of the noisy channel model, where the system receives a user
input text and returns a corrected form.204 This implies that
search systems have to carry out spelling correction before
looking for matching documents. Alternatively, they might
provide means for spelling suggestion by returning a ranked
spelling aid list consisting of candidate terms, where the final
search is carried out with the user selected suggested spelling
correction. Computational techniques for spelling correction
have been initially proposed back in 1964.205 An exhaustive
explanation of spelling correction algorithms (spelling checkers
or spell checkers) is beyond the scope of this Review. The most
frequent strategy underlying spelling correction algorithms is
the computation of proximity or similarity measures between
the misspelled query and the corrected forms contained in a
dictionary of words that are believed to be correct (character n-
grams overlap). The words in a dictionary of correct spellings
that are most similar to a given misspelling are identified either
by maximizing the string-to-string similarity or, alternatively, by
minimizing the string-to-string edit distance.206,207 Therefore,
string similarity programs calculate the lexical distance between

strings, defined as the minimal number of edit operations
(insertions, omissions, substitutions, or transpositions of two
adjacent characters) needed to convert one string into
another.208 For instance, the edit distance, also known as
Levenshtein distance, between the strings “octadeinol” and
“octadienol” is two. In practice, the different types of edit
operations are commonly linked to different weight settings
reflecting the likelihood of letters substituting each other. This
results in the so-called weighted edit distance calculations.
The common steps tackled by spell checkers are error

detection followed by error correction. Basic details of English
spell checking computational methods are discussed in refs 209
and 210. General-purpose spelling checkers match the user-
entered string against computer readable dictionaries. Spelling
correction approaches have also been tailored to handle
scientific texts,211 and are critical to improve the quality of
the noisy text returned by OCR software (discussed in section
2.2), which generally contains a considerable number of
substitution errors as opposed to user-entered keyboard
misspellings.
The main types of misspellings are typographical errors and

phonetic errors. The former consist of misspelled words with
spelling similar to that of correct candidate words, while the
latter refer to misspelled words with pronunciation similar to
that of the correct candidate words. Phonetic errors typically
require the generation of phonetic hashes for each term to be
able to group words that sound similar, a process carried out by
so-called soundex algorithms.
Before calculating the string-to-string edit distances, spelling

checkers usually carry out certain heuristic processing steps,
such as converting all letters to the same case, transforming
spaces to texts without space, deleting automatically inserted
hyphenation, and replacing ligatures. Other widespread
heuristics imply the restriction of search terms to those starting
with the same letter as the query string or changing certain
triple letters to double letters. When building in house retrieval
solutions, the Lucene API SpellChecker is a convenient
solution.105 Both the SciFinder retrieval system as well as
PubMed212 support spell checking. In the case of PubMed,
instead of using a dictionary of correct spellings, it relies on
term frequencies in PubMed to suggest alternative searches
(PubMed “Did you mean” function). This function is more
suitable for providing alternatives for multiword queries. In
turn, SciFinder employs a spelling algorithm to automatically
detect misspellings and allows searching for alternative
spellings.
Spelling and pronunciation of English chemical names has

been a long studied subject213 and so is the analysis of chemical
spelling correction approaches.214 In the beginning of the
1980s, the SPEEDCOP (Spelling Error Detection/Correction
Project) project, carried out at CAS, resulted in the
implementation of a n-gram-based approach for the detection
of candidate chemical spelling errors and their manual
correction by human indexers.211,215 Kirky et al. proposed a
method to assist users to correct erroneous systematic organic
chemical names, providing a detailed characterization of error
types and the implementation of chemical spellchecker based
on simple lexical rules, chemical grammar modification, and
soundex check.216

Even though chemical names initially have been spelled
differently in different parts of the English speaking countries,
according to the IUPAC guidelines chemical names should now
be written using international standard spellings.217 Simple
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dictionary-based chemical spell-checkers have been developed
not only for retrieval purposes but also as components to assist
users in correct chemical spelling when using word processors,
such as Microsoft Word or OpenOffice.218 Also, chemical name
misspelling recognition is part of the preprocessing steps
carried out by the CaffeineFix software to recognize chemical
entity mentions in patents.119 Chemical patents contain a
considerable amount of typographical misspellings and OCR-
associated errors. This chemical spelling correction approach
uses chemical text tokenization and fuzzy string matching,
allowing a limited number of mismatches between the input
string and the dictionary entry. The use of white word lists, to
identify potential spelling errors and candidate terms pairs
where correction should be avoided (e.g., herein to heroin or
cranium and uranium), can reduce errors in automatic chemical
spelling correction. ChemSpell is a web-based chemical
information system for chemical name spellchecking.219

ChemIDplus220 is the computer-readable dictionary used by
ChemSpell. It relies on string similarity, lexical distance
calculation between strings, and phonetic rules to produce
phonetic keys of input words, similar to soundex algorithms. An
example phonetic rule is the transformation of “ph” to “f”,
which would imply that “sulphur” and “sulfur” would share the
same phonetic keys. ChemSpell returns for a user-entered
misspelling, a list of alternate spelling suggestions. Also, it
incorporates a set of heuristics, such as limiting the chemical
keys to a maximum of 100 characters, converting all strings to
lower case, and ignoring certain characters, such as numeric
locants and punctuation characters, Greek letters, and stereo
descriptors.
2.4.10. Phrase Searches, Exact Phrase Searching, or

Quoted Search. There are cases where the information need
or search topic is commonly articulated in documents by means
of some frequently used phrases or expressions. Under such
circumstances, phrase searches (also known as exact phrase
searching or quoted search) can constitute a practical search
strategy.221 In fact, according to some estimates, over 11% of
web searches contain phrase queries.222 These searches
essentially consist of fixed phrases or strings of text, usually
some particular multiword expressions. This implies that the
documents retrieved by the search system have to contain
exactly the same search statement provided in the user query,
with exactly the same wording and order. The search syntax
employed for phrase searches uses quotation marks (usually
double quotes, and less frequently single quotes or braces)
around a specific query phrase to force phrase searches.
Note that, depending on the underlying retrieval implemen-

tation, phrase searches and search terms combined with
proximity operators may return different hits, because proximity
searches often incorporate word normalization to account for
variant word endings. Internally, several indexing strategies
(and their combination) can be exploited to support phrase
searches more efficiently than to process all documents in the
collection sequentially. One approach relies on biword indexes,
that is, indexes that consist of two consecutive words treated as
a single vocabulary term, and then applying techniques similar
to those previously introduced for the inverted index processing
(see section 2.3).11 This method is powerful for phrase searches
for pairs of consecutive search terms (phrase query of two
words). An extension of biwords, using variable length word
sequences, is known as the phrase index approach. Both of
these strategies have to deal with a large set of vocabulary.
Phrase searches can also be enabled through the construction of

an inverted index with position information. This technique
retrieves first the intersection of documents, where all of the
search terms of the phrase co-occur (merging positional posting
lists). It then examines the corresponding positional
information of the terms to select those records where search
terms are immediately adjacent, in the same order as in the
query.

2.5. Supervised Document Categorization

2.5.1. Text Classification Overview. Keyword searching
in patents is not fully efficient as patent language can be too
legal and text terms are rather general to have a broad scope of
protection (e.g., medical uses of compounds). As an initial
guide for patent examiners, patent documents are hierarchically
classified on the basis of the contents of the patent by using
manually assigned classification codes, such as IPC codes.
Therefore, most patent-related searches rely on the use of the
classification codes assigned by patent offices (e.g., IPC), which
are commonly combined with keywords (and additional
metadata). Automated patent classification can increase the
quality of the information obtained as well as reduce the error
rate of the tedious handcrafted patent classification.223

Text retrieval is prototypically associated with some
momentary information needs, with emphasis on how to best
rank a set of documents returned by a search. Filtering is a
particular type of retrieval approach, which implies a more long-
term retrieval interest. Text filtering can also be regarded as a
particular application type of text classification.224 Text
classification is a rather broad term that refers to any kind of
assignment of documents into classes. In this context, classes
can refer to any particular topic, but also to a certain language,
author, or year. Text categorization is a subtype of text
classification that requires a predefined classification scheme, in
the sense that documents are assigned or sorted by content into
predefined categories or labels. Note that, in practice, the term
text classification is often used instead of text categorization.
Text classification approaches date back to the beginning of the
1960s,225 but their practical widespread use started during the
first half of the 1990s.224

The main difference between document ranking and
classification is that, in ranking, documents are essentially
ordered by some property, while, in classification, a class label is
assigned to each document.
Text classification can be defined as, given a set of documents

D = {d1, d2, ...dm} and a fixed set of topics or classes C = {c1, c2,
...cn}, determine the topic of d being d:c(d) ∈ C, where c(x) is a
classification or categorization function whose domain is D and
range is C.
The class labels or categories are associated to some

conceptual classification scheme that defines the basic
characteristics of membership of a document to a particular
class. Although in this subsection we refer to documents as the
textual unit or object of classification, in practice, text
categorization methods can be applied to any arbitrary textual
unit, such as phrases, sentences, abstracts, passages, figure/table
legends, full text papers, patient electronic health records,
patents, entire article collections, or, in principle, even
individual words.
Representative examples of general text categorization cases

include assignment of labels to documents according to
particular topics,226 genres,227 sentiment types,228 or domain-
specific binary categories (e.g., relevant or nonrelevant to a
specific subject).229 In fact, the most frequent type of
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implementation is the assignment of documents into two
mutually exclusive classes, commonly known as binary or two-
class text classification, as opposed to multiclass classification,
where c > 2 classes, often implemented as n binary classifiers.
Text classification can take manual or automatic approaches.

Manual classification requires assignment of classes to docu-
ments by human experts, usually according to certain
classification guidelines or specifications. Manual document
labeling by experts is considered to be very accurate and
consistent for manageable-sized collections and small annota-
tion teams. However, such labeling is rather time-consuming
and difficult to scale to larger document sets. Recently,
crowdsourcing has gained popularity as a strategy for labeling
text and generating manual annotations, that is, as an approach
that outsources labeling tasks to annotators recruited through
Internet services.230,231

Manual document classification is carried out for the
PubMed (expert annotation of MeSH terms) as well as for
TOXLINE.49 Moreover, several text annotation tools232 and
document labeling applications have been developed to speed
up this manual process.233 Currently, manual document
labeling is often used in combination with Automatic Text
Categorization (ATC) methods, either to review uncertain or
difficult cases, or to prepare training and evaluation data sets for

ML based text categorization. Also, patent documents are
hierarchically classified on the basis of the contents of the
patent by using manually assigned classification codes, such as
IPC codes. Some efforts for automatic IPC assignation have
been pursued.234

Automatic text categorization can be achieved by hand-coded
rule-based systems, where some expert writes manually a set of
rules that, in turn, are applied by machines to automatically
classify documents. For example, a rule may assign a particular
category to a document if it contains a manually specified
Boolean combination of words or terms. Among others, expert
rules have been used to assign ICD-9 codes (International
Classification of Diseases, 9th revision) to clinical docu-
ments.235 A simplified example expert rule for ICD-9 document
coding would be as follows.
Rule: IF “pulmonary collapse” ∈ d OR “atelectasis” ∈ d AND

“congenital atelectasis” not ∈ d AND “tuberculous atelectasis ”
not ∈ d.
ASSIGN label ICD-9-CM 518.0.
Hand-coded rule-based systems usually show a very high

accuracy, but require manual expert refinement over time and
are difficult to adapt to different document collections.
Nowadays, the most widespread approaches for automatic
text categorization make use of supervised ML algorithms

Figure 7. Simplified flow diagram for supervised text categorization.
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where the “machine” learns statistical models from training
data, that is, example objects (documents) tagged by hand with
class labels. The resulting model is then applied to predict class
labels for new, unlabeled objects.
Figure 7 illustrates a simplified flow diagram for supervised

text categorization.
So, the aim of supervised text classifiers is to build

categorization functions (classifiers) that assign a class to an
unlabeled document on the basis of some statistical model that,
one way or another, measures how “similar” or probable it is
that the given document belongs to each possible class. Clearly,
there are two distinct phases associated to supervised text
categorization, the training phase during which the classifier
(categorization function or schema) is generated, and the
prediction phase, during which the learned model is applied to
new data to predict class labels for each item. Ideally, the
document data sets used for training, evaluation, and cross
validation should be separate, nonoverlapping sets (randomly)
sampled from a common collection.
2.5.2. Text Classification Algorithms. Practically all of

the standard classification algorithms have been applied to text
categorization tasks. It is beyond the scope of this Review to
introduce the ML algorithms used for text categorization. For a
general overview on these algorithms, refer to refs 224 and 236
or to ref 237 for bioinformatics use.
Most of the ML algorithms used for text categorization

employ some sort of vector space representation model.178

Among the most popular methods are Naiv̈e Bayes
classifiers,238,239 support vector machines (SVMs),240,241

Rocchio algorithm,242 logistic regression,243 neural nets,244

boosting algorithms,245 decision trees,244 and nearest neigh-
bors.246

Typically, text categorization pipelines integrate some basic
preprocessing, text tokenization, feature vector generation,
feature selection, and model generation modules as well as
model validation components. Despite the method, it is
necessary to define for the input objects, that is, the documents,
a set of features that hold predictive potential to build a good
classifier. The basic model of representation of documents for
text categorization is some kind of word-based, vector space
representation or BOW representation (see details in section
2.3).
Going beyond the BOW representation, it is possible to

distinguish different levels of input features. The subword level
features are usually composed of text patterns consisting of
character n-grams,247 that is, strings or substrings of n
characters like the following 5 g: “cance”, “oncog”, and
“tumor”. Word-level features include single words and lexical
information (part-of-speech tags). Multiword level features are
usually phrases (e.g., noun phrases) and syntactic units, co-
occurrence patterns of words, or word n-grams. Semantic level
features represent particular units of text associated with certain
concepts, entity mentions, or indexing with a fixed vocabulary
(e.g., chemical entity mentions or MeSH terms). Pragmatic
level features consider the structure and contextual information
of the document. Finally, metadata information can also be
encoded into feature information.
A key aspect influencing the performance of text

categorization methods is the selection and extraction of
suitable features from documents that represent only those
aspects that are informative to correctly assign labels (eliminate
noise). This implies identifying processes for removing, from
the large number of features associated to text collections,

irrelevant or inappropriate attributes, and thus improving the
generalization (performance) of the model, avoiding overfitting,
increasing computational efficiency, and reducing classifier
training time.
During the feature subset selection step, only a subset of the

original attributes is chosen. Typical selection or filtering
criteria comprise stop word removal, elimination of non-
alphanumeric words or numeric expressions, and use of word
character length cut-offs (e.g., retain only tokens with length
greater than n characters). Another common feature filtering
relies on is statistical feature selection strategies. This can mean
applying a simple frequency threshold246 or sorting all features
by their absolute frequency and retaining only the top n most
common features. More statistically sound criteria for feature
ranking (and selection) are based on hypothesis testing through
chi-square measures,246 information theory-based approaches
using mutual information (MI) or information gain (IG),248 the
use of odds ratios,249 or the choice of attributes on the basis of
cross-validation results.250

Despite the importance of feature subset selection to reduce
the dimensionality and noise of textual data, for categorization
purposes, it is advantageous to be able to group equivalent
items from the original set of features terms even if they do not
share the exact same character string. Building new features
through the combination or processing of original features is
called feature construction. Classical feature construction
approaches include morphological preprocessing, like stem-
ming or lemmatization, conversion into common cases (usually
lower case), thesauri matching, term clustering, and spelling
correction. Statistical classifiers require that features are linked
to some numerical value or feature weights. Widespread feature
weighting scores are tf (term frequency) and tf-idf (detailed
previously in section 2.3).
Traditional supervised learning techniques require, at the

beginning, the creation of the entire set of manually labeled
training and validation data, followed by the construction and
training of the classifier. This scenario, where the training data
that will be manually labeled were randomly selected, is known
as passive learning. An alternative to this setting, with the goal
of reducing the needed amount of manually labeled training
data, is called active learning.251 Active learning is usually an
iterative process in which first a classifier is trained on a small
seed set of manually labeled sample documents and then
applied to unlabeled data. From the data are chosen items with
predicted labels produced by the classifier potentially
informative cases for manual revision and labeling, and
subsequent addition to the original training set for model
retraining purposes.

2.5.3. Text Classification Challenges. Text categorization
strategies face several challenges. From the theoretical point of
view, the main obstacle is the accurate definition of classes and
how/whether document objects can actually be differentiated
according to the proposed class labels. Among the existing
practical challenges are the selection of suitable models and
algorithms for the classification task, intrinsic class imbalance252

(e.g., for binary classification irrelevant documents usually
significantly outnumber relevant records), the heavy manual
workload associated to generating a sufficiently large
representative training data set, and the selection of suitable
classification features. Other issues that need to be examined
carefully while developing automatic text categorization systems
are overfitting, parameter optimization for some of the
algorithms, and the computational cost associated to dealing
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with high dimensional feature spaces and its effect on the
performance of the classifier.
Text categorization offers a way of selecting documents that

are of relevance for the extraction of manual annotations or to
run on the natural language processing software, and extract
chemical and biomedical entities and associated relations. Spam
filtering, word sense disambiguation, and automatic metadata
generation224 are well-known use cases outside the chemical
domain. Automatic text categorization has been heavily applied
to process scientific data, mainly scholarly articles, paper
abstracts, medical records, and patent documents.
Customised classifiers have been implemented for a broad

range of biological and medical topics of chemical importance.
Text categorization approaches have been used to identify
abstracts related to stem cell biology,253 the cell cycle
process,254 mitotic spindle formation,255 to detect sentences
about transcript diversity,256,257 and to sort model organism
literature according to specific developmental, cellular, and
molecular biology topics,255 among others.
A number of studies used supervised learning methods to

detect abstracts describing protein−protein interaction in-
formation and thus improve literature curation in domain-
specific databases.229,258 Such effort motivated the implementa-
tion of an online application called PIE for scoring PubMed
abstracts for protein−protein interaction associations.259 Text
classifier-based literature triage for data curation was used to
find articles with peptide information relevant to the PepBank
database,260 and a Naiv̈e Bayes model was applied to discover
documents characterizing epitopes for immunology database
annotation.261 Moreover, several classification systems for
protein subcellular location prediction have been implemented
using ML methods.262−264

A particular prolific application area for text categorization is
the recognition of medical and disease-related documents or
sentences. Text classifiers were tested for screening research
literature with respect to genetic association studies,265

association to melanoma and skin cancer,266 genome
epidemiological studies,267 or to classify sentences from
randomized controlled trial abstracts in PubMed into one of
four sentence types (introduction, method, result, or
conclusion).268 SVMs together with Naiv̈e Bayes and boosting
algorithms were explored to find articles related to internal
medicine in the areas of etiology, prognosis, diagnosis, and
treatment.269 Apart from scholarly documents, electronic
clinical records270 and web-pages271 are also considered,
especially in the oncological domain.272

Text classifiers have also been implemented to improve the
detection of associations/relations between drugs and chem-
icals to genes (pharmacogenetic associations)273 and drug-
induced adverse toxic effects.274 A combination of k-NN-based
text categorization together with a chemical dictionary has been
used to improve the performance of chemistry-centric search
engines.275

Using specially trained classifiers has the advantage that these
systems usually have competitive performance and do not
require the preparation of any extra training data by end users.
Nonetheless, in practice, such systems are not necessarily
relevant to the topic of interest for a given use case scenario.
Several general-purpose classification systems have been
published that enabled the classification of PubMed abstracts
with user provided training data, like PubFinder276 or
MScanner (validated using example cases from the radiology
and AIDS domain).277 Furthermore, MedlineRanker is still a

functional online application for PubMed classification through
user-provided training records.278 This system enables the end
user to input lists of PubMed identifiers as training data, or to
use surrogate free-text or MeSH term search query output data
collections.
A rather novel application type of text classifiers is ranking or

prioritizing entities mentioned in the classified documents.
Geńie is an online application that generates, for a user-
provided training set of abstracts (e.g., records discussing some
particular biochemical topic), a text classifier model applied, in
turn, to classify the entire PubMed database. In this sense, it is
rather similar to the previously described MedlineRanker
system. In a second step, it ranks all of the genes of a user’s
defined organism according to the scores and classification of
the associated PubMed records.279

Alkemio uses a similar strategy for ranking chemicals and
drugs in terms of their relevance to a user-defined query topic
(document training set). Relevance of PubMed abstracts for the
query topic is calculated with a naiv̈e Bayesian text classifier,
while chemical/drug ranking is obtained by computing P-values
statistics for all chemicals using random simulations.280 More
recently, Papadatos et al. reported a document classifier, freely
available, designed for prioritizing papers relevant to the
ChEMBL corpus for posterior annotation that are not in
journals routinely covered. The BOW document classifier was
trained on the titles and abstracts of the ChEMBL corpus using
Naiv̈e Bayes and RF approaches. Documents are scored
according to the “ChEMBL-likeness” score.281 With similar
purpose, the document relevancy score was created for
improving the ranking of literature for the curation of
chemical-gene-disease information at the Comparative Tox-
icogenomics Database (CTD) from PubMed abstracts and
titles. Retrieved results were analyzed on the basis of article
relevance, novel data content, interaction yield rate, mean
average precision, and biological and toxicological interpret-
ability.282,283

2.5.4. Documents Clustering. Under some circumstances,
for a given document collection, a predefined class definition
might be missing, or a training set of annotated documents is
unavailable, but nonetheless there is the need to classify the
individual items into groups. In this case, the program should
identify classes without human feedback, meaning that the
machine chooses the classes. This type of strategy based on
classification by automatic means, where the machine learns
without human feedback, is known as unsupervised learning
(UL). The principle behind document clustering is to organize
the documents from a collection into groups based on how
similar their contents are, defined basically by the words (and
their weights) they have in common. Clusters of similar
documents (in terms of contents) can be obtained using one of
numerous standard clustering methods. Refer to ref 284 for a
classical review on document clustering strategies.
Clustering is often used in practice for exploratory text

analysis. Typically, it is performed either at the level of
documents and based on the contained words (document
clustering), or at the level of words/terms based on the
documents in which those are mentioned (term clustering).
Term clustering attempts to group similar words. Note that
document clustering is very sensitive to the characteristics of
the document collection, because the implicit grouping of a
document depends on the content of the other documents in
the collection (interobject similarities).
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For clustering purposes, a vector-like representation of
documents or document parts following the conventional
vector space model is commonly applied. To discover the
clusters within the document collection, clustering algorithms
generally try to maximize the intracluster document similarity
and minimize the intercluster similarity scores. A documents
cluster is generally represented by a so-called centroid vector,
consisting in the simplest case of the normalized sum of the
document vectors belonging to that cluster. Clustering
strategies commonly try to minimize the average difference of
the documents to their cluster centers. The topical terms from
each cluster can be selected from words that represent the
center of the cluster to generate a more descriptive summarize
of the documents in the cluster. Individual documents
correspond to the leaf nodes of the cluster tree.
Document similarity scores between individual documents, a

particular document and a cluster, or between different clusters
can be calculated using the cosine measure introduced in
section 2.3. Document similarity was exploited to find similar
abstracts within the PubMed database with the aim of detecting
potential cases of plagiarism,285 or to calculate, given some
user-provided text passage, the most similar records contained
in PubMed.286,287

Classical clustering techniques have been applied extensively
to automatically group documents, with k-means clustering and
hierarchical agglomerative clustering (HAC) among the most
widely used techniques. k-Means document clustering is a top-
down approach for distance-based flat clustering, which
requires that the number of clusters, the parameter k, have
been specified in advance. HAC288 is a bottom-up clustering
algorithm that requires the calculation of a pairwise document
similarity matrix SIM[i,j], where every pair of documents is
compared and then pairs of documents that are most similar to
each other are grouped together. The same principle is followed
for grouping documents. The output of HAC is typically a
dendrogram of clusters.
There has been rather limited use of document clustering

techniques to process chemistry-related document collections.
Nevertheless, document clustering was used to analyze the
content-based structure of the documents returned by IR
systems289 or to group documents returned in response to a
user query.290 Clustering was used to potentially improve
efficiency of ad hoc retrieval under the assumption that when
retrieval is restricted to the top clusters (and the documents
belonging to them), instead of processing the entire document
collection, a reduced number of documents need to be
processed. Other common application areas of text clustering
include document summarization (clustering similar sentences
or paragraphs) and text segmentation of large documents that
describe a variety of topics, with the aim of producing smaller
semantically coherent portions.
A number of document clustering solutions have been

implemented to process records contained in the PubMed
database, representing records not necessarily in terms of the
words contained in titles or abstracts, but by standard
vocabularies linked to the records (e.g., MeSH terms).291,292

Among these solutions are XPlorMed,293 GoPubMed (groups
abstracts according to the automatically indexed Gene
Ontology terms),294 PubClust,295 McSyBi,296 Anne O’Tate297

(which uses MeSH-term based clustering), PuRed-MCL,298

and BioTextQuest+.291 Lin and colleagues carried out a
detailed study related to clustering PubMed records where a
document-by-word matrix representation was used together

with k-means clustering.299 Each cluster was returned together
with a set of summary sentences, informative keywords, and
MeSH terms. The BioTextQuest+ system processes both
PubMed and the Online Mendelian Inheritance in Man
(OMIM) databases. Results of user provided search queries
can be clustered using different similarity metrics, including the
cosine similarity score, and clustering algorithms including k-
means and average linkage hierarchical clustering. Each
document cluster is associated to a tag-cloud of informative
terms.

2.6. BioCreative Chemical Information Retrieval
Assessment

The importance of information technology approaches to help
solve the information explosion problem in science and
technology has been realized already over 70 years ago.300 To
determine the advantages of using a particular IR or language
technology tool requires the use of evaluation strategies that are
able to measure the effectiveness of the system, or, in other
words, to conclude whether the system helps the user in
accomplishing a specific task. Difficulties in evaluating TM and
IR results reside intrinsically in the nature of the processed data,
where the fraction of relevant items embedded in very large
collections of documents is very small, a situation that
complicates the evaluation of these systems.
In principle, evaluation of language technologies and retrieval

tools can be carried out at two levels.185 If the entire system,
optionally including the interaction with the end user, is
evaluated, an overall evaluation is carried out as opposed to the
evaluation of the individual components of the system. At a
different level, one can differentiate between system and user-
oriented evaluation. The former uses standardized tasks to
assess the system or part of it, while the latter requires that real
users evaluate the system.
There are a number of different aspects and factors that, in

practice, influence the performance of these systems, including
use case setting, type of information request launched, speed/
response time of the system, the content of the searched
document collection, or the type of algorithm/processing
pipeline being used, just to name a few. A historical overview of
IR evaluation is provided by Saracevic.301

To evaluate language technologies involved in IR, that is, text
classification (section 2.5) or named entity recognition tasks
(discussed in section 3), the performance of the system is
measured against a test collection, typically consisting of a gold
standard (or ground truth) data set generated manually by
humans (sometimes experts on a task-specific domain or topic).
A typical evaluation stetting for IR systems comprises a test
collection and some information needs (queries) or relevance
judgments, in the simplest case consisting of a binary
classification of relevant and nonrelevant documents. The
comparison of annotations/labels performed by multiple
humans of an interannotator agreement score is often used to
estimate a practical upper boundary for performance of the
automated systems.

2.6.1. Evaluation Metrics. Several metrics are extensively
used as assessment criteria to measure effectiveness of IR and
text classification systems under standard evaluation settings.
Understanding how these evaluation metrics are calculated is
key for the correct result interpretation. Key concepts playing a
role in these evaluation metrics are: false negatives (FN),
corresponding to cases missed or incorrectly rejected by the
system (type II errors); false positives (FP), corresponding to
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cases wrongly returned by the system (type I errors, incorrect
cases); true negatives (TN), being correct negative classi-
fication results (correctly rejected predictions); and true
positives (TP), corresponding to correct positive classification
results (correctly identified cases). Figure 8 provides an
overview of widely used evaluation metrics for text classification
and ranking tasks.
Kent et al. (1955) were the firsts to propose using precision

and recall (originally called relevance) as basic evaluation
criteria for IR systems.302 Precision (p) or positive predictive
value is the percentage of correctly labeled positive (relevant)
results over all positive labeled results. Recall (also sometimes
named coverage, sensitivity, true positive rate, or hit rate) refers
to the percentage of correctly labeled positive results over all
positive cases. Accuracy, that is, the fraction of correctly labeled
results over all results, is less commonly used for IR purposes,
but is often used in the context of document classification or
named entity recognition tasks. Accuracy is usually not suitable
for IR evaluation assessment because IR data are almost always
extremely skewed, in the sense that relevant positive documents
are a very small fraction as compared to the large collection of
nonrelevant (negative) documents.
A widely used metric that provides a trade-of between

precision and recall is the F-measure, corresponding to the
weighted harmonic mean between precision and recall (see
Figure 8). The use of the F-measure for evaluation purposes
was introduced by van Rijsbergen (1979) (refer to chapter 7 of
ref 303). The F-measure is regarded to be more robust than
accuracy when dealing with class imbalance and provides the

option to specify a weighting factor β. In the case of the default
F-measure, known as F1-score or balanced F measure, β = 1
and precision and recall have the same weight.
Another balanced measure that is useful for the evaluation of

unranked results, such as binary classification scenarios, is
Matthew’s correlation coefficient (MCC). It is also a more
stable score than accuracy for imbalanced class distribution
scenarios. The value of the MCC score can range from +1
(perfect classification) to −1 (inverse classification), while 0
corresponds to the average random prediction result. As the F-
measure does not consider the TN rate, the MCC score might
be more appropriate to assess the performance of binary
classifiers, unless the TN rate cannot be established.
Likewise, the mean reciprocal rank (MRR) score corre-

sponds to the average of the reciprocal ranks (of the rank of the
first correct answer) of the results generated for a set of queries.
To describe all of the evaluation strategies used for ranked

retrieval evaluation goes beyond what can be covered in this
Review; therefore, here we will only briefly mention three of
the most commonly applied assessment measures: receiver
operator characteristic (ROC) curve, mean average precision
(MAP), and area under the precision/recall curve (AUC-PR),
all of them characterized mathematically in Figure 8.

2.6.2. Community Challenges for IR. Researches, as well
as developers of chemical IR systems, face the difficulty of
choosing which system or methods yield competitive results for
a particular task. Comparing directly different retrieval, or other
text extraction systems, is a nontrivial task due to the use of
heterogeneous input data, variability of returned results,

Figure 8. Evaluation metrics for text classification and ranking tasks.
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incompatible evaluation metrics, support of different text
formats, and other implicit constraints linked to each approach.
In practice, this implies that systems might not support the
same data, making it impossible to obtain a clear picture
regarding what algorithm or system is more appropriate for a
given use case.
Scientific community challenges are being carried out in an

effort to introduce independent objective performance assess-
ments and thus standardize evaluation strategies and metrics.
Evaluation campaigns are used in computer sciences to judge
the performance of different methodologies or algorithms
applied on common evaluation data sets and using the same
evaluation metrics. This helps to find out the most efficient
strategies, features, or parameters. Community challenges are
key to determine the state-of-the-art for particular text
processing tasks and to better understand the main difficulties
associated with them. To address issues that are of relevance for
the chemical domain, evaluation efforts have also been made to
examine search techniques on chemical documents, such as
patents and academic literature.
A typical TM challenge is structured temporally into distinct

phases: development/training, test, and evaluation phases.
During the first phase, a document collection is released, and,
in case of text categorization or entity recognition tasks (or any
other task that requires labeled training data), a training/
development corpus of manually annotated example cases is
distributed to the participating teams. During this phase, teams
develop, train, and tune their systems to cope with the posed
task. Thereafter, during the test phase, participants receive
either some different document set for which they have to
produce automatic predictions (e.g., automatic assignment of
class labels, ranking of documents, or even extraction of entity
mentions; see section 3), or, for classical ad hoc retrieval tasks,
a set of queries (information needs) is released. Usually, all of
the teams have to return their predictions before some
prespecified submission deadline. Finally, during the evaluation
phase, the results produced by the systems are evaluated against
some manually produced gold standard data set, and obtained
performances are returned to the participants.
The Cranfield studies commencing in the late 1950s can be

regarded as the first careful formal examination of IR systems
(see Cleverdon, 1991 for a detailed retrospective description of
the Cranfield experiments).304 The Cranfield test set consisted
of 1398 abstracts from aerodymanics journal articles together
with a list of 225 queries and relevance labeling with respect to
these queries of the test set documents. Another community
assessment with a deep impact on the IR community is the
Text REtrieval Conference (TREC). TREC is an annual IR
conference and competition organized by the U.S. National
Institute of Standards and Technology, with the purpose to
promote research and evaluation of IR systems.305 The TREC
evaluation series have been running since 1992306 and have
covered all kinds of IR aspects, including question answering,
ad hoc retrieval, and domain-specific retrieval tasks. In the spirit
of the TREC evaluation settings, a collection of around 350
thousand MELINE records (known as the OHSUMED test
collection) was used to directly compare search strategies based
on free text searches using the vector space model versus
Boolean query retrieval, considering novice physicians as test
users.307

The TREC Genomics tracks, running from 2003 to 2007,
used PubMed abstracts (2003−2005) and full texts (2006,
2007) as document sources for evaluating different kinds of

retrieval-related tasks relevant to gene functional annotation
and biomedicine.308,309

The main focus of the chemical IR tracks of TREC (TREC-
CHEM), which took place in 2009,310 2010,311 and 2011,312

was the evaluation of two kinds of retrieval strategies carried
out on chemical patent documents: prior art (PA) and technical
survey (TS) searches. The prior art (PA) track and technical
survey (TS) track relied on a document subset consisting of
10% of the MAREC (MAtrixware REsearch Collection)
collection, that is, a standardized XML formatted corpus of
19 million patent documents in different languages.313

PA searches are important to get the approval of patent
claims. They generally refer to information such as prior
publications or issued/published patents that are relevant to a
patent’s claims of originality. For the PA task a collection of
over 2.6 million patents and almost 6000 full text articles from
the chemical domain were used. System predictions for two
subsets were evaluated, one consisting of 1000 patents (full set)
and one of 100 patents (short set). Citations in patents and
patent families were considered for evaluation purposes. A total
of 8 teams provided submissions for the TREC-CHEM
2009,310 4 groups for the TREC-CHEM 2010,311 and only 2
groups for the TREC-CHEM 2011312 task, respectively. Among
the main evaluation metrics used to assess the results of the
predictions for the PA task were the MRR and MAP scores.
Top systems of the first TREC-CHEM reached MRR scores

of 0.54, while the best MAP scores were of 0.1688 (short set)
and 0.1835 (full set). Top systems of the second TREC-CHEM
obtained better results, with MRR scores of 0.6452 (short set)
and 0.7153 (full set), and MAP scores of 0.3612 (short set) and
0.4121 (full set). The evaluators did not publish a detailed
examination of the results obtained by the teams of the third
TREC-CHEM competition.
The TS task of the TREC-CHEM competitions was basically

a kind of ad hoc retrieval task for a set of topics (queries) that
had been provided by patent experts. The evaluation of
submissions for this task was done using stratified sampling and
manual examination by chemistry graduate students and patent
experts. It is worthwhile to notice that there was a rather low
agreement between the humans and high variability among the
results obtained across the different topics. At the TREC-
CHEM 2009, a total of 18 topics were provided to the 8
participating teams, while only 2 teams participated in this task
during the 2010 edition (for 6 topics), and 4 teams at the 2011
edition (6 topics).
BioCreative, Critical Assessment of Information Extraction in

Biology, is an effort to promote the development and
evaluation of IR, extraction, and TM technologies applied to
a range of topics relevant to life sciences, biomedicine, and
chemistry. During BioCreative II, II.5, and III, specific article
classification tasks were held, asking participants to identify and
rank articles describing experimentally verified protein−protein
interactions (PPIs) data. PubMed abstracts were used in
BioCreative II314 and III,229 while for BC II.5315 full-text articles
had to processed. An additional task during BioCreative II
focused on the retrieval of evidence sentences for the PPIs.
The CHEMNDER (Chemical compound and drug name

recognition) tasks posed at BioCreative IV132 and V316,317 were
the first community calls that challenged the participants with
the recognition of chemical entity mentions. Moreover, two
CHEMNDER tasks were of particular relevance for chemical IR
strategies: the chemical document indexing (CDI) task of
BioCreative IV and the chemical passage detection (CPD) text
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classification task of BioCreative V. For the first CHEMDNER
task, PubMed abstracts were exhaustively annotated with
chemical entity mentions (see sections 3.8 and 3.9), while,
for the second CHEMNDER task, gold standard annotations
were done on patent titles and abstracts.
The CDI task addressed the ability of automated systems to

detect which compounds are described in a given document.
This is relevant for scenarios where a chemist wants to retrieve
all of the records that contain a particular chemicals of interest
(regardless where exactly they are mentioned within the
document). Records used for the CDI task were selected in
such a way that all of the main chemical disciplines were
covered by the document collection.318

For a set of PubMed abstracts, participating systems had to
return for each record a ranked and nonredundant list of
chemical entities, corresponding to an UTF-8 encoded string of
characters found in the text. The CDI task did not attempt to
link the chemical entity names to their chemical structures, or
some chemical database identifiers. Asking participants for an
explicit ranking of the entity lists for each abstract had the
objective of empowering systems that are more efficient when
combined with manual validation of automatically extracted
results, and to facilitate additional flexibility by being able to
pick the N top chemicals for each record.
For the CHEMNDER tasks, each participant was allowed to

send up to five different runs, having as the only constraint to
generate the results totally automatically with no manual
adjustment nor correction, and providing submissions in a
simple standardized prediction format. All submissions were
evaluated against the manually labeled annotations (called the
CHEMDNER corpus) using a common, publicly available
evaluation script.315 TP predictions had to match exactly the
manually indexed mentions for a particular record, while partial
matches or overlaps were not considered correct hits. The
evaluation metrics used for the CDI task were recall and
precision, and the balanced F-score was the main evaluation
criteria. A total of 23 distinct teams participated in this task,
returning 91 individual submissions.
Simple baseline performance was determined by using a list

of names derived from the training and development sets of the
CDI task to index the test set abstracts. This approach yielded a
F-score of 53.85% (with a recall of 54.00% and a precision of
53.71%). The best result obtained for this task was an F-score
of 88.20%. When examining recall and precision independently,
the best precision reached for this task was of 98.66% (with a
recall of 16.65%), whereas the best recall was of 92.24% (with a
precision of 76.29%). Most of the precision scores obtained by
participants were higher than their corresponding recall
counterpart. With respect to the ranking strategies of the
indexed chemicals, the used criteria could be summarized as:
using counts of the number of occurrences of each chemical
mentions, applying some manual rules based on the class
chemical detected, examining if the chemical name exists in a
specific chemical database, scanning if the chemical name was
found in the training/development collection, using confidence
scores, and marginal probabilities returned by ML models.
Most systems participating at the CDI task were an adaptation
of their system for the chemical entity recognition task
described in section 3.9.
BioCreative V CPD task focused on the classification of

patent titles and abstracts with respect to whether they
contained chemical compound mentions or not. This means
that it consisted of a chemical-aware text classification task. It

can also be viewed as an initial selection task of those patents
that might describe chemical entities. For this task, a binary
classification of patent titles and abstracts was done, (1) does
mention chemicals or (0) does not mention chemicals.
The automatically generated categorization labels for patent

titles and abstracts were compared to exhaustively annotated
manual labels prepared by chemical domain experts. The
predictions of each system had to be associated to a rank and a
confidence score. A total of 9 teams provided predictions for
this task, corresponding to 40 individual runs. The best run
with respect to the MCC score was of 0.88, with also the
highest sensitivity score of 0.99, and the best accuracy (0.95).

3. CHEMICAL ENTITY RECOGNITION AND
EXTRACTION

Generating relevant results for targeted retrieval, as empowered
by chemical concept and semantic search strategies mentioned
in section 2, requires both understanding the user’s intent and
the contextual meaning of the chemical search terms as they
appear in the documents. This implies adding semantics to the
query, for example, knowing that the query corresponds to a
chemical concept and detecting this concept in the running text
of documents, regardless of the wording used to express it.
Together with its utility for IR, as introduced, one of the most
interesting applications of CER is the automatic annotation of
chemical knowledge bases (section 5).

3.1. Entity Definition

As introduced, the process of automatic recognition of chemical
entity mentions in text is usually known as chemical entity
recognition (CER) or chemical entity mention recognition. In
general, finding (and classifying) mentions of specific
predefined types of entities in text is called named entity
recognition (NER), although other equivalent terms include
named entity recognition and classification (NERC), entity
tagging, identification, or extraction.319 NER is concerned
about finding specific information inside documents, rather
than working at the level of entire documents as it is usually the
case for IR. Information extraction (IE) analyzes documents,
extracting structured factual (or conceptual) knowledge from
the text for predefined concept types.
Typically, named entities refer to some sort of predefined

categories/classes of (real world) objects (names) in text, while,
from a linguistic viewpoint, they are often characterized by
being referenced in text as a proper name or correspond to a
special noun phrase. At the theoretical level, there are
philosophical discrepancies regarding the actual formal
definition of proper names, which go beyond the more
pragmatic interpretation followed by text processing applica-
tions. In practice, NER involves locating mentions of such
targets/objects (mentions of a particular semantic type) and
classifying them into a set of predefined categories of interest. A
noun phrase is a phrase or syntactic unit (word/word group
acting as a constituent in the syntax of a sentence) that has as
its head word a noun or indefinite pronoun.
As was the case for text classification categories (section 2.5),

object category definitions of named entities (NE), both in
general as well as those related to chemical information, might
be intuitively quite clear, but in practice many are associated to
vague, or even inconsistent, interpretations. Therefore, NEs
require formal definition criteria and explicit text annotation
rules, often taking into account conventions that are guided by
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the underlying practical use case of the resulting technologies
(see section 3.8).
At first sight, one may think that labeling entities is a

straightforward quest, but systems that attempt to correctly
recognize NEs (including chemical compounds) in text have to
face two primary written natural language issues: ambiguity and
variability. There are various levels of ambiguity intrinsically
present in natural language, ambiguity at the lexical, syntactic,
morphological, and discourse levels.320 Lexical ambiguity refers
to cases where a word can have multiple alternative senses
determined by its contextual properties, that is, shows the same
idiosyncratic variation with somewhat unrelated senses
(homonymy). For instance, the acronym “CPD” can refer to
both “cyclobutane pyrimidine dimer” and “chronic peritoneal
dialysis”, which leads to lexical ambiguity. An example case of
ambiguous grammatical categories for the same word is present
in the word “lead”, corresponding potentially to either a verb or
a noun. Successful NER systems have to cope computationally
with lexical ambiguity. The capacity of computationally
identifying the correct, context-centered meaning of words is
known as word sense disambiguation (WSD). In practice, most
WSD and NER systems assume the cocalled one-sense-per-
discourse hypothesis that states that, given a particular
discourse, all of the individual instances of a specific word
tend to have the same meaning.321 In the example case of
“CPD”, given a particular document that mentions this
acronym, it is highly probable that all mentions of this word
will show the same semantics.
Another aspect that influences the strategies used to tag NEs,

and specifically chemical mentions, is the existence of naming
variations, such as typographical variants (e.g., alternative usage
of hyphens, brackets, and spacing), alternative word order, and
existence of aliases/synonyms referring to the same entity (e.g.,
systematic nomenclatures, trade names, and database identi-
fiers).35 For instance, CER systems have to be able to detect
both of the following typographical variants of the same
substance: “cyclobutane-pyrimidine-dimer”, “cyclobutane pyr-
imidine dimer”.

3.2. Historical Work on Named Entities

The coining of the term named entity (NE) is usually
attributed to the sixth Message Understanding conferences
(MUC-6, 1995), which introduced a component task
requesting participants to mark up all phrases in the provided
text that corresponded to named entities of the type person,
location, organization, time, or quantity.322 The MUCs were a
very influential series of workshops and community com-
petitions, supported by the Defense Advanced Research
Projects Agency (DARPA), with the aim of promoting research
on problems related to IE, including entity recognition. After
MUC-7 (1998), NER in English newswire text was considered
a solved problem as the performance of automatic recognition
approaches (balanced F-score of around 93%) was close to an
estimated human performance (F-score of 97%).323

So, most of the initial NER methods were implemented to
recognize predefined types of proper names from the general
domain (mainly newswire texts), focusing on three classic
entity types: names of organizations, locations, and persons.319

For general NEs, there is a hierarchy of entity types, with three
major classes corresponding to entity names (conventionally
labeled as ENAMEX), time (labeled as TIMEX), and numeric
expressions (labeled as NUMEX).323

Pioneering work on computational processing of chemical
names was carried out by Eugene Garfield in the 1960s, who
recognized how to convert algorithmically systematic chemical
names into molecular formula and line notations324 (see
section 4.1). Several years later, Zamora and colleagues
attempted to automatically extract reaction information from
journal texts using NLP techniques, including a dictionary of
common chemical substances, chemical formula, and chemical
word roots and using morphological identification of chemical
words.156,325 Hodge et al. described techniques for recognizing
chemical names in text fields to assign CAS registry
numbers.326 Dictionary lookup techniques and word morphol-
ogy was exploited in a work presented by Blower and Ledwith
to identify substances in the experimental section of an organic
chemistry journal, while chemical events were extracted using a
rule-based approach.327 More recent activities relevant to CER
will be discussed in the following subsections (section 3.9).
NER can be considered a critical building block or key

component for other language processing tasks, as it provides,
for instance, names for term-based document retrieval and is
often a useful feature for document categorization.229 NER
results may be also a prerequisite for event and relation
extraction,319 machine translation,328 question answering,329

and automatic summarization.319

This section will provide an overview of relevant aspects for
CER, including general factors and characteristics of chemical
naming in text, different strategies to automatically label
chemical entities, existing resources, and evaluation criteria.

3.3. Methods for Chemical Entity Recognition

3.3.1. General Factors Influencing NER and CER.
Several factors should be considered when implementing or
applying chemical entity taggers. Among the aspects that
influence considerably the outcome of such tools are the
granularity of the predefined entity categories, the genre of the
processed text (i.e., scientific, informal, patents), its domain
(e.g., different chemical subdisciplines), the type of document
(abstracts vs full texts), and the language in which the
documents are written. Some efforts have been made to
implement text-type agnostic NER tools, but mostly for
classical entities like those used for the MUC challenges.330

Moreover, some research focused on the exploration of
strategies to improve customization of NER tools to new
domains.331

Nonetheless, in practice, CER tools work as application-
specific systems tailored to a particular domain and text type,
focusing mainly either on scientific articles (abstracts or full text
papers) or on medicinal chemistry patents.332,333

3.3.2. Chemical and Drug Names. The type of chemical
entity mention (systematic, trivial), see section 1.1, used in text
plays a role in the recognition and underlying method used to
identify it.16,132,333

Several studies indicate that there are considerable differ-
ences regarding the preferred use of the various classes of
chemical mentions with respect to the type of documents
examined.318,334,335 Systematic chemical names are more
frequently used in patent documents and patent abstracts
when compared to scientific literature, particularly journal
abstracts. On the other hand, abbreviations and acronyms as
well as trivial chemical names are more heavily used in scholarly
literature when compared to patents. A characteristic of patents
is also the heavy use of Markush structures (section 1.1),
formulas, and/or systematic substituents to define the scope of
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a chemical, as well as mentions of novel compounds.334 While
Markush formula in patents appear as structure diagrams
(images), the definitions of the variations at the different
variations sites are normally found as text, with the additional
complication that the chemical mentions to the substituents
can be extremely broadly defined, including natural language
expressions (“substituted or unsubstituted”) and somewhat
customized meanings variable from patent to patent whose
definition is found in other parts of the patent document
(“where the term alkyl refers to”). Moreover, R-group
definitions can also be provided as images. Thus, the analysis
and interpretation of Markush formula (either manual or
automatically) involves the interpretation of the structure
diagram of Markush, the interpretation of the text describing R-
groups (and images if applicable), and the association of both
parts, which can lie at different parts of the document and use a
nonhierarchical representation of additional descriptions. The
structure diagram can be quite schematic and general and/or
present complex drawing features (crossing bonds to indicate
variable positions).
Kolarik et al. tried to characterize the relative use of different

classes of chemical entity mentions using a small set of 100
manually labeled PubMed abstracts. They concluded that
34.32% of the mentions corresponded to trivial names, 32.42%
to IUPAC or IUPAC-like names, 13.55% to abbreviations,
8.21% to chemical families, and the rest to parts of systematic
names or other chemical name types.
Recently, a larger study trying to determine the usage of

chemical mention types in PubMed abstracts was carried out
resulting in the CHEMDNER corpus of 10 000 manually
labeled PubMed abstracts318 (see section 3.8). This study
determined that 30.36% of the chemical mentions corre-
sponded to trivial names, 22.69% to systematic names (IUPAC
and IUPAC-like), 15.55% to abbreviations, 14.26% to formula,
14.15% to chemical families, 2.16% to chemical identifiers, and
the rest to other or multiple noncontinuous mentions of
chemicals.
3.3.3. Challenges for CER. Ambiguity is a pervasive

problem for practically all NER systems, including the detection
of chemical entities. The previously introduced array of
different chemical mention classes helps to illustrate some of

the difficulties associated to the variable and heterogeneous
ways chemicals are named in text. A brief description of
difficulties in tagging chemicals is provided by Krallinger et
al.318

Not all chemical names show distinctive patterns of name
segments or chemical word morphology and are therefore
missed by some CER strategies.36

Chemical NER systems are very sensitive with respect to
spelling errors.336 Applying spelling correction software before
chemical entity tagging also can improve the overall recall. A
particularly important aspect for CER, and quite distinctive
from many other entity types, is their sensitivity with regard to
the tokenization strategies used (see section 2.2). Moreover,
low-level aspects like punctuation, spacing, and formatting can
influence tokenization results. As tokenization errors degrade
the performance of CER systems,162 different tokenizers have
been applied to chemical texts, including the exploration of
both coarse grained and fine grained tokenization ap-
proaches.160 Tokenization of chemical documents is particularly
cumbersome as it is usually loaded with variable use of hyphens,
parenthesis, brackets, dashes, dots, and commas. Chemical
documents with hyphenated text segments are especially
problematic and pose an additional ambiguity for tokenizers,
as they have to distinguish between true hyphens (i.e., integral
part of complex tokens) and end of line hyphens (i.e., used for
typesetting purposes).337

Chemical acronyms and abbreviations, as well as some trivial
names and a few common English words, such as “gold”, “lead”,
and “iron”, are also a source of ambiguity for CER systems.
Single and two letter acronyms and abbreviations are
particularly challenging for most chemical taggers.36,161 For
instance, one study indicated that, in the case of a particular
CER system applied to PubMed abstracts, 18.1% of false
positive mentions corresponded to extracted candidate names
with a length of one or two characters.338

Another common source of difficulties for CER is the correct
detection of mention boundaries and associated errors, such as
recognizing partially mentions (partial matches) or breaking
incorrectly long chemicals into multiple mentions.339 Incorrect
chemical mention boundary recognition is frequently caused by
modifiers, for example, the extraction of “aromatic hydro-

Figure 9. General flowchart illustrating a typical CER pipeline.
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carbons” instead of “polycyclic aromatic hydrocarbons”.161

Finally, just to name some other issues often faced by CER
systems are unmatched punctuations of parenthesis and square
brackets, false negative mentions due to lack of a sufficiently
informative sentence context,339 and false positives correspond-
ing to larger conventionally not labeled macromolecules.162

3.3.4. General Flowchart of CER. Although early general
NER taggers typically relied on hand-crafted rules, the current
trend increasingly points toward the use of supervised ML
techniques for entity recognition, for both domain specific and
domain agnostic texts.319

Because of the heterogeneous characteristics of the different
classes of chemical entities, at the methodological level different
complementary strategies have been explored to recognize
chemical mentions. Additional reviews on CER are provided by
Vazquez et al.16 and Eltyeb and Salim,340 whereas an
introduction on the detection of systematic names was
published by Klinger and colleagues.141 Two review papers
focusing on drug name recognition were published by Liu et
al.341 and Segura-Bedmar and colleagues.342

One can distinguish between three general strategies to
detect chemical entities in text: (i) chemical dictionary look-up
approaches described in section 3.4, (ii) rule/knowledge-based
approaches introduced in section 3.5, and (iii) machine
learning-based CER covered by section 3.6. Most of the
current CER systems are hybrid strategies (section 3.7) that
combine ML with lexical features derived from chemical

dictionaries.132 In fact, most of the modern CER combine
various approaches at the different stages of the entity tagging
process. Figure 9 provides a simplified general flowchart
illustrating a typical CER pipeline. Usually, such a pipeline
comprises several steps, such as preprocessing, sentence
segmentation, word tokenization, entity annotation/detection
(e.g., using a dictionary lookup, rule matching, machine
learning based token classification, or combinations thereof),
postprocessing, and output format conversion.
Because of the difficulty in defining consistent annotation

criteria and the considerable workload associated in preparing
large manually annotated chemical text corpora, until recently
no such annotated resources for chemicals were available.
Recent efforts, such as the CHEMDNER tasks posed at the
BioCreative challenges, opened the possibility to share training
and test data for developing and evaluating CER techniques.
This promoted the implementation of a range of new tools and
fueled increased interest in the automatic extraction of chemical
information from text. Table 3 provides a list of various
chemical entity recognition and indexing systems that have
been implemented during the past years.

3.4. Dictionary Lookup of Chemical Names

3.4.1. Definition and Background. The most straightfor-
ward strategy to detect entity mentions in text relies on a family
of techniques commonly known as dictionary lookup or
dictionary matching. Classical dictionary lookup requires
comparison of terms from a list, dictionary, thesaurus, or

Table 3. Chemical Entity Recognition and Indexing Systems

chemical NER/indexer description URL

BANNER-CHEMDNER343 CRF-based systematic chemical tagger https://bitbucket.org/tsendeemts/banner-chemdner
BC4-CHEMDNER Uni. Wuhan
CER344

CRF-based systematic chemical tagger https://github.com/zuiwufenghua/biocreative_CHEMDNER

becas-chemicals338 online CRF-based chemical/drug tagger http://bioinformatics.ua.pt/becas-chemicals/
ChemExa entity tagger integrating ChemicalTagger http://www3a.biotec.or.th/isl/ChemEx/
chemicalizeb,h commercial CER system https://chemicalize.com
ChemicalTagger155 chemical NLP tool http://chemicaltagger.ch.cam.ac.uk
ChemSpot162 hybrid (CRF and dictionary) chemical

tagger
https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/
chemspot/chemspot

chemxseer-taggerc CRF chemical tagger https://github.com/SeerLabs/chemxseer-tagger
CheNER345 CRF-based systematic chemical tagger http://ubio.bioinfo.cnio.es/biotools/CheNER/
Cocoad,h hybrid (manual rule/dictionary) chemical

tagger
http://relagent.com/Tech.html

iice346 online chemical entity and relation tagger www.lasige.di.fc.ul.pt/webtools/iice/
LeadMineh,332 hybrid (manual rule/dictionary) chemical

tagger
https://www.nextmovesoftware.com/leadmine.html

MetaMap347 tagger for UMLS metathesaurus concepts https://metamap.nlm.nih.gov
NCBO Annotator (ChEBI
ontology)e

online tagger of OBO ontologies (incl.
ChEBI)

http://bioportal.bioontology.org/annotator

OntoGenef online chemical tagger (incl. lexical
lookup)

http://www.ontogene.org/webservices/

Oscar3g naiv̈e Bayesian model-based CER tagger http://www-pmr.ch.cam.ac.uk/wiki/Oscar3
Oscar4158 modular adaptation and update of Oscar3 https://bitbucket.org/wwmm/oscar4
tmChem161 CER and normalization using CRF https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/#tmChem
Whatizit348 online tagger or entities (incl. chemicals) http://www.ebi.ac.uk/webservices/whatizit/info.jsf
aTharatipyakul, A.; Numnark, S.; Wichadakul, D.; Ingsriswang, S. ChemEx: Information Extraction System for Chemical Data Curation. BMC Bioinf.
2012, 13, S9. bSouthan, C.; Stracz, A. Extracting and Connecting Chemical Structures from Text Sources Using Chemicalize. Org. J. Cheminf. 2013,
5, 20. cKhabsa, M.; Giles, C. L. Chemical Entity Extraction Using CRF and an Ensemble of Extractors. J. Cheminf. 2015, 7, S12. dRamanan, S.;
Nathan, P. S. Adapting Cocoa, a Multi-Class Entity Detector, for the Chemdner Task of Biocreative IV. Proceedings of the Fourth BioCreative
Challenge Evaluation Workshop; Bethesda, MD, October 7−9, 2013; pp 60−65. eSmith, B.; Ashburner, M.; Rosse, C.; Bard, J.; Bug, W.; Ceusters, W.;
Goldberg, L. J.; Eilbeck, K.; Ireland, A.; Mungall, C. J.; et al. The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data
Integration. Nat. Biotechnol. 2007, 25, 1251−1255. fRinaldi, F.; Clematide, S.; Marques, H.; Ellendorff, T.; Romacker, M.; Rodriguez-Esteban, R.
OntoGene Web Services for Biomedical Text Mining. BMC Bioinf. 2014, 15, S6. gComputational Life Sciences II; Berthold, M. R., Glen, R., Fischer, I.,
Eds.; Springer: Berlin, Heidelberg, Germany, 2006. hCommercial tool. Prepared in November 2016.
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catalogue of names to some target text (typically entire
documents or sentences). Therefore, dictionary lookup-based
CER approaches have two basic components, a dictionary or
gazetteer and a matching method.
In the domain of natural language processing, the technical

term gazetteer is used to refer to the set of entity name lists,
such as chemical compound, drug, or enzyme names. These
name lists are exploited to detect occurrences of these names in
text for the purpose of named entity recognition. Early attempts
to detect chemical entity mentions in text made use of chemical
dictionaries.156,325

In principle, lookup-based CER does not require any
manually annotated text corpus for building a statistical
language model, as needed by ML-based CER (section 3.6),
and usually solves already partially the entity linking step, that
is, associating detected chemical mentions to database records
(section 4.2). Short summaries on dictionary-based approaches
for the identification of chemical entity mentions are discussed
in refs 16, 35, 340, and 341.
Example applications that make use of dictionary matching

are Peregrine,349 ProMiner,350 and Whatizit.348

Dictionary lookup-based CER can be sufficiently competitive
for fields that are characterized by using a somewhat limited
and comprehensive set of chemical entities, as typically found in
medical and clinical documents. Dictionary lookup is thus
suitable for scenarios associated to a definite set of well-defined
names that are representative of the entity class. Under such
circumstances, and assuming that the dictionary is of reasonable
size, dictionary lookup can be quite competitive.
Chemical entity classes that are covered sufficiently well by

lexical resources include common and generic chemical names,
trade names, company codes, and common abbreviations.
Frequent steps used by these sort of CER pipelines are

dictionary gathering/construction, dictionary pruning or filter-
ing, dictionary expansion, dictionary matching/lookup, post-
processing, and semantic normalization.
Dictionary construction implies selection of chemical names

from thesauri, ontologies, or knowledgebases. Dictionary
pruning means removal of problematic names using stop
word lists, and filtering rules based on mention statistics, name
length, or word type (e.g., POS). Dictionary expansion refers to
the process of creating name variations from the original
chemical name to cover additional typographical/morpholog-
ical, spelling, word case, or word order variants. Finally,
postprocessing includes techniques to disambiguate or clean up
detected mentions, often using some heuristics or context-
based disambiguation.
3.4.2. Lexical Resources for Chemicals. A critical

component for chemical dictionary lookup is the construction
of high-quality and purpose-driven chemical name gazetteers. A
description of lexical resources, including thesauri and
ontologies containing chemical entity information, is provided
by Gurulingappa et al.35 A list of nonsubscription and open
access web resources offering molecular information data is
provided in Table 4 of ref 351, while Table 3 of ref 341
provides a collection and description of resources for building
drug dictionaries.
In principle, the following types of chemical name gazetteers

can be used: manual/hand-crafted name lists, database/derived
chemical lexicons, automatic construction of name lists in text
(e.g., using results of rule- or machine learning CER tools), and
merged/combined gazetteers derived from some of the
previously named types of collections. Table 4 shows a selected

number of resources for names to construct chemical
gazetteers.

A chemical dictionary that combines several chemical name
resources is Jochem,336 which integrates names from UMLS,
MeSH, ChEBI, DrugBank, KEGG, HMDB, and ChemIDPlus.
Rule-based name filtering and manual revision of frequent
names was carried out to improve the quality of this
dictionary.336

Only few attempts have been done so far to generate purely
manually constructed chemical gazetteers. Townsend et al.
describe a lexicon of common chemical names extracted
manually from 295 letter articles from the journal Nature.351 A
larger set of 19 805 unique chemical name strings have been
produced through manual labeling of chemical names in
PubMed abstracts, in the framework of the CHEMDNER
corpus,318 while an automatically generated chemical name
gazetteer generated by CER software was a byproduct of the
silver standard corpus of the CHEMDNER task.318

Dictionary lookup approaches usually need to include
postprocessing and manual curation steps (lexicon pruning)
to eliminate highly ambiguous names. Strategies to improve the
quality of dictionaries commonly rely on manual or rule-based
filtering336 or use of stop word lists.132,352 Hettne and
colleagues present several ways of preprocessing, postprocess-
ing, and disambiguating chemical names for chemical dictionary
compilation.353

Table 4. Resources for Names To Construct Chemical
Gazetteersa

chemical name resources URL

BAN (British Approved Name) https://www.pharmacopoeia.com/
ChEBI http://www.ebi.ac.uk/chebi/
ChEMBL https://www.ebi.ac.uk/chembl/
ChemIDplus https://chem.nlm.nih.gov/chemidplus/
ChemSpider http://www.chemspider.com/
CTD (Comparative
Toxicogenomics Database)

http://ctdbase.org/

DrugBank http://www.drugbank.ca/
European Pharmacopoeia http://online.edqm.eu/EN/entry.htm
Hazardous Substances Data
Bank

https://sis.nlm.nih.gov/enviro/
hsdbchemicalslist.html

HMDB (Human Metabolome
Database)

http://www.hmdb.ca/

Jochem http://www.biosemantics.org/index.
php?page=jochem

KEGG COMPOUND http://www.genome.jp/kegg/compound/
KEGG DRUG http://www.genome.jp/kegg/drug/
MedlinePlus (drug generic or
brand names)

https://medlineplus.gov/druginformation.
html

MeSH (MeSH substance record
branch)

https://www.nlm.nih.gov/mesh/

NCI Drug Dictionary https://www.cancer.gov/publications/
dictionaries/cancer-drug

NIAID ChemDB https://chemdb.niaid.nih.gov/
PubChem https://pubchem.ncbi.nlm.nih.gov/
RxNorm https://www.nlm.nih.gov/research/umls/

rxnorm/
TTD (Therapeutic Target
Database)

http://bidd.nus.edu.sg/group/cjttd/

UMLS (Unified Medical
Language System)

https://www.nlm.nih.gov/research/umls/

USAN (United States Adopted
Name)

https://www.ama-assn.org/about-us/usan-
council

aPrepared in November 2016.
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3.4.3. Types of Matching Algorithms. Dictionary lookup
can be carried out either at the level of characters/strings or at
the level of tokens/words. In the first case, two strings, one
corresponding to the chemical name and the other to the target
text, are compared, usually defining certain additional mention
boundary characters or text patterns. In the second case,
essential lists of tokens, one resulting from the chemical name
and another from the target text, are compared; hence, the used
tokenization strategies influence the entity recognition out-
come.
There are some discrepancies whether dictionary lookup can

be considered a true NER approach, unless some sort of
context-based disambiguation step is applied. Dictionary
matching techniques can be either exact (exact matching) or
approximate (also known as flexible or fuzzy matching). The
most common approach is to use exact string or word-level
matches, as it shows better precision, but at a recall cost.354,355

To increase the recall of word-level matches, one option is to
consider stemmed versions of the lexicon entries and target
articles.
Another choice to boost recall is through approximate string

matching methods, which make use of string comparison
measures like edit distances (Levenshtein and others) to
calculate similarity between character sequences (similar to
methods used for spelling correction; see section 2.4). A
detailed description of approximate string matching algorithms
is beyond the capacity of this Review, and additional details can
be found in refs 208 and 356.
The notion of edit distance, introduced by Levenshtein,206 is

the underlying principle of most approximate string matching
methods.207 Fuzzy matching can become computationally
infeasible or challenging for very large chemical dictionaries
and degrade matching efficiency. Several attempts have been
made to apply approximate string matching to detect chemical
and drug mentions in text.357 Approximate string matching was
also applied to recognize chemical mentions containing spelling
or OCR errors.119

Very large dictionaries can pose technical hurdles in terms of
lookup efficiency when using sophisticated matching ap-
proaches. To overcome the issue of the size of very large
chemical gazetteers, one option is to apply heuristics to match
first chemical-like tokens or substrings.16 Alternatively, and
exploiting the substrings or terminal symbols building system-
atic chemical names, matches using character-level n-grams
(e.g., 4 g), instead of the entire name, have been tested too.36

Recent attempts to combine both dictionary lookup together
with chemical grammar rules showed competitive results.358

Regular expressions of finite state machines constitute an
alternative to fuzzy matching when dealing with ways to capture
variations referring to a chemical entity in text. A gazetteer list
can be compiled into finite state machines that, in turn, can be
used to match text tokens.330 This essentially implies generating
a pattern dictionary from the original lexicon and then scanning
each pattern against the target documents.
Finally, instead of using a dictionary as a starting point, an

alternative approach is to first extract terms or phrases from
text, and then try to check whether it is possible to map them
to name entries in a dictionary or lexicon.359,360

3.4.4. Problems with Dictionary-Based Methods.
Dictionary-lookup-based approaches can usually only cope
with a limited number of name variability. Chemical naming
variation is considerable; in addition to typographical variants

(alternating uses of hyphens, brackets, spacing, etc.), alternative
word order can also be encountered.
A particularly problematic class of chemical mentions for

dictionary-lookup methods, despite having very distinctive
word morphology, are systematic chemical names. These often
correspond to long multiword expressions with spelling
variability and are not well detected by dictionary lookup.
Moreover, the used chemical gazetteers have to be

maintained and constantly updated to include new names
added to the used databases or lexical resources. Novel
chemical entities are being continuously discovered and
characterized in the literature and patents. Such ad hoc
chemical names, not yet included in databases or dictionaries,
pose a serious bottleneck on dictionary-lookup-based CER
systems.
To overcome incompleteness of lexical resources, CER

methods based on ML techniques, exploiting chemical name
morphology, and handcrafted rules provide complementary
solutions. These are described in the following subsections.

3.5. Pattern and Rule-Based Chemical Entity Detection

Rule-based entity recognition represents a suitable strategy to
detect entity mentions that show a somewhat fixed structure or
do occur in a restricted context of mention. Under such
circumstances, entities can be represented through a set of
rules. Rule-based NER systems symbolize an attempt to model
entity names under the assumption that there are constraints
derived from underlying nomenclature or conventional naming
aspects in a specific domain. This basically means that rule-
based CER is an approach that tries to implement generalized
representations of chemical name morphology or context of
mention, that is, defining general regularities that characterize
chemical entities. In practice, this means that such strategies
typically exploit so-called surface clues, that is, how particular
chemical compound entities usually look.
Rule-based approaches can be effective when resources such

as entity gazetteers (section 3.4) or entity-labeled textual
training data are missing (section 3.6). Moreover, such systems
are considered to be more amenable for human interpretation
and error understanding,361 and are often regarded as more
suitable for closed domain scenarios, where human partic-
ipation is both feasible and essential. Until the end of the 1990s,
rule-based methods were the standard choice together with
dictionary-based NER tools. Nowadays, ML-based methods or
hybrid systems are widely used, often exploring heuristics and
rules mostly at the pre- and postprocessing stages, because
purely rule-based methods require input from domain experts
and basic linguistic knowledge.
A widespread way to encode individual rules is through the

use of regular expressions to be matched against mention
instances, each designed to capture and classify a subset of
names (or name fragments). In practice, individual elements of
these patterns should match specific tokens/strings or classes of
tokens/strings with particular features. Regular repressions
return all of those strings (sequences of characters) that contain
the specified pattern. The representation of regular expressions
was already introduced at the end of the 1950s by the
mathematician Stephen Kleene362 and is still a common
starting point for many entity extraction tasks, for highly
structured entities such as single nucleotide polymorphisms,363

protein nonsynonymous point mutations,364 chemical formu-
las,365,366 and chemical database identifiers.365
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Rule-based systems are generally structured into two basic
components. One component consists of a collection of rules,
including specifications on how to handle and coordinate
relative ordering and matching of multiple rules. The other
component is the rule-matching engine and is responsible for
the detection of the textual instances of the rule matching
patterns.
The first rule-based CER systems relied on human experts to

define appropriate rules or regular expressions that charac-
terized chemical entity mentions.156,367−369 Even today most of
the rule-based CER strategies, including those detailed in this
subsection, rely mainly on hand-built rules, including
competitive commercial systems.332 A frequent classification
of rule-based NER systems distinguishes between corpus-based
and heuristic-based rule systems. Humans are very good at
creating manual rules or generalizations from a reduced set of
illustrative example cases to identify underlying regularities.
Corpus-based systems typically require examining a collection
of example cases to derive patterns or rules, while heuristic-
based approaches usually rely on extensive domain knowledge
and/or understanding of existing nomenclature conventions to
be able to construct relevant hand-written rules. The creation of
manually coded rules by a domain expert is a very labor-
intensive and sometimes tedious process, with the danger of
resulting in highly customized rules, applicable only to a narrow
subdomain that might not necessarily represent the entire space
of entity instances.
To overcome these issues, algorithms for learning rules from

examples automatically, known as rule learning or rule
induction methods, have been devised to detect named entity
mentions in running text, including recognition of drug
names.370,371 The typical setting for automatic rule induction
requires a small collection of seed examples, that is, hand-
crafted patterns and example entity names, and then, based on
an iterative process, the collection of extraction patterns is
extended by direct induction from unlabeled text.370 A more
detailed description of rule learning for NER can be found in
Sarawagi (2008).372

Rule-learning techniques are usually classified into bottom-
up, top-down, and interactive/hybrid rule learning strategies. In
the case of bottom-up rule learning, the idea is to start with
seed rules that have a very high precision and low recall, and
then to iteratively generalize the rules to increase the associated
recall (e.g., by removing tokens or substituting them for more
general token representations). Top-down rule learning follows
the opposite strategy by starting with very general rules with a
high recall and poor precision, and then applying iteratively
specialization strategies to increase precision. Interactive or
hybrid rule learning basically integrates human experts into the
learning process, allowing them to modify or adapt rules, or to
add additional seed examples.
Different classes of rules can be used to encode rule-based

NER systems. Whole or single token entity rules attempt to
model the entire entity mention, neglecting dependencies with
other comentioned entities,330,373 typically in the general form
of [Left context] Filler [Right context], while rules to mark
entity boundaries (boundary rules)374 are often applied for
detecting mentions of very long entities that are difficult to
model entirely. The importance of chemical mention boundary
recognition was already realized in an early work by Zamora et
al. (1984), through special handling of chemical word
segmentation.156 Start and end mention markers are frequently

modeled by independent rules and encoded through mention
boundary patterns.
Multiple entity rules375 try to capture dependencies between

entities, for example, to model mentions of noncontinuous,
nested, or overlapping entity mentions, or for capturing long
name forms and their corresponding abbreviations. Whole
entity rules are commonly addressed by using handcrafted rule
construction, while boundary rules are also often generated
through rule learning techniques.
Rule-based CER extraction systems encode several types of

widely used rule token features that try to exploit distinctive
properties, like certain character strings, that appear more often
in chemical entity mentions in contrast to surrounding text or
other entity types. Because of the chemical nomenclature
constraints, there is usually some sort of internal evidence
(names have an internal structure) encoded in the systematic
name that can be exploited by NER rules. Thus, some rules
make use of the internal NE formation patterns, including
morphological analyzers detecting the presence of specific
affixes or morphological characteristics. Generally, morpho-
logical recognition of chemical words requires the detection of
frequently occurring chemical name fragments like “chlor”,
“ethyl”, or “phen”. In addition to orthographic and morpho-
syntactic features, string/n-gram properties, grammar/part-of-
speech information, and token length are often encoded by
rules. NER rules can exploit also features extracted from
dictionaries of name constituents or domain knowledge from
chemical gazetteers. For instance, the Oscar4 system uses a
chemical dictionary as well as syntactic patterns to represent
chemical named entities.158

Rule can also capture external evidence for NER under
situations where chemical names are used in somehow
predictive local context. Such context-aware systems have
been implemented to exploit contextual clues, like dosage
information or treatment duration, as means to detect
misspelled drug names and drug names not present in their
drug gazetteer in narrative clinical documents (discharge
summaries).376,377

When multiple rules match a target text, rule preference/
priority is used to organize the NER system workflow. In case
of an unordered rule list, often ad hoc preference criteria are
defined, such as the length of the matching text string, while
ordered rules often take into account some statistical measure
to sort rules (e.g., sorting by rule f-score or other weighting
schema).
In the case of multiword entity names, statistical analysis of

name parts extracted from chemical gazetteers can be suitable
to select core terms (i.e., meaning bearing elements) and
function terms (i.e., function elements or specifiers) that make
up entity mentions. Core-terms and function terms can also be
defined through manually constructed rules. Narayanaswamy et
al. (2003)369 published a rule-based entity tagger for various
entity categories, including chemical names (e.g., “indometha-
cin”) and chemical parts of names (e.g., “methyl”), which was
based on the detection and classification of individual words
into chemical core terms (chemical c-terms) and chemical
functional terms (chemical f-terms). For recognizing chemical
core terms, they used surface feature rules (i.e., morphological
features, capital letters, numerals, and special symbols), rules for
the detection of chemical root forms/suffixes, and rules derived
from IUPAC conventions for naming chemicals. For instance,
one rule consisted of the presence of the chemical suffix “-ic”
followed by the word “acid” to match chemical c-terms, as in
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the case of “suberoylanilide hydroxamic acid”. Likewise, they
used a collection of functional terms corresponding to steroids,
drugs, and other chemical term categories. Finally, concate-
nation, extension, and postprocessing rules were used to refine
mention boundaries.369

CER systems can be implemented through the use of rules
that describe composition patterns or context of chemical entity
mentions. Chemical name composition rules try to capture
aspects characterizing how names follow predefined con-
ventions or nomenclature rules, as found in the case of
systematic IUPAC chemical names and, to some extent, also in
INN drug names. Such rules can be expressed using grammars
or sets of production rules for transforming strings in a formal
language representation. As nomenclature recommendations
still allow naming variations (e.g., separating digits in systematic
names using dashes or commas), together with the existence of
synonyms corresponding to typographical variants (e.g., due to
variable use of case, brackets, or whitespaces), rules must
capture alternative naming variants.
The LeadMine CER system is a prototypical rule-based

system exploiting grammars and heuristic nomenclature
specifications to detect chemical entities in text.332 LeadMine
relies on nomenclature and naming convention rules expressed
formally through complex expert curated chemical grammars
for systematic names (with a total of 486 rules), together with a
dictionary-lookup component. An example grammar for
systematic names is: Alkane: alkaneStem+“ane”, where
alkaneStem: “meth”|“eth”|“prop”. In this system, grammars can
inherit also rules from other grammars. Dictionaries can be
used as part of rules as they are often practical for detecting
semisystematic names, whereas filtering rules help process the
initial chemical name gazetteer derived from PubChem and
generate a high-quality name list. LeadMine uses several
postprocessing rules to modify mention boundaries (i.e., entity
extension, trimming, or merging), to detect abbreviations, and
to check for correctly nested and balanced brackets.
Some simple postprocessing rules are frequently imple-

mented even by other CER approaches, like supervised learning
approaches (section 3.6), in an effort to improve annotation
quality. Common applied postprocessing rules are exclusion of
mentions, if one of the words is in a predefined stop word list;
exclusion of mentions with no alphanumeric characters; or
removal of the last character, if it is a dash (“-”).
Although less formal and detailed, there are specific

nomenclature rules recommended by the World Health
Organization (WHO) International Nonproprietary Names
(INNs) that can be exploited by rule-based CER approaches.
For example, the DrugNer system makes use of naming
conventions recommended by WHOINN, and exploits rules
that consider drug name stems defined by WHOINN, to
recognize drug mentions.342 By employing such nomenclature
rules, it is possible to distinguish between pharmacological
substances with regard to pharmacological or chemical families.
For instance, to capture names with the affix “-flurane”, the
regular expression “[A-Za-z0−9]*flurane” is used to match any
alphanumeric string ending with such suffix.
Instead of starting the extraction process by examining

nomenclature rules, it is also possible to apply a more data-
driven extraction process, which examines some selected text
corpus and carries out a sublanguage analysis, examining
chemical and nonchemical name fragments derived from
gazetteers. Heuristics can be used to define how tokenized

text is recombined and chemical name boundaries are
detected.367

Some rule-based CER systems were implemented to process
particular types of chemicals or documents from a specific
domain. For instance, ChemFrag used rules to recognize
organic chemical names,378 while SERB-CNER (Syntactically
Enhanced Rule-Based Chemical NER) uses regular expressions,
syntactical rules, heuristics, and recognition dictionary of
technical terms and abbreviations to recognize chemical
compounds in nanocrystal-development research papers.379 A
later extension of this system combines rule-based and machine
learning-based CER.380 The ChemicalTagger system uses rules
and a regular expression tagger to parse experimental synthesis
sections of chemistry texts and to mark-up chemistry-related
terms.155

ChemDataExtractor365 exploits multiple specialized gram-
mars that merge a list of tags with POS and chemical entity
information. Rules are composed of three core elements: the T
elements (matching tokens based on its POS or entity label),
the W elements (matching the exact text of a token), and the R
element (matching text patterns through regular expressions).
This tool defines grammars as nested rules that describe how
sequences of tagged tokens can be translated into a tree model
for entity representation.
A commercial system, the IBM’s SIIP (Strategic IP Insight

Platform), is an interactive platform for processing patent texts
that enables chemical annotators to use a combination of rules
and dictionaries to identify chemical names. A set of name
grammars were generated by analyzing chemical-related patents
manually.35,381

Several shortcomings of rule-based systems have promoted
the increased use of supervised ML entity taggers. It is well-
known that rule construction, domain adaptation, and updating
of rule-based strategies imply considerable manual workload,
which hinders extension or adaptability to new domains.382

This makes it challenging to cope with changes of naming
conventions over time. Nevertheless, 5 out of 26 teams that
participated in the CHEMDNER task used rule-based
techniques as part of their CER pipeline,132 obtaining rather
competitive results (notably, the third best system relies
exclusively on rules and dictionaries).
Building such rule-based systems required a deep under-

standing of both the existing chemical nomenclature standards
as well as the CHEMDNER annotation guidelines. Surprisingly,
two systems relied essentially on the use of lexical resources for
chemical names (team 199 and team 222), exploiting a
considerable number of different databases and terminologies
and obtaining satisfactory results (ranks 11 and 12 in the CEM
task).

3.6. Supervised Machine Learning Chemical Recognition

3.6.1. Definition, Types, and Background. When
examining chemical documents manually, it becomes clear
that systematic chemical names look very different from
common English words or surrounding text, largely due to
naming conventions imposed by nomenclature recommenda-
tions.
An initial exploration of this property was carried out by

Wilbur et al. (1999). They applied a segmentation algorithm to
split chemical terms into constituent chemical morpheme
segments.36 For instance, the chemical term “triethylaminopro-
pylisothiuronium” was divided into the following segments:
TRI-ETHYL-AMINO-PROPYL-ISOTHI-URON-IUM. They
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applied a Bayesian classifier to classify character strings into
chemicals and nonchemicals. Another approach to classify n-
grams into chemical and nonchemical substrings using a Naiv̈e
Bayes classifier was explored several years later by Vasserman
(2004).383 These initial studies contemplated the CER task as a
sort of binary n-gram or string classification problem,
categorizing a given substring as being either a chemical or a
nonchemical substring. Such strategies have the limitation that
they do not specify where exactly the chemical mentions appear
in running text, that is, specifying the associated mention
boundaries (where mentions start and end within a document).
Moreover, these efforts relied on chemical name lists because,
at that time, no manually annotated gold standard chemical
mention corpus was available.
Since the beginning of 2000, a family of very promising

techniques known as machine learning (ML), specifically
supervised learning (SL) algorithms, were intensely examined
for the purpose of NER tasks. SL algorithms have gradually
gained popularity and are substituting other NER approaches
when entities have sufficiently large corresponding annotated
training data.319

ML methods have been used to recognize named entities by
posing the underlying problem either as a classification task or
as a sequence-labeling problem. Posing named entity
recognition as a classification task essentially implies that the
underlying problem is to determine the class labels for
individual words (or even word characters), instead of labeling
entire documents, as was the case of document classification
(section 2.5). The used word class labels defined for this
classification task are, in the simplest binary scenario, to mark
words as being either part or not of an entity mention
corresponding to a predefined entity type (e.g., chemical or
drug).
For this word or token classification problem, annotated

training corpora are examined to automatically induce
discriminative features that distinguish them from the
surrounding text and learn a statistical model for detecting
entity mentions.
When NER is viewed as a sequence-labeling task, sentences

are considered to be sequences, whereas words are tokens and
entity classes are the labels. For instance, Xu et al.384 used this
approach in CHEMDNER challenge in BioCreative IV,
achieving top rank results (88.79% precision, 69.08% recall,
and 77.70% balanced F-measure).
The advantage of SL approaches is that they are data-driven

techniques in the sense that they make use of information
derived directly from documents to model or learn how entity
mentions differ from the surrounding text. As compared to rule-
based systems that struggle considerably with cases of irregular
naming of chemicals (i.e., are not complying explicitly with
nomenclature guidelines), ML techniques are flexible enough to
distinguish even those mentions that are not following official
naming standards. ML-based entity tagging is also more
competitive as compared to dictionary-lookup techniques
when coping with previously unseen, new, or ad hoc chemical
names, as long as they show sufficient morphological or
contextual traits that distinguish them from surrounding text. A
common characteristic of SL methods is their need of labeled
training corpora, typically in the form of exhaustively hand-
annotated text corpora, that is, documents with labeled
chemical entity mentions. This contrasts with unsupervised
learning methods that do not require entity-labeled text, which
are currently not a common choice for NER tasks.385 SL NER

taggers are known to have a higher recall, they do not require
the development of grammars, and developing such taggers
does not require necessarily very deep domain understanding.

3.6.2. Machine Learning Models. To get a general
understanding about SL NER algorithms, consider this a word-
labeling problem, which can be formalized by assigning to each
word wi one label or classi and to generate a probabilistic model
P(classi|wi). For this purpose, the most widespread representa-
tion of a sequence of words is a sentence, because a particular
named entity mention does not usually span across sentence
boundaries (i.e., are constraint to single sentences). Given a
sentence, one option is to compute P(classi) independently for
each word. The most probable sequence of tags, using a Viterbi
search, then can be computed to establish how to label named
entities within the sentence. Given a sentence represented as a
sequence of words, considering only the class probability of the
current word is usually not very robust. A more competitive
representation model requires for the computation of the class
probability to take into account, for instance, the preceding,
current, and following words P(classi|wi−1, wi, wi+1), or even to
define a local context in terms of a number n of preceding or
following words within the sentence.
A range of different SL algorithms have been tested for NER

problems,319 including decision trees (DT)386 and random
forests (RFs),172 maximum-entropy Markov models
(MEMM),158 hidden Markov models (HMMs),387−389 support
vector machines (SVMs),390,391 and conditional random fields
(CRFs).141,150,161,175,338,343,344,384,391−393 Providing a detailed
overview of the algorithms and mathematical models under-
lying all of these ML methods goes beyond the scope of this
Review.
Briefly, maximum entropy models calculate for each used

feature (e.g., previous word, current word, etc.) its individual
contribution independently. They then combine them multi-
plicatively under the assumption that each of them contributes
separately to the final probability. This can suppose an
advantage in situations where two cues occur separately in
the used training data. A widely used CER system that employs
MEMMs is the OSCAR4 chemical tagger.158

Markov chains can be viewed as a kind of stochastic model of
processes, represented as a succession of states. The process
goes from one state to the next. Each of the corresponding state
transitions is associated with a probability. Two frequently used
ML techniques based on the Markov principle are HMMs394

and CRFs.395

HMM-based NER taggers generate a distinct statistical
model for each name class and also a model for those word
sequences that do not correspond to predefined name types.
HMMs are a sort of probabilistic automata where a label
matches a state while observation symbols represent a word at a
state, and state transitions and observation symbols are defined
probabilistically. HMM-based entity taggers have been
substituted in practice by MEMMs to ease the heavy
independence assumptions underlying HMMs,396 and com-
parative studies showed that MEMM-based CER strategies
yield a better performance when compared to HMM-based
chemical taggers.389

CRFs can be currently considered as the state-of-the-art
method for sequence labeling, including named entity
recognition. In fact, 19 out of the 20 teams that used ML
methods for CER that participated at the BioCreative
CHEMDNER task used this SL approach, including 8 of the
top 10 best systems (the other two were rule-based systems).132
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CRFs are a type of discriminative undirected probabilistic
graphical model trained to maximize the conditional probability
of random variables. Publicly available CER taggers like
ChemSpot162 and tmChem161 are hybrid systems that use
CRFs. Seminal work in using CRFs for tagging IUPAC and
IUPAC-like chemical names was carried out by Klinger et al.
(2008),141 which also inspired the development of the CRF-
based CER tagger CheNER.345

3.6.3. Data Representation for Machine Learning. To
carry out a sequence-labeling task (and, to a certain extent,
word classification), it is necessary to represent text, or more
specifically individual sentences, as a sequence of words or
tokens. Each token, in turn, is represented by a set of features
that are used by the ML algorithm to generate class labels.
There are several alternative tagging schemas or ways to encode
classes for NER sequence labeling tasks. Figure 10 provides an
example case for the most common NER tagging schemas. The
IO encoding is the simplest case that only considers whether a
token is part of a chemical entity mention. Such an encoding is
not particularly suitable to define mention boundaries between
two consecutive entity mentions. The most widely followed
tagging scheme used by ML-based chemical entity taggers is the
BIO, also known IOB, format. This schema labels each token as
being either at the beginning of an entity mention (B), inside
an entity mention (I), or outside an entity mention (O). This
implies that tokens are labeled as “B” if they are the first token
of an entity mention, and as “I” if they are part of the following
subsequent entity forming words, while all other words that do
not form part of the entity mentions are labeled as “O”. Other
alternative tagging schemas are BEIO, BESIO, and B12EIO,

397

where additional labels are added, a particular tag for tokens at
the end of entity mentions (E), single token chemical entity
mentions (S), and two labels for the first (B1) and second (B2)
token of an entity name. Dai et al. examined several entity
tagging schemas and arrived to the conclusion that the BESIO
schema outperformed other alternative representations.160

3.6.4. Feature Types, Representation, and Selection.
To build a statistical tagger, each token is represented as a set of
features that can be viewed as descriptive properties or
characteristic attributes of a particular token (and its flanking

tokens) for algorithmic intake. Features are associated both to
positive and to negative training examples, that is, tokens that
are part of entity mentions and also those that are not part of
entities. An overview of feature types commonly used by CER
taggers is provided in ref 132. To generate a suitable text
representation for building statistical learning models, feature
vectors are used. For each token, its corresponding features are
encoded as Boolean, numeric, or nominal attributes. Examples
of Boolean features could include FirstCap (word is
capitalized), AllCap (only contains capital letters) or HasSlash
(token contains a slash), HasComa (token contains a coma),
HasPrefix1 (token as a specific predefined prefix), HasSuffix1
(token as a specific predefined suffix), IsNoun (has part-of-
speech label noun), or HasGreekLetter (token contains a Greek
letter). Other aspects that can be encoded as Boolean attributes
are POS tags, word classes, or semantic tags. Such attributes
have the value “true” if the token does have this characteristic
and “false” otherwise. Typical numeric attributes used as
chemical entity recognition features are, for instance, token
length measured in number of characters, or a counter for the
number of times certain characters (e.g., hyphens) or n-grams
(e.g., “cyl”) appear in a given token. Nominal attributes could,
for example, correspond to the token or a lowercased version of
a token, or even a pattern that encodes a generalized version of
the morphology of the token. For instance, the chemical
compound “10-amino-20(S)-camptothecin” can be encoded as
its full token shape version “00_aaaaa_00_A_ aaaaaaaaaaaa”,
where 0 stands for any number, “_” stands for non-
alphanumeric characters, and “a” and “A” stand for lower and
upper case letters, respectively.150 This long word shape
representation can be further condensed into its brief shape
version or summarized pattern feature “0_a_0_A_a”, where
consecutive symbol types are conflated into a single symbol.
Another type of nominal attributes are lexicon, dictionary, or

gazetteer lookup features where the token is matched against a
list of terms, such as entity names or entries in a stop word list
that was previously constructed.
It is also common to distinguish between word-level

attributes, list lookup attributes, and document or corpus
attributes. Word-level attributes include the types of morpho-

Figure 10. Example case for the most common NER tagging schemas.
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logical features previously described, while list lookup attributes
are often useful to include domain-specific information. Typical
document or corpus features include corpus frequency and co-
occurrences of other entities in the context.
Prototypical features used by SL-CER methods are derived

from morphological/orthographic, lexico-syntactic, and gram-
matical properties of tokens. Many commonly exploited
features examine the presence of specific combinations of
orthographic features, including certain patterns of consecutive
characters (e.g., character n-grams), token case, presence of
digits, special characters (e.g., hyphens, brackets, primes, etc.),
and symbols (e.g., Greek letters, @, \$, etc.). Especially useful
are features looking at certain affixes at the beginning, within
and at the end of tokens as they can help to identify the
morphology of systematic chemical names. Context features
used by SL CER are usually constrained to the local context of
a token, that is, considering a contextual window of previous
(wi−n) and next words (wi+1) to the current token (wi).
3.6.5. Phases: Training and Test. The development of the

previously described SL-based CER systems is typically
organized into two distinct phases, the training-phase and the
test phase. During the training phase, a statistical language
model is generated. This requires the selection of suitable
training documents that are exhaustively labeled with entity
mentions (i.e., all tokens must have a class label), the encoding
and examination of suitable features and feature extractors, and
training of the statistical sequence model. During the test phase,
this predictive model is applied to assign labels for each token
in a new text.
3.6.6. Shortcomings with ML-Based CER. Although SL-

methods are the general choice for recognizing chemical
entities, they also have some limitations, which are mainly tied
to the critical need of a significant amount of high-quality
manually annotated training data, domain experts (deep
domain knowledge), and proper annotation guidelines to
carry out such an annotation process. For very specific subtypes
of chemical entities or entities of chemical relevance as well as
particular target domains or certain document types, labeled
training corpora might be missing.
Moreover, feature selection and optimization as well as the

detection of term boundaries is still a challenging problem.
Finally SL-methods operate generally at the level of individual
tokens, and thus they are very sensitive with respect to the used
tokenization strategy.

3.7. Hybrid Entity Recognition Workflows

The design of CER systems is driven by the primary goal of
obtaining competitive recognition, regardless of the actual
methodology used. Therefore, existing chemical mention
taggers explored the complementarity of different tagging
strategies. In fact, top scoring systems participating in
BioCreative challenges did make use of hybrid strategies that
combined several of the following techniques: SL-based
techniques (based on various CRF models), rules/patterns
for certain types of chemical mentions, and dictionary-lookup
using chemical gazetteers.132 Most of these CER systems are
primarily SL-based and use dictionary-lookup features (either of
entire terms or parts of tokens, such as chemical stems or n-
grams) together with rule-based postprocessing techniques.
Chemical dictionary-lookup is integrated into hybrid systems

primarily on the basis of either SL-learning161 or rule-based
CER.332 In the case of SL-learning CER, dictionaries are
commonly used to generate list-based features or as part of stop

word filtering steps, or alternatively they can be used as a
tagging strategy by its own to complement SL results.398 In the
case of rule-based CER, names derived from chemical
gazetteers are used as components of specific recognition
rules or to generate entity mention patterns. Hybrid CER
approaches can also be used to cover different types of chemical
names. For instance, rules may be used to detect systematic
names and dictionaries may be used to detect trivial names, and
in the combined results, the longest mention is retained (in
case of overlapping results).358 Another hybrid system
combining both dictionary lookup and rules manually
constructed by experts with deep domain understanding is
LeadMine.332

Rule-based processing steps are integrated into hybrid CER
systems to handle different aspects of recognition. They are
commonly used to identify highly structured chemical entity
mentions, such as chemical formula and sequences of amino
acids through pattern matching or regular expressions. At the
level of rule-based preprocessing for SL-CER taggers, critical
aspects include chemical document-adapted tokenization rules
and sentence segmentation. Rule-based techniques are
commonly applied to carry out extensive automatic post-
processing of results produced by SL-CER taggers. This
includes checking whether brackets and parentheses are
balanced within detected chemical mentions161,399 or adjusting
chemical mention boundaries. Rule-based methods are also
used during postprocessing steps to recognize mentions of
chemical abbreviations and acronyms. For instance, tmChem
relied on AB3P (Abbreviation Plus P-Precision) for detecting
potential abbreviations of chemical names.161 Rule-based
techniques are also used to resolve conflicting results generated
by multiple CER techniques. A widely used hybrid CER system
applies CRFs mainly for IUPAC chemical names and
dictionaries (ChemIDPlus) to derive trivial, brand names, and
abbreviations for chemicals is ChemSpot.162

Dictionaries or rule-based systems can also be applied to
generate surrogate annotations for manually annotated training
data sets. In this line of work, rule-based strategies have been
explored to produce additional labeled entity mentions that can
be used as training data for SL-CER systems.400

Another hybrid system is ChemDataExtractor that integrates
dictionaries (Jochem), rules, and machine learning (CRF-CER
trained on the CHEMDNER corpus) techniques. It uses
patterns for the recognition of chemical database identifiers and
formulas.365

3.8. Annotation Standards and Chemical Corpora

3.8.1. Definition, Types, and Background. The recog-
nition of chemical entities as well as other types of entities of
chemical relevance depends heavily on the existence of labeled
text collections or corpora to evaluate the reliability and
performance of automatically extracted mentions. Moreover,
such resources are a critical key resource in case of SL-based
CER strategies for the design, training, and evaluation of NER
models in the very first place.
Annotation corpora consist typically of (manually) labeled

text where all of the mentions of predefined entity types are
tagged and, sometimes, also mapped to concept identifiers from
ontologies or databases. As the corpus construction process is a
highly labor-intensive task, such resources are scarce and
constitute extremely valuable resources for chemical TM.
Corpora manually annotated by domain experts can be viewed
as a gold-standard resource (Gold Standard Corpora) that
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enables the comparison of various methods, evaluating their
relative performance, and the reproduction of obtained results.
A milestone in the construction of text corpora for language

processing purposes was the publication of the Brown Corpus
by Kucěra and Francis, consisting of a corpus of modern
American English compiled from different sources with a total
of around one million words.401

The construction and release of sufficiently large text corpora
containing chemical information annotations started relatively
recently and will be described in this subsection. It can be said
that the release of such annotated resources promoted
significantly the research and development of chemical entity
recognition systems. In particular, the release of resources such
as the CHEMDNER corpus resulted in triplicating the number
of published CER taggers.318 Despite their extensive use, and in
contrast to the over 36 corpora constructed for the biomedical
domain,232 only few manually labeled chemical corpora are
currently accessible.
The EDGAR corpus was one of the first attempts to annotate

chemical entities or, more specifically, drugs, in addition to
other entity types such as genes and cells. This corpus was
constructed at the beginning of 2000 and comprised
annotations for 103 cancer-related PubMed abstracts.359

In the case of SL-NER systems, labeled annotation data are
commonly divided into two disjoint sets: the training collection
from which the model infers its parameters and the test
collection used to evaluate the quality of the learned model.
This implies that annotated corpora should be sufficiently large
to accommodate both of these subsets.
The annotation process itself can be viewed as a sort of

semantic enrichment or addition of metadata at the level of
adding individual entity tags to the text by following specific
annotation criteria or guidelines. To overcome the considerable
workload burden associated to manual annotation, corpora with
a usually lower annotation quality have also been generated by
automatic means, known as silver standard corpora. One
example of a silver standard corpus that contains also chemical
mentions is the CALBC corpus.402 Another silver standard
corpus was released after the first CHEMDNER challenge
consisting of automatic annotations returned by systems that
participated in this competition (CHEMDNER silver standard
corpus).318

Another relevant aspect, both for the consumption of
corpora as well as for their construction, are annotation
guidelines or rules. Annotation guidelines are essentially a
collection of (usually written) rules describing what entities
should be labeled and how. This usually implies defining what
types of mentions should not be tagged, how to deal with
ambiguous cases, and criteria to define the exact boundaries of
entity mentions. Manual annotation can only be done
systematically through the use of computational text annotation
tools. Refer to Neves and Leser for a survey on existing text
annotation software.232 Differences in annotation guidelines are
usually tied to the scope of the corpus and the resources that
should be implemented from a given corpus. Also, the
annotation effort varies considerably depending on the target
documents. For instance, patents are considerably longer than
scientific articles, with a lower word density.403

To measure the consistency and quality of manual
annotations, a common strategy is to compare manually
labeled mentions. This implies to check whether the offsets of
mentions generated by different individuals are the same. To
measure quantitatively the annotation consistency, the simplest

metric is the interannotator agreement (IAA) or intercoder
agreement score, which is based on the percentage agreement
of manual annotations between different annotators.
The representation of text annotations and standardization of

text annotation formats is still an open research question. In
principle, it is possible to distinguish between inline and offline
annotation types for defining the labels of entities associated to
documents. In the inline annotation strategy, specific tags,
labels, or elements that delimit entity mentions are inserted
directly into the target text, often represented as XML tags. In
the case of stand-off annotations, the original document is not
modified; that is, annotations are not embedded into the actual
text itself and are stored separate from the document.404

For storing, processing, and distribution of corpora, the use
of a proper annotation format is also important. Currently,
there is no universally accepted, standard chemical text
annotation format, but there are several de facto standards or
widely used formats. An annotation and representation format
proposed for chemical documents is SciXML, which defines
inline annotations. It was the original input format required by
the CER tool Oscar3.154 Currently, an alternative way to
represent chemical text annotations is through the Chemical
Markup Language (CML), whose initial development started
back in 1995.405,406 Another text annotation format, mainly
used as a standardized way to represent manual or automati-
cally generated text annotations, is the BioC format.407

3.8.2. Biology Corpora with Chemical Entities. The
recognition of chemical entities is relevant also for other
research disciplines beyond chemistry itself. Therefore,
annotations of chemical entities are done in domains such as
medicine, pharmacology, and particularly biology. The bio-
logical text corpus with the highest influence and importance is
the GENIA corpus,133 consisting of a collection of PubMed
abstracts annotated manually with a range of different concept
classes, including chemicals. Chemical concepts, as defined in
GENIA, can be regarded as a quite broad-spectrum type of
chemical substances that can not necessarily be correlated to
particular chemical structures.
Another early corpus construction effort was done by

Narayanaswamy et al., which prepared a corpus of just 55
abstracts retrieved by keyword searches related to acetylation
and that encompassed a number of chemical entity
mentions.369

The PennBioIE CYP 1.0 corpus is another hand-annotated
corpus from the Life Sciences field that labeled chemical entity
(substance) mentions. It contains articles related to the
inhibition of cytochrome P450 enzymes. Entity mentions
annotated as substances in this corpus included also protein
names.
Annotating entity names of relevance for metabolic pathways

(yeast metabolism) was the main aim of the Metabolites and
Enzymes corpus, containing annotations of metabolite
mentions in 296 article abstracts.408

Several corpora providing annotations for drug mentions in
scientific abstracts have been constructed. The ADE corpus
hosts annotations for drug-related adverse effects in 3000
abstracts, while the EU-ADR corpus has annotations for drug−
target and drug−disease relations extracted from 300
abstracts.409 Drugs and their relations have been tagged in
the DDI (Drug−Drug Interaction) corpus, which contains a
total of 700 documents (abstracts and DrugBank410 database
records).411
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Only few manually annotated corpora for full text articles
have been prepared so far. The CRAFT corpus contains 97 full
text biomedical articles annotated with different concept types,
including chemical concepts.412 CRAFT chemical concepts are
constrained to those that are covered by the ChEBI
ontology,412 implying that other chemical entity mentions are
not annotated. The HANAPIN corpus is another full text
scientific article corpus. It consists of 20 articles from the
journal Marine Drugs, annotated with several entity types as
well with linguistic information. One type of annotated entity
corresponded to chemical compounds (280 mentions).413

Schlaf and colleagues prepared a patent corpus that focused
on chemical entity associations with diseases, extracted from 21
U.S. patents. Those annotations were automatically generated
at first and then manually revised.414

3.8.3. Chemical Text Corpora. Several manually anno-
tated resources were developed relatively recently that focused
primarily on chemical entities and their mentions in text. These
chemical corpora are quite heterogeneous according to various
properties. At the document type level, one can primarily
distinguish between corpora using scientific literature or
patents. At the document content level, annotations have
been done using only abstracts (and titles) or the entire full text
document. Differences are also found regarding the size and
format of the different chemical corpora as well as in terms of
annotation scope and the underlying manual annotation criteria
or guidelines.
Recent work by Habibi et al. examined existing differences

between chemical corpora (cross-corpus analysis) to show how
adaptable CER systems are when trained on one corpus and
tested on another one.415 This study estimated that the
performance CER systems trained on scientific abstracts and
evaluated in terms of balanced F-score degraded by about 10%
when applied directly to patent abstracts, and decreased by
around 18% when run without adaptation on patent full texts.
They also proposed that ensemble systems, which combine
results provided by different CER systems, can be a strategy for
cross-corpus adaptation.415

Such variability in performance can be partly explained by
differences in the annotation process. A foundational work in
defining manual criteria for annotating chemical information in
abstracts and chemistry journals was done by Corbett and
colleagues,416 and then refined in the context of the
CHEMDNER competition and its corpora.317,318

The first efforts to generate comprehensively annotated
chemical corpora were the Sciborg (42 full text chemistry
papers)416,417 and the Chemistry PubMed corpus (500
PubMed abstracts).389,416 The Sciborg corpus was annotated
by three chemistry experts and had a total of 4102 manually
annotated chemical compound mentions.417

These two chemical corpora shared basically the same
detailed annotation principles, providing rules for labeling
mentions of chemical compounds, reactions, chemical
adjectives, enzymes, and chemical prefixes. Although these
two corpora were not publicly released, the description of their
annotation process inspired the construction of other chemical
corpora.
Different classes of chemical names, like systematic names or

trivial names, show properties that are of practical importance
for its automatic recognition. To take into account this naming
characteristic, the developers of the publicly distributed Chem
EVAL corpus or SCAI corpus defined more granular chemical
mention classes: IUPAC (systematic and semisystematic

chemical names), PART (partial IUPAC names), TRIVIAL
(trivial names), ABB (abbreviations and acronyms), SUM (sum
formula, atoms, molecules, SMILES, and InChI), and FAMILY
(chemical family names).335 This granular chemical entity
mention class distinction was of practical importance for the
construction of follow-up chemical corpora, even though the
original corpus was limited in size (100 abstracts with 1206
chemical mentions) and detailed annotation guidelines were
not released together with this corpus.
Another freely accessible chemical corpus is the ChEBI

Patent Gold Standard corpus or Chapati corpus,418 resulting
from a collaboration between the European Patent Office and
the ChEBI database.419 It is composed of 40 patents with
18 061 chemical mention annotations, around one-half of
which are normalized to ChEBI database records.
Because of the practical importance of chemical patents,

another corpus of 200 full text patents with chemical mention
annotations was described in 2014,420 the BioSemantics Patent
corpus. Here, a slightly different strategy was used to deal with
the lengthy content of patent documents. These patents were
automatically preannotated with a CER system. Afterward,
during a manual revision phase, automatically detected
chemical mentions were examined, and potentially corrected
or removed, while missing mentions were added manually.

3.8.4. CHEMDNER Corpus and CHEMDNER Patents
Corpus. Two chemical corpora known as the CHEMDNER
corpus and the CHEMDNER patents corpus have been
publicly released together with detailed annotation guidelines
as part of the BioCreative CHEMDNER community
challenges.132,316−318

These two corpora were large enough to be used as data sets
for a community challenge with the aim to promote
development and evaluation of CER systems (see section
3.9). This implies that they were used as Gold Standard data
sets for the comparison of automatically detected chemical
entity mentions against the manually delimited mentions of
chemicals annotated in these corpora.
Both of these corpora relied on very similar annotation

guidelines with minor adaptations to address differences in
scope, or annotation goal of abstracts derived from scientific
articles when compared to those from patents. The
CHEMNDER corpora annotation guidelines were concerned
with ways to define what can be regarded as a chemical
compound mentioned in text, focusing on those mentions that,
at least at a certain extent, can be associated to structural
information. Chemical entity mentions of this kind are known
in the context of the CHEMDNER task as Structure Associated
Chemical Entity Mentions (SACEMs) and were exhaustively
annotated by chemists with experience in literature curation.
Example cases of true SACEMs are “nitric oxide”, “resveratrol”,
or “malondialdehyde”, while other concepts like “pigment”,
“hormone”, “antibiotic”, “metabolite”, or “chelator” do not
represent SACEMs and thus were not annotated. Together
with the CHEMDNER annotation data and guidelines,
additional descriptions of relevant aspects for the interpretation
and use of these corpora were published, including the
strategies used for corpus document selection/sampling,
characteristics and expertise of the human annotators, measure-
ments of corpus annotation consistency, characteristics of the
corpus format, and descriptive definitions of annotated
chemical name classes. The annotation of chemical name
classes was tackled through a granular annotation schema that
comprised seven classes of SACEMs: SYSTEMATIC (system-
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atic or semisystematic names), IDENTIFIERS (chemical
database identifiers), FORMULA (chemical formula), TRIVI-
AL (trivial, common, and trade names of chemicals and drugs),
ABBREVIATION (abbreviations or acronyms corresponding
to chemicals), FAMILY (chemical families), and MULTIPLE
(noncontinuous mentions of chemicals in text). An examina-
tion of the CHEMDNER corpus showed that TRIVIAL
(30.36%) and SYSTEMATIC (22.69%) names sum up more
than one-half of the chemical mentions, while other chemical
name classes appear with a lower frequency in text, for example:
ABBREVIATION (15.55%), FORMULA (14.26%), FAMILY
(14.15%), and IDENTIFIERS (2.16%).
Most chemicals in this corpus occurred only one or two

times (over 72% of unique name strings) and were rather long
names with a mean chemical mention length of 10.01
characters (median 8). The longest name corresponded to a
systematic name with a length of 349 characters.
The consistency of the CHEMDNER corpus was assessed

through an interannotator agreement study between human
annotators, obtaining a percentage agreement of 91% for exact
chemical mentions, regardless of the chemical name class label,
and 85.26% when in addition to the chemical mention offset
the name class label was also identical.
The CHEMDNER annotation guidelines consisted of

documents of roughly 21 pages that contained annotation
rules supplemented with example cases and structured into six
types of rules. General rules elucidated how to use external
knowledge sources and how to deal with unclear mentions.
Positive and negative rules described what should and should
not be labeled, respectively. Class rules provided criteria for
labeling at the level of chemical name classes, while
orthography/grammar rules provided instructions for defining
entity mention boundaries. Finally, multiword entity rules had
to deal with criteria for delimiting multiword chemical entities.
Each of the CHEMDNER corpora contained three subsets, a

training set, a development set, and a test set, to clearly define
what portions of the corpus should be used to implement, train,
and tune the CER systems (training and development data)
and which part had to be used for evaluating the performance
of the final CER systems (test set).
In the case of the CHEMDNER corpus, the entire data set

comprised 10 000 recent PubMed abstracts, while the
CHEMDNER patent corpus contained 21 000 medicinal
chemistry patent abstracts (and titles). Each of these two
corpora contained three randomly sampled subsets for training
(3500 PubMed abstracts and 7000 patent abstracts), develop-
ment (3500 PubMed abstracts and 7000 patent abstracts), and
testing (3000 PubMed abstracts and 7000 patent abstracts) the
CER systems.
In total, the CHEMDNER corpus contained 84 355

manually labeled chemical entity mentions, while the
CHEMDNER patent corpus had 99 634 chemical mentions
labeled by hand.
Both CHEMDNER corpora provided details on document

selection criteria. For the CHEMDNER corpus, abstracts were
selected from journals representing diverse chemistry and
chemistry-related disciplines, including organic chemistry,
physical chemistry, chemical engineering, medicinal chemistry,
biochemistry, pharmacology, and toxicology. In the case of the
CHEMDNER patent corpus, patent abstracts from various
patent agencies, the World Intellectual Property Organization
(WIPO), the European Patent Office (EPO), the United States
Patent and Trademark Office (USPTO), Canadian Intellectual

Property Office (CIPO), the German Patent and Trade Mark
Office (DPMA), and the State Intellectual Property Office of
the People’s Republic of China (SIPO), were selected. A subset
of these patent abstracts was chosen taking into account several
criteria including their publication date (2005−2014) and
associated IPC codes (A61P and A61K31).
The CHEMDNER corpora were distributed using standoff

annotation formats, and thus annotation information was kept
in a separate file from the original documents. These
annotation files contain information on the character offsets
of each chemical mention together with its associated chemical
name class, being released in simple tab-separated formats as
well as in the BioC format.407

3.9. BioCreative Chemical Entity Recognition Evaluation

3.9.1. Background. From the point of view of a user of
CER systems, or even of chemical text processing tools in
general, it is difficult to determine which tool is the most
adequate or performs best on a specific problem, document
collection, or task. To determine comparative performance of
different tools, one option is to perform a benchmark study by
evaluating various applications on a common data collection
and using the same evaluation metrics. The drawback of
benchmark studies is that they are associated with a
considerable workload. They typically require some adaptation
of the examined software to cope with a common data input
and output. They also require designing adequate evaluation
strategies that suit all tools and preparing Gold Standard
benchmark data sets. Moreover, benchmarking does not
actively involve the developers of NER systems in the
benchmark process, and thus cannot determine the state-of-
the art for a particular task as the various systems are not
adapted or optimized for a particular metric and/or evaluation
data set.
Community challenges are an alternative evaluation exercise

to benchmarking. They actively promote the development of
new tools, which might explore different methodologies or
algorithms. These systems are, in turn, evaluated and compared
on the basis of impartial evaluation metrics and on a common
evaluation data set. When community challenges are repeated
over time, it is possible to monitor progress over time or to
compare results obtained on different document collections.
The advantage for systems that participate in open

community challenges is that, traditionally, task organizers are
in charge of assembling and providing access to large enough
high-quality annotated gold standard data. Organizers of
evaluation efforts typically have to collaborate with domain
experts to prepare annotation guidelines and data sets.
Moreover, they usually also provide software to automatically
score the performance obtained by the various participating
systems, evaluating their results on a common blind test set.
Already at the former MUC community challenges, tasks

were posed to address the recognition of named entity
mentions, but outside the scientific domain.421 The work of
Huang et al. provides an overview of the various TM and
information extraction community challenges that were carried
out in the biomedical field, covering also tasks related to
chemical and drug named entity recognition efforts.422 As NER
is a fundamental building block for semantic search, and for
higher-level NLP and relation extraction processes, such
community challenge NER tasks have attracted considerable
attention.
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At the third i2b2 challenge, a task was posed with the aim of
asking participating systems to recognize medication mentions
(and other information) in deidentified discharge summaries.
The task organizers provided overall 1243 summaries, that is,
696 for training and 547 for testing purposes. From the training
set, only 17 summaries had conventional manually labeled gold
standard annotations. It is noteworthy that the used gold
standard test set annotations were collectively produced on the
basis of all of the automatic submissions for a subset of 251
summaries. Medications in this challenge comprised names,
brand names, generics, and collective names of prescribed
substances used to treat patients, for example, including names
like “heparin” or “coumandin”. Out of the 20 participating
teams, most of the top 10 best performing systems relied on
some kind of rule-based technique; the best performing system
achieved a balanced F-measure of 85.7%.
Another challenge, the DDIExtracion (drug−drug interac-

tions) challenge, also focused on drug-related information, but
cannot be considered a true NER task. The 10 participating
teams were asked to classify pairs of candidate drugs that co-
occurred in a particular sentence whether they were in an
interaction relationship or not. The used DrugDDI corpus
contained a total of 3160 of these annotations extracted from
579 documents, obtained from the DrugBank database. The
best result was obtained by a system that combined ML
techniques with case-based reasoning, yielding a balanced F-
score was of 65.74%.
These and other efforts423−425 had as a primary goal the

extraction of some particular relationship rather than focusing
on the entity recognition task itself. Moreover, annotations
were provided by experts from health-related disciplines or
biosciences and not by chemistry experts.
3.9.2. CHEMDNER. Since the first BioCreative challenge

evaluation, individual tasks focused specifically on the
recognition of named entities, under the assumption that
solving more complex tasks required modularizing the
underlying problem and addressing essential aspects sepa-
rately.426 The BioCreative organizers posed the CHEMDNER
(chemical compound and drug name recognition) community
challenge, with the aim of encouraging the development of
original, competitive, and accessible CER systems.
Two comparative assessment tasks, known as the CHEMD-

NER (BioCreative IV) and the CHEMDNER patents
(BioCreative V) tasks, focused primarily on the detection of
chemical entity mentions in running text, as part of the
BioCreative competitions.132,316−318 These tasks represent the
first effort that systematically tried to assess the performance of
CER systems on a common evaluation setting ground for
scientific abstracts and patent abstracts.
During the CHEMDNER task, a subtask named CEM

(chemical entity recognition) requested participating teams to
provide systems able to recognize the exact mention offsets of
chemicals in PubMed abstracts. As part of the CHEMDNER
patents task, the CEMP (chemical entity mention in patents)
subtask requested essentially the same thing, but using as
document input medicinal chemistry patent titles and abstracts
written in English language.132,316−318 The used Gold Standard
data sets, that is, CHEMDNER corpora, were already
introduced in the previous section 3.8.
To assess the performance of automatic recognition of

chemical entities, automatically recognized mentions repre-
sented by their exact character offsets (start and end character
indices, which delimit a specific mention) were compared to

the offsets of mentions labeled manually by chemical
annotators. This implied that automated CER systems had to
return, given a document, the start and end indices of all of the
chemical entities mentioned in this document.
Only if the automatically produced mention corresponded

exactly to the manually labeled chemical was it regarded as a
true positive prediction. Partial chemical mention overlaps or
any other mentions that did not match precisely manual
annotations were considered to be false positive hits. Those
manually labeled chemical mentions that did not have a
corresponding automatic detection were scored as false
negative predictions.
The evaluation metrics used for the CHEMDNER tasks to

assess team predictions were recall, precision, and balanced F-
measure (the main evaluation metric).
The CHEMDNER tasks were arranged temporally into

several competition phases or periods. During the initial
registration and task announcement phase, a small sample
collection of illustrative annotations and predictions were
distributed among participants to exemplify the type of
requested chemical mention annotations. At a later stage,
known as the training period, a collection of manually
annotated chemical entity mentions (training data) was
released. This period was followed by the development phase,
when additional annotations similar to the training data were
released to allow fine-tuning of the final CER implementations.
Finally, during the test period, a blind collection (annotations
were held back) of documents (PubMed and patent abstracts)
was released. Participating teams had then to return (a
predefined short period of time) their automatically generated
chemical mention predictions using a common prediction
format. Each participating team could send a maximum of five
different prediction runs.
A total of 26 systems from commercial and academic

research teams (22 academic and 4 commercial groups with a
total of 87 researchers) used the CHEMDNER task of
BioCreative IV to evaluate their CER tools.132,318,427 They
returned a total of 106 individual system runs for this chemical
entity recognition task. In the case of the CHEMDNER patents
task, overall 21 teams submitted 93 different runs for the
detection of chemicals in medicinal chemistry patent
abstracts.317 For the CHEMDNER patents task, submissions
were handled through a new evaluation and visualization
platform called Markyt to support online comparative
evaluation assessment.316

Both CHEMDNER tasks had analogous evaluation settings,
and the used training and test data sets relied on highly similar
but not totally identical annotation criteria.
Neither of these two tasks evaluated the association of

extracted chemical mentions to chemical structures (name-to-
structure) or some chemical database identifiers (entity
normalization or grounding), a particularly challenging
problem,428 which nonetheless was regarded by the task
organizers as a distinct issue independent from the actual NER
task. Although the CHEMDNER corpora were annotated at a
more granular level, by labeling mentions according to seven
chemical name classes (described in section 3.8), classification
of chemical mentions according to these classes was not
examined.
The best performing CER system at CHEMDNER task

(PubMed abstracts) obtained a balanced F-score of 87.39%, a
result that is very close to the interannotator agreement (91%).
The best precision for this task was of 98.05% (with a recall of
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17.90%), while the highest recall was 92.11% (with a
corresponding precision of 76.72). As a general trend, the
precision scores of participating systems were noticeably better
than the corresponding recall values. Average recall values also
varied depending on the chemical mention classes, indicating
that overall systematic and trivial names were associated to
higher recall values when compared to the other types of
mentions. Overall, 99.99% of the manually annotated mentions
were detected at least by a single participating system.
The results of the CHEMDNER patents task were very

similar to those obtained on scientific abstracts. The top scoring
system obtained an F-score of 89.37%. The system with the
overall best precision obtained a score of 89.71% (with a recall
of 88.22%), while the overall highest recall was of 93.14% (with
a precision of 79.67%).
The CER methods explored for the CHEMNDER tasks

comprised mostly SL methods. The method of choice for most
top performing teams was based on CRFs relying on a large
collection of different features, similar to those discussed in
section 3.6. Several participants also explored the adaptation of
chemical gazetteers and chemical domain-specific rules.
Especially problematic cases were single letter chemical entity
mentions due to their high degree of ambiguity (e.g., “I”, “O”,
“P”, or “H”). Another issue was the detection of trivial chemical
mentions corresponding to dyes. In the case of systematic
names, finding the correct boundary of very long mentions was
challenging for some systems.

4. LINKING DOCUMENTS TO STRUCTURES
As IUPAC guidelines in practice do allow some variability with
respect to how names are constructed, together with existing
alternative typographical and spelling variants, several chemical
entity aliases can be mapped back to a single structure.324

Moreover, alternative systematic (CAS and Beilstein-Institut),
semisystematic, and trivial nomenclatures, as well as the
tremendous number of synonyms (e.g., brand names and
database identifiers) pose additional difficulties for text-based
searches,429 which are not surpassed by strategies to normalize
nearly identical names.430−432 Still, the normalized chemical
names in published literature are not as correct as expectable.30

Also, chemical trademarks and brand names are commonly
annotated in chemical databases, but are not indexed in public
patent databases. Thus, identifying the chemical structure
associated to a chemical name does not only allow structural
searches, but also allows normalization of chemical names and
avoids dealing with specific languages.433 Moreover, disposing
of the chemical structures contained in documents opens the
door to their chemical registration in molecular databases and a
variety of posterior computational analysis, as discussed below.
However, it should be noted that chemical structure searches
do not replace text-based searches (e.g., many pharmaceutical
companies publish reports on compounds in advanced
preclinical or clinical phases without disclosing its correspond-
ing structure).
Authors can also present chemical structural information in

documents, especially in case of supporting/Supporting
Information of scientific articles, in the form of plain text 3D
X, Y, Z atom coordinate values. Tools like ChemEngine have
been implemented to automatically extract 3D molecular XYZ
coordinates and atom information from articles with the aim to
directly generate computable molecular structures.434 This
system used pattern recognition and regular expressions to
detect molecular coordinates and distinguish it from surround-

ing nonmolecular free text. After generating the atom
coordinate matrix data from the previously detected molecular
coordinates, tools like ChemEngine build molecules using the
bond matrix and the atom connectivity. Finally, the automati-
cally generated molecules are examined through application of
important filtering parameters (e.g., bond length/angles) before
returning the final structure in formats like SDF.
Together with optical structure recognition (OSR) or optical

chemical structure recognition (OCSR) methods (section 4.2),
name-to-structure conversion algorithms (section 4.1) and
chemical entity grounding are the main approaches to link
documents to structural information.

4.1. Name-to-Structure Conversion

Name-to-structure conversion is the process of generating the
chemical structures (chemical diagrams) from chemical names.
Earlier works on the direct conversion of names to formulas
were developed by Garfield in the 1960s, using a dictionary of
name parts or morphemes.324 CAS then reported internal
procedures based on nomenclature rules for the automatic
conversion of CAS names and other systematic nomenclatures
into chemical structures.435,436 Later, in 1989, Cooke and
colleagues applied grammar-based techniques to the recog-
nition of IUPAC systematic chemical nomenclature and its
translation to structure diagrams.437−439 Soon after, rule-based
approaches prompted as an alternative to grammar-based
approaches for systematic nomenclature, with the first
commercial program, named Name = Struct, being launched
in 1999.117

In general, systematic nomenclature conversion is based on
the parsing of the chemical names and the application of syntax
analysis. The procedure starts by dividing input names into
name fragments of known type (lexemes) included in internal
look-up tables, locants, enclosing marks, and punctuations. This
is followed by the syntactic analysis of the chemical name
according to the chemical nomenclature grammar. Each
fragment name then is assigned its structural meaning, and
connections are derived between the different fragments.117,440

For trivial names and registry numbers, lookup tables are
unavoidably required, what makes this approach very sensible
to the quality of the internal dictionary (comprehensiveness)
and to badly annotated associations between chemical names
and structures (e.g., omitted stereochemistry). The difficulty of
disambiguating noncommon abbreviations (e.g., different from
“DMSO” and “EDTA”) depending on their context suggests
that the conversion of any trivial name shorter than about 5 or
6 characters is not safe.440 In Table 5 is tabulated a list of
currently available software, with a description of the coverage
of chemical mention types and whether the program handles
(to some extent) typographical errors generated by OCR or
misprints and/or cautions on detected ambiguous names
arising from nonstrictly systematic IUPAC nomenclature, or
from different word senses (e.g., “oxide” meaning either a ether
“dimethyl oxide” or the functional group oxide (“trimethyl-
phosphine oxide”)). Formatting issues (e.g., capitalization, font
type, or style) and most punctuation marks are ignored by
these programs. However, the internal workflows of most of
them have been hardly described, with the exception of Name
= Struct117 and OPSIN.441 Moreover, some prototype systems
have been published, such as CHEMorph,26,442 but to date no
actual tool has been released. To benchmark name-to-structure
software, some metrics have been developed on the basis of a
string comparison between the canonical isomeric SMILES of
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the starting structure and the final structure (i.e., after name
generation and conversion back to canonical isomeric
SMILES).443 Because of the different performance and
coverage, a good strategy is to combine different name-to-
structure conversion software and intersect comparisons, as
currently done by SureChEMBL,74,75 which uses Name =
Struct, ACD/Name, Lexichem, Naming, and OPSIN. Other
approaches, such as LeadMine,332,444 combine the use of
OPSIN with dictionaries from sources like ChEMBL. A similar
approach combining dictionary-based methods and OPSIN is
used by OSCAR.158 Reviews on the opposite process, that is,
conversion of structures into names, have also been
published.445

4.2. Chemical Entity Grounding

4.2.1. Definition, Types, and Background. Although the
detection of chemical entities in text is a fundamental step for
chemical TM and retrieval systems, it can only be of practical
relevance if systems are capable of linking recognized mentions
to particular real-world chemical objects, represented either by
a chemical structure or by a unique chemical database identifier.
Transforming chemical names directly into structures based on
chemical name internal rules is one way to address this issue,
but, in practice, when looking at chemical names found in
documents, they do not always follow chemical nomenclature
recommendations.318 This downgrades the success rate of
strategies that attempt to convert chemical names into
structures. Therefore, a number of chemical names cannot be
unambiguously converted into structures, and some names
cannot be converted at all into structures using traditional
name-to-structure conversion algorithms.428 Revising and
associating these chemical mentions to structural information
or chemical databases by hand requires a substantial amount of
time and workload as well as manual linking criteria. For
manually associating chemical names to database identifiers,
one possible strategy is conducting chemical name search
queries in resources such as PubChem, ChemSpider, Google,
or SciFinder.428

A complementary strategy is to assign chemical database or
concept identifiers to chemical name mentions automatically.
This entails grouping together all chemical mentions that refer
to the same chemical object, including synonyms and
typographical variants, and associate all of them to a common
unique identifier.
In reality, this is achieved by returning direct pointers of

chemical entity mentions to standard identifiers of entries in
chemical databases, or alternatively concept identifiers in
chemical ontologies/dictionaries. The process of associating
entity mentions to concept or database identifiers is generally
known as (named) entity linking, grounding, normalization, or
resolution.
A related, but slightly different, historical NLP problem to

entity grounding is word sense disambiguation (WSD),
referring to the computational identification of the correct
meaning or semantic role of a word given its context (e.g.,
document or text).446 WSD has been studied in the field of
machine translation for a very long time447 through the analysis
of the context where the target word occurs, combining word
and word sense statistics with knowledge resources. Knowledge
resources, such as dictionaries, ontologies, and thesauri, used
for WSD can be viewed as data sources or inventories of word
senses.

Chemical entity grounding is similar to WSD. Instead of
linking ambiguous words found in a text to a specific sense
entry in a dictionary, it links chemical names (given their
context of mention) to its corresponding chemical database
record/concept identifier. Chemical abbreviations and ambig-
uous trivial/common chemical names need to be disambiguated
(resolving ambiguities) to make sure that they actually
correspond to chemicals, and to conclude to which specific
chemical they refer to.
Aspects such as quality and completeness of dictionaries and

knowledgebase are of critical importance for entity grounding.
Selecting a chemical mention from text and linking it to a
chemical database identifier is especially challenging in the case
of chemicals,428 as chemical databases or dictionaries are
incomplete and only contain a subset of all of the chemicals
contained in the literature or patents.
The problem of concept or entity grounding, more at a

general level, is being intensively studied under what is known
as the Wikification task, which aims to automatically detect
concept mentions in text and link them to concept references
in a knowledge base, such as Wikipedia.448,449

4.2.2. Grounding of Other Entities. Named entity
recognition and resolution was intensely studied for years in
the life sciences and the medical TM field, focusing primarily
on gene mention normalization in case of biology450,451 and on
disease-related concept normalization in case of medicine.452

Providing a detailed description of disease and gene mention
normalization goes beyond the purpose of this subsection. In
brief, disease mention normalization systems initially applied
dictionary-lookup methods as well as rule-based strategies to
deal with name variability related to typographical or word
order aspects and map detected mentions to medical thesauri
like UMLS. Recent trends in disease name normalization point
toward the use of learning-based algorithms to tackle the entity
linking problem.453 This resulted in the release of systems like
DNorm, which adapts a pairwise learning to rank algorithm for
disease normalization, outperforming classical lexical normal-
ization and dictionary matching techniques.454

The gene/protein mention normalization problem was
addressed by several community challenges450,451,455 and differs
from the chemical mention normalization problem in that, at
least for human and model organisms or other well-studied
species, existing databases are rather complete and do contain
most of the genes that are described in the literature. Gene
mention normalization is nonetheless a difficult task. In
addition to issues related to the identification of mentions
and the lexical/typographical variability of gene names (e.g.,
alternative use of case, hyphenation, spaces, and Greek letters),
gene symbols (e.g., acronyms) are highly ambiguous at several
levels. There is ambiguity of gene names/symbols with other
entities or common English words, and there is also intra- and
interspecies gene name ambiguity, because different genes from
the same organism often share the same symbol, and
homologous genes from different species (e.g., mouse and
human) do have the same name, but different database
identifiers.456

Gene mention normalization strategies typically rely on exact
or fuzzy matching of gene mentions against database names, by
using both regularized gene mentions and dictionary entries
(i.e., ignoring case and removing spaces and hyphens). Gene
normalization systems, like GNAT, also explore the calculation
of similarity between the context of mention and the gene
database record for selecting candidate gene database
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identifiers, together with the detection in the context of
potential organism sources to constrain the number of potential
database hits.457

4.2.3. Grounding of Chemical Entities. Grego et al.
addressed the problem of mapping results of a CER system to
records of the ChEBI database.346 They used a collection of
9696 chemical entity mentions that had manually generated
mappings to ChEBI identifiers as a Gold Standard data set,
consisting of an updated version of the Chapati corpus.418,419

They evaluated the performance of their CER system in terms
of mention detection together with the correct resolution to the
corresponding database identifiers. Using an exact matching
dictionary-lookup method resulted in a balanced F-measure of
31.93%, while using a SL-based CER system obtained a score of
46.95%. When decoupling entity mention detection from entity
grounding, that is, by only evaluating the predicted database
mappings of those entities that were correct at the mention
level, the results were slightly better, obtaining for the
dictionary-based method an F-measure of 38.83% and for the
SL CER an F-measure of 57.23%.
They examined some of the frequent errors and discovered

that, in the case of the dictionary-lookup method, the
automated mapping errors were due to chemical normalizations
that had the detected chemical mention as part of their names
(partial overlaps). In the case of the SL-based CER results,
frequent mismatches were encountered for short chemical
terms, like “CN” or “OH” that in the ChEBI database
corresponded to “cyano group” (CHEBI: 48819) and “hydroxyl
group” (CHEBI:43176), respectively, and which did not have
any synonyms similar to the original name found in text.
In the case of the tmChem CER system, it normalizes

chemical mentions to two different resources of chemical
concept identifiers: one is ChEBI and the other is MeSH.161 To
link automatically recognized names in text to a chemical
lexicon generated from ChEBI and MeSH, it converts all names
to lowercase, and removes all whitespace and punctuation
marks. It then compares the chemical mentions to the lexical
entries, and in case it detects a match, the system assigns to the
mentions the corresponding concept identifier from either
ChEBI or MeSH. In case a mention can be matched to both a
ChEBI and a MeSH record, by default, the MeSH identifier is
used. In case chemical abbreviation mentions are detected
together with its corresponding long form, both mentions are
linked to the same chemical identifier.
The online entity recognition tool Whatizit uses a dictionary-

lookup pipeline to detect chemical mentions and links directly
the recognized names derived from the ChEBI gazetteer to the
corresponding chemical identifiers from this database.348

A hybrid CER system combining SL-learning and dictionary
lookup detects chemical mentions and links the resulting names
through two different strategies to chemical database identifiers
and structures is ChemSpot.162 Database identifiers are
associated to chemical mentions by matching these mentions
to records in the chemical lexicon Jochem336 (section 3.4),
which, in turn, assigns various chemical database identifiers to a
given chemical name. Additionally, ChemSpot also integrates
the chemical name to structure software OPSIN to associate
structural information to chemical mentions (section 4.1).441

ChemSpot resolves chemical mentions, in addition to
ChemIDplus, to several other chemical databases and
resources, that is, ChEBI, CAS registry numbers, PubChem
compound, PubChem substance, InChI, DrugBank, Human

Metabolome Database, KEGG compound, KEGG drug, and
MeSH.336

TaggerOne represents a recent attempt to couple both the
entity recognition and the normalization step for diseases and
chemical entities, using learning-based methods and a statistical
normalization scoring function to generate normalized entity
mentions.458

4.3. Optical Compound Recognition

Structural information in patents and scientific articles is often
represented by figures and drawings of chemical structures.
Optical compound recognition or optical structure recognition
(OSR) or optical chemical structure recognition (OCSR)
addresses the extraction of structural information from digital
raster images.
OSR approaches entail three main steps: image processing

into text and graphical regions, analysis of graphical regions and
reconstruction of the connection tables, and postprocessing of
molecular structures. The algorithms supporting these steps
vary among software, in an effort to improve interpretation
skills and minimize error, but the principles remain similar.
Table 6 tabulates both commercial and free/academic OSR
software. Some of the current solutions are based on the
combination of consolidate software (e.g., OSRA459 and
CLiDE124,125), while original solutions choose to apply
automated, advanced learning methods, rule-based logic,
artificial intelligence, or supervised learning methods.
Most OSR software is equipped to read contents in a range

of common graphical formats, such as .gif, .jpeg, .png, .tiff, .pdf,
and .ps. Current software also tries to support formats of well-
established chemical drawing/editing software (Figure 11
tabulates meaningful representatives of chemical drawing/
editing software). While structure diagrams are typically
drawn with black ink on a white background, these diagrams
may also contain colors (e.g., for indicating atom types) or the
background can be different from white. Hence, the images are
usually converted to grayscale and binarized, that is, turn the
color-scaled image into a bilevel image by classifying every pixel
as an on- or off-pixel (the threshold may be set fixed or adaptive
using a data mining algorithm).460 Next, image segmentation is
performed as means to recognize text and graphical regions.
The image is scanned on a row basis, and sets of adjacent
horizontal on-pixel segments are identified as connected
components. Typically, segmentation algorithms are based on
a set of criteria, the ratio of black pixels to the total area of the
component or the aspect ratio. Further, anisotropic smoothing
and thinning processes may be implemented to remove noise,
that is, remove small variations in pixel intensities, while
preserving global image features, and normalize all detected
lines (pixel wide).
The recognition of bonds and atoms may rely on various

processing algorithms, which ultimately aim to detect
combinations of lines and letters. Vectorization is performed
to convert bitmap to vector graphics and be able to detect the
positions of atoms and bonds. The Potrace library461 is the
most used software for such processing. Basically, the
vectorized form is examined to identify the control points of
the Bezier curve, that is, the parametric curve usually used to
represent smooth curves. These control points are flagged as
atoms, and the connecting vectors are identified as the
corresponding bonds. The following processing steps address
specific “features” of the recognized atoms and bonds: the
recognition of atomic labels and charges (e.g., by considering

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00851
Chem. Rev. 2017, 117, 7673−7761

7718

http://dx.doi.org/10.1021/acs.chemrev.6b00851


T
ab
le

6.
B
as
ic

D
es
cr
ip
ti
on

of
E
xi
st
in
g
O
SR

So
ft
w
ar
ea

so
ftw

ar
e

ap
pr
oa
ch

in
pu
t

ou
tp
ut
s

la
ng
ua
ge

op
er
at
in
g
sy
s-

te
m

av
ai
la
bi
lit
y

U
R
L

A
st
er
iX

w
eb

se
rv
-

er
b
,4
62

re
co
ns
tr
uc
tio

n
of

3D
lig
an
d
co
or
di
-

na
te
s
fr
om

2D
im
ag
es

PD
F

Ja
va

ap
pl
et

an
d
Ja
va

w
eb

st
ar
t

n.
a.

fr
ee

fo
r
ac
ad
em

ic
us
e

ht
tp
:/
/s
w
ift
.c
m
bi
.ru
.

nl
/b
itm

ap
b/

C
he
m
Ex
c ,
46
3

ex
tr
ac
ts
co
m
po
un
d,

or
ga
ni
sm

,a
nd

as
sa
y
in
fo
rm

at
io
n;

us
es

O
SR

A
re
ad
s
fu
ll-
te
xt
pa
pe
rs
,a
nd

re
co
ve
rs
SM

IL
ES

an
d
M
O
L
fr
om

st
ru
ct
ur
e
im
ag
es

vi
su
al
iz
at
io
n
vi
a
gr
ap
h-

ic
al
us
er

in
te
rf
ac
e
an
d

ex
po
rt
at
io
n
to

X
M
L

Ja
va

an
d
C
+

+
W
in
do
w
s
an
d

Li
nu
x

fr
ee

ht
tp
:/
/w

w
w
.b
io
te
c.
or
.

th
/i
sl
/C

he
m
Ex

C
he
m
In
fty

46
4

m
at
he
m
at
ic
al
O
C
R
(i
nc
lu
de
s
tw
o

en
gi
ne
s)
,s
up
po
rt
in
g
M
ar
ku
sh

re
c-

og
ni
tio

n

im
ag
e
fo
rm

at
s

SD
F,

M
O
L

Ja
va

W
in
do
w
s,

Li
nu
x,
M
ac

O
S
X

co
m
m
er
ci
al

ht
tp
:/
/w

w
w
.

in
fty
pr
oj
ec
t.o
rg
/e
n/

C
he
m
In
fty

ch
em

O
C
R
(c
he
m
-

ic
al
op
tic
al
ch
ar
-

ac
te
r
re
co
gn
i-

tio
n)
d

ex
pe
rt
ru
le
s
an
d
su
pe
rv
is
ed

le
ar
ni
ng

m
et
ho
ds

B
M
P,

G
IF
,P

N
G
,a
nd

m
ul
tip

ag
e
T
IF

SM
IL
ES

,S
D
F

Ja
va

W
in
do
w
s
an
d

Li
nu
x

co
m
m
er
ci
al

ht
tp
:/
/w

w
w
.sc
ai
.

fr
au
nh
of
er
.d
e/
en
/

bu
si
ne
ss
-r
es
ea
rc
h-

ar
ea
s/

bi
oi
nf
or
m
at
ic
s/

pr
od
uc
ts
/c
he
m
oc
r.

ht
m
l

C
he
m
R
ea
de
re

m
ac
hi
ne

vi
si
on

ap
pr
oa
ch

im
ag
e
fo
rm

at
s

M
L,

SM
IL
ES

C
++

W
in
do
w
s

co
m
m
er
ci
al

ht
tp
:/
/w

w
w
-p
er
so
na
l.

um
ic
h.
ed
u/
ka
zu
/

re
se
ar
ch
-a
re
as
.h
tm

l

C
Li
D
E
(c
he
m
ic
al

lit
er
at
ur
e
da
ta

ex
tr
ac
tio

n)
12
4,
12
5

im
ag
e
pr
oc
es
si
ng

an
d
ar
tif
ic
ia
l
in
te
lli
-

ge
nc
e

do
cu
m
en
ts
of

th
e
fo
llo
w
in
g
ty
pe
s:
PD

F,
D
O
C
(X

),
an
d

H
T
M
L;

im
ag
es

fil
es
:
B
M
P,

G
IF
,J
PE

G
,J
PG

,J
PE

,J
IF
,

PB
M
,P

G
M
,P

N
G
,P

N
M
,P

PM
,T

IF
F,

T
IF
,X

B
M
,a
nd

X
PM

va
rio

us
ex
po
rt
op
tio

ns
(e
.g
.,
ca
n
be

di
re
ct
ly

tr
an
sf
er
re
d
in
to

ch
em

-
ic
al
ed
ito

rs
),
de
pe
nd
s

on
th
e
ve
rs
io
n

C
++

W
in
do
w
s

co
m
m
er
ci
al

ht
tp
:/
/w

w
w
.

ke
ym

od
ul
e.
co
.u
k/

pr
od
uc
ts
/c
lid
e/

in
de
x.
ht
m
l

D
2S

su
pp
or
ts
C
Li
D
E,

O
SR

A
,a
nd

Im
ag
o

do
cu
m
en
ts
in

PD
F,

T
X
T
,H

T
M
L,

X
M
L,

an
d
M
S
O
ffi
ce

fo
rm

at
s
(e
.g
.,
D
O
C
,D

O
C
X
,P

PT
,P

PT
X
,X

LS
,X

LS
X
),

O
pe
nO

ffi
ce

O
D
T
,e
m
be
dd
ed

st
ru
ct
ur
e
ob
je
ct
s
(e
.g
.,

C
he
m
D
ra
w
,S

ym
yx
D
ra
w
,M

ar
vi
nS
ke
tc
h)
,a
nd

im
ag
es

in
T
IF
F
an
d
B
M
P
fo
rm

at
s

M
R
V
(M

ar
vi
n
do
cu
-

m
en
ts
),
M
L,

SM
IL
ES

,
M
O
L

Ja
va

W
in
do
w
s,

U
ni
x/
Li
nu
x,

an
d
se
rv
er

in
st
al
la
tio

n

se
ve
ra
l
co
m
m
er
ci
al
an
d
fr
ee

lic
en
se
s

ht
tp
s:
//
w
w
w
.

ch
em

ax
on
.c
om

/
pr
od
uc
ts
/d
oc
um

en
t-

to
-s
tr
uc
tu
re
/

IB
M

O
R
O
C
S

(o
pt
ic
al
re
co
gn
i-

tio
n
of

ch
em

ic
al

gr
ap
hi
cs
)f

im
ag
e
pr
oc
es
si
ng
,a
bi
lit
y
to

re
co
gn
iz
e

im
ag
es

co
nt
ai
ni
ng

st
ru
ct
ur
e
di
ag
ra
m
s

in
do
cu
m
en
ts

im
ag
e
fo
rm

at
s

M
O
L

C
IB
M

O
S/
2

co
m
m
er
ci
al

no
t
av
ai
la
bl
e

IM
A
G
O

O
C
R

im
ag
e
pr
oc
es
si
ng

an
d
le
xi
co
n-
ba
se
d

ab
br
ev
ia
tio

n
ex
pa
ns
io
n

PN
G
,J
PE

G
,B

M
P,

D
IB
,T

IF
F,

PB
M
,R

A
S

M
O
L

C
++

(a
nd

in
cl
ud
es

C
in
te
r-

fa
ce

an
d

Ja
va

w
ra
p-

pe
r)

W
in
do
w
s,

Li
nu
x,
M
ac

O
S
X

fr
ee

(G
PL

-li
ce
ns
ed

bu
t
po
s-

si
bl
e
to

pu
rc
ha
se

a
co
m
-

m
er
ci
al
lic
en
se
)

ht
tp
:/
/l
ife
sc
ie
nc
e.

op
en
so
ur
ce
.e
pa
m
.

co
m
/i
m
ag
o/

K
ek
ul
e ́g

im
ag
e
pr
oc
es
si
ng

an
d
ru
le
-b
as
ed

lo
gi
c,

w
ith

m
an
ua
l
m
ar
ki
ng

of
st
ru
ct
ur
e

di
ag
ra
m

re
gi
on
s

IS
IS
,M

O
Lf
ile
,R

O
SD

A
L,

an
d
K
ek
ul
e’́
s
na
tiv
e
fo
rm

at
IS
IS
,M

O
L,

SM
IL
ES

,
R
O
SD

A
L,

an
d
K
e-

ku
le
’́s
na
tiv
e
fo
rm

at

C
++

W
in
do
w
s

no
lo
ng
er

co
m
m
er
ci
al
ly

av
ai
la
bl
e

ht
tp
:/
/a
ig
.c
s.m

an
.a
c.

uk
/r
es
ea
rc
h/
ke
ku
le
/

M
LO

C
SR

h
,4
65

co
m
bi
ne
s
a
lo
w
-le
ve
l
pr
oc
es
so
r
w
ith

M
ar
ko
v
lo
gi
c
(t
o
re
as
on

ab
ou
t
th
e

lo
w
-le
ve
l
en
tit
ie
s
an
d
re
la
tio

ns
);

im
ag
es

w
ith

ta
bl
es

an
d/
or

re
ac
tio

ns
ar
e
no
t
su
pp
or
te
d

im
ag
e
fil
e
(j
pg
,p

ng
,j
pe
g,
an
d
T
IF

su
pp
or
te
d)

M
O
L

n.
a.

on
lin
e,
bu
t

st
an
da
lo
ne

un
de
r
de
ve
l-

op
m
en
t

sy
st
em

is
av
ai
la
bl
e
as

a
w
eb

se
rv
er

at
ht
tp
:/
/m

lo
cs
r.

di
nf
o.
un
ifi
.it
;
st
an
da
lo
ne

di
st
rib

ut
io
n
is
cu
rr
en
tly

un
de
r
de
ve
lo
pm

en
t

ht
tp
:/
/m

lo
cs
r.d

in
fo
.

un
ifi
.it
/

O
SR

A
45
9

im
ag
e
pr
oc
es
si
ng
,c
ha
ra
ct
er
/s
tr
in
g

re
co
gn
iti
on
,v
ar
io
us

co
nn
ec
tio

n
ta
bl
e

co
m
pi
la
tio

n,
an
d
co
nf
id
en
ce

es
tim

a-
tio

n

im
ag
e
fil
e
(g
if,

jp
g,
pn
g,
jp
eg
,t
if,

pd
f,
an
d
ps

su
pp
or
te
d)

SM
IL
ES

,S
D

fil
es

C
++

W
in
do
w
s
an
d

lin
ux

op
en

so
ur
ce

ht
tp
s:
//
ca
ct
us
.n
ci
.n
ih
.

go
v/
os
ra
/

a
Pr
ep
ar
ed

in
N
ov
em

be
r
20
16
.
b
Lo

un
na
s,
V
.;
V
rie
nd
,
G
.
A
st
er
iX
:
A
W
eb

Se
rv
er

to
A
ut
om

at
ic
al
ly

Ex
tr
ac
t
Li
ga
nd

C
oo
rd
in
at
es

fr
om

Fi
gu
re
s
in

PD
F
A
rt
ic
le
s.
J.
C
he
m
.I
nf
.M

od
el
.2

01
2,

52
,
56
8−

57
6.

c T
ha
ra
tip

ya
ku
l,
A
.;
N
um

na
rk
,S
.;
W
ic
ha
da
ku
l,
D
.;
In
gs
ris
w
an
g,
S.
C
he
m
Ex
:I
nf
or
m
at
io
n
Ex
tr
ac
tio

n
Sy
st
em

fo
r
C
he
m
ic
al
D
at
a
C
ur
at
io
n.
B
M
C
B
io
in
f.
20
12
,1
3,
S9
.d
K
ra
l,
P.
C
he
m
ic
al
St
ru
ct
ur
e
R
ec
og
ni
tio

n

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00851
Chem. Rev. 2017, 117, 7673−7761

7719

http://swift.cmbi.ru.nl/bitmapb/
http://swift.cmbi.ru.nl/bitmapb/
http://www.biotec.or.th/isl/ChemEx
http://www.biotec.or.th/isl/ChemEx
http://www.inftyproject.org/en/ChemInfty
http://www.inftyproject.org/en/ChemInfty
http://www.inftyproject.org/en/ChemInfty
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/products/chemocr.html
http://www-personal.umich.edu/kazu/research-areas.html
http://www-personal.umich.edu/kazu/research-areas.html
http://www-personal.umich.edu/kazu/research-areas.html
http://www.keymodule.co.uk/products/clide/index.html
http://www.keymodule.co.uk/products/clide/index.html
http://www.keymodule.co.uk/products/clide/index.html
http://www.keymodule.co.uk/products/clide/index.html
https://www.chemaxon.com/products/document-to-structure/
https://www.chemaxon.com/products/document-to-structure/
https://www.chemaxon.com/products/document-to-structure/
https://www.chemaxon.com/products/document-to-structure/
http://lifescience.opensource.epam.com/imago/
http://lifescience.opensource.epam.com/imago/
http://lifescience.opensource.epam.com/imago/
http://aig.cs.man.ac.uk/research/kekule/
http://aig.cs.man.ac.uk/research/kekule/
http://mlocsr.dinfo.unifi.it
http://mlocsr.dinfo.unifi.it
http://mlocsr.dinfo.unifi.it/
http://mlocsr.dinfo.unifi.it/
https://cactus.nci.nih.gov/osra/
https://cactus.nci.nih.gov/osra/
http://dx.doi.org/10.1021/acs.chemrev.6b00851


the maximum character height and width, the existence of two
characters aligned horizontally or vertically, and the presence of
the character “−” or “+”), the identification of circle bonds
(e.g., the identification of a circle inside a ring may be indicative
of an aromatic ring), the evaluation of average bond length and
distance within double and triple bond pairs, the identification
of dashed and wedge bonds (typically using bond length and
positioning criteria), and the disambiguation of bridge bonds.
Connection tables or graphs are constructed on the basis of

the previous compiled information, the connections and stereo-
and aromaticity flags. Table information and character string
data, that is, single atom symbols, atom symbols with charge
and mass, or group formulas, then are processed to determine
the chemical meaning of the strings. Atom symbols are
commonly verified against a lookup list, and strings denoting
group or moiety formulas are processed to interpret them into
graph format.
At the end, the connection table of the entire chemical

structure can be edited to adjust for scanning errors and
cleaning up bond angles to standard values. The output formats
of choice of most OSR software for the molecular objects are
SMILES and Molfiles (also referred to as MOL).
While available systems are already able to handle a good

amount of chemical diagram features, there remain several
directions for further improvement. These include some
graphical ambiguities due to touching and broken characters,
or characters touching lines; large macromolecular structures
and complicated rings; Markush features, such as substituent
replacement in R-groups, link nodes, or repeating units; and
recognition of chemical tables or reactions. In part, OCR errors
could be minimized by combining the commonly used
dictionaries of words (e.g., hash-table-based dictionary lookup
for common, trade, and scientific names) with more specialized,
technical terminological resources. For instance, CaffeineFix
finite state machine encodes a significant fraction of the IUPAC
naming rules for organic chemistry, including numerous CAS
and Beilstein naming and traditional variants.119 Likewise, the
chemical dictionary of the Structure Clipper encompasses over
46 000 records, which were extracted from subterms found in
25 million IUPAC chemical names.466

Currently, the ChemInfty464 method is one of the few that
addresses specifically the recognition of Markush structures
from images.

4.4. Chemical Representation

Apart from commonly used structure diagrams and chemical
nomenclature, there are multiple representation formats for a
chemical compound that have been used throughout the
history of chemical information systems. Broadly, they can be
classified467,468 as topological graphs, line notations, connection
tables, and combinations of the previous ones (e.g., the IUPAC
International Chemical Identifier (InChI)), 3D structure
representations, fragment codes, fingerprints, and hash codes,
such as CACTVS,469 which is behind PubChem structure
search and the National Cancer Institute’s Chemical Structure
Lookup.
The range of applications of these formats is very wide:

registration in chemical databases, structural and substructural
searches, virtual screening, structure−activity relationship (SAR
analysis), and crystallography. Here, we will focus on those
most commonly used in registration systems, and concepts,
such as normalization, will be discussed from this point of view,
as registration in database systems does not require the selectedT
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representation to be typical of the most physiologically
appropriate form.
Two fundamental challenges of structure representations are

uniqueness and unambiguity. Uniqueness requires that the
structure representation format corresponds to a single
chemical entity. For example, InChIKeys have been estimated
to have one replicate in 75 billion structures.23,470 Ambiguity
implies that the structure representation format ideally must be
unique for a particular chemical entity; that is, there is a unique
(or “canonical”) encoding of the structure. For example, the
SMILES notation contemplates different versions of the same
compound (depending on the atom ordering), which enforces
the use of the canonical SMILES representation to avoid
duplicate redundancies. However, the concept of ambiguity
depends on what is considered a unique chemical entity for the
purpose of a particular application. For example, to systemati-
cally organize compounds in a database, users may opt to differ
between different isotopic forms, different tautomers, or
remove counterions. All of these issues need to be considered
when determining the ambiguity of a particular chemical
representation.
In the following, we briefly review the chemical representa-

tion formats that are considered most important for chemical
and reaction database annotation.
4.4.1. Line Notations. Linear strings of alphanumeric

symbols were the first formats developed to surpass systematic

nomenclature. In 1965, the Morgan algorithm was introduced
to enable unique structure identification when developing the
CAS computer system.471 The Wiswesser line notation (WLN)
was also one of the earliest attempts to obtain both unique
chemical identifiers and machine interpretation, and supports
substructure pattern language.472 WLN then gave way to the
simplified molecular-input line entry system (SMILES),20,21 a
proprietary product of Daylight Chemical Information Systems
Inc., which is the predominant line notation nowadays, mostly
as it is human readable. Closely related formats, SMARTS
(SMILES Arbitrary Target Specification)473 and SMIRKS
(SMIles ReaKtion Specification),474 are used to match patterns
and reaction transformations, respectively. The SYBYL line
notation (SLN) was inspired by the SMILES notation with
several extensions to enable the specification of full
substructure queries, reactions, and some types of Markush
structures.475,476 Finally, ROSDAL (representation of org.
structure description arranged linearly) was developed for
Dialog patent search platform.477 Focusing on the highly
extended SMILES, the main drawbacks are the existence of
different versions of the same compound (i.e., require
canonicalization, although to further complicate things, differ-
ent vendors have their own canonicalization algorithm), the
lack of full representation of stereochemistry (e.g., supports
absolute stereochemistry but flags such as unknown and relative

Figure 11. Programs commonly used to generate chemical structure images, toolkits, and pipeline processing tools and chemical database cartridges
(prepared in November 2016). Note: Software accessibility is generally described. Many commercial tools have free licenses for academic use, and
some of the listed free tools may have restrictions on their use. Moreover, license availability may change with time. Readers are recommended to
check license details before use.
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stereochemistry are lost), and tautomeric dependency (different
tautomers have different SMILES).
4.4.2. Connection Tables. These consist of tables of atom-

based and bond-based records with columns encoding atom
properties (i.e., atomic element and charge) and bond orders
and stereochemistry. Among the many variants, the Molfile478

format, developed by MDL, is the most predominant for
exchange of structure representations, especially in the form of
structure data file (SDF) for storing multiple molecules and
data. The molfile V3000 format, first introduced in the mid-
1990s by MDL to overcome issues of molfile V2000 with large
structures,479 currently handles the combination of multiple
stereogenic centers into groups of different types (known
absolute, known relative, or unknown stereochemistry). As for
SMILES, molfile formats (either V2000 or V3000) do not
support tautomerism, and interconverting tautomeric forms are
not identified as the same structure for these formats. RXNfile
(single reaction) and RDfiles (multiple reactions) are variants
of the Molfile that contain structural data for the reactants and
products of a reaction.478 These formats are the most popular
for data set exchange. Chemical Markup Language (CML) is an
XML-based connection table format, proposed in the late
1990s, and, despite its extensive literature and documentation,
has not been extensively adopted, especially by commercial
vendors.480 This format has its relevance in the area of semantic
web technologies.
4.4.3. InChI and InChIKey. To overcome issues associated

with SMILES, the IUPAC International Chemical Identifier
(InChI)22,481 was introduced, and then the InChIKey (a fixed-
length hash code representation of the InChI) to improve
retrieval of InChI strings by Internet search engines (due to
their long number of characters and punctuation symbols).
While the InChI to InChIKey hash compression is irreversible,
there are a number of InChI resolvers available to look up an
InChI giving an InChIKey. InChI has a layered structure (layers
of information on connectivity, tautomeric, isotopic, stereo-
chemical, and electronic), which allows one to represent
molecular structure with a desired level of detail depending on
multitude of options. Because of interoperability concerns, in
2008, the Standard inChI was launched with the aim to always
maintain the same level of attention to structure details and the
same conventions for drawing perception. The generation of
InChIs involves the normalization of the original structure to
remove redundant information (e.g., disconnecting metals and
protonation), and its canonicalization and serialization.
Polymeric molecules are not handled by InChI identifiers,
and support for Markush structures and organometallics is
incomplete. See the article collection dedicated by the Journal of
Cheminformatics to the InChi Keys.482 In contrast to SMILES,
InChi code supports mobile hydrogen perception and is able to
recognize tautomeric forms. However, it does not distinguish
between undefined and explicitly marked unknown sp3 stereo.
A comprehensive review of the many uses of InChi and
InChiKeys can be found in ref 483. Reaction InChI (RInChI) is
currently being developed.484

4.5. Chemical Normalization or Standardization

Normalization or standardization is the process to generate and
select a unique accurate representation among all possible
variations in which equivalent structures (unique chemical
entities) can be represented. This process is key to avoid
duplicate structures in chemical registration databases (e.g., to
conveniently track different synthetic batches of the same

compound) as well as to avoid errors in accurate structure
representation (i.e., wrong or misleading structures) that later
might translate into computational models485 and ensure
optimal performance of chemical search engines. Moreover,
structural normalization is necessary for optimal integration of
different data sources, less error-prone, and for mapping
recognized chemical names to structural databases. Figure 12

shows four different representations of the chemical structure
of the drug dexmedetomidine, with variations in the definition
of stereochemistry, tautomeric state, and presence of contra-
ions.
Because of its nature, there is not a single normalization

procedure that is able to achieve this goal, although several
guidelines, internal workflows, and business rules have been
proposed, including those by the FDA and accepted by the
Open PHACTS project,486 the FICTS rules,487 which by
default discard stereochemical marks, and others.429,488,489

More recently, the freely available Internet-based CVSP
platform has been released to assist in this task, with a focus
on the registration in ChemSpider.490 A similar service is
offered by PubChem.491

A first step when normalizing chemical structures involves
structure validation for potential mistakes in atom validity
(atomic elements), connectivity, atom valences (e.g., hyper-
valency), wrong stereochemical assignation (e.g., stereo-
chemical bonds assigned to nonchiral centers), and aromaticity
detection (structure aromaticity is detected and validated to be
kekulizable). Particularly, aromatic representation is highly
dependent on the used software, and users should be aware of
its specific requirements. A particular mesomeric representa-
tion, alternate forms of functional groups with molecular charge
delocalization (such as nitro, azides, or N-oxides), is commonly
also fixed.492 For registration in a database system, charges are
commonly normalized to a particular ionization state; typically
neutral forms for acids and bases are preferred, without
zwitterions.492 As mentioned previously, this normalization
procedure might differ when applied to a chemical database for
other cheminformatic purposes, such as virtual screening or
QSAR modeling, where compounds are typically protonated
according to their predicted pKa at physiological pH.

485,493

As insinuated in the chemical format sections, the main
causes of different chemical representations are the problem of
different tautomeric and stereochemical representations (Figure
12). Again, for chemical registration purposes and, in contrast

Figure 12. Alternative representations of the chemical structure of the
drug dexmedetomidine.
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to virtual screening applications,494 a canonical tautomeric form
should be inserted. An alternative approach to surpass the
problem with tautomeric-dependent formats (i.e., SMILES and
molfile) is generating a standardized canonical tautomer before
registration in chemical databases,495,496 for which many
commercial and open source programs and toolkits are
available: a comprehensive compilation is provided in ref 496.
See the article collection dedicated by the Journal of Computer-
Aided Molecular Design to the handling of tautomers in
cheminformatics.497 A popular strategy of in-house pharma-
ceutical systems is to separately track the parent molecule, that
is, the molecule responsible for the biological activity of the
compound, from the companion salts and solvates, which are
chemically stored in a separate table/dictionary and linked
through a unique code defining the salt record.428,498 Together
with previous considerations, standardization workflows
commonly contemplate chemical drawing rules that disallow
some representations: shortcuts and abbreviations such as “Ph”,
“Bz”, and “BOC”, certain bonds such as dative bonds and
covalent bonds with salts, and certain carbohydrates draw-
ings.499 For example, the “either” bond (wavy line) used to
mark nondefined double bonds is an enhanced feature that,
because of tradition, is rarely used by chemists when drawing,
and that can be the cause of mismatches in chemical
representations if users do not use it to distinguish between
the common double bond. Finally, it is also advisable to assign
or “clean” the 2D coordinates to have an appropriate layout
that ensures that chemical structures are visually interpreta-
tive.500 From the point of view of implementation, SMARTS
and SMIRKS enable desired transformations and can be
implemented using a variety of cheminformatic toolkits (Figure
11), although other chemical scripting languages (Cheshire,501

Standardizer,502 and sdwash,503 or workflow tools, such as
Pipeline Pilot504 and Knime)505 are also frequently used.

5. CHEMICAL KNOWLEDGEBASES

Large collections of chemical and biological information have
highlighted the need for supporting infrastructures. Since the
first computer database and structure retrieval system back in
1957506 and the release of the CAS database in 1966507 and
chemical and reaction indexing,508 extensive work in the field of
cheminformatics has been focused on the indexing of structures
and reactions and the development of efficient algorithms for
(sub)structure searching; see ref 509 for a historical perspective.
It is important to note that the need to precisely manage and
retrieve chemical and biological information is previous and
independent, but complementary, of the application of TM
techniques in the field of chemistry.

5.1. Management of Chemical Data

Relational database technologies, together with the associated
database management systems (DBMS), are valued for their
integrity, scalability, and audit trail capabilities. Traditionally,
they are built using either a data federation or data warehousing
strategies. Data federation technologies (data virtualization)
integrate multiple autonomous disparate databases and
aggregated in a single conceptual unit. Data warehouses are
central repositories from several source systems, which are
extracted, transformed, and loaded into the new repository and
can be queried from a single schema. Thus, different companies
have implemented their own drug discovery informatics
platforms on the basis of DBMS: ABCD-Johnson & Johnson
(J&J),510 CCBR-CNIO,498 ArQiologist-ArQule,511 Avalon-

Novartis,512 Osiris-Actelion,513 Chemistry Connect - AstraZe-
neca,514 and UCSD-Philip Morris International.4,428 Interest-
ingly, the Standardised Data Warehouses project of the Pistoia
Alliance members aims at proposing a standard harmonized
model for the discovery-stage data warehouses, with the goal of
increasing data quality and interoperability, while allowing for
some local variability.515

A drawback of relational databases is that they are
comparatively inflexible to changes in the nature of data
recorded and require dedicated maintenance. In recent years,
the Semantic Web516 has arisen as an intermediate compromise
solution between the old-used uncontrolled data files (e.g.,
Excel and HTML) and DBMS. Knowledge-based databases and
semantics are useful in interpreting the data and derive
knowledge.517,518 Semantic Web solutions require raw data
files, a codebook that dictates how the data are entered, and the
descriptive metadata to ensure data integrity and curation. The
Semantic Web metadata standard is the Resource Description
Framework (RDF), a vocabulary for constructing relationships
based on triples. An RDF triple consists of three URIs (uniform
resource identifier) describing how a subject (one entity, for
example a molecular property) relates to an object (one entity,
for example a molecular structure) via a predicate attribute
(which is a URI with a commonly agreed upon meaning).
Thus, RDF schemas express ontologies, as they provide formal
explicit descriptions of concepts in a certain domain. Much of
the work in this area is based on the seminal work by Murray-
Rust and co-workers while developing the Chemical Markup
Language (CML),480 with approaches such as the SemanticEye
project519 initiating the inclusion of metadata within scientific
electronic publications (with the chemistry annotated as
InChI’s). Also, in 2006, Taylor et al. reported the application
of semantic web technologies to the storage and access of
molecular structures and properties using a hash code directly
derived from the InChI.520 In this line, the Chemistry’s Project
Prospect of the Royal Society of Chemistry521 using OSCAR158

to extract chemical entities applies semantic mark-up to
highlight and annotate chemical structures and correlate them
with relevant ontological information and additional property
data. This enables the use of semantic queries to search for
chemical structures present in the papers. Other semantic web
projects are the oreChem project,522 CrystalEye,523 the
ChemXSeer,183 and the Open PHACTS consortium,524 and
ChemSpider,525 ChEMBL,526 and, more recently, PubChem.527

The amount and diversity of drug discovery data in the -omics
and high-throughput-driven paradigms have significantly grown
to the point where current relational data models are reaching
their performance limits, in terms of both technical and
scientific capabilities.528

5.2. Chemical Cartridges

Here, we will focus on the implementation issues of traditional
relational databases as currently the primary way of
substructure search and will not discuss semantic and
ontological languages (e.g., XML, OWL, RSS, and RDF) and
semantic query languages (e.g., SPARQL) that have been
surveyed in a thematic series.529 The majority of them integrate
commercial software from different vendors (e.g., BIOVIA,
formerly Accelrys, ChemAxon, OpenEye, Advanced Chemistry
Development, CambridgeSoft, Chemical Computing Group,
Daylight, ID Business Solutions, and SpotFire) or open access
components with some custom developments, especially
chemistry editors and chemical cartridges plug-ins to give
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chemical handling functionalities to the database. There are
many available cheminformatics indexing technologies (chem-
ical cartridges available to the public) using different underlying
database technologies (Figure 11). Also used are in-house
developed cartridges for either search purposes such as the
ABCD Chemical Cartridge530 or for both search and
registration as OSIRIS.513 An important consideration is the
wide range of different chemistries that these cartridges must
support: small organic molecules, peptides,531 sugars, polymers,
mixtures and formulations (e.g., different ratios of enan-
tiomers), Markush formula, and antibody−drug conjugates.
Apart from chemical registration, the use of chemical cartridges
for structural searches has the advantage of performing faster
than classical cheminformatic tools as they are indexed. With
the exception of open source cartridges,532 little has been
published on the inner workings of search engines, and users
must refer to the user and development manuals to fully
understand their performance. Intermediate solutions that
abstract the storing and searching of chemical structures into
method calls have been also published533 or are commercially
available (e.g., Compound Registration by ChemAxon534).
Besides the normalization of chemical structures, the format

of the input data is also key to determine the final annotation.
InChI strings can generate different molecules from that was
used for InChi generation as they are not intended for
backward structure generation. The molfile format is the
preferred primary source in many chemical registration
modules.428,489 Remarkably, despite the enhancement of the
molfile V3000 format that maintains all stereochemical flags,
the V2000 format is still a preferred option for exchange
between web-accessible databases. Moreover, the SDF format
includes additional fields to be inserted.
In synthetic repositories, the concept of chemical batch is

also a clue consideration that determines the decision to
prohibit the registration of duplicate chemical structures.
However, the detection of duplicate structures depends on
the user-selected configuration of the chemical cartridge,
regarding the perception of tautomers, isotopes, stereoisomers,
and salts as equivalent structures. The most restrictive
definition should be selected to avoid the registration of
duplicate structures (e.g., different tautomeric forms are
detected and assigned to a canonical tautomer representation).
In reaction databases, a database field contains the diagram of

a single-step reaction, which consists of one or more reactant
molecules and one or more product molecules. Other fields
specify additional information, such as the combination of
single-step reactions into a multistep reaction, solvents, and
catalysts. The first efficient and effective method for the
detection of reaction sites was reported by Willett, and it is
based on maximum common subgraph isomorphism.535 This
work was key to the development of reaction databases, with
the first operational systems (i.e., REACCS, SYNLIB, and
ORAC)536 appearing in the 1980s, and being posteriorly
improved and implemented as Oracle cartridges, such as the
MDL’s reaction database management.537 To increase the
precision and performance of reaction searches, chemical
cartridges recommend reaction mapping. Reaction mapping
determines the correspondence between the atoms and bonds
in the reactants and the atoms and bonds in products: atom−
atom map numbers specify the exact correspondence between
atoms in reactants and products, and reaction center marks on
the bonds define what happens to the bond in the reaction.
Chemical editors offer possibilities to automatically or manually

map reactions.538 This technology is behind electronic
laboratory notebooks (ELN) for synthetic chemistry.539

5.3. Structure-Based Chemical Searches

As compared to chemical text name searching, chemical
structure search engines have the advantage of avoiding the
problem of synonyms and the disadvantage of disregarding the
context of the chemical structure in the text (unless it is
dedicatedly annotated, as in the case of SciFinder with the
Biological Role, and then the search is complemented with a
keyword search). In any case, although the chemical search
engines support the simultaneous search of chemistry and
keyword search (e.g., “Sildenafil AND PDE5”), the text search
does not guarantee the relationship between the drug and the
target. On the other hand, text searches are far beyond
identifying documents for chemicals that are structurally similar
or superstructures for a given chemical of interest. Searching by
molecular formula (text-based) has the associated problem of
retrieving many hits, especially when searching for fairly
common organic substance, as a single molecular formula
represents the composition of a variety of substances.
As mentioned, InChI and InChIKeys have been used as a

means of indexing the chemical structures mentioned in
scientific literature, as its potential effectiveness for chemical IR
was early investigated in Google in 2004540 and the eCrystals/
eBank project.541 However, a recent examination542 discusses
the consistency of Google results and provenance of retrieved
links as compared to rigorously maintained major databases.
Moreover, InChiKey alone only enables a search engine to
identify the exact query structure, not substructure or similarity
searches (a simplified similarity option can be run by the
insertion of wildcard characters). Alternatively, RSS has
recently been considered for chemical structure searching.543

However, as noted by Frey,544 structure search has been
notably slow to adopt Semantic Web technology.
Together with text-based searches (by chemical name,

formula, or database identifiers like CAS Registry Numbers,
Derwent DRN and Beilstein BRN, SMILES, and InChi), most
chemistry resources include structure searching capabilities as
one of the best options of finding a specific substance in the
literature. Common structure searches include exact-matching,
substructural, and similarity searches. These searches rely on
graph theoretical algorithms, where atoms correspond to nodes
and bonds to edges joining the nodes. Users draw a substance
in the chemistry editor, which is internally transformed into a
connection table and normalized and compared for identity
(exact matching) with the indexed structures. As for the
registration of chemical structures, chemical cartridges offer
different configurable options for defining what an exact match
is in terms of stereochemistry, tautomers, isotopes, and salts.
This can translate into an exact-match search retrieving no hits,
even though the structure is present in the database. In these
cases, it is advisable to run a similarity search with a high
cutoff.545

In substructure searches, the connection table of the query
structure must be a subset of that of the database substance to
be matched. The challenge of these searches is the substructure
definition to optimally balance the number of desired retrieve
hits and undesired false hits. This implies knowing the flexibility
of the search to precisely define bond order, single, double,
triple, or dashed bonds; double-bond geometry, stereo-
chemistry, open or specifically defined with wedge and hash
bonds; whether the topology of each connection can be fixed as

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00851
Chem. Rev. 2017, 117, 7673−7761

7724

http://dx.doi.org/10.1021/acs.chemrev.6b00851


acyclic (chain) or cyclic structure (or contemplates both
options); locked ring fusions; the type of substitution permitted
at each position, locked atoms, generic groups, or variables
(e.g., metals, halogens, alkyl chains, cycles, carbocycles, and
atom to hydrogen- or carbon-only), user-defined atom lists,
nonatom lists, and R-groups; and variable point of attachment
and multiple fragment searches.221,546,547 Apart from small
organic compounds, metal-containing species are especially
problematic to search, mostly due to inconsistencies and
different drawings within databases548 as well as for polymers549

and polymorphic structures.550 In general, tools for patent
priority art searching (e.g., SciFinder, STN, and Reaxys)
support more generalizable group definitions to narrow the
search, while web-based tools connected to chemical databases
have structure editors with less advanced features.551 Although
graphics-based queries are the preferred option for chemistry
information retrieval, substructure query languages (text-based)
also deserve a mention (e.g., SMARTS, SLN, or Molecular
Query Language, MQL,552 as well as approaches to directly
build standard SQL searches553).
Chemical cartridges implement similarity-based searches,

often termed “fuzzy” matching, that retrieve compounds having
a user-defined percentage similarity to the query structure. Two
factors determine the search and vary among software
packages: the descriptors that characterize the compounds
(for database querying, commonly atom, bond, and fragment-
based counts expressed as keys or fingerprints) and the metric
(commonly Tanimoto), so users should be aware of the
characteristics of the underlying approach when analyzing the
retrieved hits.554,555 Recent advances in this field incorporate
the use of inverted indexes (as commonly used in text search
methods) for similarity-based searches of chemical com-
pounds.556 Most similarity searching approaches commonly
used in virtual screening applications and drug discovery efforts
(e.g., 3D) are not implemented with the purpose of searching
chemical repositories.
In reaction searches, graphical-based reaction searches can be

built by specifying either the reactant or the product (partial) or
by defining both reacting species (complete). In general,
drawing arrows indicates the role of each molecular species,
although specialized reaction searching resources enable the
selection of a particular role. Reaction mapping (atom and/or
bonds) is very useful to search for specific bonds that are
formed or broken during the reaction or that do not change,
and helps to reduce the false positive rate and increase
precision. Alternatively, tools are available to indicate the
reacting bond(s), define nonreacting functional groups, and
limit to stereospecific reactions (inverted, retained stereo-
chemistry). See chapter 9 in ref 557 for an excellent comparison
between CASREACT558 searching via SciFinder and Reaxys.
Reaction searching engines, such as SciFinder and Reaxys,
enable the combination of structure and reaction queries to
further refine the returned hits559 and the capability to combine
reaction steps to build and plan the most effective procedure,
SciPlanner and Reaxys synthesis planner, respectively. Defining
queries in an appropriate way is a clue to reaction searching, as
it might translate into long execution times (e.g., multifragment
reactants and products should be avoided).
In Markush searches, Markush structures are indexed in

fragmentation code systems and topological search systems.560

The former, available since the 1960s, use structural features
(e.g., functional groups) implemented as closed dictionary lists
or extractable using fixed rules (examples include the Derwent

CPI Fragmentation Codes,561 IFI Claims Codes,76 and
GREMACS562). In the 1980s, topological systems (MAR-
PAT563,564 and Merged Markush Service − MMS565) arose and
superseded fragment codes as they fully capture the structural
relationships of the patterns. Since then, there have been minor
developments.566 Recent efforts include the development of a
search engine that provides a query interface that unifies both
structure and keyword conditions include the work by
NOVARTIS. The first claimed of these tools is the Canonical
Keyword Indexing (ECKI),188 which converts a chemical entity
embedded in a data source into its canonical keyword
representation prior to being indexed by text search engines.
To perform chemical normalization, all chemical synonyms are
aliases of a single entity and their unique canonical keyword
representation.
The number of available chemical repositories is vast, and

each of them can be used for many different purposes, such as
prior art searching engines (e.g., CAS Registry,567 CAS-
REACT558), dictionaries in TM applications (e.g., Chem-
Spider568,569), entity grounding (e.g., PubChem570,571), as
sources of annotated biological information on different
domains (hereafter defined as knowledgebases, such as
PubChem, DrugBank , 5 7 2 , 5 7 3 ChemIDp lu s , 2 2 0 , 5 7 4

ChEMBL,575,576 and ChemBank577,578), as sources of checking
commercial availability and vendors (eMolecules579 and
Zinc580,581), and extracted by applying TM techniques
(SureChEMBL,74,75 IBM Watson Patents582). Here, we briefly
describe those that are relevant for TM purposes (e.g., chemical
entity grounding) or that have been derived by TM (only a
minority).
PubChem,570,571 launched in 2004 by the U.S. National

Library of Medicine (NLM), contains small molecules with
information on their biological activities (BioAssay). Substances
(>224 million chemical samples) and unique structures (>92
millions) are tracked separately. It accepts data from multiple
repositories, without manual curation, what has raised some
critics about quality issues.583

ChemSpider,568,569 by the Royal Society of Chemistry (RSC,
2008), includes 57 million structures with associated chemical
information, most of which have been robotically or manually
curated and will be by the CVSP platform.490 The focus on
validated chemical name−structure relations has produced a
qualified dictionary for TM applications.584

CAS Registry,567 maintained by Chemical Abstracts Service
(CAS), is the most authoritative collection of disclosed
chemical substance information (over 123 million organic
and inorganic substances and 66 million sequences). It is
derived manually, and each unique substance is assigned a
unique CAS Registry Number and CA Index names (CAS-style
systematic nomenclature). It is accessed by SciFinder44 and
STN.84

Index Chemicus585 has over 2.6 million compounds (dated
to 1993) covering more than 100 of the world’s leading organic
journals. Each record contains full graphical summaries
(indexed bioactivity), reactions, and complete bibliographic
information.
Derwent Chemistry Resource (DCR)586 is a chemical

structure database for searching specific compounds indexed
in Derwent World Patents Index bibliographic records. It is
accessed by many search services listed in Table 2 (STN,
Questel, Dialog, Thomson Innovation).
Beilstein (from 1771)29 and Gmelin Handbook (from

1700s) databases587 containing compounds extracted from
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journals are currently accessible through Reaxys.82 These
“books” extracted chemical and physical property data that
were arranged by compound class.
SureChEMBL is a chemical repository of over 17 million

unique compounds extracted from patents (US, EP, WO full
texts, and JP abstracts), and over 14 million annotated patents
as of November 201575 using TM techniques (text annotations
from 1976 to date and images from 2007 to date). Text-based
searches are available to query for patent documents from
nonannotated patent authorities. It takes 2−7 days for a
published patent to be chemically annotated and searchable.
IBM Watson patent database//IBM BAO strategic IP insight

platform (SIIP)582 is a searchable database of over 2.5 million
chemical structures and pharmaceutical data extracted from the
patents and scientific literature using SIIP. It was donated to
PubChem and the NIH CADD Groups.588

Drug Central589,590 is an open access online drug
compendium, containing a total of 4444 Active Pharmaceutical
Ingredients (APIs) linked to a list of over 20 617 drug
synonyms and research codes. For each API, drug mechanism
of action (MoA) target annotations, pharmacological action,
bioactivity profiles, drug indications, labels, pharmaceutical
formulation, dose, formulation, administration, regulatory
approval information, and marketing status are provided. A
dedicated effort was put on the annotation of chemical
structures (MDL format), especially involving a multistep
manual curation process with a hierarchical checking of
available public resources (WHO INN, USAN, FDA SRS,
CAS, and FDA drug labels) and with an emphasis on
stereochemistry annotation.
ChEMBL576 launched by the EMBL-European Bioinfor-

matics Institute in 2009 is a public, downloadable database of
bioactive drug-like small molecules (over 2.0 million records
and 1.6 million unique compounds), with calculated properties
and abstracted bioactivities from primary literature (over 47
journals) on a regular basis (with releases every 3−4 months),
then curated and standardized. It also includes FDA-approved
drugs.
DrugBank,410 publicly available from the University of

Alberta since 2006, is a popular knowledgebase that provides
a detailed description about the chemical and pharmacological
characteristics of over 8200 experimental and approved drugs
together with drug target information.
eMolecules579 and BIOVIA Available Chemicals Directory

(ACD)591 merge vendor’s catalogues and are typically
consulted to check the commercial accessibility of screening
products and building blocks. Zinc, while also being very
popular for this purpose, was mainly designed for virtual
screening applications. Chapman & Hall/CRC maintains
CHEMnetBaSE592 segregated directories of different types of
compounds as well as the Combined Chemical Dictionary
(CCD) with access to chemical, physical, and structural data on
more than 630 000 compounds.
Together with compound databases, reactions databases are

included: CASREACT,558 Current Chemical Reactions
(CCR),593 SPRESI594 and its derived ChemReact595 with
unique reaction types, Science of Synthesis,596 and ChemIn-
form Reaction Library597 and Selected Organic Reactions
Database (SORD).598 Other more specialized resources
containing reaction information include eROS599 for reagents
and catalysts searching, and Comprehensive Heterocyclic
Chemistry (CHC)600 and Synthetic Reaction Updates,601 a
literature updating service with recent developments in

synthetic organic chemistry and others reviewed by Zass.602

CASREACT and the reactions accessed by the search platform
Reaxys are the most prominent repositories of chemical
reactions, with over 78.4 million single- and multistep reactions
and over 42 million reactions, respectively.
For Markush searches, MARPAT and the Merged Markush

System (MMS) are the two main databases used for Markush
searching, with over 1 million Markush structures.

6. INTEGRATION OF CHEMICAL AND BIOLOGICAL
DATA

Retrieval and detection of chemical entities is of key importance
on its own, yet there are many practical scenarios where it is
important to systematically extract additional information, in
particular chemical relationships. Correct chemical relationship
extraction depends heavily on the prior detection of the
individual entities taking part in the relation. Chemical entity
relationships can encompass, for instance, chemical reaction/
synthesis relations or relations of chemicals and particular
physicochemical attributes. Nevertheless, recognizing associa-
tions between chemical entities, more specifically drugs and
active pharmaceutical ingredients, with other entities such as
proteins/genes or biomedical concepts, like diseases or adverse
effects, is likewise significant and has resulted in the publication
of a considerable number of chemical−biomedical entity
relation extraction approaches. In the field of drug discovery,
the identification of relevant chemicals that interact with the
target protein opens the door to guided design of analogues
sharing similar structural properties, very frequently using
computer-aided drug design (CADD) models. Moreover,
curate extraction of experimental data associated to this
chemical−protein interaction is key for the development of
quantitative−structure activity relationships (QSAR) and
chemogenomics models. Obviously, this is not restricted to
the biochemical target, but also applies to any kind of
experimental data delivered by phenotypic, cellular, ADME-
Tox, and in vivo assays providing reliable information as to
speed up the drug discovery process. Not to forget, associations
of chemicals (drugs), protein/gene pathways and clinical
outcomes together with systems biology can be a clue for
drug repurposing strategies,603−605 MoA identification,606 and
chemical health risk assessments.607 Alternatively, fast access to
methods for preparing compounds has its interest, not only for
the discovery of novel entities, but also for optimizing synthesis
(yields, cost of reactants) during scale-up and production of
novel or generic drugs. This fully explains the growing number
of chemical databases with associated biological data in the
postgenomic area, as well as recent efforts in Semantic Web
technologies as a way to deliver data integration. Generally, the
majority of public chemical and biological data repositories
have been implemented by academic, government, or
biotechnology institutions,608,609 although in the past years, as
part of their open-innovation collaborations, pharmaceutical
companies have started to release selected data sets.610−614 A
desirable feature for these databases is the incorporation of a
plethora of source documents, beyond scientific papers,
particularly patent literature. Many chemicals, assays, and
preparations are exclusively disclosed in patents. For example,
the content of only 3−4% of biomedical papers is first
published in patent applications.615 However, patents are
frequently disregarded by scientists because of their extension,
language, and difficulty in relevant document retrieval,
especially when using public repositories from patent agencies
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(as listed in section 2.2). Another important issue are concerns
about the quality of the data,616−618 a problem denominated by
Fourches et al. as the “five I’s”: data may be incompleted,
inaccurate, imprecise, incompatible, and/or irreproducible.619

In this sense, assay standardization approaches, with precise
nomenclature, electronic protocols, and formats for bioactive
entities620 as defined in bioassay ontologies (BAO621 and
Catalog of Assay protocols),622 are indispensable to ensure
robust data annotation. TM strategies for linking chemistry and
biology are expected to surpass the bottleneck imposed by
manual curation in terms of economic costs and time.
This section will primarily focus on the detection of

associations of chemical entities and information of biomed-
ical/pharmacological relevance. Integration of chemical and
biomedical data is understood in this section as the automatic
detection of mentions to relationships between biomedical
entities and chemicals in text rather than proper integration of
structured chemical data with the contents of biological
knowledgebases. Section 5 covers some of the main chemical
databases, while section 1.2 introduces existing repositories of
documents of chemical relevance. Some of the existing
chemical and drug repositories, such as DrugCentral, consider
the importance of integrating multiple drug-related databases,
using controlled vocabulary concepts and terminologies to
annotate and describe key pharmacological aspects, and
exploring the importance of TM applications for the retrieval
of adverse events from drug labels.589

Several databases have been constructed to host collections
of chemical reaction information, such as CASREACT558,623 or
Reaxys,82,83,624 SPRESI,594,625 SORD,598 or current chemical
reactions.593 Typically, chemical reaction information is
extracted by hand from the chemical literature or patents in a
laborious process to feed database records.626 Several attempts
were conducted in the past to extract chemical relations from
documents. Also, online chemical search engines, like Sci-
Finder, have been analyzed in terms of different means to
execute chemical reaction searches through the combination of
various search options.559

Early work concerned with the automatic extraction of
chemical synthesis reactions was carried out by Reeker and
colleagues.325 The aim of this effort was to assist in the
construction of a database on chemical reaction information, by
using automated chemical relation extraction to lower manual
curation workload. They focused on processing of paragraphs
describing the synthesis of organic compounds from the
experimental section of the American Chemical Society’s
Journal of Organic Chemistry. To extract the chemical synthesis
relations, they focused on the recognition of chemical reactants,
products, solvents, and conditions of a chemical reaction. The
used relation extraction approach relied on verb arguments
(frames). This implied that they defined predicate−argument
relationships by using manually generated case frames for each
reaction verb, that is, defining a set of possible arguments for
each predicate. Reaction conditions examined by this system
covered temperature frames and time expressions. An
evaluation of this system was carried out on 50 paragraphs,
obtaining an accuracy of 78%.325 A follow-up approach to
extract chemical synthesis reactions based on a simple reaction
schema (X + Y → Z) was published shortly after.156 This later
approach worked likewise at the level of individual sentences.
They first decomposed complex sentences into simpler
sentences with a single verb. The authors then exploited the
syntactic structure of the sentences together with verb and

preposition patterns to determine the role of the chemical
substance in the reaction. They also published a more detailed
strategy based directly on the work of Reeker and colleagues,325

where predefined discourse elements of chemical documents
were examined in detail, including the synthesis reaction
discourse, workup discourse (reaction termination and
information on the purification of the product), and the
characterization discourse (physical constantans or experimen-
tal techniques). This work relied likewise on the use of verb-
based frames and tried to map the extracted entities into slots
of predefined reaction information form frames.627 Finally,
another paper by Blower and Ledwith, built on these previous
attempts, used synthesis frames for the extraction of chemical
synthesis reaction information with the goal of generating
annotations for CASREACT records from ACS articles.327

Instead of parting sentences, authors tried to match templates
against sentence fragments. They used a list of manually
constructed rules to assign specific roles (e.g., reactant, product,
reagent, solvent, or catalyst) to participating chemical
substances. Frame templates were also used to extract
information related to quantity, reaction times, and temper-
atures. An evaluation of the performance of this system
concluded that, in the case of simple synthesis paragraphs, this
method could generate usable results in 80−90% of the cases,
while for complex paragraphs only 60−70% of the results were
acceptable. As a result, it was finally disregarded for
CASREACT annotation.
Another frame-based reasoning approach to process

analytical chemistry abstracts was presented by Postma et
al.628 These authors provided a formal representation of the
input and output of an analytical action related to preparation
procedures of chemicals. This formal description focused on
the use of sentence structures and physical action verbs.
Jessop and colleagues published a detailed description of a

strategy for automatically extracting reaction information from
patents as part of a prototype system called PatentEye.38 They
identified that, from a linguistic perspective, chemists archetypi-
cally report descriptions of syntheses using past tense and
agentless passive voice and that descriptions of syntheses can be
classified abstractly into three segments: primary reaction,
workup, and characterization. The primary reaction text
segments comprise texts describing how the target compound
is produced, the workup segment refers to descriptions on how
the reaction is quenched/neutralized, that is, the removal of
solvents and purification, while the characterization segment
provides spectral information and demonstrations of the
intended product. Several heuristics and the combination of
information extracted from text, NMR and mass spectra,
chemical name to structure algorithms, and chemical image to
structure conversion results are explored to extract reactions
from patents, while structural information is used to support
role assignment. Lexical patterns were exploited for the
detection of the chemical reaction roles and quantities. For
instance, the reactant, which is the substance being consumed
during a reaction, is typically reported together with the used
quantity expressed by mass and molar amount, while solvents
are usually expressed by chemical name together with volume
information. This system also used ChemicalTagger for
reaction name detection,155 and OSCAR3 for annotating
spectral data and identifying chemical entities referring to the
product of the reaction.154 The PatentEye prototype extracted
reactions with a precision of 78% and recall of 64%. Lowe
reimplemented a new reaction extraction system directly
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inspired by the previous PatentEye prototype improving
specific aspects, such as the preprocessing steps (tokenization
and sentence parsing) and the recognition of chemical
concepts.626 The reaction roles covered by this system included
product, reactant, solvent, and catalyst.
All of these works processed various kinds of documents in

English language to extract chemical reactions, while only very
limited attempts exist so far that address texts written in other
languages. A non-English reaction extraction technique has
been published using a rule-based approach with multislot
frames to extract chemical reaction information from chemistry
thesis abstracts written in Thai.629 The underlying extraction
rules/patterns were acquired using a supervised rule-learning
approach,375 which was trained on a manually tagged set of
reactions and focused on reaction roles or components such as
the reaction name, reaction product, and reactants.

6.1. Biomedical Text Mining

6.1.1. General and Background. One of the most prolific
and mature application domains of TM and NLP approaches is
the field of biological and biomedical TM.15,630−634 Biomedical
TM research has generated promising outcomes in terms of
annotated text resources, biomedical lexica, methodological
discoveries, and a considerable number of applications and text
extraction components. Many biomedical text processing
components have been published, covering a range of
fundamental aspects, starting from the analysis and impact of
different tokenization approaches,153 or the implementation of
specialized tokenizers to adequately handle the characteristics
of biomedical texts.157 There are also specially tailored linguistic
and NLP components for biomedical texts, such as POS
taggers,635 and dependency parsers for syntactic analysis,636 like
Enju/Mogura637 or GDep,636 both with specific biomedical
domain models to return syntactic dependency relations
between words from a sentence. Syntactic dependency parsing
essentially consists of, given an input sentence, automatically
generating a dependency graph where nodes are words and arcs
are dependency relations. Such syntactic relations have been
exploited to detect bioentity relationships from text, such as
protein−protein interactions,638 in combination with ML
methods.
Providing an exhaustive overview of all of the different types

of biomedical TM strategies and application tasks is beyond the
coverage of this section. To name a few of the most
representative tasks, one can point out efforts to rank or
classify articles for topics of relevance,278 detect a variety of
different types of bioentities mentions,639−641 index or link
documents to terms from controlled vocabularies or bio-
ontologies,642,643 and extract binary relationships between
bioentities, in particular protein or gene relations like
protein−protein interactions,315,644−647 a topic that has
attracted remarkably much attention. Bioentity grounding
efforts have mainly focused on the association of gene and
protein mentions to open access gene/gene product database
identifiers.451,648−650 Another prevalent biomedical TM re-
search field is the detection of associations between genes and
disease concepts15,651−655 or descriptive functional terms, in
particular, Gene Ontology concepts.656,657

As fully automatic extraction of bioentity annotations from
text has to struggle with performance issues, using TM tools as
part of the manual curation pipelines was also explored by
several biological databases,658 with the ultimate goal to scale-
up and systematize manual curation of bioentities.659

Recent biomedical TM developments have dedicated efforts
to prioritize or rank genes on the basis of relevance or
association to certain topics or diseases, to detect complex
events from text including pathway extraction, and to focus on
particular pieces of information that might be directly useful to
precision medicine.660

An important first step for most biomedical TM tasks is to
locate mentions of biological entities of interest. Likewise,
research in biomedical sciences is focused on the study of a set
of entities, mostly genes, proteins, chemicals, drugs, and
diseases. Thus, tools that can enable a more efficient recovery
of documents that characterize these entities are greatly
appreciated.
Among the bioentities that have been studied in more detail

so far are mentions of genes, proteins, DNA, RNA, cell lines,
cell types, drugs, chemical compounds, and mutations as well as
mentions of species and organisms.454,661−667

In line with recent developments of chemical named entity
recognition, the availability and use of manually labeled training
corpora play an important role in the development of
biomedical entity recognition systems.232,641 Also, from the
methodological standpoint, the same basic combination of
recognition strategies used for chemicals has been tested to
detect bioentities, that is, dictionary-lookup, rule-based, SL-
based, and hybrid NER approaches. Nevertheless, the success
of these different techniques depends heavily on the entity type,
its naming characteristics, the availability of gazetteers, as well
as the quality and size of annotated text corpora. For instance,
highly structured entity names, such as microRNAs and
somewhat mutation, can be detected with a satisfactory
performance using rule- or pattern-based methods.364,668−670

Nevertheless, recent systems like tmVAR explored the use of
ML approaches for the detection of gene and protein sequence
variants.663

Other types of entities have been extracted primarily using
dictionary-lookup strategies due to the availability of rather
comprehensive lexical resources, such as entity name lists or
terminologies. This has been the case of species and organism
mention recognition systems like LINNAEUS667 or SPE-
CIES,671 and more specific species taggers like TNRS
(Taxonomic Name Resolution Service) focusing on the
detection of scientific plant names using string matching
approaches.672 There have been also some attempts to build
hybrid rule-based/machine learning organism mention recog-
nizers like OrganismTagger.673 The recognition of species
information is of key importance for the correct linking of
automatically detected gene and protein mentions to biological
database identifiers.650,674,675

In Life Sciences, the bioentity types that have attracted most
attention are gene and protein mentions.661 In the case of
chemical entities, IUPAC nomenclature guidelines provide
naming rules for systematic names, while in the case of genes
the HUGO Gene Nomenclature Committee (HGNC) has
provided guidelines for naming human gene symbols. The use
of systematic names in the case of genes was not particularly
successful, and naming standards are not sufficiently used in the
literature.676 When looking at eukaryotic gene names, only in
17.7% of the cases are official gene symbols used.456 Gene NER
systems have to deal with several difficulties for successfully
recognizing gene symbols, such as ambiguity (e.g., many genes
are referred to using short, highly ambiguous symbols or
acronyms), the use of gene aliases, and naming variability due
to alternative typographical gene name expressions.677
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Gene and protein mentions have been tagged using all main
NER strategies and their combinations, that is, using dictionary-
based systems,348,678 rule-based methods,350,369,679 ML-based
approaches,680−682 and hybrid methods.
For well-characterized species, such as humans and model

organisms, online annotation databases constitute rich lexical
resources to build gene/protein name gazetteers.683 Such gene
dictionaries have the advantage that they can be used directly
for gene mention database grounding purposes, offering
mappings between gene aliases and database identifiers, but
they also typically require postprocessing or lexicon pruning to
remove incorrect and ambiguous names.451

The recognition of the gene dictionary names is commonly
done using exact string or word-level matching, but approaches
based on the construction of name patterns from the original
dictionary, and then scanning these patterns against the target
or using fuzzy matching methods, have also been tested to
enhance recall.451 Instead of fuzzy matching, an alternative
method is to use rules or heuristics to generate typographical
gene name variants and then apply string matching using this
expanded name lexicon.684

SL-NER systems trained on manually labeled text have been
implemented to detect biomedical entities, using algorithms
like Naiv̈e Bayes,685 HMMs,686,687 MEMMs,688 SVMs,689,690

and, lately, analogously to CER systems, predominantly using
CRFs.680,682,691 Some taggers, like the GENIA681 and
ABNER682 taggers, recognize multiple different bioentity
mention types, like protein, cell lines, cell types, DNA, and
RNA. In turn, GNormPlus also returns database-linked gene
mentions.648 Recognition of anatomical terms is covered by the
CRF-based system AnatomyTagger666 and MetaMap, a popular
term matching system using lexical and syntactic term analysis
to detect variant candidate terms347,692 and also disease
mentions. Recently, a ML-based disease mention tagger called
Dnorm was released.454

6.1.2. Evaluations. Similar to the case of CER systems,
community challenges that posed biomedical NER tasks and
released Gold Standard entity mention training and test data
have significantly promoted research and development of
biomedical entity taggers. Detecting gene and protein mentions
was part of several community efforts, BioCreative I,426 II,693

V,317 and JNLPBA (Joint Workshop on Natural Language
Processing in Biomedicine and its Applications),662 which were
key to determine the state of the art and cutting edge
methodology.
The gene mention tasks of BioCreative I and II evaluated the

automatic recognition of gene/protein NER systems using
PubMed abstracts, assuming that gene and protein mentions
could be regarded as a single entity class. Top scoring teams
reached a very competitive performance of balanced F-measure
(90%). At the JNLPBA task, a more granular bioentity type
distinction was done, differentiating the following entity classes:
protein, DNA, RNA, cell line, and cell type. More recently, a
task posed at the BioCreative V challenge, the GPRO (gene
and protein related object) task, tried to examine the
performance of systems recognizing gene and protein mentions
from patent abstracts. This task was slightly more difficult as
participating system were asked to detect exclusively the subset
of gene/protein mentions that can be grounded to biological
databases. Top scoring systems reached a balanced F-measure
of 81.37%.

6.2. Detection of Chemical and Biomedical Entity Relations

6.2.1. General and Background. Generally, NLP
applications interpret relations as associations between entities
in text. In principle, one can distinguish also other relation
types, including grammatical relations, negation relations, or
other linguistic relationships.694 In practice, and for the purpose
of relation mining, the relation extraction task refers to the
automatic recovery of semantic relations between two (binary)
or more entities.372 Relation extraction (RE) strategies are very
heterogeneous and are normally restricted by the underlying
domain and complexity of the relationship categories.695 RE
can be addressed through co-occurrence (comention)-based
methods, pattern and/or rule-based approaches, ML-based
techniques, methods exploiting syntactic parsing, or hybrid
approaches consisting of combinations of multiple strategies.
Early relation extraction efforts relied on a limited linguistic

context and the use of word co-occurrences and pattern
matching. In this line, relationship extraction between entities
was treated as a typical information extraction task, where first
predefined entity types are detected and then relations between
them are represented as a template or form whose slots are
filled with named entities (template filling).696 Templates
would represent particular facts or sometimes also called events
(a term often denoting more complex associations), while slots
would correspond to particular entity types, such as chemical
compounds or drugs, genes/proteins, or diseases and adverse
effects. Template filling systems using relation extraction frames
encode particular relation types (e.g., “binds_to”) and assign
relationship roles to the extracted entities. For instance, a
simple frame used for protein interaction extraction proposed
by Blaschke and Valencia was: “[NOUNS] of (0−3)
[PROTEIN] (0−3) by (0−3) [PROTEIN]”, where NOUNS
would correspond to an event trigger (a noun expressing
binding or interaction derived from an interaction noun list),
PROTEIN would correspond to a semantic label referring to a
protein named entity, while “(0−3)” would correspond to a
range of words that are allowed between each of the elements
of the frame.697 Frame-based systems can be a suitable choice
for RE when sufficiently large and manually labeled training
data are missing, and/or when domain expertise is available and
the focus is on high precision, which is typically attained by
such approaches. Another example of template filling system
was used in the 2009 i2b2 medication extraction challenge,
which aimed the extraction of different entity classes including
medications, disease or syndrome, therapeutic or preventive
procedure, and relationships between those entities.698 This
kind of frame-based systems can be grouped into the class of
rule- or knowledge-based relation extraction approaches, which
apply extraction rules to encode recurrent ways of expressing
certain relations in text. These approaches have the underlying
assumption that a considerable amount of relations can be
recovered using a somewhat limited number of “typical”
relationship text expressions. Relationship extraction rules
commonly utilize the presence of event “trigger” terms
semantically related to the predefined relation type, in
combination with a collection of word patterns.699 Predefined
word patterns might encode POS information, relative position
of entities within the sentence, word order, word distances, or
sentence length. Manually constructed patterns are often
implemented as hand-crafted regular expressions or as a
cascade of heuristic rules.
In the biomedical domain, the current trend of relation

extraction systems is to use hybrid systems combining different
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strategies including SL-based techniques.700,701 Still, other
approaches, like rule-based methods, can yield very competitive
results.700

The simplest approach for RE, a sort of baseline method,
relies on comention, cooccurrence, or cocitation of entities
within a specific context, defined as individual sentences,
abstracts, paragraphs, or whole documents.702,703 Simple co-
occurrence, without any additional constraints, does represent
the overall upper boundary in terms of relation extraction recall
and lower boundary in terms of precision. Relation extraction
using co-occurrence assumes that if entities are mentioned
together in a particular unit of text, they should have some sort
of association. In this line, Garten and Altman published the
Pharmspresso system, which used co-occurrence to cluster
comentioned drugs genes, diseases, and genomic varia-
tions.704,705 Li and colleagues used cocitations of drug and
disease names (and their synonyms) in PubMed abstracts and
GeneRIF sentences to detect entity relationships, and to be able
to build entity disease-associated entity networks.706

Clear advantages of entity co-occurrence-based applications
as compared to other techniques include that they are (i) rather
easy to implement, (ii) they can exploit standard statistical
association measures to score relations (within a document or
across multiple documents), and (iii) simple additional
constraints like co-occurrence proximity, that is, how close
entities appear in text, can be explored. In the case of the online
bioentity co-occurrence search tool PolySearch2,651,707 comen-
tions between a range of different entity types and concepts,
including drugs, metabolites, toxins, diseases, genes/proteins,
drug actions, and other concepts, are automatically extracted
from documents. PolySearch2 detects entity co-occurrences
from various types of documents like PubMed, Wikipedia, U.S.
patents, PubMed Central, and others, and also allows carrying
out searches, including bioentity or concept synonyms and
aliases. It takes into account co-occurrence proximity of
comentioned entities by counting the words separating them
and scoring higher those co-occurrences where the entities are
mentioned closer together. PolySearch2 is primarily concerned
about binary co-occurrence relations of user-specified entity
types. Another online tool, PubTator, offers searching with
user-provided entities as input, that is, chemical, disease, gene,
mutations, and species, and then returns all abstracts
mentioning the query entity in abstracts, labeled with all
other co-occurring entities. A table of all of the co-occurring
entity relations is automatically generated for a selected
abstract, which can then be manually edited by deleting
unwanted pairs and saving or exporting the remaining
relations.652

To score the strength of entity co-occurrence, the typical
measures used are the absolute frequency of co-occurrence, the
Pointwise Mutual Information (PMI), and Symmetric Condi-
tional Probability.708−710 Co-occurrence frequency-based sta-
tistics can be used to rank individual relationships.711 An
example of an online application that extracts protein−chemical
interactions using multiple data sources, including also text-
derived associations, is STITCH (search tool for interacting
chemicals). It uses co-occurrence of chemicals and proteins to
retrieve relationships detected in PubMed abstracts, OMIM
database records, and full-text articles.712 A recognizable
drawback of co-occurrence-based relation extraction is that
such strategies do not provide any semantic evidence with
respect to the kind or role of relationship existing between the
entities. For some binary entity co-occurrences, for example, for

comention of a chemical and a protein, a vast number of
heterogeneous types of semantic association might be found in
text. A partial solution to this issue can be found in the
trioccurrence strategy, where additionally to the entities, the
mention within the same sentence of certain relation trigger
keywords or verbs is examined.713 Co-occurrence-based
relation extraction and trioccurrence, among other strategies,
were implemented in the SNPshot system to detect 12 different
binary relation types, including gene−drug, drug−disease,
drug−adverse effect, drug−population (ethnicities, regions,
countries, and inhabitants), drug−allele, and drug−mutation
relationships.714 On the basis of a manual evaluation, using
sentences from pharmacogenomics-related PubMed abstracts
that had at least one predicted relationship, the precision of this
system was estimated, showing relatively good results for
sentence co-occurrence, and particularly trioccurrence, in the
case of gene−drug (82.7%) and drug−disease relationships
(78.5%).
The method presented by Li and Lu also addressed the

extraction of gene−drug−disease relationships by means of
entity co-occurrences.715 The used entity gazetteers were
derived from the pharmacogenomics database PharmGKB,716

but instead of focusing on the scientific literature, they
examined entity co-occurrences in clinical trial records, trial
record metadata, and descriptions from ClinicalTrials.gov
records.80 They discovered not only that the detected
relationships intersect considerably with manually annotated
relations obtained from the literature, but also that most of the
relations detected in clinical trials appear on average five years
before they are described in the literature.
SL methods are becoming an increasingly used option to

extract entity relationships. These methods treat the underlying
task as a classification problem viewed as, given a pair (or
more) of entities and their context of mention (e.g., a
sentence), and the method classifies them in terms of whether
they are in a particular relationship class or not.314,717−720 In
the simplest case, it is treated as a binary sentence classification
problem using a typical BOW representation of the sentences,
where the entity pairs co-occur, and then applying one of the
existing text classification algorithms, for instance, kernel
methods such as SVMs. SL-based relation extraction is
habitually more competitive in terms of recall when compared
to rule-based approaches. Nonetheless, it requires a sufficiently
large, representative, and consistent training data set, typically
involving a considerable manual annotation workload. Entity
relation corpora construction requires not only labeling of
participating entities but also marking relationship types and
negated relationship assertions. Some relation types require
capturing the directionality of the relation event (e.g.,
substrate−product of an enzymatic reaction). In the case of
pattern or rule-based approaches, syntactic relations between
words returned by syntactic or dependency parsing software
can be a suitable strategy to discover useful patterns, for
instance, by examining the syntactic path connecting two
entities in the parse tree (minimum path between them).721

Syntactic parsing refers to the conversion of a sentence, that is,
an ordered list of words, into a tree or graph structure where
word−word connections encode their syntactic relationships.
The word sequence connecting two entities, either viewed as a
flat list of words, POS tags, or alternatively using the parse tree
path (syntactic relations between words within sentences722),
can be used as features by SL-based relation extraction
methods. Figure 13 illustrates an example of a parse tree
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generated for a sentence using the Enju parser.637 Chemical
entities are highlighted in red and protein entities in blue, while
relation trigger words are labeled in yellow.
An alternative to generating automatically a full syntactic

relation graph between all words is to define relations only
between certain groups or “chunks” of words (e.g., noun
phrases or verb phrases) without specifying the internal
structure within those chunks.723 This approach is known as
shallow parsing or chunking, and it has also been exploited for
relation extraction purposes.718,724,725

Syntactic word relations in principle do not directly convey
semantic information to entity relationships. This can be
addressed by examining the presence, within the syntactic path
connecting the entities, of event trigger words, that is, words or
terms often used to express certain relationships.725−727

Relation events can then be represented through trigger
terms and its arguments (entities) derived from the syntactic
path. The resulting syntactic-semantic trees can be used as
features for SL-based relation detection.
The scientific literature is a key information resource not

only for drug safety but also for drug discovery, as relevant
information to find potentially new drug targets often first
appears in the academic literature.728 The two types of relations
involving chemical entities that have attracted by far most of the
attention are chemical−protein and particularly chemical−
phenotype (e.g., disease-related term) associations.
6.2.2. Chemical−Protein Entity Relation Extraction.

Craven and Kumlien published an early strategy for the
extraction of protein localization relations and stated their
intention to extend this method to detect interactions between
drugs or pharmacologic agents and protein targets, but they
finally did not pursue this idea.729

Rindflesch et al. published a system called EDGAR
(Extraction of Drugs, Genes And Relations) that detected
relations between drugs, genes, and cell lines related to cancer
therapy.359 This early procedure relied mainly on concepts
from the UMLS Metathesaurus to detect entity mentions, using
the semantic types “pharmacological substance” for finding
drugs and “gene or genome”, in addition to other resources, for
detecting gene mentions. They exploited syntactic information
as a strategy to retrieve relationships, relying on relational
vocabulary and predications that express interactions of the
identified arguments (entities). Relation types extracted by

EDGAR included drug−gene relations (drugs affecting gene
expression) and gene−drug relations (gene/protein affecting
drug activity).
Resources like SuperTarget host drug−target interactions

acquired from multiple sources including TM.730,731 The
original SuperTarget database used the former EBIMed
application to recover text passages describing candidate
drug−target associations followed by manual curation to
validate candidate interactions.702

Several TM methods have been published with the goal of
detecting automatically drug relationships in the context of
pharmacogenomics (PGx) research.732−735 The field of
pharmacogenomics studies how individual genomic variants
might influence drug-response phenotypes. Ahlers et al.
published a rule-based NLP pipeline to detect pharmacoge-
nomics information, called SemRep.736 It extracted semantic
predications whose arguments were essentially certain entity
types, such as drugs, genes, diseases, or pharmacological effects,
and covered various types of pharmacological relations,
including drug−pharmacological effect, drug−drug, and
drug−disease relations. For instance, in the case of a drug−
disease relation, the example relation type detected by SemRep
would correspond to “<DRUG> CAUSES <DISEASE>”, where
DRUG and DISEASE refer to drug and disease mentions and
CAUSES refers to a predicate or expression expressing a
causative association. Other types of relations extracted by this
system were pharmacogenomic relations (drug−gene, drug−
genome). An evaluation of this system on a small set of
relations showed that it had a recall and precision of 50% and
73%, respectively, for substance relations (relation types:
INTERACTS_WITH, INHIBITS, STIMULATES) and of
41% and 68% for pharmacological effects (relation types:
AFFECTS, DISRUPTS, AUGMENTS).
Tari and colleagues utilized the syntactic dependencies

between words resulting from a parse tree to detect bioentity
relationships including gene−drug relations. They illustrated
gene−drug relation extraction by means of extraction of drug−
enzyme metabolic metabolism and inhibition relations.737

Coulet et al. published yet another attempt to detect binary
pharmacogenomic relationships between genes, drugs, and
phenotypes (diseases and adverse effects).733 They examined
recurrently used syntactic structures underlying pharmacoge-
nomic statements. Syntactic parsing uses grammatical rules to
detect subjects, objects, and relation types. Pharmacogenomic
relationships are represented as subject−object relations, while
the use of an entity lexicon is exploited for the detection of
participating pharmacogenomic entities. The type of detected
relations is defined by certain relation trigger words like
“inhibits”, “transports”, or “treats”. A manual evaluation of a
sample of automatically detected relations revealed that this
system reached a precision of 70.0−87.7%, depending on the
considered relation type.
Recently, members of the same research group described a

systematic approach to extract drug−target relationships from
PubMed abstracts.738 By using simple dictionary-lookup to
detect mentions of drugs and genes in a 2013 version of
PubMed, they were able to recover a total of roughly 184 000
sentences containing both drug and gene name mentions,
corresponding to around 236 000 unique drug−gene−sentence
triplets. These sentences where then further processed using a
syntactic dependency parser to recover the dependency path
connecting drugs and gene mentions. Although they pointed
out that a large portion of these dependency paths are

Figure 13. Example parse tree generated for a sentence using the Enju
parser;637 chemical entities are highlighted in red, protein entities are
in blue, while relation trigger words are labeled in yellow.
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infrequent, implying a high degree of variability in drug−gene
descriptions, they were able to apply clustering methods and a
small seed set of drug−gene interactions to learn frequent
structures of drug−gene relationship assertions.
Buyko et al. implemented a system for the detection of

generic (coarse association) relations between genes−diseases,
genes−drugs, and drugs−diseases reported in scientific
literature.732 To do this, they used annotations from a manually
curated database called PharmGKB716 to construct a training
data set. PharmGKB was used to collect relevant references and
to generate, together with additional lexical resources, entity
gazetteers. Entity mentions were essentially detected using
dictionary-lookup to retrieve sentences with co-occurrences.
They adapted a SL-based system, JReX (Jena Relation
eXtractor), to predict whether pairs of putative arguments
(named entities) comentioned in sentences do have a relation
association. Among the used ML features were lexical features,
chunking features (i.e., the head words of phrases between the
entity mentions), and dependency tree parse features.
Xu and Wang examined how prior knowledge in terms of

known drug−gene pairs annotated in manually curated
pharmacogenomics resources, like PharmGKB, can influence
the automatic detection of PGx-specific drug−gene relation-
ship, referred to by them as conditional relationship extraction
approach.734 Using a co-occurrence method to extract drug−
gene pairs, they classified extracted entity pairs according to
whether they had been previously known (annotated).
According to the study by Xu and Wang, using such conditional
relationships can improve drug−gene relationship extraction by
20.10% in terms of balanced F-measure.
Because of the key importance of cytochromes P-450

(CYPs) for the xenobiotic metabolism of drugs and chemical
biotransformation reactions, relation extraction systems tailored
to this class of enzymes have been implemented. The efforts to
obtain systematically information concerning CYPs from the
literature focused on particular interaction types,739,740 CYPs
polymorphisms, and metabolic characteristics.741 For example,
Feng at el.742 tried to detect CYP3A4-compound interactions
by applying pattern matching, keywords, and rules, while
Yamashita and colleagues used interaction patterns that
exploited a trigger verb list to retrieve CYPs-compound
associations (i.e., substrate, inhibitors, and inducer relation-
ships).739

Chemical relation extraction approaches, concentrating
either on particular subsets of chemical entities or on certain
types of proteins, have been proposed. In the case of the Herb
Ingredients’ Targets (HIT) database, manual curation was
performed on relations between chemical compounds (corre-
sponding to herbal active ingredients) and their protein targets,
detected through a cocitation rule-based TM method.743

Chemical relation extraction was also implemented to cover a
group of receptor proteins of key relevance for drug discovery,
the predominant drug target membrane proteins known as G
protein-coupled receptors (GPCRs). Chan et al. implemented a
TM pipeline for the detection of GPCR−ligand interactions
that included several steps, starting with the detection of GPCR
and chemical entity mentions, and their co-occurrences within
biomedical literature sentences.744 This pipeline then picks
those sentences mentioning as well certain binding trigger
keywords. Binding triggers are words that express GPCR-ligand
associations and consist essentially of verbs like “bind”,
“activate”, “antagonize”, and nouns and adjectives that refer
to ligand attributes (e.g., “agonist”, “antagonist”). Those

triggers are detected in target sentences using regular
expressions. GPCR−ligand interactions are finally detected
using a SL-learning-based relation extraction approach, which
examines, within the dependency tree, the shorted path
connecting GPCR, ligand, and trigger word mentions.
Enzymes and the detection of enzymatic reactions represent

another class of proteins for which chemical relation extraction
efforts were performed. In fact, one of the first published
chemical−bioentity relation extraction systems was EMPathIE
(Enzyme and Metabolic Pathways Information Extraction), a
template-based approach to extract relations between the
following template elements: enzymes, organisms, and
compounds.745 It relied essentially on MUC-style information
extraction templates and tried to assign product or activator
roles to compounds participating in enzymatic reactions. This
system obtained a performance of 23% recall and 43% precision
on a corpus of seven journal articles from the journals
Biochimica et Biophysica Acta and FEMS Microbiology Letters.
More recently, a strategy to extract metabolic reaction

information was published by Czarnecki et al.746 They used a
pattern-matching and rule-based method that integrated the
detection of stemmed metabolic reaction (e.g., “convert” or
“hydrolys”) and production (e.g., “produc” or “synthesi”)
keyword lists and variants of the verb “catalyze”. Rules were
applied to assign a weight depending on several factors, like the
number of separating word tokens with respect to relation
keyword occurrences or relative location of keywords in
sentences labeled with candidate entities, that is, substrate,
product, and enzyme mentions. The used rule scoring criteria
were derived from an analysis of a small training corpus. This
system was evaluated on three different metabolic pathways,
resulting in a precision that ranged between 40% and 88% and a
recall of 20−82% for substrate−product interactions, while the
precision and recall for substrate−enzyme relations was 62−
80% and 37−64%, respectively, and for product−enzyme was
58−67% and 36−70%.
Nobata and colleagues did not directly extract metabolic

reactions, but focused on the prior recognition of metabolite
mentions in the literature.408 They implemented a NER system
specifically for the automatic identification of yeast metabolite
mentions in the scientific literature, and constructed therefore a
manually annotated corpus of 296 PubMed abstracts labeled
with metabolite expressions. The resulting metabolite NER tool
consisted of a hybrid strategy using dictionary-lookup and
CRF-based tagger that, according to their evaluation, was able
to recognize metabolite mentions with a balanced F-measure of
78.49% and precision of 83.02%. Similarly, another hybrid
metabolite NER system combining mainly dictionary-lookup
with CRFs was recently presented by Kongburan et al.747

A TM framework for the detection of metabolic interactions,
that is, enzyme−metabolite interactions, was recently devel-
oped by Patumcharoenpol and colleagues.748 They differ-
entiated between four classes of metabolic relation types or
events, metabolic production, metabolic consumption, meta-
bolic reaction, and positive regulation relationships. The used
framework integrated existing NER systems to detect genes/
proteins and metabolite compounds from the CheEBI
dictionary. Metabolite events were extracted by using syntactic
parsing, metabolic event trigger words, and a publicly available
event classification system that uses a range of features,
including syntax information and word features. An evaluation
of this framework using an in-house corpus showed that it
could recover metabolic production relations with a F-measure
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of 59.15%, metabolic consumption relations with a F-measure
of 48.59%, and metabolic reactions and positive regulation
relations with F-measures of 28.32% and 36.69%, respectively.
6.2.3. Chemical Entity−Disease Relation Extraction.

The largest number of the published chemical relation
extraction strategies can be grouped under chemical entity−
disease relation extraction systems. By disease, in this context,
we mean a broad range of disease-related concepts, adverse
effects/events, and side effects, while chemical entities typically
are constrained to drugs, chemical substances in therapeutic
use, or environmental chemical entities.
We provide a synopsis of some of the most prominent

attempts to recover automatically chemical−disease relations
from diverse documents, in addition to previously described
efforts that extracted multiple relation types, including
chemical/drug−disease relations. Typically, the recognition of
chemical−disease relations requires first identifying mentions of
chemical entities or drugs together with the detection of
mentions of disease-related concepts in text. A range of
different methods and resources have been developed for the
recognition of both general disease terms as well as particular
subtypes of disease-related concepts such as adverse effects,
processing diverse types of documents including the scientific
literature, medical records, social media, drug prospects, free
t e x t c o m m e n t s f r o m d a t a b a s e s , o r p a t -
ents.414,420,453,454,680,749−766 The focus in this section will be
on the scientific literature, while illustrative cases and references
will be covering other document types.
Although most of the chemical−disease relations extraction

systems have focused on the identification of adverse effects/
events or chemically induced pathological conditions, some
approaches have attempted to discover other classes of
relationships like drug−disease indication/treatment associa-
tions. Drug−disease indication/treatment relations can be of
particular importance for evidence-based medicine, clinical
decision support, patient safety, and drug repurposing, with the
goal to systematically determine and compare drug treatments
used for a particular disease. The BioText corpus767 represents
an early effort to construct a small hand annotated resource for
disorder−treatment relationships (“TREATS” and “PRE-
VENTS” relations) using scientific abstracts, where treatments
include also drug treatments.
Fiszman et al. implemented a system to recognize drug

interventions for 53 diseases using the British Medical Journal
(BMJ) Clinical Evidence journal768 together with additional
resources, that is, the Physicians’ Desk Reference (PDR),769

hosting information on FDA-approved drug interventions. This
work relied on the previously introduced SemRep system736 to
retrieve arguments of treatment relation types to find drug
therapies, with the goal to use the recognized relations within a
medical text summarization system. Recently, SemRep was
exploited together with a module for UMLS Metathesaurus
concepts look-up and the TextRank algorithm770 for ranking
sentences describing treatment alternatives for Alzheimer’s
disease.771

The authors of the BeFree system, which detects drug−
disease, drug−target, and gene−disease relations, additionally
examined the capacity of SemRep to identify the same
associations, focusing on different association subtypes
including treatment relationships. BeFree, in turn, uses SL-
techniques trained on the EU-ADR corpus409 and exploits the
combination of different association features and morpho-
syntactic information to recognize drug relations.772

Nev́eól and Lu also adapted the SemRep system to detect
“TREATS” predications (relationships) between diseases and
drugs.753 They used certain UMLS semantic types to define
disease and drug concepts and applied the relation extraction
pipeline to automatically detect drug indications from multiple
resources, including DailyMed77 and MeSH scope notes773 and
DrugBank410 and PubMed records.
Some drug−disease treatment extraction approaches ex-

plored the use of methods based on manually or semimanually
constructed rules or patterns.774,775 Lee and colleagues
explored pattern-based approaches to recover treatment
associations from abstracts related to colon cancer. First, they
explored the use of frequently occurring text patterns to
automatically detect treatment associations, but due to limited
precision they finally used manually defined linguistic
patterns.774 Abacha and Zweigenbaum proposed another
approach relying on hand-crafted linguistic patterns and
domain knowledge for detecting four types of drug−disease
treatment relations (“causes”, “diagnoses”, “treats”, and
“prevents” relationships).775

In the work of Embarek and Ferret,776 automatically
constructed patterns were used for detecting four indication
relation types, “Detect”, “Treat”, “Sign”, and “Cure” associa-
tions, between five types of medical entities, diseases, exams,
treatments, drugs, and symptoms. The linguistic patterns were
generated through a sentence alignment algorithm using edit
distances, wildcard operators, and mappings between sentence
parts through a multilevel representation of words defined as
their inflected form, POS label, and lemmatized form. SL-
methods based on the CRF algorithm were applied by
Bundschus et al. to detect diseases−treatment relationships719
trained on a manually annotated corpus of PubMed sentences.
With the aim of detecting relationships between medications

and indications (i.e., drug-condition data), Li et al.
implemented a strategy for automatically mining potential
reasons of medication prescriptions in clinical outpatient
notes.777 They linked the extracted relation pairs to a
knowledgebase of indications for selected drugs assembled
from multiple resources.
The automatic detection of treatment-specific relations

between approved drugs and diseases can be a valuable
knowledge source for drug repurposing, that is, using known
drugs to treat novel diseases. This requires the capacity of
detecting off-label, new, use of prescribed drugs. Xu and Wang
induced potential treatment-specific textual patterns using co-
occurrences of known drug−disease pairs in Clinicaltrials.gov
sentences.778 The resulting patterns were ranked on the basis of
the associated number of known drug−disease pairs, and, by
manually examining the top patterns, those specific to drug
treatment relations were selected. These drug treatment specific
patterns were then used to systematically obtain drug−disease
pairs from PubMed abstracts, resulting in the detection of
34 305 unique drug−disease treatment pairs.
Jung and colleagues applied SVM-based machine learning

classifiers to automatically retrieve potential off-label drug
treatments obtained from clinical notes and also using database-
derived features.779 To make sure that they actually detected
drug−indication usage pairs corresponding to drugs for
unapproved indications, they applied filtering strategies to
account for adverse effects and comorbidities associated to the
approved drug use. Overall, this strategy yielded 403 well-
supported novel off-label drug uses.
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ML-techniques were also explored for the purpose of
categorizing drugs with respect to anatomical therapeutic
chemical class labels, a relevant information resource for drug
repurposing.780 The features used by this classifier were
previously obtained by an IE pipeline that detected terms
relevant to several drug related characteristics, including
therapeutic and pharmacological properties.
Instead of detecting drug indications automatically, Khare et

al. explored a hybrid strategy that detects automatically drug
and disease mention in drug product labels and then uses a
crowdsourcing platform to ask humans to label those binary
drug−disease co-occurrences that correspond to treatment
relationships.781

Recently, a community challenge task, the BioCreative V
chemical−disease relation (CDR) task, specifically addressed
the issue of disease named entity recognition (DNER subtask)
as well as the detection of chemical-induced disease (CID)
relations425,782 in PubMed abstracts and titles. This task can be
considered the first systematic and independent evaluation
setting of diverse disease entity recognition and chemical-
induced disease relation extraction systems applied to scientific
literature. From the 16 teams participating in the DNER task,
the top scoring system could reach an F-measure of 86.46%,
while out of the 18 participating teams of the CID task the best
team obtained a F-measure of 57.03%. For the CID task,
systems had to return a ranked list of chemical−disease pairs
together with normalized concept identifiers. For this task, the
organizers provided manually labeled entity and relation
mentions. In the case of chemical entities, the CID task
annotators followed closely the annotation criteria used for the
CHEMDNER corpus whenever possible.318

Two review articles by Harpaz et al.761,783 and one by Karimi
and colleagues784 provide a general overview of selected recent
efforts using TM techniques with the goal of detecting
pharmacovigilance (PhV, drug safety surveillance) relevant
information. In particular, these reviews focus on adverse drug
events (ADEs), extracted from heterogeneous document types
like scientific literature, medical records, drug product labels,
content from social media, and Web search logs. They
estimated that roughly 340 thousand ADE relevant articles
are contained in the PubMed database and 13 thousand new
ADE specific records are indexed each year.761 It is thus not
surprising that the scientific literature, and especially PubMed
records, have been used as a source for the computational
detection of ADE.
Instead of mining directly the free text content of PubMed

records, structured metadata annotations consisting of MeSH
terms can be explored to retrieve potential candidate ADE
information.785,786 Following this idea, Avillach et al. developed
a system that relied on the combination of particular MeSH
descriptors, supplementary concepts, and subheadings, together
with a threshold based on the number of publications, to select
ADE candidates related to chemically induced adverse effects
and pharmacological actions.785

MeSH index terms were used by a method published by
Shetty et al. to detect ADE associations.787 In this work, MeSH
term-related features were used by a statistical document
classifier to eliminate ADE-irrelevant records. Furthermore,
they applied filtering steps to remove drug−disease associations
corresponding to drug indications by analyzing product label
information. According to this study, 54% of the examined
ADEs could be identified before the drug warnings were
published.

PubMed articles were also the document types processed by
Wang et al. to recognize ADEs.788 The used pipeline consisted
of three main steps, a PubMed search, a document classification
step, and a drug-ADE classification step. The initial retrieval
step relied on a search query comprising keywords referring to
drugs and adverse events. The resulting hits were then
automatically classified as being ADE-relevant or not by relying
on a logistic regression algorithm that used two types of
features: (1) 21 ontological features including MeSH headings
and chemical compound entities and (2) 14 textual features.
The classifier was trained and tested using a set of 400 hand-
labeled records. The last step examined the fraction of
positively classified articles to decide whether the ADE is
correct. This pipeline was tested for two relevant classes of
adverse events corresponding to neutropenia and myocardial
infarction.788

SL-algorithms for adverse reaction relation extraction have
been applied to a particular type of PubMed records, case
reports, and described in a 2012 publication by Gurulingappa et
al.789 This system was trained on a corpus known as ADE-SCAI
corpus, consisting of 2972 PubMed case reports tagged with
mentions of conditions (5776 mentions, covering also
diseases), drugs (5063 mentions), and sentence-level drug−
adverse event condition relationships (6821 mentions).790 The
detection of drugs and conditions was essentially handled
through a dictionary-lookup approach, exploiting as lexical
resources DrugBank and the medical dictionary for regulatory
activities (MedDRA),791 while the relation detection framework
Java Simple Relation Extraction (JSRE),792 relying on SVM
classifiers, was trained to detect sentence-level drug−adverse
event associations.
In a previous effort, Gurulingappa and colleagues imple-

mented an ADE sentence classifier with the aim of improving
the retrieval of ADE related sentences. They also used the
ADE-SCAI corpus for training the sentence classifier,
considering those sentences that had at least a single annotated
ADE as positively (ADE-relevant) labeled sentences. An
analysis of different SL-algorithms was carried out using
different feature sets, such as words, lemmatized words, drug-
matches, condition-matches, bigrams, trigrams, and token-
dependencies.793 Finally, they used a maximum entropy-based
classifier, which according to their evaluation obtained the most
competitive performance for their data set.
Yang et al. posed the assumption that letters to the editor of

medical journals might be a useful resource for early signals of
drug-related adverse effects.794 They selected this kind of
document and implemented a binary SVM-based classifier to
score candidate drug−ADE pairs, given the text contents of the
letters. This classifier used features derived from MetaMap
results and some kind of text patterns relying on n-grams.
PubMed abstracts have been processed to detect very specific

types of adverse events of particular relevance for toxicology
studies, drug-induced liver injuries (DILI). Fourches et al.
applied a commercial text processing pipeline, the BioWisdom’s
Sofia platform, to extract statements related to drug-induced
hepatotoxicity in the form of concept−relationship−concept
triplets, comprising mentions of compounds and terms related
to hepatobiliary anatomy/pathology.795

Kang and colleagues, instead of using ML approaches,
implemented a knowledge-based relation extraction system for
the detection of ADEs from the literature.756 The advantage of
such a strategy is that it does not require a large training corpus
of ADE annotations but still can yield competitive results.
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Drugs and adverse events/disorders detected within this work
were mapped to UMLS Metathesaurus concepts, and relation
paths between concepts encoded in the UMLS structure were
exploited by the knowledge-based system for relation extraction
purposes.
A rather casual category of text that is becoming extensively

mined for adverse drug reaction information are patient-
reported or health consumer contributed data as well as social
Internet communications, like blogs or twitter mes-
sages.754,755,796−806 This kind of textual data is characterized
by the use of somewhat informal descriptions of health-related
concepts, including adverse reaction descriptions, differing
considerably from how health care professionals or scientists
account the same observations.800 Karimi et al. as well as
Harpaz and colleagues761 provide a synopsis of TM strategies
to detect adverse drug events by processing social media
data.784 An illustrative case of social media mining for adverse
reactions focusing on four drugs was carried out by Leaman et
al. who exploited as input data source user comments of the
DailyStrength807 social network.796 In this work, authors
generated a lexicon of adverse event concepts from multiple
lexical resources, including UMLS, and added manually selected
colloquial phrases describing adverse reactions. For the
detection of the lexicon terms, these authors had to deal with
spelling errors through the use of string similarity algorithms
for term recognition.
Another valuable source of textual descriptions of adverse

drug reaction information can be found in particular sections of
drug product labels or package inserts of drugs. For instance,
the extensively used resource SIDER (side effect resource)
hosts side effect information extracted through TM methods
from sections describing the indication areas and side effects of
drug labels provided by the FDA.808 For the extraction process,
the authors of SIDER used a dictionary of side effect terms,
which was obtained using COSTART (Coding Symbols for a
Thesaurus of Adverse Reaction Terms)809 as seed lexicon, and
expanded by selecting synonyms and equivalent terms from the
UMLS Metathesaurus.
Duke and colleagues published a system called SPLICER

(Structured Product Label Information Coder and ExtractoR)
using a rule-based text processing technique, which relies on
regular expressions and patterns to retrieve adverse events from
product labels, and also associates the detected adverse event
terms to the MedDRA (Medical Dictionary of Regulatory
Activities) concepts.809

Smith et al. published an effort to extract and integrate ADEs
derived from multiple publicly available document sources,
including human drug labels.810 First, they identified mentions
of drugs, drug ingredients, and brand names and mapped them
to unique UMLS concept identifiers. They then detected
mentions of diseases, or, more precisely, what they call clinical
manifestations within certain sections of drug labels and filtered
negations of those terms. The terms detected in the “Adverse
Reactions” section were considered to be ADEs, while the
terms recovered from the “Indications and Usage” section were
tagged as drug indications.
In the work of Bisgin and colleagues, UL methods (topic

modeling) were used to process FDA drug labels obtained from
DailyMed to detect topics that could be used to group drugs
that show similar treatment characteristics and drugs that show
similar adverse events. They processed particular sections of
FDA labels related to adverse reactions to label each drug with
standardized vocabulary in the form of MedDRA terms.811

During the topic-modeling step, the conditional probability of
every topic given a drug was calculated, and, afterward, for each
drug, the single topic corresponding to the highest topic
conditional probability was determined. During the topic
assessment step, the authors resolved which topics were related
to adverse effects and which ones were associated to
therapeutic or treatment effects.
Another document source that has been exploited to extract

mentions of drugs and their associations to adverse effects and
diseases are electronic health records (EHRs).812−821 The use
of TM techniques to recover potential adverse drug events
from clinical documents is an intense research topic due to its
practical importance for postmarketing drug safety and
pharmacovigilance. A review paper by Warrer et al. describes
several TM and NLP approaches that extract adverse drug
reactions from electronic patient records.816

Although some EHRs might show a certain degree of
structure, under typical circumstances, they comprise written
free text portions in clinical narrative format. Clinical
documents do show a series of particularities and challenging
properties.817,822 They are characterized by a heavy use of
abbreviations, some of them created ad hoc; it is a rather noisy
type of text with a high density of typographical and spelling
errors, the use of ungrammatical sentences, the lack of
punctuation marks, and a frequent use of negated assertions
(e.g., “DRUG does not cause ADVERSE EFFECT”). More-
over, in the case of clinical documents, text processing systems
have to go beyond processing documents written only in
English.
An early attempt to detect ADE from electronic records was

done by Honigman and colleagues.813 They relied on
International Classification of Diseases (ICD-9) codes that
were related to adverse drug events and used manual revision
by researches to determine whether an ADE occurred. A similar
attempt was carried out by Field et al. to identify drug-related
incidents occurring in the ambulatory clinical setting using
multiple sources, including discharge summaries and emer-
gency department notes.823 They used a computer-based free-
text search strategy to identify potential drug-related incidents
and relied on pharmacist investigators to review drug-related
adverse incidents.
Another early strategy to recover adverse medical events,

including adverse drug reactions, was described briefly in a
publication by Murff et al., where keyword queries were used to
capture trigger words related to adverse events found in
medical discharge summaries.824

Quantitative association statistics using chi-square statistical
tests were used by Wang et al. to detect relations between co-
occurring drug mentions and adverse effects extracted from
discharge summaries of inpatients.812 Therefore, they applied
entity recognition approaches to detect mentions of medi-
cations (drugs) and adverse drug events and used filtering
techniques to remove confounding factors (e.g., diseases and
symptoms that appeared prior to the administration of the
drug) and to exclude cases of negated adverse event assertions.
Hazlehurst et al. used a knowledge-based NLP system called

MediClass, for the detection of vaccine-related adverse events
(VAEs) from electronic medical records, with particular
emphasis on gastrointestinal-related VAEs.825

A more recent work with the aim of detecting drug-related
adverse effects in free text EHRs was carried out by
LePendu.818 The patient-feature matrix constructed from
clinical notes captured associations between patients, drugs,
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diseases (adverse events), devices, and procedures. The
recognition of drugs and diseases was done using a lexicon
that was carefully constructed using multiple lexical and
ontological resources and filtering steps to remove non-
informative terms. Drug prescriptions were mapped into active
ingredients using a controlled vocabulary.
Sohn et al. describe the adaptation of an existing clinical NLP

system to detect drug side effects in electronic clinical notes
from psychiatry/psychology hospital departments.826 The
recognition of potential adverse effect terms (e.g., signs/
symptoms or disorders/diseases) and drugs was handled
through the clinical concept recognition module provided by
the cTAKES framework. A rule-based approach using regular
expressions and handcrafted patterns was used to detect
associations between drugs and potential adverse effects.
Sentences detected by this rule-based approach were, in turn,
used as training data to build a ML-based adverse effect
sentence classifier.
Although most of the published efforts to use TM strategies

for the identification of ADE in clinical documents was carried
out in English, some attempts have also been made to recover
this kind of information from electronic health records written
in other languages. Aramaki et al. published a short description
of a system that detects ADE from Japanese discharge
summaries.827 They used a SL-based NER system based on
CRFs to label mentions of drugs and symptom expressions. Co-
occurring drug and symptom pairs were then classified as being
ADEs by combining a pattern-based technique and a SVM-
based classifier.
A manually annotated corpus and automatic TM system

related to adverse drug reactions extracted from discharge
reports in Spanish was presented by Oronoz and colleagues in
2015.820 The entities covered by this work comprise drugs,
procedures, and diseases, while in the case of the entity
relationships the focus was set on adverse drug reactions. Using
the manually annotated corpus as seed set an automatic
annotation system called FreeLing-Med was generated.
The detection of single drug adverse events does only

capture partially the space of adverse reactions associated to the
administration of drugs. A very common clinical scenario is
polypharmacy, referring to the usage of several concomitant
drugs for treating medical conditions. Moreover, especially in
elderly patients, several medical conditions need to be treated
simultaneously, implying the intake of more than one drug at
the same time. The administration of multiple drugs can
potentially result in drug−drug interactions (DDIs) leading to
adverse effects.828 Several relation mining systems have been
developed to detect DDIs in free text,701,718,828−831 and two
community challenges have addressed the task of extracting
DDI from text.701,718,832

In a work published by Tari et al., TM methods to detect
biological facts from Medline abstracts relevant for DDIs were
integrated with different information sources derived from
structured databases capturing biological domain knowledge
important for the understanding of DDIs.828 For recognizing
and disambiguating enzymes, BANNER680 and GNAT650 were,
respectively, used, while drug mentions were tagged by
MetaMap.692 To produce structured sentence representations
for the relation extraction step, syntactic parse trees were
generated. Two types of relations were recovered. Explicit
interactions characterizing how one drug might influence
another one were detected using trigger words like “induce”,
“induction”, “inhibit”, and “inhibition” together with word

proximity constraints. In the case of implicit drug interactions,
relations between drugs are inferred by capturing drug
metabolism relations in the form of [protein, metabolizes,
drug] triplets.
Most of the current approaches used for the detection of

DDIs make use of SL-learning methods exploiting lexical,
syntactic, and semantic features701 and represent this relation
extraction task as a classification problem of candidate DDI
pairs. The DDI extraction challenges, which were carried out in
2011718 and 2013,832 played an influential role in promoting
the development of this kind of approaches through the release
of manually labeled training data sets. One system that was
evaluated on both DDI challenge test sets was published by Bui
et al.830 This extraction pipeline generated syntactically
structured sentence representations containing DDI candidate
pair mentions and used a SVM classifier, including lexical,
phrase, verb, syntactic, and additional features related to drug
names, to classify DDI candidate pairs. This system was able to
reach a F-score of 71.1% against the DDI challenge 2011 test
set and of 83.5% using the DDI challenge 2013 test data set.

7. FUTURE TRENDS
TM and NLP technologies are playing an increasingly
important role in many areas of science, technology, and
medicine. Indeed, the integration of TM technology with web
search engines and related AI products is one of the most active
current technological research topics, which is not surprising
because the capacities to decode text and interpret human
language are essential for the development of systems able to
interact with humans.
The implementation of such technologies and their adaption

to handle textual data from the domains of biology and
biomedicine is also increasingly important, as they provide key
methods for medical support systems, scientific assessment
tools, and strategies for the interpretation of large scale
biological systems. The same is true for the application of TM
methodologies in chemistry, which is already starting to follow
a similar path as can be seen by the increasing integration of
chemical TM and NLP components into search engines and
support engines embedded in AI systems. Still, as we have seen
in this Review, there are numerous chemical domain-specific
challenges that have to be faced more efficiently. In this section,
we stress two of them: (i) the annotation of chemical-specific
information and (ii) the integration of information extracted
from text with the data stored in curated databases.
Documents baring information of chemical importance are

very heterogeneous at various levels. Scientific literature and
patent documents differ substantially in their length, structure,
language and used vocabulary, writing style, addressed topics,
and information content, all of which are aspects that influence
significantly the use and performance of chemical TM systems.
Moreover, beyond technical and methodological challenges,
accessibility issues and/or legal constraints faced by chemical
information retrieval and TM tools limited research and
implementation of systems that process full-text patents and
scientific articles, and consequently most efforts were restricted
to article abstracts. Considering that patents are in fact a unique
source of information (e.g., it is estimated that only 6% of
bioactive compounds described in patents are later referred to
in scientific papers),833 chemical patent mining is increasingly
becoming a critical research field,834 as emphasized by the
number of participants at the CHEMDNER patents task of
BioCreative V,317 and will probably continue to be so in the

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00851
Chem. Rev. 2017, 117, 7673−7761

7736

http://dx.doi.org/10.1021/acs.chemrev.6b00851


near future. Recent progress in patent mining resulted in the
extraction, annotation, classification, and release of 1.15 million
unique chemical reaction schemes retrieved from pharmaceut-
ical U.S. patents from the period between 1976 and 2015.5 The
multilingual nature of patents constitutes another challenging
aspect for chemical TM systems, particularly as compared to
the prevalence of English language publications in the case of
the scientific literature, and will undoubtedly require the
development new tailored multilingual text processing
approaches. For instance, lately a substantial growth of novel
compounds was published in patents from the Asian Pacific
region.835

Another chemical patent mining task that will require future
developments concerns the intrinsic hierarchical recursive
structure of patents claims sections. Notably, there is the
need to resolve broad chemical terms (R-group definitions) and
their dependency and association to generic Markush structure
diagrams, which involves OSR processing. Mining of frequently
used structure−activity relationship (SAR) tables found both in
medicinal chemistry papers and in patents represents another
challenging task that requires the development of new text
processing solutions.
Together with scientific publications and patents, the World

Wide Web is becoming an increasingly important primary
source of unstructured text for chemical TM. Today, social
media and mobile applications are routinely and massively used,
and are generating a vast amount of unstructured data about
collective human behavior. This is of key interest to the
construction of population-level observation tools. Within the
biomedical domains, some works have already been exploring
the potential of nonconventional data sources, for instance, the
discovery of adverse drug reactions and drug−drug interactions
based on Twitter and Instagram data.836,837

Image mining is also of relevance to TM applications and,
most notably, to chemical TM. OSR is yet at its infancy, and
there is still much room for improvement, particularly dealing
with graphical ambiguities (e.g., touching and broken
characters, or characters touching lines), the recognition of
large macromolecular structures and complicated rings, the
correct interpretation of Markush features (e.g., substituent
replacement in R-groups, link nodes, or repeating units), and
the recognition of chemical tables or reactions requires
substantial further research.
A second challenge in chemical TM is the integration of data

extracted from different data and information sources. As
compared to standardized gene and gene products nomencla-
tures, the existence of multiple representations for chemicals
entails significant field-specific obstacles. Effective data mining
requires accurate structural representations and chemical
naming, while public databases struggle to provide unambig-
uous names and synonyms and do not fully solve the problems
of uniqueness and unambiguity of structural representations.
Even if there is a clear consensus in the need of incorporating
chemical structural information into matching identifiers (e.g.,
as with InChi codes), as the only effective solution to this
problem, current results mapping automatically extracted
chemical names to identifiers in chemical repositories show
the many difficulties of this task and the need of substantial
investments in this area.
Beyond existing issues related to entity normalization, in an

increasing number of applications, chemical information has to
be viewed in context and integrated with other data types such
as pharmacological, toxicological, and biological attributes. This

is the prototypical scenario of many genomic applications, in
which new semantic classes and ontologies are being applied to
support semantic web developments and which are increasingly
adopted by core biological databases.838 It is fairly noticeable
that we are going to meet new and more powerful
developments, based on semantic web technology, and linking
information types, such as entities from chemistry and biology,
which will make the access and dissemination of information
easier and facilitate integrated chemical information. On the
other hand, data integration faces an additional critical
challenge regarding access to fee-based databases that severely
jeopardize information availability, and thus the potential usage
of multidisciplinary integrated data. The axis formed by data-
information-knowledge is critical for scientific progress; then,
promoting data sharing is a “must”: from funding agencies to
professional associations and research journals (e.g., as
condition of publication or receiving grants).
Another key aspect of TM is integration into adequate

analysis environments, especially the visualization of semanti-
cally enhanced chemical documents, navigation across terms,
and annotation types, and the ability to produce semantic
summaries and to cross-link annotations to consolidated
resources (e.g., databases and ontologies). At a first glance,
TM outputs are sometimes seen as simple frequency statistics
of annotated terms, where wordclouds are a commonly used
way to display how many times each term is occurring in the
text or document collection. In turn, graphs are a powerful
means of characterization of term representativeness as well
term co-occurrence associations, or some other form of
correlation. For instance, graph nodes (i.e., annotations) can
be adjusted in size according to their annotation frequency, and
two chemicals that co-occur very frequently should be
connected using a thicker edge.
Visualization technologies also provide support to human

experts when creating gold standards and controlled vocab-
ularies, that is, in the manual annotation/labeling of texts
according to domain-specific guidelines. So, document
rendering abilities have to team up with annotation (high-
lighting and marking) and navigation abilities to provide an
integrated environment for the curation of document contents.
The use of Web-based programming, JavaScript libraries, is the
leading trend in underlying the construction of easy-to-use and
highly flexible curation tools. Efforts concentrate on providing
lightweight multiuser environments that enable manual text
annotation, calculate interannotator agreement, and provide, to
some extent, semiautomated means to revise/validate annota-
tions. Browser compatibility and devising ways of making
highlights/annotations noninvasive are two open challenges.

7.1. Technological and Methodological Challenges

TM is experiencing rapid and significant evolution. TM is
taking advantage of recent computing technologies to boost
and optimize existing software as well as looking for emerging
technologies that may help address open challenges. At the
technical level, scalability is a key demand in many fields and
also in chemical TM. The emergence of flexible cloud-based
virtualization techniques promises good/reasonable solutions
to this problem. For instance, cloud computing has been
applied to the accumulation of concept co-occurrence data in
MEDLINE annotation839 and virtual screening840 searches.
Server virtualization ensures effective software development

and testing but demands extensive system level knowledge.
Docker technology has become very popular over the last years,
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because docker containers employ the kernel of the host
machine; that is, they do not require or include the whole
operating system, in contrast to virtual machines, which
emulate virtual hardware. The myCHEMBL platform is an
example of a virtual machine distribution that has recently
incorporated Docker technology.841

Aside from scalability issues, the lack of interoperability
among biomedical TM tools is a major bottleneck in creating
more complex applications. The number of methods and
techniques for common TM tasks, IR and NER, keeps
increasing, but combining different tools requires substantial
effort and time due to heterogeneity and variety not only of
technologies but also of data formats. Some formats, such as
BioC, aim at harmonizing the presentation of text documents
and annotations, but their use is far from being widespread.
Currently, JavaScript Object Notation (JSON) is the most
popular data interchange format, and BioC and other
biomedical formats are already migrating. Also noteworthy is
that the Chemical JSON (http://wiki.openchemistry.org/
Chemical_JSON), which represents chemical molecules, may
be useful to TM, to present chemically relevant outputs.
At the methodological level, traditionally, TM has been

focused on supervised predictive learning. In the particular case
of chemical TM, attention was set on the development of
chemical entity taggers. While this area of work is still
important, because not all relevant chemical types have been
dully addressed so far, new areas are already attracting some
attention. For instance, sentiment analysis or opinion mining is
becoming of interest due to the increasing interest in social
media data. However, document summarization, which is a
long-term TM task, is still an open challenge, although the
ability to produce domain-focused and semantically enriched
summaries is ever more important.
Along with the typical IR methods, many other techniques

have been developed to empower search engines and enhance
knowledge extraction workflows. IR has incorporated techni-
ques related to term weighting, natural language querying,
ranking retrieval results, and query-by-example. More recently,
attention has been driven to the uncertainty inherent in the IR
task and to add intelligence to IR systems. A key component in
terms of intelligent behavior is flexibility, intended as the
capability of learning a context and adapting to it. IR systems
should be tolerant to uncertainty and imprecision in user−
system interaction (i.e., allow a more natural expression of user
needs) and, at the same time, be able to learn the user’s/
domain’s notion of relevance (i.e., elucidating information
preferences). So, the so-called intelligent IR methods aim to
intervene in areas/tasks such as personalized indexing,
relevance feedback, text categorization, TM, and cross-lingual
IR, among others.
Probabilistic models are being explored as a strategy to deal

with uncertainty. For instance, contextual models have been
explored in chemical patent search,842 compound similarity
search,843 and drug connectivity mapping.844 The pmra is
another probabilistic topic-based model for PubMed content
similarity that computes document relatedness on the basis of
term frequencies, that is, the probability that a user would want
to examine a particular document given known interest in
another.845

Typically, query representation is based on keywords, and
the retrieval mechanism performs a lexical match of words. One
of the main problems with this approach is vocabulary
mismatch; that is, users employ different words than those

that are found in relevant documents. Moreover, distinct users
are likely to employ distinct words to describe the same
documents. So, a new area of IR research is tackling the
definition of methods for vocabulary expansion. Vocabulary
expansion can be achieved by transforming the document and
query representations, for example, by using Latent semantic
indexing (LSI), or it can be done as a form of a dictionary
automatically built by corpus analysis. LSI is basically a sort of
algebraic document retrieval representation model that relies
on singular value decomposition of the vector space of index
terms, and maps each document and query into a lower
dimensional space representing their most important features.
For instance, LSI has been applied to the search and retrieval of
documents with textual, chemical, and/or text- and chemistry-
based queries in PubMed.846

Inspired by search engine approaches, new methods of
evaluating word similarity take into consideration word co-
occurrence or other measures of word relatedness. For instance,
these methods have been applied to the discovery of protein−
protein interactions847 as well as eliciting antiobesity/diabetes
effects of chemical compounds.848 Semantic relations have also
been explored to identify genes, chemicals, diseases, and action
term mentions in the Comparative Toxicogenomic Data-
base.849

Deep learning has been a key reference for big data in the
past few years, in particular for temporally and spatially
structured data, such as images and videos. It has also been
explored in TM, but with less success. Texts, usually treated as a
sequence of words, are not suited for direct use of deep learning
systems (there are too many words in a language). However,
some works have already explored this avenue. For instance, a
system participating in CHEMDNER competition integrated
mixed conditional random fields with word clustering
(including a Skip-gram model based on deep learning) for
chemical compound and drug name recognition.344 Deep
semantic information was also applied to large-scale MeSH
indexing.850

Last, it is worth mentioning that the use of dimensionality
reduction techniques is increasingly demanded. Despite the
availability of big data platforms and parallel data processing
algorithms, the use of large data volumes may sometimes
compromise the performance of the systems. Current
techniques include correlation filtering, random forests/
ensemble trees, principal component analysis, backward feature
elimination, and forward feature construction. Some works have
explored these techniques for biomedical applications; for
instance, PubMiner uses a feature dimension reduction filter
while mining useful biological information, such as protein−
protein interaction, from PubMed,851 and the SparkText Big
Data infrastructure for TM uses feature extraction and
dimension reduction to provide relevant features and thus
condense the feature space for text classification methods.852

In summary, the first wave of applications of TM in
chemistry is addressing the more demanding issues in the field
and is also helping to clarify the many future challenges,
including document heterogeneity, complexity of the chemical
structures, integration with other data sources, and data
representation. The progress in the field will come at the
hand of the application of new technologies, including NLP,
ML, and semantic encoding together with the implementation
in robust distributed computational systems. With no doubt,
the future will depend on the collaboration between the experts
in these technologies with domain experts.
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Machine Learning in Bioinformatics. Briefings Bioinf. 2006, 7 (1), 86−
112.
(238) Joachims, T. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features. Proceedings of the
10th European Conference on Machine Learning (ECML’98); Chemnitz,
Germany, April 21−24, 1998; pp 137−142.

(239) Robertson, S. E.; Jones, K. S. Relevance Weighting of Search
Terms. J. Am. Soc. Inf. Sci. 1976, 27 (3), 129−146.
(240) Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn.
1995, 20 (3), 273−297.
(241) Vapnik, V. N. Statistical Learning Theory, 1st ed.; Wiley: New
York, 1998.
(242) Rocchio, J. J. Relevance Feedback in Information Retrieval. In
The SMART Retrieval System--Experiments in Automatic Document
Processing; Salton, G., Ed.; Prentice-Hall: Upper Saddle River, NJ,
1971.
(243) Machine Learning, Neural and Statistical Classification; Michie,
D., Spiegelhalter, D. J., Taylor, C. C., Campbell, J., Eds.; Ellis
Horwood: Upper Saddle River, NJ, 1994.
(244) Machine Learning: An Artificial Intelligence Approach, 1st ed.;
Michalski, S. R., Carbonell, G. J., Mitchell, M. T., Eds.; Morgan
Kaufmann Publishers: San Francisco, CA, 1986.
(245) Freund, Y.; Schapire, R. E. Experiments with a New Boosting
Algorithm. Proceedings of the 13th International Conference on Machine
Learning (ICML’96); Morgan Kaufmann Publishers: Bari, Italy, July
3−6, 1996; pp 148−156.
(246) Yang, Y.; Pedersen, J. O. A Comparative Study on Feature
Selection in Text Categorization. Proceedings of the 14th International
Conference on Machine Learning (ICML’97); Morgan Kaufmann
Publishers: Nashville, TN, July 8−12, 1997; pp 412−420.
(247) Han, B.; Obradovic, Z.; Hu, Z.-Z.; Wu, C. H.; Vucetic, S.
Substring Selection for Biomedical Document Classification. Bio-
informatics 2006, 22 (17), 2136−2142.
(248) Cover, T. M.; Thomas, J. A. Elements of Information; Wiley-
Interscience: New York, 1991.
(249) Van Rijsbergen, C. J.; Harper, D. J.; Porter, M. F. The
Selection of Good Search Terms. Inf. Process. Manage. 1981, 17 (2),
77−91.
(250) Caruana, R.; Freitag, D. Greedy Attribute Selection. Proceedings
of the 11th International Conference on Machine Learning (ICML’94);
Morgan Kaufmann Publishers: New Brunswick, NJ, July 10−13, 1994;
pp 28−36.
(251) Settles, B. Active Learning Literature Survey; Computer Sciences
Technical Report 1648; University of Wisconsin-Madison: Madison,
WI, January, 2010.
(252) Chawla, N. V; Japkowicz, N.; Kotcz, A. Editorial: Special Issue
on Learning from Imbalanced Data Sets. SIGKDD Explor. 2004, 6 (1),
1−6.
(253) Suomela, B. P.; Andrade, M. A. Ranking the Whole MEDLINE
Database according to a Large Training Set Using Text Indexing. BMC
Bioinf. 2005, 6, 75.
(254) Krallinger, M.; Leitner, F.; Valencia, A. Retrieval and Discovery
of Cell Cycle Literature and Proteins by Means of Machine Learning,
Text Mining and Network Analysis. In 8th International Conference on
Practical Applications of Computational Biology & Bioinformatics
(PACBB 2014); Saez-Rodriguez, J., Rocha, M. P., Fdez-Riverola, F.,
De Paz Santana, J. F., Eds.; Springer: Switzerland, 2014; Vol. 294:
Series Advances in Intelligent Systems and Computing, pp 285−292.
(255) Krallinger, M.; Rojas, A. M.; Valencia, A. Creating Reference
Datasets for Systems Biology Applications Using Text Mining. Ann. N.
Y. Acad. Sci. 2009, 1158, 14−28.
(256) Shah, P. K.; Jensen, L. J.; Boue,́ S.; Bork, P. Extraction of
Transcript Diversity from Scientific Literature. PLoS Comput. Biol.
2005, 1 (1), e10.
(257) Shah, P. K.; Bork, P. LSAT: Learning about Alternative
Transcripts in MEDLINE. Bioinformatics 2006, 22 (7), 857−865.
(258) Donaldson, I.; Martin, J.; de Bruijn, B.; Wolting, C.; Lay, V.;
Tuekam, B.; Zhang, S.; Baskin, B.; Bader, G. D.; Michalickova, K.; et al.
PreBIND and Textomy–Mining the Biomedical Literature for Protein-
Protein Interactions Using a Support Vector Machine. BMC Bioinf.
2003, 4, 11.
(259) Kim, S.; Kwon, D.; Shin, S.-Y.; Wilbur, W. J. PIE the Search:
Searching PubMed Literature for Protein Interaction Information.
Bioinformatics 2012, 28 (4), 597−598.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00851
Chem. Rev. 2017, 117, 7673−7761

7746

http://chemspell.nlm.nih.gov/spell
http://www.chem.sis.nlm.nih.gov/chemidplus
http://dx.doi.org/10.1021/acs.chemrev.6b00851


(260) Shtatland, T.; Guettler, D.; Kossodo, M.; Pivovarov, M.;
Weissleder, R. PepBank–a Database of Peptides Based on Sequence
Text Mining and Public Peptide Data Sources. BMC Bioinf. 2007, 8,
280.
(261) Wang, P.; Morgan, A. A.; Zhang, Q.; Sette, A.; Peters, B.
Automating Document Classification for the Immune Epitope
Database. BMC Bioinf. 2007, 8, 269.
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(316) Peŕez-Peŕez, M.; Peŕez-Rodríguez, G.; Rabal, O.; Vazquez, M.;
Oyarzabal, J.; Fdez-Riverola, F.; Valencia, A.; Krallinger, M.; Lourenco̧,
A. The Markyt Visualisation, Prediction and Benchmark Platform for
Chemical and Gene Entity Recognition at BioCreative/CHEMDNER
Challenge. Database 2016, 2016, baw120.
(317) Krallinger, M.; Rabal, O.; Lourenco̧, A.; Perez, M. P.;
Rodriguez, G. P.; Vazquez, M.; Oyarzabal, F. L. J.; Valencia, A.
Overview of the CHEMDNER Patents Task. Proceedings of the Fifth
BioCreative Challenge Evaluation Workshop; Sevilla, Spain, September
9−11, 2015; pp 63−75.
(318) Krallinger, M.; Rabal, O.; Leitner, F.; Vazquez, M.; Salgado, D.;
Lu, Z.; Leaman, R.; Lu, Y.; Ji, D.; Lowe, D. M.; et al. The
CHEMDNER Corpus of Chemicals and Drugs and Its Annotation
Principles. J. Cheminf. 2015, 7, S2 (Suppl 1 Text mining for chemistry
and the CHEMDNER track).
(319) Nadeau, D.; Sekine, S. A Survey of Named Entity Recognition
and Classification. Lingvist. Invest. 2007, 30 (1), 3−26.
(320) MacDonald, M. C.; Pearlmutter, N. J.; Seidenberg, M. S. The
Lexical Nature of Syntactic Ambiguity Resolution. Psychol. Rev. 1994,
101 (4), 676−703.

(321) Gale, W. A.; Church, K. W.; Yarowsky, D. One Sense per
Discourse. Proceedings of the Workshop on Speech and Natural Language
(HLT ’91); Harriman, NY, February 23−26, 1992; pp 233−237.
(322) Grishman, R.; Sundheim, B. Message Understanding Confer-
ence-6: A Brief History. In Proceedings of the 16th conference on
Computational linguistics - Volume 1 (COLING’96); Copenhagen,
Denmark, August, 1996; pp 466−471.
(323) Chinchor, N.; Robinson, P. MUC-7 Named Entity Task
Definition. Proceedings of the 7th Conference on Message Understanding
(MUC-7); Fairfax, VA, 1998.
(324) Garfield, E. An Algorithm for Translating Chemical Names to
Molecular Formulas. J. Chem. Doc. 1962, 2 (3), 177−179.
(325) Reeker, L. H.; Zamora, E. M.; Blower, P. E. Specialized
Information Extraction: Automatic Chemical Reaction Coding from
English Descriptions. Proceedings of the first conference on Applied
natural language processing (ANLC ’83); Santa Monica, CA, February
1−3, 1983; pp 109−116.
(326) Hodge, G. M.; Nelson, T. W.; Vleduts-Stokolov, N. Automatic
Recognition of Chemical Names in Natural-Language Texts; Presented at
the 197th National Meeting of the American Chemical Society, Dallas,
TX, April 7−9, 1989; paper CINF-17.
(327) Ai, C. S.; Blower, P. E., Jr; Ledwith, R. H. Extraction of
Chemical Reaction Information from Primary Journal Text. J. Chem.
Inf. Model. 1990, 30 (2), 163−169.
(328) Babych, B.; Hartley, A. Improving Machine Translation Quality
with Automatic Named Entity Recognition. Proceedings of the 7th
International EAMT workshop on MT and other Language Technology
Tools, Improving MT through other Language Technology Tools:
Resources and Tools for Building MT (EAMT ’03); Budapest, Hungary,
April 9−16, 2003; pp 1−8.
(329) Molla,́ D.; Van Zaanen, M.; Smith, D. Named Entity
Recognition for Question Answering. Proceedings of the 2006
Australasian Language Technology Workshop (ALTW2006); Sydney,
Australia, November 30−December 1, 2006; pp 51−58.
(330) Maynard, D.; Tablan, V.; Ursu, C.; Cunningham, H.; Wilks, Y.
Named Entity Recognition from Diverse Text Types. Recent Advances
in Natural Language Processing 2007 Conference (RANLP - 2007);
Tzigov Chark, Bulgaria, September 5−7, 2001; pp 257−274.
(331) Karkaletsis, V.; Spyropoulos, C. D.; Petasis, G. Named Entity
Recognition from Greek Texts: The GIE Project. In Advances in
Intelligent Systems: Concepts, Tools and Applications; Tzafestas, S. G.,
Ed.; Springer: Dordrecht, Netherlands, 1999; pp 131−142.
(332) Lowe, D. M.; Sayle, R. A. LeadMine: A Grammar and
Dictionary Driven Approach to Entity Recognition. J. Cheminf. 2015,
7, S5 (Suppl 1 Text mining for chemistry and the CHEMDNER
track).
(333) Leaman, R.; Wei, C.-H.; Zou, C.; Lu, Z. Mining Chemical
Patents with an Ensemble of Open Systems. Database 2016, 2016, pii:
baw065.
(334) Lowe, D. M.; Sayle, R. A. Recognition of Chemical Entities in
Patents Using LeadMine. Proceedings of the Fifth BioCreative Challenge
Evaluation Workshop; Sevilla, Spain, September 9−11, 2015; pp 129−
134.
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