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ABSTRACT

Over the last 15 years, several genome-scale metabolic models (GSMMs) were developed for different yeast species, aiding
both the elucidation of new biological processes and the shift toward a bio-based economy, through the design of in silico
inspired cell factories. Here, an historical perspective of the GSMMs built over time for several yeast species is presented
and the main inheritance patterns among the metabolic reconstructions are highlighted. We additionally provide a critical
perspective on the overall genome-scale modeling procedure, underlining incomplete model validation and evaluation
approaches and the quest for the integration of regulatory and kinetic information into yeast GSMMs. A summary of
experimentally validated model-based metabolic engineering applications of yeast species is further emphasized, while the
main challenges and future perspectives for the field are finally addressed.
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INTRODUCTION

The availability of low-cost whole-genome sequencing tech-
niques led to an explosion of data for several organisms. This,
alongside the advent of organism-specific omics data, advanced
bioinformatics tools, and an increasing computational perfor-
mance has paved the way to the reconstruction of metabolic
networks at the genome scale.

Genome-wide reconstructions of the cell metabolism can be
converted into predictive constraint-based models, establish-
ing a complex network of biochemical reactions with informa-
tion on stoichiometry, compartmentalization, biomass composi-
tion, thermodynamics and genes responsible for each reaction
(Covert et al. 2001; Thiele and Palsson 2010). When combined
with constraint-based algorithms, genome-scale metabolic
models (GSMMs, also known as GEMs) offer an excellent oppor-

tunity for studying metabolism and genotype–phenotype rela-
tionships (O’Brien, Monk and Palsson 2015).

Hence, GSMMs have become a key framework in the systems
biology field, in particular, for systems metabolic engineering
(ME) approaches. After the first GSMM was published nearly
20 years ago (Edwards and Palsson 1999), many others have
followed. Hitherto, there are GSMMs published and accessible
for download in several websites for more than 100 organisms
(e.g. www.optflux.org/models and http://systemsbiology.ucsd.
edu/InSilicoOrganisms/OtherOrganisms), and the number
keeps rising.

The yeast Saccharomyces cerevisiae was the first eukaryotic
organism to be fully genome sequenced (Goffeau et al. 1996;
Cherry et al. 1997), and it has been one of the workhorses in cell
factory engineering for biotechnological production of several
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Figure 1. Metabolic network reconstruction and mathematical modeling of genome-scale networks. (A) A draft metabolic network can be generated using genomic,
biochemical and physiological information available in primary literature or proper databases. All annotated metabolic genes are first matched to enzymes and then
to the reactions—composed by different metabolites and cofactors—to obtain GPR associations. Reactions are assembled into pathways which together constitute

the metabolite network. Localization has also to be considered since chemically identical metabolites may be present in different cellular compartments. (B) The
reconstructed genome-scale metabolic network is then transformed into a constraint-based model, by first converting it to a mathematical representation using a
stoichiometric matrix (S) of the metabolite coefficients in each reaction, and further assuming pseudo-steady state and constraining the reaction flux (v) bounds. The
system of linear equations defines the admissible flux space of solutions (known as flux cone) and using an objective function defining an optimization problem it is

possible to find optimal solutions for a desired output. To simulate model growth and obtain meaningful flux distributions, information on biomass composition and
ATP requirements of the cell must also be available. The generation of high-end genome-scalemetabolic models often requires several cycles of testing and refinement
based on the comparative results of in silico simulations and experimental data.

compounds with widespread applications in food (Brochado
et al. 2010; Li et al. 2013a), chemical (Hong and Nielsen 2012;
Nielsen et al. 2013) and pharmaceutical industries (Paddon et al.
2013). Given the similarity and high number of features con-
served with the human functions, it is also a role model for dis-
eases, drug screening and fundamental biology studies (Stur-
geon et al. 2006; Petranovic and Nielsen 2008). So, it is not a
surprise that S. cerevisiae has been the first eukaryotic organ-
ism to have a GSMM (Förster et al. 2003), and is top-ranked if we
count the number of available GSMMs per single organism. How-
ever, other yeast species constitute important humanpathogens
or have also proven to be suitable platforms for biotechnologi-
cal applications and several models have been therefore recon-
structed for different yeasts.

Here, we review the genome-scale modeling process in
yeast, presenting an historical perspective of the GSMMs built
along the time for different yeast species beyond the well-
characterized S. cerevisiae through the representation of a
chronological network containing the inherited features of sev-
eral yeast models. We then present a critical perspective on
the overall genome-scale modeling procedure in yeast, from in-

complete model validation and evaluation approaches to the
increasing pursuit for the integration of regulatory and kinetic
information into metabolic networks. A summary of the main
applications of yeasts’ GSMMs in cell factory development is fur-
ther addressed. Lastly, the future perspectives in the field are
discussed.

METABOLIC NETWORK RECONSTRUCTION
AND MATHEMATICAL MODELING

The reconstruction and mathematical modeling processes of
genome-scale metabolic networks have been extensively de-
scribed and reviewed elsewhere (Feist et al. 2009; Oberhardt, Pals-
son and Papin 2009; Thiele and Palsson 2010; O’Brien, Monk and
Palsson 2015). Here, we briefly recapitulate the main steps of
this systematic process through a schematic representation pre-
sented in Fig. 1, as a prelude to contextualize the topics dis-
cussed in the further sections.

The first requisite to start the reconstruction of a metabolic
network is to have the genome sequence of the organism of
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interest. If once this could be an issue, nowadays with the
emergence of next-generation sequencing techniques, it is pos-
sible to obtain an organism’s genome sequence overnight. Even
for poorly studied organisms, we can easily generate draft mod-
els from a genome sequence of the organism using homology
searching algorithms and semi-automated reconstruction tools,
such as Model SEED, RAVEN or merlin (Henry et al. 2010; Agren
et al. 2013; Dias et al. 2015). For example, over 2600 draft GSMMs
for more than 1500 organisms across different phylogenetic do-
mains were automatically generated through the Path2models
project and, more recently, 773 human gut bacteria genome-
scale reconstructions were generated through AGORA using
metagenomics data (Büchel et al. 2013; Magnúsdóttir et al. 2016).
However, the implementation of robust andhigh-quality GSMMs
able to predict cellular phenotypes with reasonable accuracy re-
quires additional time and efforts, since proficient manual cu-
ration and several iteration cycles of testing and refinement are
necessary. The reconstruction process of a robust GSMM usu-
ally depends on having a very well-annotated genome and, con-
sequently, reliable gene-protein-reaction (GPR) relationships, as
well as information about the stoichiometric coefficients of
substrates and products present in each reaction, cofactor in-
formation, reaction directionality and compartmentalization.
Furthermore, to simulate microbial growth and obtain mean-
ingful flux distributions, one must have experimental evidences
on the biomass composition and an estimation of growth and
non-growth-associated ATP requirements. All this information
is usually collected from different sources ranging from pri-
mary literature to high-throughput data and organism-specific
databases, if available.

To perform in silico simulations, the reconstructed metabolic
network has first to be converted into a mathematical model
which follows a matrix representation of the stoichiometric co-
efficients of each reaction. Assuming the steady-state behavior
of internal metabolism, i.e. ensuring, for each metabolite, that
the total rates of consumption and production are equal, and
applying some flux constraints, such as reaction flux bounds to
narrow down the space of feasible computational solutions, it is
possible to evaluate the biological capabilities of an organism.
Furthermore, one can use the well-known flux balance analysis
(FBA)method, which consists in setting an objective function for
maximizing orminimizing a subset of fluxes and finding optimal
solutions by solving the resulting linear programming problems.
A typical example is the maximization of the biomass objective
function to simulate growth-focused cell behavior (Savinell and
Palsson 1992; Orth, Thiele and Palsson 2010). This type of mod-
eling procedure is known as constraint-based modeling (CBM),
which has been frequently applied in ME projects (Long, Ong
and Reed 2015). Besides FBA, several other variants have been
developed within the CBM community, such as minimization of
metabolic adjustment (MOMA), regulatory on/off minimization
(ROOM) and RELATCH (Segrè, Vitkup and Church 2002; Shlomi,
Berkman and Ruppin 2005; Kim and Reed 2012). Since extensive
reviews of CBM methods have been provided, we will not de-
scribe or detail all the available methods here (see Park, Kim and
Lee 2009; Senger et al. 2015; Maia, Rocha and Rocha 2016).

Before being published, GSMMs must be validated against
experimental phenotypical evidences. There are several met-
rics commonly used to evaluate the predictive accuracy of these
metabolic networks, including growth metrics and gene dele-
tion metrics (single and double knockout analysis). Recently,
Sánchez and Nielsen (2015) have thoroughly described which
GSMMs of S. cerevisiae included these type of metrics in their
publications. When the metabolic network is poorly connected

or the simulation results differ from the experimental ones, the
model has to be fine-tuned and continuously improved using,
for example, gap-filling methods or by integrating omics data
(Green and Karp 2004; Satish Kumar, Dasika and Maranas 2007;
Sánchez and Nielsen 2015).

YEAST METABOLIC MODELS:
CHRONOLOGICAL OVERVIEW

The yeast Saccharomyces cerevisiae was the pioneer organism on
constraint-based genome wide modeling of eukaryotes. In this
review, we update the history of yeast genome-scale modeling
by revisiting themain published genome-scale models of S. cere-
visiae and beyond. To support this discussion, Fig. 2 portraits a
historical timeline highlighting the inherited features of new re-
constructions over time, while Fig. 3 provides a quantitative as-
sessment of the available GSMMs.

Nearly 15 years ago, Förster et al. (2003) built the first genome-
scale model of S. cerevisiae named iFF708, a model containing
619 metabolic genes and 1172 reactions compartmentalized be-
tween cytosol, mitochondria and the extracellular space. After-
wards, three GSMMs of the same organism were derived from
iFF708, namely iND750, iLL672 and iIN800. iND750 was the sec-
ond genome-widemodel of S. cerevisiae to be published introduc-
ing five additional cellular compartments, GPR associations and
comprehensive proton balance (Duarte, Herrgård and Palsson
2004); iLL672 emerged afterwards with an improved connectiv-
ity of the network by deletingmany dead-end reactions (Kuepfer,
Sauer and Blank 2005); and iIN800 has then included tRNA syn-
thesis, transport processes and amore detailed lipidmetabolism
(Nookaew et al. 2008). Later, iMM904 arose as an improved ver-
sion of the iND750 model, introducing a new nomenclature
for metabolites and reactions and integrating exometabolomic
data, which consequently led to enhanced essentiality predic-
tions, according to their authors (Mo, Palsson and Herrgård
2009). This GSMM was subsequently revised by another group
giving rise to iAZ900 (Zomorrodi andMaranas 2010). The authors
of this study suggested 120 corrections to the iMM904 model,
including changes in the GPR associations, reversibility of reac-
tions and biomass composition, as well as adding/removing re-
actions, compounds or genes, through the use of an automated
procedure for restoring consistency with single gene deletion
and synthetic lethality data, which has led to improvements in
terms of themodel specificity. The first consensus genome-scale
metabolic network (Yeast 1) was reconstructed through the col-
laboration of several research groups, as an attempt to build
a consolidated metabolic network using standardized identi-
fiers, although not capable of performing computational simu-
lations (Herrgård et al. 2008). This fact was circumvented with
Yeast 4, which also included increased metabolite transport,
a better description of the lipid metabolism (based on iIN800)
and improved pathway connectivity (Dobson et al. 2010). There-
after, the consensus yeast model has experienced frequent up-
dates by the community either to incorporate short (Yeast 5:
Heavner et al. 2012) or major expansions of the lipid metabolism
(Yeast 7: Aung, Henry andWalker 2013) or to improve the quanti-
tative predictions of the model, particularly phenotypes related
to essential and auxotroph-inducing genes (Yeast 6: Heavner
et al. 2013). One of the last published S. cerevisiae GSMMs is the
iTO977 that, similarly to yeast 4, resulted from the merge of
the consensus network yeast 1 and the iIN800 model (Österlund
et al. 2013). This model integrated transcriptomic data, thus



4 FEMS Yeast Research, 2017, Vol. 17, No. 5

Figure 2. Evolutionary timeline of yeast GSMMs and their reconstruction inheritances. Each box contains the name of the metabolic model and is colored according
to the respective yeast species color caption. Several GSMMs were reconstructed using previously available large-scale models as templates, from the same or dif-
ferent yeast species, which is represented in the figure through bold arrows connecting the respective boxes. The light-dashed colored lines represent the networks’
relationship regarding the models that, although did not serve as structural scaffolds, have been used in the comparative/validation process of the subsequent GSMM.

Figure 3. Genome-scale models of yeast in numbers. (A) Number of published GSMMs of yeast species over time. (B) Number of total genes, reactions (drains excluded),
internal metabolites, intracellular compartments and reactions associated with genes of each GSMM. Inside each species categorization and if there is more than one
GSMM for the same yeast, models are organized by date of publication (from top to down).

being able to identify transcriptionally controlled reactions and
it is the one with highest gene coverage (Fig. 3B).

A big handicap of GSMMs is the absence of regulatory in-
formation in the GPR associations that could fully describe the
physiological behavior of the cell in specific conditions. This ab-
sence is often used to justify inconsistencies observed in the
simulations. Herrgård et al. (2006) added transcriptional regula-

tory constraints to an iND750-based GSMM to predict changes in
the gene expression levels of some transcription factor deletion
strains, which resulted in the iMH805/775 model, a model con-
taining 82 nutrient signals and 55 transcription factors regulat-
ing 750 metabolic genes assembled from the primary literature.
The increasing quest for adding a regulatory layer into GSMMs
will be further discussed.
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Saccharomyces cerevisiae is uniquely positioned among eu-
karyotic organisms to work as a robust, well-established and
scalable cell factory. However, other yeast species have na-
tive traits and features that make them equally or even more
adequate to produce certain products. Moreover, many yeast
species represent important human pathogens. In that sense,
lately, several efforts have been conducted to develop GSMMs
for other yeast species. Figure 2 shows that S. cerevisiaeGSMMs—
particularly iMM904 and iIN800—have been frequently used as
scaffolds for building or comparing new metabolic models re-
constructed for other yeast species. Up until now, beyond the
S. cerevisiae above-mentioned ones, 16 well-annotated GSMMs
of other yeast species have been published (Fig. 3A). The yeast
Pichia pastoris is considered one of the preferred host organ-
ism when it comes to the production of recombinant proteins
(Werten et al. 1999; Damasceno et al. 2004). Hence, since 2010, it
has been also a target organism in the metabolic modeling field
for several research groups. The first two P. pastoris GSMMs cor-
responding to iPP668 and PpaMBEL1254 were almost simultane-
ously published, once genomic datawere available for this yeast,
being validated against physiological data from cultivations on
different carbon sources (Chung et al. 2010; Sohn et al. 2010). Two
years later, iLC915 was developed based on another sequenced
genome of the same yeast (Caspeta et al. 2012). The model con-
tains a broader genomic and metabolic coverage when com-
pared to the previous ones, as well as a better agreement with
experimental data with regard to the growth in different car-
bon sources, including methanol and glycerol. The same study
has also resulted in one of the first GSMMs of the naturally oc-
curring xylose-fermenting yeast Scheffersomyces stipitis, formerly
known as Pichia stipitis, the iSS884 (Caspeta et al. 2012). Due to
its native features, S. stipitis is a suitable candidate for xylose
and pentose phosphate pathway metabolic studies, as well as
for ethanol production from biomass. Both GSMMs used iIN800
as reference framework. Likewise, also in 2012, two additional
genome-scalemodels of S. stipitiswere published, namely iTL885
and iBB814 (Balagurunathan et al. 2012; Liu et al. 2012). iBB814
was reconstructed following a protocol for generating a high-
quality GSMMs (Thiele and Palsson 2010) and compared with
the first unicellular eukaryotic model (Förster et al. 2003) after
a semi-automatic validation process, also including the experi-
mental determination of the biomass macromolecular compo-
sition, while iTL885 used GSMMs of S. cerevisiae (iMM904) and
P. pastoris (iPP668) as template frameworks to map the assigned
genes to the list of original reactions (Liu et al. 2012), focusing
on predictions related to xylose metabolism and xylose-derived
ethanol production. No significant differences are observable
among the three existing S. stipitisGSMMs in terms ofmodel size
(Fig. 3B). Back to P. pastoris, the iPP668model was further merged
with PpaMBEL1693 and iLC915 resulting in iMT1026, themost re-
cent and comprehensive GSMM of this yeast, validated against
a wider range of physiological data than the preexisting models
(Tomàs-Gamisans, Ferrer and Albiol 2016). The iMT1026 model
presents the highest genome coverage among all the GSMMs
available for different yeast species (Fig. 3B) There is another P.
pastoris GSMM available since 2015—ihGlycopastoris—which is
an extension of the iLC915 model with native and humanized
N-glycosylation, thus capable to simulate humanized glycosyla-
tion as well as estimate N-glycosylation of yeast native proteins,
being considered the first functional GSMM of P. pastoris, with
enhanced predictive capabilities in terms of protein yield (Irani
et al. 2016).

The year 2012 was indeed a prolific year in terms of pub-
lications of different yeast GSMMs. Besides the already men-

tioned models for S. cerevisiae, S. stipitis and P. pastoris species,
the—up to now—unique GSMMs of either Schizosaccharomyces
pombe and Candida glabrata also became available that year, be-
ing named SpoMBEL1693 and iNX804, respectively (Sohn et al.
2012; Xu et al. 2013). Schizosaccharomyces pombe, also known as
fission yeast, has been widely used as model system for study-
ing the mammalian cell cycle control (Lee and Nurse 1988) and,
like C. glabrata—known to be an important platform for pyruvate
production—has been increasingly explored as a cell factory
platform in biotechnological applications (Drǎgan et al. 2011;
Li et al. 2013b; Chen et al. 2015). Since C. glabrata is an oppor-
tunist human pathogen, the GSMM available for this yeast has
also been used to predict potential drug targets for antimicro-
bial therapies. In turn, Yarrowia lipolytica is an oleaginous yeast
that can accumulate large amounts of specialty lipids, mak-
ing it of interest for biofuels and other chemicals production.
The first two GSMMs of Y. lipolytica were also published in 2012:
iNL895 emerged as the first well-annotated metabolic model of
an oleaginous yeast, although derived from S. cerevisiae models
(Loira et al. 2012), followed by iYL619 PCPwhichwas built directly
from knowledge bases withmore specific information on the or-
ganism of interest (Pan and Hua 2012). More recently, another
GSMM of Y. lipolytica, iMK735, has been published as an adapted
version of the iND750 S. cerevisiaemodel (Kavšček et al. 2015). In-
formation contained on the first two models of the oleaginous
yeast was further used to build themost recent and comprehen-
sivemodel ofY. lipolytica, iYali4, which used yeast 7.11 consensus
network as template model to integrate multilevel omics data,
and helped to demonstrate that lipid accumulation in this yeast
is associated with regulation of amino acid biosynthesis and
does not involve transcriptional regulation of lipid metabolism
(Kerkhoven et al. 2016).

The yeast Kluveromyces lactis has also been used as host
for the production of recombinant proteins, while C. tropicalis
presents an interesting capacity for producing α,ω-dicarboxylic
acids. Hence, these organismshave been attracting the attention
of systems biologists, being now among the yeast species with
a curated GSMM available. The first and unique GSMM of the
milk yeast K. lactis (iOD907) was published in 2014, building upon
the iMM904 S. cerevisiae model and fundamental literature for
this organism (Dias et al. 2014), claiming reasonable predictive
performance with regard to quantitative simulations of chemo-
stat experiments and gene knockout phenotypes. iCT646 was
reconstructed two years later through the assembly of genomic
and biochemical information fromdatabases and primary litera-
ture, thus allowing systemwide analysis ofC. tropicalismetabolic
studies (Mishra et al. 2016).

Since today draft models can be easily derived by automatic
application of reconstruction algorithms, we can find additional
GSMMs available for other yeast species. However, those will not
be discussed in this review due to their low level of curation and
lack of validation.

CRITICAL PERSPECTIVE ON THE MODEL
EVALUATION AND VALIDATION APPROACHES

Some reviews have already thoroughly covered the evaluation
metrics most commonly applied each time, a new GSMM is
published (Österlund, Nookaew and Nielsen 2012; Sánchez and
Nielsen 2015). Here, we will forego the details of those metrics,
instead providing a critical perspective concerning the use—or
lack—of adequate validation approaches.
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Despite the evolution of the GSMMs available for different
organisms along the past two decades, uninfringeable evalua-
tion criteria to assess the quality and completeness of GSMMs
are still lacking. Typically, newer models of the same organism
contain a broader metabolic coverage (Fig. 3B) and claim more
consistent and improved predictive capabilities, particularly in
terms of genotype–phenotype relationships, although the latter
is always more subjective and questionable (Damiani et al. 2015;
Heavner and Price 2015a). The scope of metabolic reconstruc-
tions in terms of the number of genes, reactions andmetabolites
has indeed been one of the highlighted evaluation criteria in the
manuscripts of the published models. Due to the higher com-
plexity of eukaryotic systems, including the presence of intracel-
lular organelles and associated transport across cellular mem-
branes, yeast genome-scale models have introduced another
layer of characterization regarding the number of compartments
represented in the metabolic network (Fig. 3B). However, from
our point of view, it is important not to sacrifice quality over
quantity in the metabolic reconstruction process, i.e. model up-
date should not only be focused on model size improvements
but also and foremost on the connectivity of the metabolic net-
work and extent of manual curation, which will consequently
influence the accuracy level of the resulting model.

Recently, despite the challenges, Heavner and Price (2015a)
were able to evaluate the advances in Saccharomyces cerevisiae
metabolic networks, through the direct comparison of 12 yeast
genome-scalemodels. They have concluded that, in general, the
iterative reconstruction of S. cerevisiaeGSMMshas improved over
time, particularly in terms of genomic coverage, number of re-
actions and single gene essentiality predictions, although some
trade-offs between network size and model predictive perfor-
mance were detected, meaning precisely that not always the ex-
pansion of the model scope has resulted in better predictive ca-
pabilities of gene essentiality. Interestingly, they were also able
to cluster the different models according to their metabolite an-
notations reflecting their inheritances and chronological devel-
opment, showing that model predictive ability usually reflects
the iterative process of model curation. The same study no-
ticed that the number of reactions that cannot carry any flux
due to network structural constraints (known as blocked reac-
tions) present in GSMMs of S. cerevisiae is over 20% for all of
them across the different tested conditions, reaching nearly 40%
in some cases (Heavner and Price 2015a). These reactions are
often unconnected from the network, meaning that they are
excluded from the computable metabolic space in strain opti-
mization tasks, for example. However, if, on one hand, blocked
reactions might reflect incorrect annotations or lack of man-
ual curation, they often point the existence of gaps in biolog-
ical knowledge, thus constituting an opportunity window for
future research that should be harnessed to generate new
knowledge and, consequently, enhance the connectivity of the
models. In turn, Damiani et al. (2015) developed a system
identification-based framework to compare the predictions of
two GSMMs of the yeast S. stipitis. While iSS884 performed bet-
ter in validations with physiological data, such as the predic-
tion of growth rate or product excretion, iBB814 showed bet-
ter qualitative agreements, such as predicting the effect on cell
growth upon the inhibition of electron transport chain com-
plexes. The developed validation framework corroborated that
iBB814 has a better agreement with existing knowledge on that
organism, while iSS884 presents some significant errors, despite
good quantitative agreements.

There have been some appeals by experts of the metabolic
modeling field to define standard quality criteria when recon-

structing or assessing a new metabolic network—an effort we
fully support—either stressing the need of collaborative research
or clearer annotation standards, (Monk, Nogales and Palsson
2014; Ebrahim et al. 2015). The previously mentioned yeast con-
sensus networks and platforms as MetaNetX or Pathway Tools
are good, yet scarce or underutilized, examples of this (Karp
et al. 2010; Moretti et al. 2016). For example, among all the yeast
genome-scale models published after the first consensus model
became available, only two GSMMs of Y. lipolytica, iNL895 and
iYali4, present the same reactions’ nomenclature in the respec-
tive metabolic networks. Although one could argue that nomen-
clature per se cannot directly contribute to affect or even im-
prove themodel performance, the use of standard identifiers for
metabolites and reactions based on general databases and string
representations (such as KEGG, PubChem, InChI and so forth)
would certainly facilitate the automated integration and conse-
quent comparison of different metabolic reconstructions. This
would allow not only to better understand the underlying biol-
ogy of the target organism but also to avoid error propagation,
while highlighting opportunities for improving the consistency
of the networks and their reusability.

It is known that many predictive errors are indeed caused
by inconsistencies of the network, including incorrect assign-
ment of GPR associations, reaction directionality or reversibility,
incongruous stoichiometric parameters, missing reactions and
inaccurate biomass composition (Zomorrodi and Maranas 2010;
Dikicioglu, Kirdar and Oliver 2015; Heavner and Price 2015a). For
example, the existence of unbalanced reactions in themetabolic
network can significantly affect the accuracy of predictions (Ku-
mar, Suthers and Maranas 2012). Still, it was recently reported
that several models contain a significant fraction of reactions
either unbalanced or for which mass balances cannot be de-
termined due to absence of the corresponding metabolite for-
mula (Ravikrishnan and Raman 2015). Although some methods
and tools have been applied in the metabolic model reconstruc-
tion and refinement to guarantee the consistency of the net-
work, as reviewed by Durot, Bourguignon and Schachter (2009),
additional efforts should be devoted to check the model con-
sistency with regard to mass and charge balance, thermody-
namic information and confidence of the annotations, which
are crucial elements in simulations. In addition, cellular growth
is often simulated by maximizing the flux through a pseudo
growth reaction, known as biomass objective function, which
describes the growth requirements of a cell (Feist and Palsson
2010). Hence, the biomass composition is also a critical factor
when studying genotype–phenotype relationships in silico. Nev-
ertheless, even though advanced analytical methods have be-
come gradually available, the biomass composition in S. cere-
visiae GSMMs has scarcely changed over time, being recently
dubbed by Dikicioglu, Kirdar and Oliver (2015) as the ‘elephant
in the room’ of metabolic modeling. The authors demonstrated
that flux distributions are very sensitive to changes in yeast’s
biomass composition, which should be represented in an accu-
rate and condition-specific manner not to compromise the pre-
dictive accuracy of the model. In that sense, for example, the
most recent Pichia pastoris model, iMT1026, includes different
biomass compositions specific for each of the alternative carbon
sources used (Tomàs-Gamisans, Ferrer and Albiol 2016). Surpris-
ingly, we found that apart from the iLL672 model, none of the
published S. cerevisiae genome-scale models include a detailed
composition for vitamins, elements and cofactors required for
growth. Cofactors, in particular, are often essential to proper
enzymatic function, and some Escherichia coli modeling stud-
ies have demonstrated the importance of their representation
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in the biomass equation. An increasing level of detail in the
biomass objective functions has been perceived for models of
E. coli and prokaryotes in general, and it would be interesting to
conduct similar efforts in yeast GSMMs (Feist et al. 2007; Xavier,
Patil and Rocha 2017).

Regarding more quantitative predictions, the model perfor-
mance is often assessed based on the simulation of genotype–
phenotype relationships, particularly gene essentiality, utiliza-
tion of different carbon sources, growth rate and product
excretion, to ensure that the metabolic model can accurately
represent the biological systemof interest. If, on one hand, phys-
iological data on growth rates, substrate utilization and prod-
uct formation are fairly accessible for all the yeast species with
an available GSMM, on the other hand genome-wide datasets
comprising gene deletion phenotypic information are only avail-
able for S. cerevisiae and, more recently, for Schizosaccharomyces
pombe, hindering a more complete validation process. The sin-
gle gene essentiality overall predictive accuracy reported in the
yeast GSMMs publications, i.e. the fraction of correct predic-
tions either for truly essential and non-essential genes, gener-
ally exceeds 80% or even 90% in some cases which, at a first
glance, is quite remarkable. Nevertheless, if we account only
the fraction of correctly predicted lethal knockouts, commonly
known as model specificity, the agreement rates drop signifi-
cantly to nearly half of the above-mentioned values (Zomorrodi
and Maranas 2010). Moreover, from our analysis, if we deep root
the gene essentiality prediction analysis, we find that some true
positive cases, i.e. non-essential genes correctly predicted by the
model, are associated with blocked reactions, suggesting that
some positive results might be somewhat biased due to struc-
tural issues of the model (manuscript in preparation).

The results of mutant phenotypic studies are dependent
on strain background, growth media and other environmental
conditions (Hillenmeyer et al. 2008; Li et al. 2011; Alam et al.
2016; Jacquier 2016; Monk et al. 2016). For instance, a complex—
undefined—growth medium is very difficult to formulate in sil-
ico. Also, some studies do not take into account specificities of
the strain used in the experimental procedure, such as the pres-
ence of auxotrophic markers. Thus, it can be difficult to gener-
ate a totally reliable reference set of essential genes to be used
in the model validation process, since some genes might be es-
sential only in context-specific conditions (Zhang and Ren 2015).
Studies that have developed their own large-scale experimental
results based on well-defined and ‘simulation friendly’ condi-
tions might therefore be on an advantageous position. At the
same time, to develop unbiased comparisons when evaluating
different models, one should at least use the same experimen-
tal dataset and in silico conditions. There are other simulation
features that can influence the model predictive performance,
including the choice of the growth threshold and the applied
constraint-based algorithms. Although FBA has been the main
constraint-based method used when evaluating new GSMMs,
other methods such as MOMA and ROOM have also been ap-
plied. The latter twomethods use a similar biological hypothesis
which aims to minimize the number of significant flux changes
with respect to the wild-type strain after a certain genetic per-
turbation, using a quadratic or mixed-integer linear program-
ming, respectively (Segrè, Vitkup andChurch 2002; Shlomi, Berk-
man and Ruppin 2005). Therefore, the quality of the reference
wild-type flux distribution is crucial for obtaining meaningful
results with these methods. A recent publication by our group
showed that some of the most commonly used yeast GSMMs
predict erroneous fluxes even in the well-studied pathways of
the central carbonmetabolism (Pereira, Nielsen andRocha 2016).

Interestingly, it was found that the oldest GSMM of S. cerevisiae
(iFF708) was the best predictor of central carbon fluxes, which
might explainwhymany authors still use thismodel inME stud-
ies (Asadollahi et al. 2009; Brochado et al. 2010; Otero et al. 2013).
Hence, even if most yeast models have demonstrated to accu-
rately predict commonphysiological parameters such as specific
growth rates, the analysis of the internal flux distribution, which
is barely taken into account, should be part of the validation pro-
cess,whenever fluxomics data are available. It is also known that
cells may need time to adapt to genetic perturbations or envi-
ronmental variability. Thus, some in silico predictions based on
optimality criteria might not actually be incorrect, simply need
to be verified in the light of evolution. Accordingly, it might be
advisable to combine genome-scale modeling and adaptive lab-
oratory evolution in the strain development process for certain
biotechnological applications.

There is a natural tendency to overemphasize improvements
in the predictive capabilities of new metabolic reconstructions,
with particular prominence for the evaluation of cell viability
after a specific gene deletion. However, we would like to stress
that incorrect model predictions can constitute an excellent op-
portunity for knowledge generation, including the discovery of
novel gene functions or alternative pathways, through the for-
mulation of hypotheses to address these failures (Snitkin et al.
2008; Szappanos et al. 2011). Underlining these limitations when
publishing or analyzing GSMMs, instead of overfitting themodel
for a particular experimental dataset or not providing clear in-
formation on how it was assembled, could guide future research
toward new biological discovery (Heavner and Price 2015b). In
summary, there is a clear need to define minimal criteria to as-
sess the quality and completeness of genome-scale metabolic
networks, along with more transparent reconstruction and val-
idation processes, not only to increase our understanding of the
target organism but also the reproducibility and applicability of
the metabolic models.

THE QUEST FOR THE INTEGRATION OF
REGULATORY AND KINETIC INFORMATION
INTO GSMMs

Metabolism is regulated at multiple levels and, even thinking
of the best-studied unicellular prokaryotic and eukaryotic or-
ganisms, we are still significantly far from having a full un-
derstanding of their underlying biological processes. Missing
knowledge of enzyme regulators and other specific factors gov-
erning flux rates across different physiological conditions are
amongst the main contributors for these deficiencies (Fendt
et al. 2010). Nonetheless, biological knowledge has been in-
creasingly generated and, by now, there are multiple data sets
available that can be integrated in the genome-scale modeling
process to improve the systems-level understanding of the cel-
lular metabolism and even to link strain-specific phenotypes to
molecular features (Monk et al. 2016; Mülleder et al. 2016). In
fact, discrepancies between in silico predictions and experimen-
tal data are commonly justified with the lack of regulatory in-
formation in the metabolic networks. The integration of multi-
omics data and other phenotypic information in functional
metabolic models has been applied as a way of circumventing
the absence regulatory rules in GSMMs, whilst increasing their
scope and predictive capabilities. Yeast GSMMs have been used
as scaffolds to integrate this type of data, as extensively de-
scribed elsewhere (O’Brien,Monk and Palsson 2015; Sánchez and
Nielsen 2015). Accordingly, a myriad of computational methods
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to perform this task have been published (Kyung and Lun 2014).
By integrating this information in a quantitative or qualitative
way, we are able to shrink the solution space, which in turn is
expected to improve the prediction of cellular phenotypes
and/or gain insights into metabolic-driven adaptations, and
even gene expression noise after certain genetic or environ-
mental perturbations (Shlomi et al. 2008; Cimini et al. 2009;
Chi, Tao and Liu 2015; O’Brien, Monk and Palsson 2015). In-
terestingly, a systematic evaluation of different methods used
to integrate transcriptomic data into constraint-based models
of metabolism showed that, in most situations, none of these
methods outperform FBA and that many predictions may ac-
tually be the result of artifacts of the same methods and not a
consequence of integrating gene expression data (Machado and
Herrgård 2014). More recently, a new integrationmethodwas de-
veloped claiming significant improvements in the prediction of
growth rates in comparison with previously existing algorithms
(Motamedian et al. 2017). Still, the development of new meth-
ods to integrate metabolic networks and different data types re-
mains a challenge.

Transcriptional regulatory networks representing the inter-
play between environmental conditions, transcription factors
and target genes have also been addressed as away of extending
the coverage of constraint-based metabolic models of yeast and
improve their accuracy and predictive ability (Chandrasekaran
and Price 2013; Liu, Marras and Nielsen 2014). However, a re-
cent systems-level study conducted to analyze the mechanisms
regulating yeast metabolic fluxes showed that changes in fluxes
across different nutrient conditions occurmainly due to changes
in metabolite concentrations and not enzyme levels (Hackett
et al. 2016). Also recently, a genome-wide quantitative metabolic
map of the budding yeast was established by measuring amino
acid concentration changes upon deletion on non-essential S.
cerevisiae coding genes, showing that their deletion often cre-
ates very specific concentration signatures, apparently ruling
the metabolism regulatory network (Mülleder et al. 2016).

If, on one hand, GSMMs have the advantage of being suitable
for large-scale studies of the cellular metabolism, they clearly
lack a detailed characterization of the cell, including the char-
acterization of the factors determining the rate of reactions that
could explain not only which reaction can occur but also when
and to what extent they take place. Kinetic modeling consti-
tutes an excellent opportunity toward this end but, although
some advanced in silico approaches have been developed, sev-
eral challenges still remain before large-scale kinetic modeling
will be routinely applied in industrial biotechnology (Almquist
et al. 2014; Vasilakou et al. 2016). The scarce amount of infor-
mation available for the majority of reactions, as well as the
uncertainty of the existing data in terms of the kinetic rates,
expressions and parameters values significantly hamper the de-
velopment of high-quality kinetic models. Yet, the emergence of
new knowledge on how metabolic fluxes are determined points
out that efforts should rather be redirected to use constraint-
based models as templates for integrating kinetic data towards
the generation of genome-scale kineticmodels able to character-
ize the mechanisms of each reaction, as stressed by Smallbone
et al. (2010) who gave the first steps in that direction by gener-
ating the first genome-scale kinetic model of yeast using linlog
kinetics. More recently, a dynamic GSMM of the yeast Pichia pas-
toris has also been generated using the iPP668 model as scaf-
fold, leading to improved flux distributions throughout dynamic
cultivations resembling industrially relevant conditions (Saitua
et al. 2017). The combination of dynamicmodeling conceptswith
stoichiometric models can also constitute an excellent platform

for integrating kinetic parameters toward the development of
robust and large-scale kinetic models. Still, the usefulness of
these approaches for cell factory improvements remains to be
proven, meaning that efforts should also be applied to exper-
imentally determine kinetic parameters under well-controlled
conditions and to develop new methods for reducing the level
of uncertainty currently linked to the generated data (Andreozzi,
Miskovic and Hatzimanikatis 2016).

GSMMs AS GUIDING TOOLS OF METABOLIC
ENGINEERING APPLICATIONS

The rising interest in producing fuels, chemicals and other ma-
terials from renewable resources associated to the concerns
about sustainability have been the driving forces behind the
developments in the industrial biotechnology field (Dai and
Nielsen 2015). Although a clear assessment regarding the im-
pact of GSMMs as guiding tools in ME industrial applications is
stillmissing, several biotechnology companies have already filed
patent applications for producing microorganisms mentioning
the use of GSMMs in the strain design process, which clearly
demonstrates their usefulness (Nielsen et al. 2014; Maia, Rocha
and Rocha 2016). So, in addition to their role in biological elu-
cidation and knowledge discovery processes already discussed,
and notwithstanding some criticisms stated before, the use of
GSMMs to rationally design and optimizemicrobial cell factories
has indeed shown to be of great value. The rising interest in this
topic has concomitantly driven the development of a myriad of
computational strain optimization methods (CSOMs) which al-
low to find in silico combinations of geneticmodifications toward
desired phenotypical traits. OptKnock established the ground-
work for the conception of many other CSOMs developed fur-
ther on. Based on a bilevel structure, it was formulated to search
for strain designs (reaction deletions targets) maximizing simul-
taneously two competing objective functions: cellular growth
and the overproduction of a target compound (Burgard, Pharkya
and Maranas 2003). Since then, CSOMs have been developed to
search for non-intuitive genetic designs in more efficient and
scalable ways. From the use of metaheuristic approaches (Opt-
Gene: Patil et al. 2005) to the consideration of gene deletions to-
gether with heterologous insertions—using mixed-integer pro-
gramming methods (OptStrain: Pharkya, Burgard and Maranas
2004)—or gene expression levels (OptReg, OptForce, EMILio:
Pharkya and Maranas 2006; Ranganathan, Suthers and Maranas
2010; Yang, Cluett and Mahadevan 2011), to the exploitation
of transcriptional regulatory targets—using integrated (OptORF:
Kim and Reed 2010) or unintegrated (BeReTa: Kim et al. 2016) net-
works of metabolism and transcriptional regulation—today, we
can find over 30 different CSOMs in the literature. For a compre-
hensive review on this topic, see Maia, Rocha and Rocha (2016).

Since yeast species are the focus of this review, we under-
line the main in silico-aided ME applications for the develop-
ment of experimentally validated yeast cell factories, as shown
in Table 1. Despite the increasing number of available GSMMs of
yeast, up until now, only a few have been used to design yeast
cell factories. Interestingly, the first and simpler GSMM of S. cere-
visiae, iFF708, has been used in several ME applications rang-
ing from the improved production of biofuels and building block
chemicals, such as ethanol and succinate (Bro et al. 2006; Agren,
Otero and Nielsen 2013; Otero et al. 2013), to sesquiterpenes and
aromatic compounds, including cubebol and vanillin, mainly
based on OptGene suggested predictions (Asadollahi et al. 2009;
Brochado et al. 2010). A combination of literature mining and
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Table 1. A selection of experimentally validated model-based metabolic engineering applications/studies of different yeast species.

Organism Target product Model/method Results Reference (year)

S. cerevisiae Bioethanol iFF708/FBA 40% reduced glycerol yield on glucose and
increased ethanol yield (+3%) without
affecting the maximum specific growth rate

Bro et al. (2006)

S. cerevisiae Sesquiterpenes iFF708/OptGene 85% increase in the final cubebol titer Asadollahi et al. (2009)
S. cerevisiae Vanillin iFF708/OptGene 1.5-Fold higher vanillin β-D-glucoside yield

in batch mode, 2-fold productivity
improvement in continuous culture

Brochado et al. (2010)

S. cerevisiae 2,3-Butanediol iMM904/Optknock 2,3-Butanediol titer: 2.29 g l−1; Product yield:
0.113 g.g−1 under anaerobic conditions

Ng et al. (2012)

S. cerevisiae Fumaric acid iND750/literature
mining + FBA

Titer: ∼1.68 g l–1 in batch culture Xu et al. (2012)

C. glabrata Malate iNX804/FBA Malate titer: 8.5 g l−1 Chen et al. (2013)
S. cerevisiae Succinate iFF708/OptGene 30- and 43-fold improvements in succinate

titer and succinate yield on biomass,
respectively

Otero et al. (2013)

S. cerevisiae Amorphadiene iMM904/FDCAa 8- to 10-fold greater product yield compared
to the wild type

Sun et al. (2014)

C. glabrata Acetoin iNX804/FBA Final acetoin titer: 3.67 g l−1 Li et al. (2014)
P. pastoris Human recombinant

protein
PpaMBEL1254/MOMA
and FSEOF

Enhanced recombinant protein yield up to
40%

Nocon et al. (2014)

C. glabrata Fumaric acid iNX804/NSb Final fumarate titer: 8.83 g l−1 Chen et al. (2015)
Y. lipolytica Lipids iMK735/dFBAc Byproduct (citrate) formation was reduced

and lipid production yield increased
Kavšček et al. (2015)

S. cerevisiae 3HP iTO977/pFBAd 3HP titer: 9.8 g l−1; Yield: 13 % C-mol C-mol−1

glucose
Kildegaard et al. (2016)

S. cerevisiae β-Farnesene iLL672 (extended
version)/pFBA

Farnese yield: 17.3% g g−1 Productivity: 2.24 g
l−1 h−1 (requiring 75% less oxygen)

Meadows et al. (2016)

aFDCA—flux distribution comparison analysis.
bNS—Not specified.
cDynamic FBA.
dParsimonious enzyme usage FBA.

FBA using the iND750model has also demonstrated that in silico-
aided ME for the production of fumaric acid in S. cerevisiae can
be efficiently developed (Xu et al. 2012).

Various sustainable forms of alternative energy and chemi-
cals have been sought. Accordingly, researchers have also suc-
cessfully designed and constructed S. cerevisiae strains with
improved 2,3-butanediol production, based on in silico predic-
tions obtained through the OptKnock framework and using the
iMM904model (Ng et al. 2012). Biological synthesis of terpenoids,
which are candidate drugs and fragrances, has also been on
the radar of ME researchers and systems biologists (Tippmann
et al. 2013). Compared to bacteria, yeasts are more suitable to
synthetize plant terpenoids mainly due to their ability to ex-
press plant cytochrome P450 enzymes (Schoendorf et al. 2001;
Drǎgan et al. 2011). The iMM904 GSMM was successfully used
to investigate the impact of gene deletions—predicted through
metabolic flux analysis using FBA and MOMA constraint-based
methods—on isoprenoids pathway fluxes, hence showing that
metabolic flux analysis combined with genome-scale modeling
constitutes a powerful tool to identify suitable strategies for re-
routing metabolic fluxes toward the production of exogenous
terpenoids (Sun et al. 2014). More recently, an extended ver-
sion of the iLL672 model was applied by Meadows et al. (2016)
to identify an improved farnesene biosynthetic pathway in a
study where the central carbon metabolism of S. cerevisiae was
rewired for industrial isoprenoid production, achieving higher
yields and productivity rates of the heterologous compound. In
turn, and although the candidate ME strategy is not directly

linked to in silico strain optimization or simulationmethods, one
of the latest S. cerevisiae models, iTO977, was recently used in
an ME application for biosynthesis of 3-hydroxypropionic acid
(3HP) to gain insights of the influence of 3HP biosynthesis on the
flux distribution, hence guiding further ME efforts (Kildegaard
et al. 2016).

Regarding other yeast species beyond S. cerevisiae, a model of
the yeast P. pastoris (PpaMBEL1254) was successfully used to pre-
dict deletion and overexpression of genetic targets for overpro-
duction of cytosolic human superoxide dismutase, using MOMA
and flux scanning based on enforced objective function (FSEOF)
approaches, respectively (Nocon et al. 2014). Meanwhile, a novel
fed-batch strategy to avoid citrate excretion in the lipid pro-
duction phase, deduced from FBA simulations with the iMK735
model, was developed leading to increased lipid yields in Y.
lipolytica (Kavšček et al. 2015). Interestingly, although there is
only one published GSMM for the yeast Candida glabrata, their
authors have been demonstrating its usefulness in the strain
design of C. glabrata for the production of different dicarboxylic
acids, including malate, fumaric acid and acetoin (Chen et al.
2013, 2015; Li et al. 2014). However, since this yeast is also con-
sidered an opportunistic pathogen, this might constitute a sig-
nificant drawback in regulatory affairs regarding the industrial
use of the engineered strains.

Notwithstanding these successful in vivo applications, there
is actually much room for improvements regarding the use of
model-guided ME approaches, in particular to obtain yields,
titers and productivity rates similar to those obtained using
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more classical or non-rational methodologies, such as the bio-
based and economically viable production of succinate (Verwaal
et al. 2014). There are several reasons that might help to ex-
plain the current discrepancies. For example, many GSMMs and
CSOMs remain to be properly validated in vivo, in part due to
the lack of high-quality phenotypic data, including experimen-
tal data on flux distributions to better approximate the predicted
fluxes with the real ones. On the other hand, despite the multi-
ple computational methods developed to integrate the increas-
ing number of -omics data available for several organismswithin
GSMMs, results show that we are not yet taking full advantage
of it to improve phenotype predictions, meaning thatmore pow-
erful methods leading to a systems-level understanding of the
metabolism are needed. At the same time, reports underlining
failed efforts in validating in silico predictions are often over-
looked. For example, Gruchattka and Kayser tried to validate in
vivo two strategies for using yeast as a terpenoid cell factory
based on constrained minimal cut sets predictions previously
obtained using a central carbon metabolic network. However,
high amounts of acetate were produced instead of terpenoids
(Gruchattka et al. 2013; Gruchattka and Kayser 2015). We there-
fore stress that reporting failed attempts is also of extreme im-
portance, in particular, to detect major bottlenecks of the sys-
tem and guide improvements in further in silico-aided ME stud-
ies. Others factors such as global regulatory networks, product
toxicity or metabolic burden must also be taken into account to
achieve optimal production phenotypes, meaning that the use
of more combinatorial approaches, including iterative rounds
of ME, should also be considered to overcome disconnections
between genotypes and predicted phenotypes (Woolston, Edgar
and Stephanopoulos 2013).

CHALLENGES AND FUTURE PERSPECTIVES

Genome-scale modeling of yeasts has been evolving for the last
15 years, contributing both to gain insights into the biological
processes of several yeast species and to develop rational ap-
proaches in ME applications. However, many challenges remain,
ranging from the need of clear evaluation approaches, high-
quality phenotypic data and benchmark tests to assess the per-
formance of newer models in context-specific environments—
often hindered by the absence of standard identifiers of metabo-
lites, reactions and enzymes among the differentmodels—to the
integration of kinetic and regulatory information known to gov-
ern metabolic fluxes across different physiological conditions,
as a way of attaining more precise and robust predictions.

Since metabolism is highly regulated at various levels, the
integration of multi-omics data might indeed help to ensure a
higher robustness of the functional system. However, this has
to come along with the development of computational meth-
ods capable of properly capturing the advantages of integrat-
ing this information, which is still not clear at the moment.
Before that, more emphasis should be given to increase the
transparency of the reconstruction and validation approaches,
highlighting rather than omitting the major bottlenecks found
across these processes, which can contribute to fill some knowl-
edge gaps through hypothesis-driven experiments and ulti-
mately to generate more reliable predictions.

For the model prokaryote Escherichia coli, the expansion of
metabolic models to incorporate processes of proteome synthe-
sis and localizations (ME-Models) or protein structure informa-
tion (GEM-PRO models) has been gaining momentum, present-
ing significant improvements in model predictions (Chang et al.

2013; O’Brien et al. 2013). However, this type of models is not yet
available for yeasts. Feizi et al. (2012) gave the first steps toward
this goal by reconstructing the protein secretory machinery in
yeast; still, it is not clear if it will be possible to create aME-Model
in the near future due to missing information about several pro-
cesses in the yeast cell.

With the increasing availability of fluxomics data, a more at-
tainable approach should pass through the assessment of inter-
nal flux distribution patterns in new genome-scale reconstruc-
tions, which has not been taken into account. For example, the
iFF708 is the first yet better model predicting central carbon
metabolic fluxes, and this might help to justify its success in
several in silico-aided ME applications. Concurrently, it is impor-
tant to determine what do cells really want, i.e. to know and for-
mulate realistic objective functions based on experimental evi-
dences to accurately represent specific cellular environments, as
well as to represent biomass composition in a condition-specific
manner, since this has amajor impact in the simulation outputs
(Feist and Palsson 2016). For example, it would be interesting to
study cofactor requirements for cell growth in yeast models, as
recently done for other organisms (Xavier, Patil and Rocha 2017).

Recent evidences also demonstrate that flux changes are of-
ten governed by changes in metabolite concentrations rather
than enzyme levels (Hackett et al. 2016). So, despite all the limi-
tations and need of powerful computational tools for dynamic
modeling at the genome scale, further research in this field
should desirably explore dynamic environments by integrating
kinetic data into yeast metabolic networks.

Additionally, it is known that yeast strains from different
ecological origins might present different phenotypic responses
and even distinct intracellular metabolic fluxes (Nidelet et al.
2016). So, if we take this into account while performing compu-
tational simulations, we will likely improve the understanding
of genotype–environment–phenotype relationships and, conse-
quently, the rational design of cell factories (Long and Reed
2017). Lastly, in nature, yeast species present several interactions
with other microorganisms and the compounds they secret can
influence their co-habitants (Jouhten et al. 2016). Therefore, the
development of microbial communities’ models to study yeast
species interactions is also expected to emerge in the next years.
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Alam MT, Zelezniak A, Mülleder M et al. The metabolic back-
ground is a global player in Saccharomyces gene expression
epistasis. Nat Microbiol 2016;1:15030.

Almquist J, Cvijovic M, Hatzimanikatis V et al. Kinetic models
in industrial biotechnology—improving cell factory perfor-
mance. Metab Eng 2014;24:38–60.

Andreozzi S, Miskovic L, Hatzimanikatis V. iSCHRUNK—in silico
approach to characterization and reduction of uncertainty
in the kinetic models of genome-scale metabolic networks.
Metab Eng 2016;33:158–68.

Asadollahi MA, Maury J, Patil KR et al. Enhancing sesquiterpene
production in Saccharomyces cerevisiae through in silico
driven metabolic engineering. Metab Eng 2009;11:328–34.

Aung HW, Henry SA, Walker LP. Revising the representation of
fatty acid, glycerolipid, and glycerophospholipidmetabolism
in the consensus model of yeast metabolism. Ind Biotechnol
2013;9:215–28.

Balagurunathan B, Jonnalagadda S, Tan L et al. Reconstruction
and analysis of a genome-scale metabolic model for Schef-
fersomyces stipitis. Microb Cell Fact 2012;11:1–18.

Bro C, Regenberg B, Förster J et al. In silico aided metabolic
engineering of Saccharomyces cerevisiae for improved
bioethanol production. Metab Eng 2006;8:102–11.

Brochado AR, Matos C, Møller BL et al. Improved vanillin produc-
tion in baker’s yeast through in silico design. Microb Cell Fact
2010;9:1–15.
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