
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Pedro Emanuel Silva Ferreira

AIoTA
An IoT Platform On MonetDB

Braga, 2016-12-21

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Pedro Emanuel Silva Ferreira

AIoTA
An IoT Platform On MonetDB

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Dr. José Orlando Roque Nascimento Pereira
Dr. Ying Zhang

Braga, 2016-12-21

A C K N O W L E D G M E N T S

This thesis is the final step on my masters graduation, and I would to thank several people
who helped me during my academic career and the thesis itself. It also brought me the
opportunity to do an Erasmus traineeship, which will be my first experience abroad.

I want to thank to the academic community of University of Minho for my formation
during the past 5 years. For the most, I am thankful to Dr. José Orlando Pereira for his
acceptance to be my supervisor during the thesis, his knowledge about database systems
that helped me during this report, his availability and the opportunity he gave to me for
the internship at CWI on the second semester. Also I want to thank the personnel from
Distributed Systems at University of Minho and HASLab groups for their accommodation.

This thesis could not be done without the help of the community of Database Archi-
tectures group from CWI, who I want to thank deeply. First I want to thank Dr. Stefan
Manegold for writing my acceptance letter to the Erasmus traineeship. Next I want to
appraise the MonetDB Solutions personnel from the group for their help during AIoTA
conception: Panagiotis Koutsourakis, Dimitar Nedev, Dr. Hannes Mühleisen, Dr. Sjoerd
Mullender and Dr. Niels Nes. A special thanks to Abe Wits, Mrunal Gawade, Pha. m Minh
Dúc and Bo Tang for the great moments we shared together in our office. At the same time
I want to thank Till Döhmen, Benno Kruit, Mark Raasveldt, Dean De Leo, Thibault Sellam,
Eleni Petraki, Dr. Bart Scheers, Dr. Romulo Gonçalves and Dr. Eyal Rozenberg for amazing
moments during the internship sharing knowledge and happiness.

Meanwhile, another special thanks from the service staff from CWI that help me on the
internship. Irma van Lunenburg for her help and availability during my CWI registration.
Bikkie Aldeias, Martine Gunzeln and Minnie Middelberg for their help during my first
days at CWI. Arjen de Rijke for his help during IT-related installations.

I want to express greater gratitude to my supervisor at CWI Dr. Ying Zhang for her
supervision, knowledge about database systems and hospitality. At the same time I want
to give appreciation to Dr. Martin Kersten as the founder of the group and MonetDB, who
helped building the back-end of AIoTA. Without his help, this thesis would not be able to
finish on time.

In the end, I want to send cheers for my family, especially my parents, who raised and
taught me during my whole life. Without their help, I could never accomplish this. Also it
could not be done with the help of my local living community of Tadim and my friends, to
whom I express gratitude.

i

A B S T R A C T

The growth of the Internet and embedded systems have allowed physical devices to collect
and exchange data in the Internet-of-Things (IoT). IoT allows objects to be monitored and
controlled remotely across an existing network infrastructure, while creating opportunities
to assimilate computer systems with the real world. The expansion of IoT’s connectivity
has lead devices to exchange large amounts of data, due to constantly required monitoring.
The output of these devices can be seen as streams with data made available incrementally
over time. This has created a new demand to collect, process and analyze IoT data in an
efficient and scalable way.

In the meantime, databases have been organizing collections of data for several decades.
At a low level, database management systems (DBMSs) to organize data efficiently. In par-
ticular, Data Stream Management Systems (DSMSs) have emerged to handle uninterrupted
flows of streaming data and integrate them with relational databases [Aggarwal, 2007].
With this objective in mind, DSMSs have distinguished from traditional DBMSs with new
architectures, data models, algorithms and specific query languages to deal with streams.
As streams are uninterrupted, DSMSs aim to process them incrementally. This lead to the
continuous queries concept, where streaming data is processed with small batches each
time.

Meanwhile, other database management systems have explored alternate ways to orga-
nize data. MonetDB is a pioneer column-oriented relational database management sys-
tem (RDBMS), storing relations column-wise opposed to rows as the majority of RDBMSs.
Columnar-wise storage allows several benefits such as per-column query parallelization,
data compression and late materialization. MonetDB is being developed at Centrum Wiskunde
& Informatica (CWI) in Amsterdam since 1993, having achieved faster benchmark results
than popular RDBMSs such as PostgreSQL [Muhleisen, 2014].

This master thesis has the objective to create a streaming engine over MonetDB while
focusing on IoT processing. Amsterdam Internet-of-Things App (AIoTA) is a full-stack
application aiming to be integrated easily with IoT devices to collect streaming data, while
taking advantage of MonetDB’s columnar-wise storage to process it and deliver results
immediately.

ii

R E S U M O

O crescimento da Internet e dos sistemas embebidos tem permitido expor dispositivos
fı́sicos na Internet das coisas (IoT) para a troca de dados. A IoT permite a monitorização
de objetos remotamente em infraestruturas de rede criando oportunidades para assimilar
a computação com o mundo real. A expansão da conetividade da IoT tem levado esses
dispositivos a promover o intercâmbio de grandes quantidades de dados, em maior parte
devido a monitorização constante. Os dados resultantes desses dispositivos podem ser
visto como streams, onde os dados são disponibilizados incrementalmente com o decorrer
do tempo. Como consequência, as streams criaram uma nova forma de colecionar, processar
e analisar dados provenientes da IoT de modo eficiente e escalável.

Ao mesmo tempo nas últimas décadas, as bases de dados tem organizado coleções de
dados. A um nı́vel mais baixo, os sistemas de gestão de bases de dados (DBMSs) tem procu-
rado metodologias para organizar os dados de forma eficiente. Em particular, os sistemas
de gestão de streams (DSMSs) tem emergido com novos métodos para lidar com fluxos de
dados inenterruptos e integrá-los com as bases de dados convencionais [Aggarwal, 2007].
Com este objetivo em mente, as DSMSs tem-se distinguido dos DBMSs com novas arquite-
turas, modelos de dados, algoritmos e linguagens de interrogação para lidar com streams.
Como as streams são inenterruptas, as DSMSs tem a finalidade de as processar incremen-
talmente. Isto levou ao conceito de continuous queries, onde as streams so processadas com
pequenas quantidades de cada vez e incrementalmente.

Entretanto outros sistemas de gestão de bases dados tem explorado metodologias al-
ternativas para organizar os dados. O MonetDB é um sistema de gestão de bases dados
relacional colunar pioneiro, onde as relações são armazenadas por colunas em vez de linhas
como a maioria dos RDBMSs. O armazenamento colunar permite vários benefı́cios que não
seriam possı́veis com o armazenamento por linhas tais como paralelização de interrogações
por colunas, compressão de dados e materilização mais tardia. O MonetDB tem sido de-
senvolvido pelo Centrum Wiskunde & Informatica (CWI) em Amsterdão desde 1993, tendo
alcançado benchmarks com melhores resultados em comparação com populares sistema de
gestão de bases dados como o PostgreSQL [Muhleisen, 2014].

Esta tese de mestrado tem o objetivo de criar uma extensão de streaming no MonetDB
com focus na IoT. A Amsterdam Internet-of-Things App (AIoTA) é uma aplicação full-stack
com o objetivo de ser integrada facilmente com dispositivos IoT para colecionar dados para
streams, tendo ao mesmo tempo como vantagem o armazenamento colunar do MonetDB
para processar os dados e disponibilizar resultados imediatamente.

iii

C O N T E N T S

1 introduction 1

1.1 Contextualization 1

1.2 Problem Statement 2

1.3 Objective 2

1.4 Structure of the Document 3

2 related work 4

2.1 Motivation for Streaming Systems 4

2.2 Real Life Applications of Streaming 5

2.3 Programming Models 6

2.4 Streaming Query Languages 7

2.5 Windows 8

2.6 Streaming Operators and Continuous Queries 10

2.7 Time and Order 11

2.7.1 Timestamps 11

2.7.2 Order 12

2.8 Query Optimizations 13

2.9 Streaming Engines Outline 15

2.9.1 Apache Storm 15

2.9.2 Apache Spark Streaming 16

2.9.3 PipelineDB 17

2.9.4 DataCell 18

3 monetdb overview 19

3.1 Column-wise Storage 19

3.2 Internal Representation 20

3.3 Query Processing 21

4 aiota platform 23

4.1 Design Considerations 23

4.2 AIoTA Architecture Overview 24

4.3 AIoTA Workflow 25

5 iot web server implementation 26

5.1 RESTful Systems 26

5.2 IoT Web Server Bootstrap 27

5.3 IoT Web Server Life-Cycle 28

iv

Contents v

5.4 Data Types Mapping 29

5.5 RESTful API 31

6 web api server implementation 32

6.1 WebSockets Protocol 32

6.2 Web API Server Bootstrap 33

6.3 WebSockets API 33

7 monetdb streaming engine implementation 35

7.1 Scheduler 35

7.1.1 Petri-net model 36

7.1.2 Continuous queries scheduler 37

7.1.3 Concurrent continuous queries 37

7.2 SQL Catalog 39

7.2.1 Scheduling procedures 39

7.2.2 Windowing functions and procedures 40

7.2.3 Baskets procedures 41

7.2.4 Debugging functions and procedures 41

7.2.5 SQL catalog example 42

7.3 Aggregations on Continuous Queries 44

7.4 Continuous Query Plans and Optimizations 45

7.4.1 New iot optimizer 46

7.4.2 Query execution comparison 46

8 evaluation 49

8.1 Functional Evaluation 49

8.1.1 Stream processing requirements 49

8.1.2 Comparison against the state of the art 52

8.2 Performance Evaluation 55

8.2.1 Flame Graphs on the web servers 55

8.2.2 Tomograph on the streaming engine 61

8.2.3 AIS benchmarking tests 63

9 conclusion and future work 70

9.1 Conclusion 70

9.2 Future Work 71

a iot web server implementation details 80

a.1 Server Arguments 80

a.2 Supported Data Types 81

a.3 RESTful API 84

a.3.1 Administration Server 84

Contents vi

a.3.2 Application Server 86

b web api server implementation details 88

b.1 Server arguments 88

b.2 WebSockets API 89

b.2.1 Requests 89

b.2.2 Responses 90

c monetdb streaming engine implementation details 94

c.1 Final MAL Execution Plans 94

c.1.1 Regular table 94

c.1.2 Streaming table 96

d ais benchmark queries 98

d.1 AIoTA Queries 98

d.1.1 AIS query 1 99

d.1.2 AIS query 3 99

d.1.3 AIS query 11 99

d.2 PipelineDB queries 100

d.2.1 AIS query 1 100

d.2.2 AIS query 3 100

d.2.3 AIS query 11 101

L I S T O F F I G U R E S

Figure 1 Query processing comparison between DBMSs and DSMSs. 5

Figure 2 Comparison of some windows implementations in data streams. 10

Figure 3 Operators’ arrangements for Chain scheduling. 14

Figure 4 Internal representation of row and columnar wise storage. 19

Figure 5 MonetDB’s components and relations during the execution of a SQL
query. 22

Figure 6 AIoTA’s proposed platform, components and relations. 24

Figure 7 A Petri-net graphical representation. 37

Figure 8 The concurrency problem solution through a Petri-net 38

Figure 9 Flame Graph corresponding to creating a stream at IoT Web Server. 57

Figure 10 Flame Graph corresponding to make a 1000 tuple batch insert at IoT
Web Server. 58

Figure 11 Flame Graph corresponding to read 1000 tuples from a Output Bas-
ket at IoT Web API. 59

Figure 12 Result tomograph from temperature examination continuous query. 62

Figure 13 Evolution of average Latency and Throughput for AIS query 1 with
the number of clients. 67

Figure 14 Evolution of average latency and throughput for AIS query 3 with
the number of clients. 67

Figure 15 Evolution of average latency and throughput for AIS query 11 with
the number of clients. 68

vii

L I S T O F TA B L E S

Table 1 Comparison between a DBMS and a DSMS. In the general scenario,
DSMSs behave in a more stochastic environment than DBMSs. 5

Table 2 IoT Web Server supported data types and correspondent MonetDB
mappings. 30

Table 3 Available resources on IoT Web Server’s RESTful API. 31

Table 4 Available IoT Web API WebSocket requests. 34

Table 5 Available IoT Web API WebSocket responses. 34

Table 6 Available scheduling procedures in the SQL catalog. 39

Table 7 Available windowing procedures and functions in the SQL cata-
log. 40

Table 8 Available baskets procedures in the SQL catalog. 41

Table 9 Available debugging procedures and functions in the SQL catalog. 42

Table 10 Functional comparison between AIoTA and PipelineDB. 54

Table 11 AIS benchmark queries. 66

viii

1

I N T R O D U C T I O N

1.1 contextualization

The Internet-of-Things (IoT) allows objects to be sensed and controlled remotely across an
existing network infrastructure, while creating opportunities to assimilate computer sys-
tems with the real world. With IoT, it is possible to change the way people interact with
objects for a better quality of life. In 2011 there was about 25 billion devices connected to
IoT, and by 2020 that number is expected to double [Evans, 2011]. The IoT’s applicability
is very wide, from health care and home monitoring, to agriculture and car vigilance. In
this way the market of IoT is growing significantly as both consumers and businesses are
getting benefits from connecting devices to the Internet [Greenough, 2014].

The expansion of IoT’s connectivity has lead devices to exchange large amounts of data,
due to constantly required monitoring. The output of these devices can be seen as streams
with data made available incrementally over time. As a consequence, IoT accommodates
the Big Data model which translates into data that needs to be processed efficiently from
many sources simultaneously, while producing results promptly.

Big Data is often defined by the 4 V’s: Volume, Variety, Velocity and Veracity [Han and Lu,
2014]. Volume represents the quantity of data, its size determines the value and potential of
the data. Variety describes the possible types of data and the sources they can come from.
Velocity indicates the speed that the data is being generated and the quickness of processing
required to the demand. Finally Veracity represents the quality of the final results and how
much efficiently we can process data without declining the quality. Due to these reasons,
IoT and other stream-based applications such as social networks, lead to research focusing
on large scale and high availability technologies for Big Data. This demand ranges from
subjects such as machine learning and data mining, to scalability and data management.

Databases have been organizing collections of data for several decades. At a higher level,
Database Management Systems (DBMSs) have researched how to organize data efficiently
and have explored new ways to collect it simultaneously. In particular, Data Stream Man-
agement Systems (DSMSs) have emerged to research new methodologies on how to handle
with uninterrupted flows of streaming data and integrate them with relational databases

1

1.2. Problem Statement 2

[Aggarwal, 2007]. With this objective in mind, DSMSs have distinguished from traditional
with new architectures, data models, algorithms and specific query languages to deal with
streams. As streams are uninterrupted, DSMSs aim to process them incrementally. This
lead to the continuous queries concept, where streaming data is processed with small
batches each time.

Meanwhile, other DBMSs have explored alternate ways to organize data. MonetDB is
a pioneer column-oriented relational database management system (RDBMS), storing rela-
tions column-wise opposed to rows as the majority of RDBMSs. Columnar-wise storage
allows several benefits not capable row-wise such as column caching, data compression
and late materialization of the results. MonetDB is being developed at Centrum Wiskunde
& Informatica (CWI) in Amsterdam since 1993, takes full support of the ACID properties
[CWI, 2015] and compiles the 2003 SQL standard. Through the years, MonetDB has re-
searched new ways to build large scale databases in a more efficiently and scalable way,
while taking advantage of column-wise storage [Idreos et al., 2012]. This research made
MonetDB achieve faster TPC-H results than popular row-oriented RDBMSs such as Post-
greSQL [Muhleisen, 2014].

1.2 problem statement

To accommodate the IoT interest raise in Amsterdam city in the last years, along with
special attention to the recently proposed Amsterdam IoT network [de Vries, 2015], this
report details the creation process of Amsterdam Internet-of-Things App (AIoTA), a new
streaming application developed for MonetDB. This application has the objective to create
a DSMS on MonetDB while focusing on IoT processing and fulfilling the Big Data 4 V’s
as much as possible. AIoTA is a full stack application aiming to be integrated easily with
IoT devices to collect streaming data, while taking advantage of MonetDB’s columnar-wise
storage to process it and deliver results promptly.

1.3 objective

The main objective of this master thesis is to add a flexible streaming engine to AIoTA with
focus on Internet-of-Things processing. For the IoT devices, two web servers will be created
(one to input data and other for output data), hence the database layer will be completely
transparent for them. As the DSMSs’ implementation is quite divergent in the market, we
will extend the MonetDB’s kernel code with a simple but flexible streaming engine aiming
to cover many of the existing solutions in the market.

1.4. Structure of the Document 3

1.4 structure of the document

In Chapter 2, a research of related work in DSMSs is conducted. In this Chapter the evo-
lution of DSMSs, their motivation and challenges are reported. At its end, some of the
currently most popular DSMSs in the market are detailed, as they provided inspiration for
this work. Chapter 3 gives an overview of MonetDB, with details of its architecture, query
processing and its internal language, MAL.

AIoTA’s architecture design and justification is documented in Chapter 4. Also in this
Chapter, AIoTA’s components are detailed, as well their communication process. The fol-
lowing three Chapters detail the implementation of the whole AIoTA platform. Chapter 5

reports the IoT Web Server development. These web servers aims to integrate IoT devices
easily with the new streaming engine. Chapter 6 details the development of Web API Server
server which outputs data produced by the streaming engine to be integrated easily with
IoT monitoring devices. Chapter 7 details the development conducted over MonetDB. A
streaming extension for MonetDB has been developed under the ”iot” schema. This Chap-
ter will detail the proposed streaming scheduler, the new SQL catalog under this schema,
as well the explanation of execution plans of continuous queries.

AIoTA will be evaluated at Chapter 8. The implementation choices in AIoTA will be
evaluated over the current state of the art as a functional evaluation. Later on the entire
architecture will be tested on an Internet-of-Things scenario proposed during the intern-
ship with benchmarking against PipelineDB, one of the most popular DSMS in current the
market as a performance evaluation.

2

R E L AT E D W O R K

2.1 motivation for streaming systems

Sensors and monitoring devices demanding is increasing, mostly due to the Internet-of-
Things. Some notable examples are weather observation, health, environmental monitor-
ing, and object tracking. Most of the data is produced at high frequency and unbounded,
resulting in data streams. A stream can be defined as an ordered sequence of immutable
tuples (also called instances) to be processed only once or a small number of times using
limited computing resources.

In many monitoring applications, data from multiple sources must be analyzed simulta-
neously, leading to scalability and load balancing problems. Other applications must relate
freshly arrived data with historical data. Finally, the large amount of data might cause high
spatial or temporal complexity, thus pushing these systems to handle smaller batches each
time.

Data Stream Management Systems (DSMSs) have been developed to address these chal-
lenges. Unlike traditional database management systems, DSMSs have to deal with the
constantly changing data and deliver the results immediately [Stonebraker et al., 2005].
Generally speaking, the data in DSMSs can’t be processed and then forgotten. The system
has to react to the changes with recalculation of the stored results, leading to a more severe
query processing [Babu and Widom, 2001].

Traditional DBMSs has been developed since the 70’s to answer some of these issues.
However the DSMSs have a very distinct architecture as seen in the Figure 1. Just bellow
that figure, Table 1 shows some of the most notable environmental differences that a DBMS
and a DSMS have to face with.

In comparison, DBMSs will prevail on situations with persistent relations with one-time
queries. There is no relevant importance of time and order, a large storage and possibly
more complex queries. On other hand, DSMSs will be more suitable on the previous de-
picted situations: transient relations under bounded main memory with notion of time and
order and unpredictable arrival of data.

4

2.2. Real Life Applications of Streaming 5

Figure 1.: Query processing comparison between DBMSs and DSMSs. In DBMSs, the queries are
performed on static data and answered immediately. However in DSMSs, queries are
made over streams with eventual access to static storage. As queries may run for a very
long time, a cache is needed to store the temporary results.

DBMS DSMS
Persistent relations Transient relations

One-time queries Continuous queries

Arbitrary access Sequential access (notion of order)

Storage is ”unbounded” Storage is ”bounded”

No necessity to store state State is relevant

No real-time processing Real-time requirements

Data is precise Unpredictable arrival of data

Table 1.: Comparison between a DBMS and a DSMS. In the general scenario, DSMSs behave in a
more stochastic environment than DBMSs.

2.2 real life applications of streaming

The most notable applications of data streams are in the Internet-of-Things field. The City
Pulse project, for example, aims to build a framework capable of processing large scale
streams of social data in real time in major European cities [Obaid et al., 2012].

The wot.ioTMdata service exchange is a marketplace of web applications that operates
on data from connected devices to enable data aggregation, analysis, and an expansive

2.3. Programming Models 6

range of value-added services for enterprise customers [wot.io, 2015]. The service has been
extended to the SQLstream DSMS to allow to streamline the design and development of
IoT applications, and ultimately improve marked adoption.

Using Esper, a Java open source DSMS, a recent study at University of Oslo analyzed
streaming data from different medical sensors in real-time to recognize myocardial ischemia
with an ECG sensor.

The demand of DSMSs is increasing from sensor networks, so there are frameworks for
integration of both technologies [Abadi et al., 2004]. The data streams are widely used on
analysis and statistics across many fields. The Gigascope is an example of a stream database
for network applications including traffic analysis, intrusion detection and performance
monitoring [Cranor et al., 2003].

2.3 programming models

The programming model in a streaming platform is one of its most important features, as
it determines its possible operations and limitations. At the same time, the model defines
the system capabilities and its possible use cases. DSMSs have approached two distinctive
programming models to process streaming data: Stream Processing and Batch Processing with
both models featuring advantages and disadvantages [Shahrivari, 2014].

In Stream Processing also called Native Streaming, the one-at-a-time tuple processing is
applied. Data is processed immediately upon arrival, and allows more expressiveness.
The reason for this is that the stream its taking control of itself and thus simulates a real
continuous flow of data. As tuples are processed upon arrival, the latency in these systems
are smaller than on Batch Processing. The existence of state is easier on these systems due
to the one-at-a-time tuple processing. On the other hand, these systems are harder to
implement, have lower throughput than Batch Processing and fault-tolerance is harder to
achieve due to the fact the system has to store and replicate data for every single tuple.

In Batch Processing several tuples are processed at once for a better throughput at a cost
of a higher latency. The system’s expressiveness is more reduced compared to Stream Pro-
cessing. State management and some operations such joins and aggregations can become
harder to implement as the system has to deal with batches of operations. On the other
hand fault-tolerance is easier, just by sending batches to every worker node. These systems
are applied in scenarios where a huge collection of data is processed at once. There is still
the case of Micro-Batching where stream data is processed with much smaller batch sizes
[Shahrivari, 2014]. The latency is still low and the windowing and state-full computations
are easier due to the batch size.

The Stream Processing model was mostly used on the first DSMSs, as it tries to mimic the
smoothness of a stream. However the Batch Processing model obtained more importance

2.4. Streaming Query Languages 7

in recent years, due to fact that requirements like scalability and fault-tolerance became
predominant in IT. To achieve these requirements, others have to be sacrificed such as the
smoothness seen in Stream Processing. Nonetheless is important to note that we can build a
Batch Processing system on top of a Stream Processing. However the reverse is more difficult
to accomplish when dealing with time.

On meantime, processing high velocity data has brought to two major processing use
cases: Distributed Stream Processing (DSP) also called Event Stream Processing (ESP) and Com-
plex Event Processing (CEP) [Luckham, 2006]. DSP/ESP is a stateless and straight way of
processing incoming data using continuous queries. Data streams are transformed through
query operators (joins, aggregations, filters) according to a topology or sequence of instruc-
tions. Only the final state is persisted for later analysis. ESP tends handle high volume in
real time with a scalable, highly available and fault tolerant architecture. Typical use case
scenarios are analysis on-the-fly like in IoT. On other hand CEP, is stateful and batched
processing model where state maintenance is always present, hence is better suited for
transactional environments. CEP engines try to optimize discrete events in streams while
using defined topologies. The state management becomes complex in these systems due
to higher requirements in transactional environments. The output can be either persisted
or feed to another system. Some examples of CEP are stock exchanges for quick invest-
ments, detecting crucial clinic changes from vital monitoring, and accessing political vote
intentions.

This report will focus on DSP/ESP for their lower requirements compared to CEP. Build-
ing transactional environments for CEP, brings extra requirements which is out of scope
for this report. At the same time DSP/ESP have better applicability for IoT, but many CEP
applications can be rebuild with DSP/ESP [Chakravarthy and Jiang, 2009].

It is also important to note that not all DSMSs are built over databases. As an example,
messages queues are also often used to implement a streaming engine. Using different
models, will result in different approaches to streaming with respective advantages and
limitations compared to others.

2.4 streaming query languages

Initially defining a SQL query over a stream could be approached on a simple way, just by
replacing relations with streams. However when queries get complex with joining, aggre-
gation and mixing relations with streams, it becomes necessary to extend the language for
separation of concerns. Unlike the SQL standard in DBMSs, there is no standard for the
query languages used on the DSMSs. For this reason, query languages vary considerably
from system to system [Jain et al., 2008].

2.5. Windows 8

To accomplish the task of creating a specific query language for streams, a new set of
models and algorithms should be implemented as well. For this reason, most DSMSs
expose these models and algorithms on their query languages.

To process data incrementally, the windows concept became an essential component of
most DSMSs. Windows are buffers of data able to store streams’ tuples in memory. Win-
dows operate according to fixed parameters such as the size and bounds of the window,
being these parameters updated after each query call [Ghanem et al., 2007]. Therefore in
most DSMSs Query Languages, windows are used implicitly to process data incrementally.
The windows concept will be explained in detail in Section 2.5.

The query operators must also be revised to accommodate both streams and persistent
relations [Law et al., 2004]. Therefore different types of operators have been built to address
several possible scenarios. The overview of query operators is given on Section 2.6.

SensorBee is an open source stream processing engine dedicated to IoT. SensorBee query
language was derived from CQL, the language from STREAM, one of the first DSMSs
declarative languages integrating streams with persistent relations [Arasu et al., 2006]. Now
taking a sample query of a shopping website using streams:

SELECT P.price * (1 + P.tax) AS TotalPrice

FROM Orders[RANGE 5 TUPLES] AS O, Products AS P

WHERE O.ProductID = P.ProductID;

”Products” is a table listing the information of the products with respective prices and
taxes. ”Orders” is a stream of incoming orders in the shop. [RANGE 5 TUPLES] specifies a
5 element sliding window, which means the query will be executed whenever 5 orders are
made in the website.

However the main question is how we should interpret this query: Can a product’s price
change between query calls? How we know if we are returning a relation or a stream? If the
current transaction rollbacks, should we put the last window orders back on the stream? In
general, the streaming concept introduces several implementation issues: The aggregations
on streams should be based on the current window, or the whole stream? It’s feasible to
join streams? How to trigger a query which uses two streams with different windowing
parameters? Can we reuse the same stream tuples on multiple queries? All these questions
must be answered by the DSMSs themselves at their implementation.

2.5 windows

The desirable feature in DSMSs is to approximate stream processing likewise persistent
relations. A common approach is to partition the stream in windows. Each window is
comprised by a finite bag of tuples and processed sequentially. Also a window has an

2.5. Windows 9

implicit notion of order, which means the tuples belonging to it are ordered according to
a specific attribute. The number of valid elements in an window determines its type, and
varies through the window dimension unit, edge shift and progression step.

The dimension of a window can be measured in either two ways: a time-based window
through a τ units of time, or a tuple-based window meaning x first elements in the window
are valid for the query at the time, likewise a FIFO queue. For both models, the inclusion of
a timestamp in tuples is important for ordering in the queue. However some systems have
introduced windows with other ordering criteria. Aurora added value-based windows, in
which the windowing attribute is any other field [Abadi et al., 2003]. Other systems added
predicate-windows where the window is filled until when a tuple fails a pre-defined condition
[Ghanem, 2006]. At Figure 2, window C is a sliding time-based window with temporal extent
(number of timestamps at the window) ω = 2 and progression step δ = 1. Also window A
is a count-based sliding window (a variant where the window always take the last n tuples, in
this case 5).

Meanwhile the edge shift specifies the movement from the bounds of the streams. The shift
can be either fixed or moving along with the stream. In sliding windows, both bounds move
along with the data arrival. Some languages use the SLIDE parameter for this specification
[Kajic, 2010] (e.g. [RANGE 10 SECONDS SLIDE 5 SECONDS] Once 10 seconds have passed, the
window moves forward by 5 seconds). In landmark windows only one of the bounds moves,
meanwhile on the tumbling windows there is an arbitrary progression step of both bounds.
At Figure 2, window B shows a landmark window with the lower bound fixed at τ, resetting
after every 6 new tuples. Window D shows a tumbling window of temporal extent ω = 1
and progression step δ = 2.

Finally the progression step defines the periodicity of windows movements. Like the mea-
surement unit, the step can either be time or tuple based (move every 10 seconds or 15
new tuples). In this specification, tuples overlap in more than one window. Nonetheless in
tumbling windows, there is a moment where all tuples in a window become invalid at the
same time. It is important to note that distinct window specifications will be applicable
to different specifications. For an aggregation operator, a tumbling window will be more
advantageous; while for a join, a sliding window is preferable [Patroumpas and Sellis, 2006].

2.6. Streaming Operators and Continuous Queries 10

Figure 2.: Comparison of some windows implementations (A, B, C and D) with different edges shift
and progression steps trough time instants τ1, τ2 and τ3. New tuples arrivals are placed
at the top. The number in the tuples represent their current timestamp. The window at
instant τx is represented in red.

2.6 streaming operators and continuous queries

Due to explicit constraints on streaming data, a revised set of operations for the query lan-
guage is beneficial to DSMSs [Law et al., 2004]. In many applications, statically stored data
is used with the streams to produce results. An example scenario is when historical data is
updated with new incoming data. Therefore there is a necessity to join data from multiple
streams and static data simultaneously. For this reason is necessary to re-implement the
existing operators into Stream-to-Relation, Relation-to-Stream and Stream-to-Stream operators.
Most DSMSs support Stream-to-Relation and Relation-to-Stream operators. Stream-to-Stream
operators are more complicated to implement. For example in stream joining, the general
approach for is to interpolate one of the streams as a persistent relation through sampling,
turning to the situation of joining a stream with a persistent relation [Das et al., 2003].

In DBMSs ad hoc queries run through a set of operators which wait for all input before
producing results. Due to continue flow of data in DSMSs, this implementation isn’t feasi-
ble. To go over this, queries in DSMSs perform incrementally using continuous queries and
reviewing a new set of operators.

For this reason, continuous queries have high importance in DSMSs, as it is not feasible
to store the entire stream and then process it like in DBMSs [Babu and Widom, 2001].
Depending on external conditions, query statements might wait very long between arrivals
of data in order to produce results. Varying from the operator’s complexity the continuous
queries might be harder to implement. For example, aggregation queries might require
grouping changes with small computations, but join queries might produce an unbounded
answer which is not feasible. To tackle this, blocking query operators were introduced so the
queries are processed periodically instead at whole once.

2.7. Time and Order 11

At the same time, non-blocking query operators produce results sporadically, or on arrival
of some tuples as it happens on some aggregation operators.1 These operators are more
suitable to continuous queries, however not all queries can be expressed with these type of
operators [Law et al., 2004].

Another important distinction in DSMSs are stateless operators and stateful operators. The
last ones (e.g. joins) require storing the intermediate state of their operations as the streams
are unbounded. An immediate question is where and how to store the state between
continuous queries calls while being fault-tolerant and scalable [Fernandez et al., 2013].

Now is important to note that this revision will vary considerably between Stream process-
ing and Batch processing systems. The former ones prevail over stateful and blocking query
operators to update each continuous query for each incoming tuple, while the latter ones
prevail over stateless and non-blocking query operators for more efficiency.

Taking again SensorBee as an example, the following query outputs the join between a
stream and a standard table in the database. It is expected to count the number of sells of
all Amsterdam’s merchants in the last 60 seconds. The [RANGE 60 SECONDS] is a Stream-to-
Relation operator, responsible to convert the current window to a relation in each continuous
query call. The ISTREAM is a Relation-to-Stream operator which creates a stream that only
emits tuples present in the current window, but weren’t so in the previous one. Therefore
will be only outputted notifications of sells updates in the last 60 seconds.2

SELECT ISTREAM M.name, COUNT(*) AS total_count

FROM Sells [RANGE 60 SECONDS] AS S, Merchants AS M

WHERE M.merchantID = S.merchantID AND M.address LIKE ’%Amsterdam%’

GROUP BY M.name;

2.7 time and order

2.7.1 Timestamps

In data streams, the notion of time is very important for ordering tuples in time based
windows. The first question is how the values are timestamped. The general solution is to
add an extra field to the tuples. The next question is to consider a logical or a physical way
of timestamping. In the former each tuple is enumerated using a counter (e.g. a Lamport
timestamp) but it serves just for ordering. In the later, the time information from the system
is used (e.g. an UNIX timestamp) but systems differ in their timestamp interpretations. In
many systems, internal timestamps are used whenever a new element arrives in the system

1 The aggregations can either be blocking or non-blocking depending if the data is sorted or not. More informa-
tion on: http://sqlsunday.com/2014/06/15/blocking-aggregate-operators/

2 More information about these operators can be found at SensorBee’s documentation: http://docs.sensorbee.
io/en/latest/bql.html#relation-to-stream-operators

http://sqlsunday.com/2014/06/15/blocking-aggregate-operators/
http://docs.sensorbee.io/en/latest/bql.html#relation-to-stream-operators
http://docs.sensorbee.io/en/latest/bql.html#relation-to-stream-operators

2.7. Time and Order 12

[Bai et al., 2006]. This guarantees that tuples are ordered by arrival time, and while they are
pipelined through the system. In contrast, external timestamps are created by the external
sources as an attribute, then ordered inside the system [Bai et al., 2006].

Some systems order the tuples for the same timestamp by arrival order. This is necessary
to avoid semantic inconsistencies in some queries that can be provided from windows. At
Figure 2, in C window, tuples of the same timestamp are present at same window. As an
example, an unordered sequence could provide wrong results for the median value of a
window.

Another relevant question is how to correctly assign timestamps after the results of n-
ary operators. For aggregations, the result of a windowed minimum or maximum query
could use the timestamp of the maximal or minimal tuple. In a count, sum or average the
timestamp of the latest tuple could be kept. In a join a general solution is to timestamp
the value of the tuple of the first table (in FROM clause), which can be used for external and
internal timestamping models. A more generic attempt is to use the median value of the
window.

2.7.2 Order

Generally speaking, many systems rely on the order of their elements for correctness. Also
some operators become more efficient with the ordering of the input (e.g. usage of indexes).
In DSMSs, ordering is easier due to sequential arrival of data. However this can be hard to
achieve in systems with external timestamps from multiple sources. Since then, two solutions
have been proposed for possible disordering problems.

The first solution is to tolerate disorder in stream’s limits. In the Aurora system, tuples
do not need to be ordered by timestamp [Abadi et al., 2003]. This imposition allows to
split operators in order-agnostic and order-sensitive operators. The first group does not rely
on order (filter, map and union) and therefore are executed efficiently. The second group
(bsort, aggregate and join) have parameters on how unordered tuples should be handled.
All other unordered tuples will be discarded through load shedding [Abadi et al., 2003].

The second solution is to indicate the order of tuples and reorder them whenever is
necessary. Although the use of internal timestamps provides order, systems semantics with
multiple sources require external timestamps. In some systems such as Gigascope, Heartbeat
tuples are sent with the stream including a timestamp [Johnson et al., 2005]. These marks
indicate that all following tuples require to have a greater timestamp than the mark itself.
Heartbeats can be created by the sources or by the system itself.

2.8. Query Optimizations 13

2.8 query optimizations

The internal query execution is very similar to the one we find in DBMS, however the query
optimization becomes very different in DSMS. In query optimization in DBMSs, we calcu-
late several possible plans for a query, then we choose the least costly one using tables’ car-
dinalities. This process differs in DSMSs because the cardinality calculation is problematic
in a streaming environment. Also DBMSs storage statistics of data to help in optimization,
but in DSMSs since the data of streams is unknown in advance, there are no such statistics.
However it is possible to examine a data stream for a certain time to obtain a summary of
the stream. Earlier DSMSs typically applied a plan migration strategy to replace a query
plan with a new one at execution through time when the summary was obtained [Zhu et al.,
2004].

The first common optimization technique is the Rate-based optimization, where rates of
streams are taken in consideration in the query evaluation tree during the optimization
process [Viglas and Naughton, 2002]. Instead of choosing the least costly plan, it is possible
to decide for the plan with the highest tuple output rate. In advance it is required to derive
expressions for the rate of each operator. As an example, we have a very fast selection
operation on 100 tuples/second and a slower selection operation on 10 tuples/second. Both
operations have the same selectivity of 0.1 tuples/s and can be commuted. Supposing we
have a stream input of 200 tuples/s, if the slower operation happens first, by the first
operator we have a throughput of 1 tuple/s by the first operator, then 0.1 tuples/s after the
second. However if the faster operation occurs first we have a throughput of 10 tuples/s by
the first operator, then 1 tuple/s after the second (about 10 times faster).

Often data streams obtain abnormal high inputs of data than usual producing longer
queues of unprocessed elements. Operator Scheduling deals with tuple arrival rate and the
operator path to answer against these situations [Babcock et al., 2004]. If the arrival rate of
the tuples is uniform and lower than the system capacity, then there will be no problems
in terms of scheduling. Whenever a tuples arrives at the system, we schedule it through all
the operators in its operator path. In conclusion we refer this strategy as FIFO (First In, First
Out), which is common through queueing systems. However we should note that unifor-
mity in arrival is just a possible scenario, and hence we need more sophisticated scheduling
strategies guaranteeing that the queue sizes do not exceed the memory threshold.

The Chain Scheduling Algorithm is used in DSMSs to manage queues and productivity of
operators [Qian and Lu, 2010]. Suppose that each operator has a pair of selectivity and
time to process (σ, τ). Later is possible to order them based on these two values. Operators
with lesser time to process and more selectivity will have higher priority scheduling them
first. A chart as seen on Figure 3 is built based on these pairs using three random operators

2.8. Query Optimizations 14

with different times to process and selectiveness. The input is buffered between operators
as shown in the Greedy algorithm.

Figure 3.: Arrangements for operators with selectivity and time to process (σ, τ) in Chain scheduling
resulting in distinct lower envelopes.

Chain Scheduling results in a lower envelope which represents the best case of the Greedy
algorithm. A proper ordering of the operators might result in a smaller lower envelope, and
therefore smaller queues and less memory requirements. An lower envelope will be better
if it has a lower total area. Chain Scheduling helps to minimize memory usage, but CPU
may be the bottleneck. Taking time in consideration, approximate answers are often more
useful than delayed exact answers. So whenever an input stream rate exceeds the system’s
capacity, a stream manager can drop tuples. Now the goal is to minimize inaccuracy in
answers while keeping up with the data.

The main concern is how often we should drop tuples, and thus becomes a challenging
problem for the quality of results. The load shedding addresses this issue. A study calculated
an optimal formula to estimate the error rate on sliding window aggregate queries with sub-
queries on STREAM project [Mayur et al., 2003]. The algorithm has two steps: accumulate
sampling rates for the queries (average and variance), then calculate a probability p for
every tuple that will be used to discard it or not according to the equation. When there
is only one operator in the query, it’s straightforward, however, when some operators are
shared by multiple queries, the situation becomes more complicated, since distinct queries
require higher or lower sampling of tuples to produce the same maximum relative error
estimate. Also there is a compromise of using load shedders earlier or late on a query plan
(efficiency vs. accuracy) [Mayur et al., 2003].

Instead of optimizing the processing engine, another possible approach is to process less
data for better latency and memory, thus achieving faster response in queries. Synopsis
structures are commonly used to compress incoming data to achieve these requirements

2.9. Streaming Engines Outline 15

[Gibbons and Matias, 1999]. These structures include making sampling on windows [Al-
Kateb et al., 2007]; creating a compact synopsis of the data that has been observed through
sketches [Matusevych et al., 2012]; creating a history of observations with histograms [Guha
et al., 2006]; making hierarchical decomposition of incoming data with wavelets [Garo-
falakis, 2009].

2.9 streaming engines outline

Having discussed a variety of challenges addressed and features offered by different DSMS,
this section describes a set of representative systems and focuses on how they offer various
design and implementation trade-offs.

The growth of demand for streaming data and distribute system behavior, brought more
requirements for these systems. The message delivery guarantees is an imposing rule indicat-
ing that output and input tuples must be delivered eventually. At the same time, failures
can happen anywhere: network down, disk failures, nodes going down for maintenance
might compromise the system. Fault tolerance rules how well the system reacts to failures
and recovers from them. As discussed on Section 2.6, state management has high importance
of research in stream data. How the state is kept and updated is another important point
of implementation in these systems.

Meanwhile the ”big” companies have introduced streaming engines in their products.
MillWheel, developed by Google [Akidau et al., 2013], provides a fault tolerant directed
computed graph in which the system manages persistent state and the continuous flow of
records with low-latency. Trill, developed by Microsoft [Badrish Chandramouli, 2015], uses
a tempo-relational model to handle arriving tuples with immediate results, while providing
high performance. FlumeJava, also developed by Google [Chambers et al., 2010], uses the
MapReduce programming model to handle high performing parallel pipelines that can be
used on streaming data.

2.9.1 Apache Storm

Apache Storm is a distributed platform for Java focused on streaming data using the Stream
Processing programming model with absence of windows.3. It has become an Apache
Project in 2014 after being acquired by Twitter [Toshniwal et al., 2014].

Storm provides nodes to manipulate streaming tuples using three abstractions: spouts,
bolts, and topologies. The spouts are the streams sources, where the user specifies how
streams are generated. Bolts are responsible for the business logic of the streams. This
logic includes filters, joins, aggregations and database interactions. Spouts and bolts are or-

3 Website: https://storm.apache.org GitHub repository: https://github.com/apache/storm

https://storm.apache.org
https://github.com/apache/storm

2.9. Streaming Engines Outline 16

ganized into networks known as topologies. Topologies are Directed Acyclic Graphs (DAGs)
with each node representing a bolt or a spout. Edges are represented by subscriptions to
subsequent bolts, hence the topology is seen as the computation process of streams. After
deployment, the topologies will run indefinitely until killed.

Storm’s topologies are parallel by default, running in scalable and fault-tolerant clusters.
The clusters are comprised of a master node daemon called ”Nimbus”, whose task is to
distribute code instructions around the cluster, assign tasks and monitor failures. The
workers run in a daemon called ”Supervisor” who listens to tasks provided by Nimbus, for
its own topology. A Zookeeper cluster is used to coordinate the communication between
Nimbus and Supervisors [Toshniwal et al., 2014].

In recent years, Apache Storm suffered several scaling problems, and therefore the Twitter
team developed a new streaming engine to face these issues: Apache Heron [Kulkarni et al.,
2015].4 Heron continuously examines the data in motion and computes analytics in real-
time with better debugging and efficiency. It was open-sourced in May 2016.

2.9.2 Apache Spark Streaming

Apache Spark is a cluster computing framework influenced by Apache Hadoop’s MapRe-
duce programming model, having started in 2014.5 Spark is notable for processing data in
batches in its whole framework, answering today’s scaling requirements. For this reason it
has become one of the most active open source big data projects today [Harris, 2015].

Apache Spark contains several APIs within its framework for batched applications. These
APIs include Spark SQL for data persistence; GraphX, a distributed graph processing li-
brary: MLlib (Machine Learning Library), a distributed machine learning library; and
Spark Streaming, a library for stream data processing. Spark Streaming is a scalable, high
throughput and fault-tolerant data stream processing system. While Hadoop’s MapReduce
is considered a case of Batch Processing [Shahrivari, 2014], Spark Streaming uses the Micro-
Batch Processing model operating in smaller batch sizes compared to Hadoop.

The Spark’s API is centered around Resilient Distributed Datasets (RDDs), a data struc-
ture of read-only data distributed over a cluster of machines on a DAG while fault-tolerant
[Zaharia et al., 2010]. For this reason Spark internally slices data into batches to be dis-
tributed, hence its programming model. As a consequence, the results are also produced in
batches.

Spark Streaming extends Spark Core’s to perform streaming analytics. It takes data in
mini-batches and operate RDD transformations on those batches at cost of higher latencies.
The data can be provided through related open source libraries (e.g Apache Kafka) or barely

4 Website: https://twitter.github.io/heron/ GitHub repository: https://github.com/twitter/heron
5 Website: https://spark.apache.org/ GitHub repository: https://github.com/apache/spark

https://twitter.github.io/heron/
https://github.com/twitter/heron
https://spark.apache.org/
https://github.com/apache/spark

2.9. Streaming Engines Outline 17

with a TCP connection. The streaming operators are provided through a functional interface
with operations such as map, reduce and join [Zaharia et al., 2010]. These operations take
RDDs as input and output RDDs as well for integration with other Spark APIs.

2.9.3 PipelineDB

PipelineDB is a stream extension of PostgreSQL open-sourced in 2015. This project will be
more comparable to MonetDB’s approach due to perform streaming with databases.6

The continuous queries concept is present through continuous views. The continuous views
are materialized sets of results which are updated through time using time based windows.
As soon as a tuple of a stream is read by the view, it will be processed and discarded,
hence applying the stream processing model. This implementation gives predominance on
the continuous views over streams. As a consequence if more than one stream is featured
in a single continuous view, the windowing method applied will be the same for all the
streams, hence this dominance.

It is also possible to integrate incoming streams with static data through continuous joins.
Stream to table joins are performed whenever a tuple arrives, joining it with matching
rows and updating the continuous view immediately. Note that if other matching rows in
the persistent relation are inserted after the tuple arrival, the continuous view will not be
updated as expected. The same happens whenever rows are updated or deleted.

To achieve fault-tolerance, PipelineDB supports streaming replication, using the passive
replication approach. PipelineDB also has support for message queues through an integra-
tion with Apache Kafka.

However there are no tuple based windows, stream-to-stream joins are not supported, and
due to usage of continuous views there is no native support to output stream data in physical
devices. Nonetheless, this can be achieved by continuous transforms, which call user defined
procedures whenever continuous views are updated, for producing output streams.

In the following example, the page_views stream collects URLs requests storing clients
cookies and the latency of the request for benchmarking. Later the page_stats continuous
view aggregates data from page_views in the last 10 minutes using a sliding window. For
each URL it calculates the views count, unique visits using cookies and the 90th value
percentile of the latency.

CREATE STREAM page_views (url text, cookie text, latency integer);

INSERT INTO page_views (text, cookie, latency) VALUES (......);

CREATE CONTINUOUS VIEW page_stats WITH (max_age = ’10 minutes’) AS

6 Website: https://www.pipelinedb.com GitHub repository: https://github.com/pipelinedb/pipelinedb

https://www.pipelinedb.com
https://github.com/pipelinedb/pipelinedb

2.9. Streaming Engines Outline 18

SELECT

url::text,

count(*) AS total_count,

count(DISTINCT cookie::text) AS uniques,

percentile_cont(0.9) WITHIN GROUP (ORDER BY latency::integer) AS p90_latency

FROM page_views GROUP BY url;

2.9.4 DataCell

DataCell was a DSMS extension of MonetDB, developed by Dr. Erietta Liarou between 2006
and 2012 [Liarou, 2013]. DataCell was positioned in the Back-End layer of MonetDB (Section
3.3), and was able to process continuous queries. After the creation of a continuous query,
its optimizer generated the respective execution plan and handed it over to a scheduler
who would be responsible to control the plan’s life-cycle [Liarou et al., 2013]. To handle
input and output, DataCell enclosed a set of receptors and emitters, which took advantage of
MonetDB’s column-based architecture to store data [Liarou et al., 2013].

3

M O N E T D B O V E RV I E W

3.1 column-wise storage

MonetDB is a RDBMS with a column-wise storage, opposed the traditional RDBMSs which
use a row-wise storage. MonetDB was initially designed for Business Intelligence research
often comprised by large data warehouses. These applications integrate large databases
where an efficient access of data is required. The same scenario happens in e-science field
where large bulks of data are inserted simultaneously for research purposes [Idreos et al.,
2007].

Through the years, MonetDB has researched new ways to build these databases more
efficiently and scalable, while taking advantage of column-wise storage.

Figure 4.: Internal representation of row and columnar-wise storage. The columnar storage provides
better cache usage for a single column access, as well it creates more opportunities to
compress data. Image taken from: http://arxtecture.com/wp-content/uploads/2014/
01/row-store-v-column-store.gif

19

http://arxtecture.com/wp-content/uploads/2014/01/row-store-v-column-store.gif
http://arxtecture.com/wp-content/uploads/2014/01/row-store-v-column-store.gif

3.2. Internal Representation 20

3.2 internal representation

The storage model in MonetDB is also different from traditional DBMS due to its columnar
store. MonetDB handles relations tuples in Binary Association Tables (BATs) [Idreos et al.,
2012], meaning for a relation with k attributes, there will be k distinct BATs for that relation.
A single BAT contains data corresponding to the data type of a column. A table is then
represented by a collection of BATs. After loading BATs into memory, they are accessed
as an ordinary C-array using Object Identifiers OIDs.1 It is important to note that OIDs
are never serialized, just calculated on execution time depending on the data type of the
column, allowing efficient operations like COUNT aggregations with O(1) cost. For variable
length data types such as strings and BLOBs, MonetDB builds a heap of these values. BATs
of the same value, are loaded into the same heap entry allowing further compression.

MonetDB uses the operating system’s memory mapped files functionality to load persis-
tent data, meaning that the binary representation in memory and the disk is the same, thus
avoiding conversions. In addition to this, MonetDB uses late tuple reconstruction, meaning
that all the intermediate query results are stored column-wise [Idreos et al., 2012]. Result-
ing relations are built just before sending them to the user. This technique allows to exploit
CPU caches as well vector-wise operators for a more efficient processing.

On the other hand, column-wise storage might expose performance issues during rela-
tions updates. As the relations tuples are stored across several sources, a write operation
across several columns simultaneously can be I/O expensive. To alleviate this, MonetDB
uses delta structures kept in memory [Héman et al., 2010]. For each column there is a inser-
tion and a removal delta structure alongside. During a transaction, instead of writing new
changes to the sources immediately, they are written to these structures in memory. After
the transaction is committed, the delta structures are merged with the respective columns in
the sources.

The BAT representation is manipulated by MonetDB’s kernel through the MonetDB As-
sembly Language (MAL). In its core, a relational algebra operator corresponds to a MAL
instruction, meaning that each BAT algebra operator translates into a single MAL instruc-
tion. The conjunction of MAL statements for a SQL query is called a MAL plan. MAL
instructions are evaluated with an operator-at-time schedule, meaning that each operation is
evaluated completely before executing the next one. Complex operations are broken into a
sequence of BAT operations that each perform on a entire column of values, known as bulk
processing [Idreos et al., 2012]. The bulk processing mechanism allows loops without func-
tion calls, creating high temporal locality which reduces cache misses. Also these loops are

1 The BAT term was initially used to define an attribute with both a head (OID) and a tail (value). However as
of June 2016, heads were removed completely from BATs as they are calculated on execution time. Therefore
the term BAT may lead to confusion meaning that there is a binary relation but it is not.

3.3. Query Processing 21

more susceptible to compiler optimizations such as loop pipelining, and CPU out-of-order
speculation.

The following example shows the MAL instruction for a selection on a integer column
B for values equal to V into the result set R, while showing the respective C equivalent
code.2 The result set is a collection of OIDs of selected rows. The value of n in for loop is
calculated based on the data type of the column and its size beforehand.

R:bat[:oid] := select(B:bat[:int], V:int);

for (i = j = 0; i < n; i++) {

if (B[i] == V) {

R[j++] = i;

}

}

3.3 query processing

MonetDB’s query processing scheme is performed through three software layers: Front-End,
Back-End and Kernel [Idreos et al., 2007].

The Front-End layer is responsible to parse SQL queries and convert them to MAL execu-
tion plans. The processing scheme begins with the SQL Parser translating an input query
into a specific Syntax Tree. On the next phase, the SQL Compiler has responsibility to pro-
cess the generated Syntax Tree and translate it into a logical plan, then to the respective
MAL execution plan with some optimizations. These optimizations are performed at exe-
cution time and aim to reduce the size of input to be handled on the Back-End. The applied
optimizations vary from the properties of the columns such as the data type, ordering or
existence of an index.

Further optimizations are performed at the Back-End layer through the MAL Generator.
The MAL Optimizer is a sequence of modules to manipulate a given MAL Program into a
more efficient one. Unlike in the Front-End, the optimization in Back-End is inspired by
programming language optimization instead of SQL optimization [Idreos et al., 2007]. For
instance there is a set of optimizers for parallel query plan generation [Milena Ivanova and
Groffen, 2012], which is made possible with column-wise storage. The mitosis optimizer
splits the relation attributes into smaller chunks based on the number of available CPU
cores. The mergetable optimizer merges the partial query results after all sub-queries have
performed. It is important to note that some instructions cannot be executed in parallel, so
they are not optimized further in order to warranty the correctness of the results. These

2 Adapted from MonetDB official website: https://www.monetdb.org/Documentation/Manuals/MonetDB/

Architecture/ExecutionModel

https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture/ExecutionModel
https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture/ExecutionModel

3.3. Query Processing 22

instructions are called blocking instructions.3 The mergetable waits for all parallel instructions
to finish, packing the result columns together, before calling a blocking instruction.

The Kernel layer also called Goblin Database Kernel (GDK), is responsible to perform CRUD
operations on BATs, as well handing over a highly optimized library of the binary relational
operators. As a consequence of bulk processing, each relational operator has access to the
input’s properties at execution time, therefore they judge the implementation algorithm
also at execution time. As an example, a join operator decides at runtime to execute a
merge-join if the correspondent attributes are sorted, or a hash-join if that condition does
not happen.

Figure 5 shows all MonetDB’s functional components and the generated data structures
during the processing of a SQL query.

Figure 5.: MonetDB’s components and relations during the execution of a SQL query.

3 Not to be confused with blocking operators in continuous queries (Section 2.4).

4

A I O TA P L AT F O R M

4.1 design considerations

The Internet-of-Things growth, has led to increasing demands in streaming processing,
hence building software solutions capable to answer the demand is notorious. At the same
time, research in MonetDB focused on large databases through the years with focus on
performance, which can be exploited to build a reliable streaming engine.

The proposed platform is called AIoTA (Amsterdam Internet-of-Things Application), to
accommodate the IoT interest raise in Amsterdam city in the last years, with special atten-
tion to the recently proposed Amsterdam IoT network [de Vries, 2015]. The following list
contains the main objectives for this platform:

1. Offer an interface for IoT devices, with low requirements and usability.

2. Add a flexible streaming extension to MonetDB’s engine.

3. Assemble a topology vector-like to take advantage of MonetDB’s columnar architec-
ture.

4. Build an architecture easy to scale horizontally and vertically later on.

5. Provide an easy interface for monitoring and analyze the output, with a notification
API.

Extending MonetDB with a continuous query processing capability is only one thing
we need to do in the bigger picture. Next to that we need to build a full stack platform
capable to collect, process and deliver streaming data in a transparent way to the IoT world.
During this project a platform has been developed aiming to satisfy the previous stated
requirements.

23

4.2. AIoTA Architecture Overview 24

4.2 aiota architecture overview

Figure 6.: AIoTA’s proposed platform, components and relations.

The full AIoTA platform is depicted at Figure 6. AIoTA’s topology exposes two web
servers for IoT devices: IoT Web Server and Web API Server (red boxes), as well the reg-
ular SQL Front-End whenever is desirable to make a direct connection with MonetDB’s
engine. Meanwhile MonetDB’s kernel code (blue box) is extended for AIoTA.

In the whole AIoTA’s topology, is noticeable the usage of baskets as intermediate storage.
Baskets are sets of binary representations of BATs. Since MonetDB’s columns are stored
using this representation, providing data immediately on the same representation allows
a better performance while importing and exporting it using MonetDB’s binary import
feature.1 Meanwhile, both web servers and the MonetDB instance run on distinct processes,
hence the baskets act as the way of inter-process communication.

In the left side of Figure 6, (arrows 2, 3, 4 and 5) show the flow of IoT Web Server. This web
server is responsible to collect and validate inputs from IoT sensor devices and translate
them into streams’ input using MonetDB’s internal representation in the input baskets.

The generated baskets by the IoT Web Server are collected by the MonetDB’s engine for
processing. This engine includes a new streaming extension under the ”iot” database
schema (1). In this schema, a scheduler whichis responsible to manage the existing con-

1 More information about the binary import here: https://www.monetdb.org/Documentation/Cookbooks/

SQLrecipes/BinaryBulkLoad

https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/BinaryBulkLoad
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/BinaryBulkLoad

4.3. AIoTA Workflow 25

tinuous queries. The streaming data can also be assimilated with other database objects
(e.g. tables, functions, procedures) on persistent storage (6).

The MonetDB’s engine generates output data in the form of baskets for the Web API
Server, with its flow shown in the right side of Figure 6 (arrows 7, 8, 9 and 10). This web
server is responsible to translate the output the baskets to IoT monitoring devices.

4.3 aiota workflow

The IoT Web Server provides a RESTful interface, listening to HTTP JSON requests (2). The
RESTful systems provide simple interfaces, approachable by IoT devices [Gruetter, 2012].
This server connects with the streaming extension (3) to create and delete streams and
inserting data over its lifetime inside the Input Basket Store (4). The development of IoT Web
Server is detailed in Chapter 5.

Incoming data stored inside the Input Basket Store, is processed by the streaming extension
(5) inside MonetDB. It is important to note that the baskets contains volatile data, so once
they have been consumed by the continuous query engine, they are deleted immediately
as a recurrent behavior of DSMSs (Section 2.1). Continuous query results are stored on
Output Basket Store by the new streaming engine on MonetDB. (10), later consumed by the
Web API Server (9). Eventually the query results can be stored in regular MonetDB tables as
persistent relations (6) instead in the output baskets. The development of the new streaming
engine under the ”iot” schema is detailed in Chapter 6.

The Web API Server looks up for existing streams in the streaming context (8). This server
reads and converts data from Output Basket Store, while exposing it to a Web API using the
WebSockets protocol (7). With WebSockets, it is possible to manage real time monitoring of
events in IoT using a full-duplex connection. Therefore the web client can subscribe to be
notified immediately whenever new output baskets are created. The development of Web
API Server is detailed in Chapter 7.

This platform handles streaming data using a Batch Processing model (Section 2.3), taking
advantage of MonetDB’s vectorized architecture for processing in batches. At the same
time, many IoT networks behave likewise Wireless sensor networks (WSNs) [Alcaraz et al.,
2010]. WSNs are comprised by distributed autonomous sensors for monitoring, where
data is sent cooperatively between them to a main collector for processing. This approach
results in sending data in batches, hence is advantageous for AIoTA. AIoTA performs under
a Distributed Stream Processing model (Section 2.3) as it provides more flexibility and lower
requirements compared to CEP during the internship time.

5

I O T W E B S E RV E R I M P L E M E N TAT I O N

The IoT Web Server aims at an easy API for IoT, so it hides the underlying streaming and
database layers for IoT sensors. The IoT Web Server is written in Python using the Flask-
RESTful framework, a popular Python library for RESTful web servers.1

The IoT Web Server is capable of creating and deleting streams on AIoTA using a RESTful
API. After a stream is created, it is possible to make batch inserts into it. Both stream
creation and stream insertion are validated using an official JSON Schema.2 In the current
implementation, a batch of tuples will be inserted, if only all the tuples are valid. This
approach will force further correction on a batch, meaning that a batch is correct if and
only if all its tuples are also correct, as in transaction processing. As discussed in Section
2.7, the server adds an implicit timestamp column to perceive when the tuple was inserted.
Inserted tuples are later imported to the corresponding streams in the streaming engine
and consumed by the respective continuous queries.

5.1 restful systems

The REpresentational State Transfer (REST) is an architectural style with a specific set of
conventions and components to build web applications, where the focus is to specify the
components roles, and interactions instead of concentrating on implementation details. The
term was introduced in 2000 by Roy Fielding [Fielding, 2000].

Systems that employ the REST style are called RESTful. On RESTful systems such as the
IoT Web Server, clients approach the web server using the HTTP protocol, and use the HTTP
methods GET, POST, PUT and DELETE to discriminate their requests. RESTful systems
expose their features using web resources identified by Uniform Resource Identifiers (URIs).
For example, in IoT Web Server, /stream/measures/temperature is a URI to identify the
stream ”temperature” in the schema ”measures”. To achieve the desired properties, REST
defines several principles that should be followed by the RESTful systems:

1 Flask-RESTful at PyPI: https://pypi.python.org/pypi/Flask-RESTful
2 Over the JSON Schema: https://spacetelescope.github.io/understanding-json-schema/ The version

used is from the latest draft (4).

26

https://pypi.python.org/pypi/Flask-RESTful
https://spacetelescope.github.io/understanding-json-schema/

5.2. IoT Web Server Bootstrap 27

CLIENT-SERVER - Separation of concerns between clients and servers. Clients should not be
concerned about how data is processed, thus achieving portability. At the same time,
the server should not be concerned with the user state.

STATELESS - The client’s state is never stored on the server. Each request by the client
should contain the current state, so the client holds the state itself.

UNIFORM INTERFACE - Resources should be identified by URIs. The resources themselves
are conceptually different from the representations that are returned to the client. As
an example, a server might send response data in JSON, which is different from the
database representation. Also each request should include all information required
to process it due to the stateless property.

Due to its simplicity, REST is a popular architectural style to build web services serving as
an API. As there is no standard for RESTful APIs, implementations may vary significantly,
although most of them use the standards such as HTTP, JSON, and XML. The URIs are used
to represent the name of the actions on the server, while the HTTP method represents the
type (GET - read, POST and PUT - create/update, DELETE - delete).34 The HTTP response
code represents the result of an action (2xx - succeeded, 4xx - client’s error, 5xx - server’s
error). Outputs are often formatted in JSON. JSON is an open-standard format using (key,
value) pairs to represent data in a human readable way. This format has become popular in
recent years due to its versatility for array-like structures, and the growth of the JavaScript
programming language from which it was originated.

The IoT Web Server was built using the RESTful principles. Therefore producing JSON
HTTP requests will be approachable from most IoT sensors [Gruetter, 2012]. A brief descrip-
tion of RESTful API can be found on Section 5.5, meanwhile the detailed implementation
is listened on Appendix A.3.

5.2 iot web server bootstrap

For security reasons two web servers are deployed after start up, one for administration
and the other for general usage labeled as the application server. The administration server
is capable of creating and deleting streams, and hence is recommended to listen exclusively
on localhost. The application server on the other hand, provides inserts for streams and
should be listening to all network interfaces.

3 The GET method is a labeled as a safe-method because a GET request produces no side-effects, which means
that it does not change data.

4 The difference between the usages of PUT and POST has to do with the fact that PUT is an idempotent method,
i.e. that the same request will produce the same result on the server no matter how many times it is sent, unlike
POST.

5.3. IoT Web Server Life-Cycle 28

The communication with the database engine (step 3 in Figure 6) is done using a MAPI
connection with the Python client python-monetdb.56 Despite its slowness [Raasveldt, 2015],
the IoT Web Server will use this connection to notify the streaming engine to import input
baskets. Therefore the volume of data transferred through this connection will be minimal.

During the bootstrap of the IoT Web Server, the database credentials (name of the database,
host, port and user) should be provided as arguments, while the user’s password is re-
quested during the server’s bootstrap.

Later on if the server is scaled horizontally, it might be desirable to identify from which
replica an inserted batch came from. For these situations, it is possible to add an extra
column for every created stream to indicate the identification of the replica. The value of
that column can be passed during the server’s bootstrap. The full list of arguments is given
on Appendix A.1.

5.3 iot web server life-cycle

After a stream is created in the IoT Web Server and consequently on MonetDB, the corre-
sponding baskets are also created. If there are existing baskets during the server reboot,
they will be exported (flushed) to the streaming engine immediately and hence deleted.
The following directory path is kept during IoT Web Server’s life-cycle:
<web_server_root_directory>/baskets/<schema_name>/<stream_name>/<basket_id>

Baskets are identified by an incremental sequence (e.g. 1, 2, 3...), with <basket_id>

indicating the directory corresponding to the number in the sequence. Inside this directory,
there is a binary file for each attribute of the stream alongside the implicit timestamp.

The IoT Web Server imports data to MonetDB using the iot.import procedure call (details
on Section 7.2). Now the question is how to regulate the number of calls of that statement.
For this reason, while creating a stream on the IoT Web Server, web client must specify the
flushing method of the stream. The flushing can be time based, tuple based or automatic. If
the automatic mode is selected, the basket will be flushed whenever a batch insert is made.
If the stream was created via the SQL Front-End, it will use the automatic mode.

The created streams’ information is stored in MonetDB database for later usage when the
IoT Server restarts. Meanwhile the IoT Web Server also pools the database for new streams
created in the SQL Front-End, updating its catalog right away. The details of streams
creation in IoT Web Server can be found on the RESTful API examples on Appendix A.3.

5 MAPI (MonetDB API) is the MonetDB internal communication protocol.
6 Python-Monetdb at PyPI: https://pypi.python.org/pypi/python-monetdb/

https://pypi.python.org/pypi/python-monetdb/

5.4. Data Types Mapping 29

5.4 data types mapping

The IoT Web Server uses the binary import statement in MonetDB to efficiently add data
from the streaming engine to the database. Therefore one of the main tasks of the IoT Web
Server is to generate input baskets promptly, so it has to translate the incoming tuples to
MonetDB’s internal representation of the corresponding column’s data type. This method
saves an ASCII conversion and subsequent parsing, thus the performance improvement can
be significant.

For every column it is possible to give a default value to be added by the IoT Web Server,
whenever a new tuple misses it from the JSON input. The default value will be validated
during the stream’s creation. The columns can also be nullable likewise in SQL and thus
missable from the insertions. However a column cannot be nullable and have a default
value simultaneously.

The available data types in IoT Web Server include all the types that can be useful for
IoT applications, which includes number, strings and timestamps. On other hand, it is
unfeasible for IoT devices to send binary data (BLOBs), as it is typically large to fit in a
single HTTP request without fragmentation.

For IoT usage, some extra types were added for further validations if necessary. These
types are converted internally to an existing MonetDB data type, therefore they exist just
for extra validation. Table 2 listens all supported data types by the IoT Web Server, with the
correspondent MonetDB mapping for the added ones. More details of each data type can
be found in Appendix A.2.

5.4. Data Types Mapping 30

IoT Type MonetDB type Description
text, string,
clob

clob Unbounded String (Character Large OB-
ject).

char, varchar char Bounded String.

uuid uuid Universally Unique Identifier (e.g.:
550e8400-e29b-41d4-a716-446655440000).

mac char(17) Media Access Control Address (e.g.:
12-34-56-78-9A-BC).

url url Uniform Resource Locator (e.g.:
www.google.pt).

inet inet IPv4 address (e.g.: 234.12.126.8).

inetsix char(45) IPv6 address (e.g.:
2001:0db8:85a3:0000:0000:8a2e:0370:7334).

regex clob Strings validated against a provided reg-
ular expression.

enum char (longest enum
value length)

Strings validated over a defined array of
values.

tinyint,
smallint,
integer, bigint

tinyint, smallint,
integer, bigint

8, 16, 32 and 64 bit signed integers respec-
tively.

hugeint hugeint 128-bit integer (not available on some sys-
tems).

real real 32-bit floating point number.

float, double double 64-bit floating point number.

decimal,
numeric

decimal Floating point number with a specific
precision and scale.

boolean boolean True or false value.

date date Regular date on format YYYY-MM-DD (e.g.:
2016-05-31).

time time Regular time on format HH:DD:SS.sss

with timezone or not (e.g.:
14:30:21.122).

timestamp timestamp Regular timestamp on ISO 8601

format with timezone or not (e.g.:
2016-07-19T13:26:14+02:00).

interval interval Interval of time.

Table 2.: IoT Web Server supported data types and correspondent MonetDB mappings.

5.5. RESTful API 31

5.5 restful api

All the features of IoT Web Server are delivered through a RESTful API. Table 3 shows
the available REST resources, methods, in which of the servers is featured and a brief
description.

In AIoTA’s scenario, every created stream will be assigned with a unique table id. Also
every new tuple will be created with a unique timestamp, therefore different requests will
produce different results. For these reasons POST method was used instead of PUT. The
details of the RESTful API, with examples can be found on Appendix A.3.

Resource Method Server Description
/context POST Admin Creates a new stream.

/context DELETE Admin Deletes an existing stream.

/streams GET Both Get a detailed listening of ex-
isting streams.

/stream/<schema>/

<stream>

GET Both Get details of an existing
stream.

/stream/<schema>/

<stream>

POST Application Make a batch insert to an ex-
isting stream.

Table 3.: Available resources on IoT Web Server’s RESTful API.

6

W E B A P I S E RV E R I M P L E M E N TAT I O N

The Web API Server is responsible for delivering data from output binary baskets generated
by the streaming engine to web clients through a specific Web API. To achieve this, the Web
API Server employs a WebSocket server responsible to convert the binary data in output
baskets and deliver it in JSON format. This server is written in Python using a lightweight
WebSocket server library with full-duplex connections.12

The Web API Server creates a connection pool with the streaming engine, listening for ev-
ery new output basket from it. The Web API Server stream’s catalog will update right upon
stream creation/deletion from the streaming engine likewise in IoT Web Server. A publish-
er/subscriber pattern has been added to the server, in which web clients can subscribe to
be notified right away when an output basket is created. Output data can be read in batch
sizes in order to allow pagination. ”read” requests may include an offset and/or a limit of
the number of tuples for this purpose.

6.1 websockets protocol

WebSockets is a protocol standardized by the IETF under RFC 6455 in 2011.34 It allows
a full-duplex communication channel over a single TCP connection, making possible real-
time data transfer between a web server and its web clients. Note that WebSockets is an
independent TCP-based protocol using port 80, and thus suitable for environments with
non-web Internet connections using a firewall in the other ports.5 The only relationship
between WebSockets and HTTP is that the handshake phase is interpreted by HTTP servers
as an upgrade request (101 code response).

1 Simple-websocket-server (not featured on PyPI repository) GitHub repository: https://github.com/dpallot/
simple-websocket-server

2 In a full-duplex connection, the both sides of a connection are allowed to communicate, also simultaneously if
desirable.

3 The Internet Engineering Task Force (IETF) is a community of network experts which delegates the evolu-
tion of the Internet including its protocols. These protocols are rectified under Request for Comments (RFC)
publications.

4 RFC 6455: https://tools.ietf.org/html/rfc6455
5 Or port 443 when used with SSL/TLS.

32

https://github.com/dpallot/simple-websocket-server
https://github.com/dpallot/simple-websocket-server
https://tools.ietf.org/html/rfc6455

6.2. Web API Server Bootstrap 33

This protocol was initially designed to be implemented in web browsers only, being sup-
ported by all the current major browsers, but it can be used by any client/server application.
WebSockets begins with a handshake between the client and the server. Once the handshake
is finished, the client and server can send data frames back and forth in full-duplex, binary
or text wise.

6.2 web api server bootstrap

The Web API Server starts in a similar way the IoT Web Server with analogous arguments.
This server is listening on all network interfaces by default. The communication with the
Back-End is carried out with a MAPI connection like the IoT Web Server. During the start
up of the server the database credentials (name of the database, host, port and database
user) should be provided as arguments, while the user’s password is requested during the
server’s bootstrap. The full list of the possible arguments is detailed in Appendix B.1.

6.3 websockets api

A Websockets session is asynchronous, which means that a request/response message
might be sent at any time during the session. For that reason, all messages are labeled
with an identifier to detect a request to the server and its corresponding response to the
client, while using a defined JSON schema likewise seen in the IoT Web Server.

All client requests must be handed over as text frames, with a JSON formatted string.
A request must include a request field specifying the intended action to be performed in
the server, followed by the other specific fields depending on the request. In the same way
responses contain a response field to identify the type of the message. Table 4 lists the
possible requests, while Table 5 lists the possible responses referencing the request they
answer if so. All the details of each request and responses with examples is detailed on
Appendix B.2. Note that to perform a read request, the web client does not have to be
subscribed to the stream.

6.3. WebSockets API 34

Identifier Arguments Description
subscribe A stream’s schema and

name
Subscribe to new output baskets from the
specified stream.

unsubscribe A stream’s schema and
name

Unsubscribe to a previous subscribed
stream.

info A stream’s schema and
name (both optional)

Retrieve information about a stream. If
the parameters are not provided, the re-
sponse will contain data over all existing
streams.

read A stream’s schema and
name (required). Bas-
ket number, tuple limit
and offset (opt)

Read output from a stream starting at the
requested basket (by default its the first
available).

Table 4.: Available IoT Web API WebSocket requests.

Identifier Request Description
error none Error message report.

subscribed subscribe Subscription confirmation.

unsubscribed unsubscribe Subscription removal confirmation.

removed none If a subscribed stream is removed on MonetDB,
this message warns the subscribed web clients.

notification none Notification of a new output basket to sub-
scribed web clients.

read read Response message to a ”read” request, hand-
ing over the number of result tuples and data
listening.

info info Response message to an ”info” request for one
stream only (Optional arguments provided).

data info Response message to an ”info” request for all
existing streams (No optional arguments pro-
vided).

Table 5.: Available IoT Web API WebSocket responses.

7

M O N E T D B S T R E A M I N G E N G I N E I M P L E M E N TAT I O N

The MonetDB kernel code has been extended with a continuous query processing engine.
For this task, a new set of MAL operators had to be created, along with a new database
schema, a continuous query execution scheduler and several optimization policies. The
streaming extension can be found on MonetDB’s source repository on the iot directory
inside the SQL backends on ”iot” development branch: https://dev.monetdb.org/hg/

MonetDB/file/iot/sql/backends/monet5/iot.
The streaming engine development includes adding an iot module into MonetDB to deal

with streaming data. The implementation requires the creation of new MAL statements, the
continuous queries concept and the scheduler to trigger them. The main objective during
this project was to create a SQL catalog in order to implement a minimal streaming engine.
At this time, a user has to make a combination of ”iot” procedures and functions calls to
create continuous queries and manage them. This approach allows more flexibility on the
streaming engine for the users and it will be justified at the evaluation Chapter on Section
8.1.

Note that the integration with a transactional environment is very difficult for continuous
queries. If a transaction rolls back, the read tuples have to be put back into the original
streams with additional caution of possibly newly arrived tuples during the transaction. At
this moment, the streaming engine has not been tested with a transactional environment or
an OLTP related benchmark, therefore is not recommended for usage with transactions at
the time of this report.

7.1 scheduler

Before introducing the MonetDB continuous query scheduler, we first give a brief explana-
tion on the mathematical model Petri-net, on which the scheduler is based.

35

https://dev.monetdb.org/hg/MonetDB/file/iot/sql/backends/monet5/iot
https://dev.monetdb.org/hg/MonetDB/file/iot/sql/backends/monet5/iot

7.1. Scheduler 36

7.1.1 Petri-net model

The Petri-net is a mathematical modeling language used to represent distributed systems
[Murata, 1989]. A Petri-net is represented by a bipartite graph where its vertices can be
decomposed into two disjoint sets such that no two graph vertices within the same set are
adjacent. All acyclic graphs are bipartite. A cyclic graph is bipartite if all its cycles have
even length [Asratian et al., 1998].

A Petri-net is composed by a set of places, transitions and arcs. Places (i.e. conditions) are
represented by circles, while transitions (i.e. events) are represented by bars, forming the
nodes of the graph. The arcs which establish the edges of the graph, illustrate the passage
from a transition to a place or vice-versa, but never between nodes of the same type (hence
the graph is bipartite). The places where arcs originate to a transition are called the input
places of the transition, while the places where arcs end are called the output places of the
transition.

Places may contain a concrete number of points called tokens. Tokens act as parts of a
condition. A condition is fulfilled, if there are enough tokens on all places. When a transition
is executed, all existent tokens are consumed in every input place and created in every output
place in an atomic operation.

The execution of Petri-net is stochastic, which means that when several transitions are
enabled simultaneously, any one of them may be triggered, unless an execution policy is
implemented. With the stochastic approach, tokens might appear in any place of the net,
and thus are suitable to characterize concurrent behavior of distributed systems. At a lower
level, the Petri-net provides a clean representation of a finite state machine. For this reason,
the Petri-net abstraction is implemented by the continuous queries scheduler on MonetDB.

Figure 7 shows a basic Petri-net representation. The place P1 currently has a token, and
through transition T1, it can go to either P2 or P3. The total number of tokens between the
incoming and outgoing places of a transition does not have to be equal on both sides. Tokens
might be generated or consumed in places outside the transitions.

Note that the Petri-net model carries planning issues in some graphs. One such example
is possible deadlocks, if data coming from one input place is required to be consumed by
more than one output place. In this case, it is recommended to create an intermediary place
that will multiply the incoming tokens, so they can be consumed by all of output places
without locking the transition forever.

This nature is used to implement our streaming scheduler. A streaming table is a place,
while a continuous query is a transition. The query triggering conditions (time or tuple
based) are represented through tokens. Also the transitions can be used to implement block-
ing operators, as they require certain amounts of output to produce results.

7.1. Scheduler 37

Figure 7.: A Petri-net graphical representation. Taken from URL: https://upload.wikimedia.org/
wikipedia/commons/f/fe/Detailed_petri_net.png

7.1.2 Continuous queries scheduler

Unlike the conventional Petri-net, the MonetDB scheduler policy is deterministic. At the
beginning of execution round, the scheduler determines all transitions eligible to trigger
and activates one after another in the order they were registered. In a future implemen-
tation, this scheme may be replaced with a parallel implementation of the scheduler, in
which each transition decides by itself when to fire. However, such parallel implementa-
tion may become expensive if there are enough complex continuous queries registered at
the scheduler. Another possibility is to implement a priority queue, where higher priority
continuous queries will be fired first, whenever it is possible.

The scheduler can be stopped or restarted at any time, the same happens for the regis-
tered continuous queries. The scheduler holds a table of the currently registered continuous
queries, where looks it on every cycle. If the query meets the conditions to be fired then
one thread will be created for its execution. After looking up the table, the scheduler will
start all created threads and wait for all to finish. When all threads finish, the scheduler
begins the next cycle.

7.1.3 Concurrent continuous queries

On every cycle, the scheduler looks up in the continuous queries table, processing them by
the order they were registered. We allow more than one continuous query to be registered
at the same time for one stream. However, to avoid complex implementation and potential
performance problems, we have introduced a restriction into the current implementation.
During the execution of each cycle. a stream can be consumed by maximally one continuous
query. The first continuous query that can be fired gets exclusive locks on the stream it uses.
So, what can happen is the following.

https://upload.wikimedia.org/wikipedia/commons/f/fe/Detailed_petri_net.png
https://upload.wikimedia.org/wikipedia/commons/f/fe/Detailed_petri_net.png

7.1. Scheduler 38

Taking an example of a stream that is queried by two continuous queries CQ1 and CQ2.
Both are tuple based, and require 4 and 5 tuples to fire on the same streaming table (ST).
CQ1 was registered first. In the next scheduler cycle, if there are 5 tuples, CQ1 will be fired
and will lock the stream for the remainder of the cycle. Therefore CQ2 will not be able to
execute because of the lock. Nonetheless, if CQ1 requires 5 tuples and CQ2 4, and there are
4 tuples available in the next cycle, CQ2 will be triggered because the available data do not
meet CQ1’s requirement. The same situation can happen in time based windows.

If a concurrent stream access is necessary, then currently the solution is to create a con-
tinuous query CQ3 that reads from input stream (ST3) into two new duplicated streams.
In this way, each continuous query (CQ1 and CQ2) can process input from each of the
new duplicated streams, avoiding any possible concurrency problem. Figure 8 shows the
solution in a Petri-net representation.

Figure 8.: The concurrency problem solution represented through a Petri-net. The state 1 is before
the first scheduler cycle, 2 is after the first cycle and 3 after the second cycle. The black
dots (tokens) represent inserted tuples in the stream tables. Acronyms: ST - Stream Table,
CQ - Continuous Query and OT - Output Table.

7.2. SQL Catalog 39

7.2 sql catalog

This section details all the functions and procedures created in the ”iot” schema of MonetDB.
The ”iot” schema is divided into 4 categories: 1) scheduling to manage continuous queries
by the scheduler, 2) windowing to create windows on stream tables, 3) baskets to import
and export data from and to baskets, and 4) debugging procedures providing statistical
information and debugging tools on the streaming objects. The following 4 subsections
detail each of the categories. Finally, subsection 7.2.5 gives an example of creating a stream
and registering a continuous query using the ”iot” features.

7.2.1 Scheduling procedures

These procedures deal with registering and unregistering continuous queries at the sched-
uler, as well as pausing and resuming the scheduler itself. Table 6 lists the available schedul-
ing procedures.

Name Arguments Description
query schema: string, name: string Registers a continuous query under a

schema.

query query: string Registers a continuous query under the
current schema.

query schema: string, query: string,
maxcalls: integer

Registers the named continuous query to
be performed up to maxcalls.

deregister schema: string, name: string Unregisters the named continuous query
from the given schema.

pause schema: string, name: string Pauses a registered continuous query.

pause none Pauses all currently registered continu-
ous queries.

resume schema: string, name: string Resumes a paused continuous query.

resume none Resumes all paused continuous queries.

cycles schema: string, query: string,
n: integer

Registers the named continuous query
only for the next n scheduler cycles.

wait ms: integer Pauses the scheduler for the next ms mil-
liseconds after the end of current cycle.

stop none Stops the scheduler.

Table 6.: Available scheduling procedures in the SQL catalog.

7.2. SQL Catalog 40

7.2.2 Windowing functions and procedures

For windowing, there are 3 procedures which can be applied to the existing stream ta-
bles to indicate the triggering conditions for the corresponding continuous queries. The
iot.window procedure is used to create a tuple based window. Its integer parameter, indi-
cates how many tuples should be in the baskets in order to fire the continuous query again.
The iot.heartbeat procedure is used to create a time based window instead, with an inte-
ger parameter specifying the number of milliseconds of the stride.1 Finally the iot.tumble

procedure takes an integer indicating how many tuples from the streaming table should
be deleted, after they have been consumed by a continuous query. If a negative value is
provided, then all the existing tuples in the window will be deleted after at each invocation,
which is the default value. With combination of these procedures, it is possible to imple-
ment several types of windows, including sliding windows, landmark windows, tumbling
windows, and both time and tuple based windows. Table 7 listens these just described
procedures.

At the time of this report, the included timestamps by IoT Web Server are used just for
indication of arrival. Therefore currently, there are no plans to implement windowing based
on timestamps, as well timestamp updating during query processing as seen in Section 2.7.

Name Arguments Description
tumble schema: string, stream:

string, n: integer
Delete n tuples from the stream at the
end of the continuous query.

window schema: string, stream:
string, n: integer

Read from the stream every n tuples in-
sert.

heartbeat schema: string, stream:
string, ms: integer

Read from the stream every ms millisec-
onds.

gettumble schema: string, stream:
string

Returns the tumble value from a regis-
tered stream.

getwindow schema: string, stream:
string

Returns the tuple window value from a
registered stream.

getheartbeat schema: string, stream:
string

Returns the time window value from a
registered stream in milliseconds.

Table 7.: Available windowing procedures and functions in the SQL catalog.

1 This is not be confused with hearbeats used in some systems to keep order when receiving data from multiple
sources in Section 2.7.

7.2. SQL Catalog 41

7.2.3 Baskets procedures

As shown in Figure 6, the stream inputs and outputs are temporarily stored in baskets.
The following procedures are used to import/export data from/to baskets. Currently the
IoT Web Server calls the iot.import procedure to export data into the streaming engine.
Meanwhile the Web API Server only listens to file changes in the baskets directory. To use
this procedure, the provided path as argument must have a file per column from the stream
with the name of the column itself.

While the streaming engine is running, a receptor thread loops for changes in registered
directories for automatic imports. New paths can be added using the iot.receptor proce-
dure. At the same time, the emitter thread loops for changes in the streams exporting the
results for provided directories. The iot.emitter procedure can be called to register new
directories for output. Table 8 listens these procedures.

Name Arguments Description
import schema: string, stream:

string, path: string
Import data into a stream table from the
provided path.

export schema: string, stream:
string, path: string

Export data from a stream table to the
provided path.

receptor schema: string, stream:
string, path: string

Bind the provided path for file changes,
importing to the specified stream table
when files are created.

emitter schema: string, stream:
string, path: string

Whenever tuples are inserted on the spec-
ified stream table, results are exported to
the provided path.

Table 8.: Available baskets procedures in the SQL catalog.

7.2.4 Debugging functions and procedures

For information and debugging purposes, several procedures and functions have been
added. It is possible to get information about the registered continuous queries, inspect
baskets and list the generated errors that have occurred during the execution of the CQs.

In general scenario, event processing through multiple layers of continuous queries is
too fast to trace them one by one, thus the usage of these database objects should be used
instead when debugging. Using these database objects it is possible to retrieve backlogged
statistics about CQs such as the number of events handled per transition, average processing
time of each continuous query, and the timestamp of the last invocation of a continuous

7.2. SQL Catalog 42

query. This information can be used later on, e.g. when the scheduler policy needs to be
re-designed. Table 9 listens these database objects.

Name Arguments Description
show schema: string, query:

string
Shows the MAL plan for a registered continu-
ous query.

baskets none Returns a table inspecting data from the bas-
kets.

queries none Returns a table inspecting data from the regis-
tered continuous queries including the times-
tamp of the last invocation.

inputs none Returns a table with the registered input places
for the receptor thread.

outputs none Returns a table with the registered output
places for the emitter thread.

errors none Returns a table with the generated MAL errors
while performing continuous queries.

Table 9.: Available debugging procedures and functions in the SQL catalog.

7.2.5 SQL catalog example

In this example, a temperature streaming table is created and used in a continuous query to
select the minimum, the count and the average of the temperature measurements collected
on the last 5 seconds. At this moment, a user has to wrap the continuous query inside a
procedure, as we have not extended MonetDB’s SQL language support with features for
continuous queries and streaming data. All streaming details must be handed over using
the procedures in the ”iot” schema, as shown in this example.

SET SCHEMA iot;

SET OPTIMIZER = ’iot_pipe’;

CREATE STREAM TABLE temperature (t TIMESTAMP, sensor INT, val DECIMAL);

CREATE TABLE results (minimum DECIMAL, tuples INT, average DECIMAL);

CALL heartbeat(’iot’, ’temperature’, 5000);

7.2. SQL Catalog 43

CREATE PROCEDURE examine_temperatures()

BEGIN

INSERT INTO results

SELECT MIN(val), COUNT(*), AVG(val) FROM temperature;

END;

CALL query(’iot’, ’examine_temperatures’);

.................

SELECT * FROM results;

SELECT * FROM errors();

The SET OPTIMIZER = ’iot_pipe’; statement will allow the ”iot” optimizer to be used
during the optimization process alongside other optimizers. The details of the optimization
process as well the ”iot” optimizer will be given on Section 7.4.

In this example, the streaming table ”temperature” and table ”results” are first created.
Then we call the iot.hearbeat procedure indicating that a continuous query operating
over the ”temperature” table will be evaluated every 5 seconds. Then we create the ”ex-
amine temperatures” procedure where we insert the continuous query business logic, in
this call calculating the aggregates into the ”results” table. Then we call the iot.query

procedure the register the continuous query into the scheduler. Later on we can inspect the
results as well check for errors using the iot.errors function. The iot.tumble procedure
is not called, hence all the tuples will be deleted from the window when accessed by the
query.

If it is desirable to implement a specific type of window, then it is necessary to make a
combination of calls of the windowing procedures. For instance, to implement a landmark
window (see Figure 2 - B), resetting every N new tuples, the following procedure should
be used:

--The stream table will be checked whenever there is a tuple in it

CALL window(’iot’, ’temperature’, 1);

CREATE PROCEDURE examine_temperatures_landmark(N INTEGER)

BEGIN

DECLARE current_landmark INT;

SET current_landmark = (SELECT COUNT(*) FROM temperature);

IF (current_landmark > N - 1) THEN

CALL tumble(’iot’, ’temperature’, N);

ELSE

CALL tumble(’iot’, ’temperature’, 0);

7.3. Aggregations on Continuous Queries 44

END IF;

INSERT INTO results SELECT MIN(temp.val), COUNT(*), AVG(temp.val)

FROM (SELECT val FROM temperature LIMIT N) AS temp;

END;

In the above procedure, we set the tumble value to N when the landmark value has been
reached, otherwise we set it to 0 to delete none of the consumed data in ”temperature”.

The usage of *STREAM Relation-to-Stream operators depicted at the example in Section 2.6
cannot be performed using the current implementation as it is. Although we can create an
auxiliary table to store the current result relation of a continuous query, and then update it
incrementally, the results won’t be delivered immediately due to the scheduler policy. This
behavior is characteristic from Stream Processing methodology which is not desirable for
MonetDB. It requires each continuous query to run on a single thread during its lifetime,
which would demand a complete re-implementation of the scheduler.

7.3 aggregations on continuous queries

As discussed in Section 2.6, due to their nature, continuous queries provide additional chal-
lenges to regular ones. Aggregations are a fundamental component of the SQL language
for many use cases including statistics. In regular queries, they perform by analyzing all
the fetched data and aggregating them into the final result. However, in continuous queries
environment, the data is not available in its entirety, so it has to be processed incrementally.
For this limitation there are two major possible solutions.

The first solution is to calculate the aggregation every time using only the tuples present
in the current window. Many DSMSs, such as PipelineDB, use this approach, taking into
consideration that this solution might not be desirable. The second solution is to store the
intermediate results and update them in each call. Depending on the aggregation, different
values must be stored and updated. For a SUM we must store the total sum of the arrived
values, while for an AVG we store the total amount of tuples, for MAX the biggest value, etc.
We must also take into consideration if we want to keep data in memory, or write it to the
disks at the cost of a possibly slower query execution but with persistence.

At this moment, both solutions are possible in AIoTA due to the database usage. In
the following example the continuous query updates a tmp aggr table with data from the
current window to calculate the average temperature. On this example we could avoid
calculating the tuple count as we are using a tuple based window, therefore the count is
implicit. However the example was made to be the most generic as possible.

SET SCHEMA iot;

SET OPTIMIZER = ’iot_pipe’;

7.4. Continuous Query Plans and Optimizations 45

CREATE STREAM TABLE temperatures (t TIMESTAMP, sensor INT, val DECIMAL(8,2));

CALL window(’iot’, ’temperatures’, 10); /* evaluate every new 10 tuples */

CREATE TABLE tmp_aggr (tmp_total DECIMAL(8,2), tmp_count DECIMAL(8,2));

INSERT INTO tmp_aggr VALUES (NULL, NULL); /* init the aggregation with NULL */

CREATE VIEW tmp_avg AS

SELECT CASE WHEN tmp_count IS NULL THEN NULL /* avoid 0 division */

ELSE tmp_total / tmp_count END AS average FROM tmp_aggr;

CREATE PROCEDURE temperature_aggregator()

BEGIN

UPDATE tmp_aggr

SET tmp_total = tmp_total + (SELECT SUM(val) FROM temperatures),

tmp_count = tmp_count + (SELECT COUNT(*) FROM temperatures);

END;

CALL query(’iot’, ’temperature_aggregator’);

....................

SELECT average FROM tmp_avg;

7.4 continuous query plans and optimizations

The query execution plan is a fundamental component in a DBMS, as it dictates the ordered
sequence of steps to access and manipulate data in a SQL query. Note that when a query is
submitted to the database, the optimizers look up on the query plan, possibly changing it,
as well its order to find the best execution option. Also it is noticeable through consequent
invocations, the plan execution order might be distinctive, due to runtime factors such as
usage of cache.

For this report, it is proposed to make an examination over the query execution plans on
streaming tables and compare them with regular tables to notify the optmizations induced
on the streaming engine. As referred in Section 3.3, traditional DBMSs’ query optimizers
concern over the implementation algorithm of operators. However in MonetDB, query
optimizations prevail over MAL statements, as the implementation algorithm is established
by the query operators (e.g. join, scan, append) themselves at execution time. Therefore
the optimizations discussed on this section will carry on replacement of MAL statements.

7.4. Continuous Query Plans and Optimizations 46

The resulting query plans can be shown through the EXPLAIN SELECT ... statement for
queries on regular tables, and iot.show for their respective variant on streaming tables.

7.4.1 New iot optimizer

The optimization process in MonetDB is carried through several function calls to change a
MAL plan. In this process, each function call belongs to a specific optimizer, thus modeling
an optimization pipeline. The current execution optimization pipeline can be changed
through the SET OPTIMIZER = <pipeline_name> statement.

For the new streaming extension a new pipeline, iot pipe has been created, which in-
cludes the new iot optimizer. This optimizer is responsible for updating MAL statements
on streaming tables. This optimizer will be always applied to the MAL plan whenever a
streaming table is present.

7.4.2 Query execution comparison

For the comparison, the example from subsection 7.2.5 was recreated both in a regular and
a streaming context. On each scenario, the respective optimizer pipeline (default pipe on
regular and iot pipe on streaming) was applied.

Each of the optimization pipelines contains 21 optmizers. We will compare the final plan
from the normal table against the one from the streaming table. The final MAL plans from
both queries can be found in their entirety in Appendix C.1. In every comparison bellow,
the regular table plan is listed first, followed by the streaming one. Some MAL statements
only exist in one of the plans.

For a better understanding, a reading over the MAL reference on MonetDB website is
recommended, as a full description of the MAL language is out of scope of this report.2

X_0 := sql.mvc();

C_1:bat[:oid] := sql.tid(X_0,"iot","temperature");

X_4:bat[:lng] := sql.bind(X_0,"iot","temperature","val",0);

X_0 := sql.mvc();

X_34 := basket.register(X_0,"iot","temperature",0);

X_38 := basket.lock(X_34,"iot","temperature");

C_1:bat[:oid] := basket.tid(X_0,"iot","temperature");

X_4:bat[:lng] := basket.bind(X_34,"iot","temperature","val");

2 MAL reference: https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference

https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference

7.4. Continuous Query Plans and Optimizations 47

The first major distinction in the plans is the data fetching process. For the streaming
table, the basket.register call is responsible to assert that the basket is registered on the
scheduler, being (the last argument declares the role as an input basket). Before applying
any operation on the basket, the basket.lock call is responsible to lock it for the rest of
the plan. This has to be done to avoid concurrency problems with the receptor thread and
eventually concurrent SQL users. For the normal table, the sql.tid instruction calculates
the tables’ OIDs. The sql.bind statement is responsible to load the column. For streaming
tables, the bind is retrieved from baskets instead of persistence storage.

The sql.mvc instruction is called beforehand to set up an isolated execution environment
for the query.

X_19:bat[:timestamp] := sql.bind(X_16,"iot","temperature","t",0);

(C_21:bat[:oid],r1_22:bat[:timestamp]) :=

sql.bind(X_16,"iot","temperature","t",2);

X_23:bat[:timestamp] := sql.bind(X_16,"iot","temperature","t",1);

X_24 := sql.delta(X_19,C_21,r1_22,X_23);

X_25 := algebra.projection(C_1,X_24);

X_13:bat[:timestamp] := basket.bind(X_10,"iot","temperature","t");

Alongside the ”val” column, ”t” column must also be fetched for the plan. In this seg-
ment however, it is noticeable the most considerable divergence between the two plans, as
multiple sql.bind, sql.delta and algebra.projection calls were removed in the stream-
ing table’s plan.

As pointed out in Section 3.2, changes to columns in MonetDB are not reflected to per-
sistent storage immediately, but to delta structures alongside them in memory. As a conse-
quence at plan execution, columns and the respective delta structures must first be merged
together to form the correct data for each column. The sql.bind statement is called 3 times,
with the last parameter indicating the structure to load: 0 - from the base table, 1 - from
the inserts delta structure and 2 - from the deletes delta structure. After loading the struc-
tures, sql.delta merges them together. Finally the results are projected according to the
previously loaded OIDs in algebra.projection. This process is repeated for all required
columns in the plan. The MAL merge calls for the ”val” column are not listed here due to
the redundancy of the code, but can be found on Appendix C.1.

The streaming extension should be scalable and efficient, thus implementing delta struc-
tures on streaming tables would affect its performance. As depicted in Section 2.1, streams
are labeled as a sequence of immutable tuples, hence applying updates on streaming tables
is not feasible in practice. However in the current implementation of the streaming engine,
it is possible to update (basket.update) and remove (basket.delete) tuples from streams.

7.4. Continuous Query Plans and Optimizations 48

X_39 := sql.append(X_29,"iot","results","average",X_36);

sql.affectedRows(X_39,1);

X_29 := sql.append(X_19,"iot","results","average",X_26);

X_39 := basket.tumble(X_29,"iot","temperature");

After appending the final result column to the ”results” table, the basket.tumble state-
ment removes tuples from the basket according to the table tumble value, reflecting the
streaming behavior. For this reason, this instruction has to come at the very end of the plan.
Meanwhile in the regular table plan, the sql.affectedRows instruction administrates the
number of rows (one row in this example) to commit the transaction.

Not present

catch SQLexception:str;

iot.error("user","examine_temperatures",SQLexception);

exit SQLexception:str;

catch MALexception:str;

iot.error("user","examine_temperatures",MALexception);

exit MALexception:str;

basket.unlock(X_39,"iot","temperature");

As continuous queries are run by background threads, possible errors will not be visible
to the users straightforward. Therefore whenever SQL or MAL exceptions occur at execu-
tion time, the iot.error instruction will persist the exception. The persisted errors can
later be inspected using the iot.errors SQL function. At the very end, the basket.unlock

call releases the basket lock, as it is no longer needed by the plan.

8

E VA L U AT I O N

8.1 functional evaluation

In this Section AIoTA is rated according to the stream processing requirements outlined in
a previous paper [Stonebraker et al., 2005]. In this same Section, our streaming engine’s
implementation is justified while making a reflection against the state-of-the-art.

8.1.1 Stream processing requirements

In [Stonebraker et al., 2005], the authors outlined eight requirements that a DSMS should
accomplish, in order to achieve stream processing under real-time constraints. In this Section,
AIoTA is evaluated for each of the eight requirements with a yes, no or partially rating.

1. Keep the Data Moving - Partially

The first requirement is to process tuples in a smooth way with low latency. This means
that the system should not store incoming data before performing any operation. At the
same time, the system should not approach an active processing model (e.g. polling) for
more fluency.

As AIoTA uses a batch processing model, this requirement cannot be fulfilled in its entirety.
Although the IoT Web Server can send batches of data automatically, and the Web API Server
notifies new baskets immediately, the streaming engine on MonetDB introduces latency
while processing data. In every execution cycle, the scheduler checks for updates in baskets
to activate continuous queries, therefore the queries are not performed fluently. If a time
window is defined at every 10 seconds, the scheduler will check if 10 seconds had passed,
before activating a query again, instead of doing so at the exact moment. More importantly,
tuples are processed in batches, and thus our implementation is not completely fluent
for less latency. Nonetheless, AIoTA’s implementation is fairly efficient as will be show
from the performance evaluation at Section 8.2 and the data is processed fast, thus this
requirement is partially fulfilled.

49

8.1. Functional Evaluation 50

2. Query using SQL on Streams - Yes

The second requirement demands to provide a high-level query language to find output
events and perform analytics. The SQL language is preferred to be used, because it has the
concept of processing primitives such as filtering, projecting and aggregate. Furthermore,
SQL is widely used and has a standard that make it easier to communicate between systems.
The SQL language should be extended to accommodate queries on streams with windows
and streaming operators.

AIoTA is built on top of a relational DBMS, hence the integration with SQL is implicit.
The web servers were added just for IoT integration, therefore making a MAPI connection
using SQL is also possible. Although the SQL language was not extended, it is still possible
to inspect stream tables with standard SQL. The debugging functions and procedures in the
”iot” schema can be used for detailed inspections on streams. Therefore this requirement is
fulfilled.

3. Handle Stream Imperfections (Delayed, Missing and Out-of-Order) - No

Under real-time requirements, systems must react to possible real world imperfections,
such as unordered, delayed and missing messages. Systems with blocking operators must
additionally prevent possible permanent locks. In a real-time system, it is a bad practice to
wait indefinitely, hence time out mechanisms should be applied in exceptional situations.

When dealing with streams, tuples might arrive out-of-order or not be delivered to the
next operator in the pipeline. A DSMS should be able to overcome these issues. The message
delivery guarantees property (Section 2.3) makes this possible, however depending on the
underlying system, this property might be hard to implement. In DSMSs using message
queues, this concept is implicit, but in DBMSs using transactions, it becomes difficult to
implement with streams. Furthermore when dealing with more than one input source, the
system has to order the tuples before processing them.

In AIoTA, this requirement must be fulfilled through the baskets, because they are the
means of communication between components. In both the IoT Web Server and the stream-
ing engine, locks are used to assure correct writing and reading of the baskets. However
transactions are not implemented with streams, also there is not present a multiplexing
functionality when dealing with IoT Web Server replicas simultaneously. Furthermore there
are possible concurrency problems on the scheduler (Section 7.1.3) if the streams are not
handled correctly. Finally the batch processing method provides additional latency, thus
more delay of the results. This requirement is far from being accomplished.

8.1. Functional Evaluation 51

4. Generate Predictable Outcomes - No

This requires that the system outputs expected outcomes during its life-cycle. The system
should produce the same results no matter the tuples arriving in time or delayed. While
dealing with regular tables, if a tuple arrives later and the table has changed, the result
should change as well. This requirement is very important to achieve fault tolerance, in
distributed systems when all the replicas should produce exactly the same output at the
same time. However this requirement is hard to accomplish whenever operations are not
idempotent.

In AIoTA this requirement is harder to fulfill due to batch processing. Hence this re-
quirement is not fulfilled so far, due to the fact that the streaming is working outside a
transactional environment.

5. Integrate Stored and Streaming Data - Yes

In many applications, streams need to be merged with persistent relations to produce re-
sults. It is a common task to compare the past with the present in monitoring applications,
hence a DSMS should provide efficient ways to manage state information through time. In
a DBMS this integration is easier as databases already deal efficiently with static data. The
state can be stored persistently, or at execution time with stateful operators. In either way,
the state management should be efficient to minimize latency. Another requirement is to
be able to query stream data and persistent data in the same language, and this is achieved
with SQL language in DBMSs.

As AIoTA is built on-top-of a relational DBMS, this requirement is fairly easy to fulfill.

6. Guarantee Data Safety and Availability - No

A high-availability (HA) solution is a critical requirement to preserve data integrity, requir-
ing special attention in CEP systems. In real-time environments, the systems must be up at
every moment, so the replacement of a replica must take minimal impact.

Although high-availability can be achieved in a clustered environment, AIoTA has no
native high-availability implementation, thus this requirement is not fulfilled. MonetDB
has the feature to create replica and merge tables which could be used to accomplish this,
but it requires another overhaul of the database kernel for the streaming engine.

The input and output baskets need to be replicated as well. However as they are simply
binary files, there are many possible solutions for this, e.g. rsync to copy a file to another
computer system, RAID with redundancy disks, or using a distributed replicated storage
system such as DRBD.12

1 RAID (Redundant Array of Independent Disks) is a storage technology that combines multiple physical disks
into a single logical disk for data redundancy.

2 DRBD (Distributed Replicated Block Device) is a distributed replicated storage system for Linux.

8.1. Functional Evaluation 52

7. Partition and Scale Applications Automatically - Partially

This requirement demands the DSMS to give the option to perform operations in a dis-
tributed fashion across a cluster of machines. The system should be load-balanced to avoid
overload on a single machine. Also the distributed system should scale automatically and
in a transparent way as reaction to abrupt arrival of tuples. The DSMSs should be multi-
threaded as well to take advantage of multi-core CPUs.

In AIoTA, the IoT Web Server creates a thread per request, the Web API Server uses a
WebSockets connection per client, while each continuous query on the Back-End runs on a
separate thread in every cycle. However, AIoTA does not automatically scale out horizon-
tally. This requirement is fulfilled partially.

8. Process and Respond Instantaneously - Partially

The last requirement, requires a DSMS to implement an optimized execution engine, to
deliver results as soon as possible, even under unexpected increase of incoming data. This
means that the system must still provide low latencies under these circumstances. To
achieve this objective, the system’s execution overhead must be minimal.

In the core of AIoTA, we rely on the highly efficient MonetDB engine to execute contin-
uous queries. The ”iot” scheduler, IoT Web Server, Web API Server only add a reasonably
small amount of overhead. Altough our Batch processing model introduces some latency,
our preliminary performance evaluation at Section 8.2 against a commercial DSMS, shows
that AIoTA’s current performance is promising. So this requirement is partially fulfilled.

8.1.2 Comparison against the state of the art

In Section 2.4 we have discussed the importance of extending the SQL language for stream-
ing data processing. Some DSMSs attempted to create a standard [Jain et al., 2008], but it
never came in practice due to highly divergent implementations. More importantly not all
DSMSs currently use a DBMS as their base of implementation, therefore it makes standard-
ization more difficult to accomplish. In our implementation, we added the STREAM keyword
to the SQL language in order to identify streaming tables at their creation. Extending the
SQL language for other streaming functionalities would require a review of the SQL Parser
and Compiler of MonetDB (Figure 5). In this work, we decided to give higher priority to
extend the MonetDB kernel with a CQ engine.

The distinction between streams and persistent relations has become relevant in DSMSs.
For this reason, DSMSs generally implement different ways to accomplish this task by creat-
ing specific operators between streams and persistent relations (Section 2.6). The proposed
standard [Jain et al., 2008], also seen in SensorBee, gives the perception of a stream with

8.1. Functional Evaluation 53

a temporary persistent relation, which is updated incrementally through time, while intro-
ducing the RSTREAM, ISTREAM and DSTREAM operators to update the output whenever the
temporary persistent relation changes. Meanwhile, in AIoTA, we label streams as stream
tables using batch processing. However the implementation of stream operators like RSTREAM

wasn’t possible due to our approach. We leave to the users to specify in the continuous
query declaration and afterwards the desired behavior of streams and persistent relations.
As continuous queries are defined in custom procedures, the degree of freedom is extensive.
The depicted *STREAM operators can be approached using a table to store the temporary per-
sistent relation. To produce either a stream or a relation, a continuous query should output
its results into either a regular or a streaming table.

In Section 2.5, this report detailed several windows implementations for distinct use
cases. Due to the divergence of implementations in DSMSs we leave to the user to decide
what type of windows he wants to use (example in Section 7.2.5) on the continuous query
specification, hence our implementation is simplistic.

Time has high importance in the implementation of a DSMS, with special attention when
dealing with time-based windows. As mentioned on Section 2.7, several approaches have
been taken into consideration about dealing with time. Due to large diversity of imple-
mentations, we only use implicit timestamps in IoT Web Server to indicate whenever a tuple
has arrived at the MonetDB engine. All other timestamping methods have to be dealt with
by the users themselves, even if timestamps should be updated through the MonetDB’s
engine. The same rule apply if order matters for a stream. Currently, time-based windows
rely solely on the scheduler’s time to be triggered, which can possibly leave to time gaps
between timestamping on the IoT Web Server and the streaming engine.

In Section 2.8, this report detailed several possible optimizations related to streaming
data and continuous query plans. In this work, none of these optimizations techniques
have been considered, due to these optimizations requiring an overhaul of the current
relational operators in MonetDB. However, it was possible to build a streaming engine over
a relational database without the necessity to write the kernel code from scratch, as it can
be seen from the MAL plan generation (Section 7.4.2).

Table 10 shows a functional comparison between AIoTA and the closest DSMS existing
in the market: PipelineDB (introduced in Section 2.9.3), to evaluate what AIoTA has ac-
complished so far. Despite that, both systems are based on a relational DBMS, they choose
different trade-offs.

Functionalities that are not available on both DSMSs, are not listed here, such as updated
aggregate values (Section 7.3), and continuous Stream-to-Stream joins. The same happens
for technical specifications such as client libraries, third-party integrations and possible
configurations.

8.1. Functional Evaluation 54

Feature AIoTA PipelineDB
Programming
model

Pure Batch processing. Batch processing built over Stream process-
ing.

Available client
interfaces

SQL and RESTfull using JSON
through the IoT Web Server.

SQL.

Implementation
basis for continu-
ous queries

User-Defined Procedures, which
are executed by a Petri-net model
based scheduler.

Materialized views depicted as continu-
ous views updated through time.

Window imple-
mentations

Windows are evaluated over
streams. It is possible to have
multiple streams with different
windowing requirements in the
same continuous query.

Windows are evaluated over continuous
views. Hence all streams in the same con-
tinuous view will be evaluated at the same
specified interval.

Available win-
dows types

Both tuple and time based, allows
sliding windows.

Only time based, allows sliding win-
dows.

Continuous up-
dates of query
results

Not present, although is possible to
perform continuous updates with
auxiliary tables.

Present, continuous views are updated as
tuples arrive (Stream processing).

Outputting
Streams

Possible, write into a stream table
in the continuous query definition.

Possible through continuous transforms al-
though not as much flexible.

Continuous joins All joins are possible although the
results will reflect only in the cur-
rent window.

Only Stream-Table joins. Cross and outer
Stream-Table joins are not supported.

Timestamping Implicit timestamps added by the
IoT Web Server.

Implicit timestamps added at arrival by
the engine.

Concurrent
queries on
streams

Duplicate or split one stream into
multiple sub-streams, one for each
continuous query.

Whenever a tuple arrives at the system,
it is added to a bitmap representing all
continuous views in which the tuple is
used. After having been processed by a
continuous view, the corresponding bit is
flipped. After all bits are flipped, the tu-
ple is discarded.

Synopsis struc-
tures

Not present. Present - Bloom Filters, Count-Min
Sketches, HyperLogLogs, between others
available as data types.

High Availability None by default, although Mon-
etDB’s replica tables functionality
can be exploited.

None, although streams replication is
present. Failures must be replaced man-
ually.

Table 10.: Functional comparison between AIoTA and PipelineDB.

8.2. Performance Evaluation 55

Table 10 shows that AIoTA has less features than PipelineDB. One reason is our chance
to give users a simplistic approach to a streaming engine, due to time limit. Another
significant distinction is the batch processing vs stream processing models on the two systems.
In PipelineDB each batch of tuples is processed individually through the pipeline, giving
the proposed smoothness of streams, however the windowing parameters are determined
by the continuous view rather than the streams themselves, and only time windows are
available. In AIoTA the windows are defined on individual streams. Nonetheless, due to
Batch processing, it is not possible to provide the same smoothness as PipelineDB.

If it is intended to output the results in PipelineDB, continuous transforms must be used to
detect changes in continuous views and output them. However continuous transforms do not
store data, hence aggregations cannot be used on continuous transforms. On the other hand,
in AIoTA, outputting results is easy to achieve in the continuous query definition. In the
end, AIoTA’s implementation gives more flexibility, while being easy to debug.

Meanwhile PipelineDB provides more streaming oriented features, such as synopsis
structures and better concurrency control. Some of these features will be labeled as the
future work for AIoTA in Section 9.2.

8.2 performance evaluation

In this section, we report our performance evaluation of AIoTA. In the first segment of this
evaluation, the components of AIoTA are evaluated individually in profiling tests to check
CPU usage during the most relevant operations. For the web servers, Flame Graphs will be
used, while for the streaming engine, MonetDB’s profiling tool Tomograph is used instead.

After the profiling tests, the full AIoTA stack will be tested performance-wise against
PipelineDB using a real life IoT scenario related to ship tracking (AIS tests).

All tests in this section (Flame Graphs, Tomograph and AIS tests) were performed on a
machine with an Intel Core i7-2600 CPU maximum clocked at 3.40GHz, 16 GB DDR3 RAM,
32GB SATA SSD disk, while running the Fedora 22 x86 x64 operating system (Linux kernel
version 4.4.14). The MonetDB version used is the experimental ”iot” branch.

8.2.1 Flame Graphs on the web servers

To study the performance of the web servers components we use Flame Graphs. Flame
Graphs are charts resulting from analyzing programs’ function stack-frames during their
execution. These charts reflect all the function calls performed during a program’s execu-
tion, as well as the duration of each stack-frame. Within these charts it is possible to detect
the most frequent code-paths and identify the program’s performance issues [Gregg, 2016].
There are several possible Flame Graphs based on the physical attributes to evaluate (e.g.

8.2. Performance Evaluation 56

CPU, memory, Off-CPU (calculating time in CPU operations vs IO operations)). For this
evaluation, only CPU Flame Graphs are studied as the performance is the main objective
of AIoTA in this project.

These charts are represented through a two dimensional Cartesian coordinate system.
The x-axis shows the present stack-frames (from the available threads) during the moni-
toring, hence the most important aspect is that the stack-frames are sorted alphabetically
instead of chronologically as any reader will perceive on first glance. The y-axis depicts
the stack depth. Each rectangle illustrates a stack-frame. As it is wider, the more time the
CPU spent there. As it is higher, the more function calls were made until it. The rectangles
bellow represent its ancestry (the function calls made until that rectangle). In these charts,
colors are irrelevant as their only propose is to distinguish neighbor frames.

To generate Flame Graphs for the web servers of AIoTA, both servers code had to be
changed briefly to accommodate a profiling thread to generate the charts, as well as new
function calls. Flame Graphs were generated for the most relevant operations in the servers:
creating a stream and making 1000 tuples batch insert on the IoT Web Server and performing
1000 tuples read from the Web API Server.

The charts shown here (Figures 9, 10 and 11) will only depict the requests related code,
thus hiding the introduced Flame Graphs profiling code. The reason for this is that the full
charts show all the created threads on the servers performing other actions (e.g. waiting for
requests). More importantly, the requests functions stack-frames are very small compared
to the whole chart, and is not possible to generate Flame Graphs in logarithmic scales with
the current version.

8.2.Perform
ance

Evaluation
57

Creating a stream Flame GraphReset Zoom Search

Thread-2`handle

Thread-2`__init__
Thread-2`command

Thread-2`view

Thread-2`run

Thread-2`serve_forever

Thread-2`_getblock

Thread-2`commit

Thread-2`execute

Thread-2`log

Thread-2`post

Thread-2`_getblock_inet

Thread-2`__call__

Thread-2`run

Thread-2`handle
Thread-2`_getblock

Thread-2`process_request

Thread-2`mapi_flush_b..
Thread-2`command

Thread-2`_getbytes

Thread-2`validate_schema_and_create_stream

Thread-2`__init__

Thread-2`run_simple

Thread-2`execute

Thread-2`finish_request

Thread-2`_getblock_inet

Thread-2`full_dispatch_request

Thread-2`_handle_request_noblock

Thread-2`execute

Thread-2`dispatch_request

Thread-2`connect

Thread-2`start_flask_admin_app

Thread-2`_getblock

Thread-2`run_wsgi

Thread-2`__init__

Thread-2`dispatch_request

Thread-2`_getbytes

Thread-2`add_log

Thread-2`__bootstrap_inner

Thread-2`create_file_..

Thread-2`wsgi_app

Thread-2`_login

Thread-2`wrapper

Thread-2`init_monetdb..

Thread-2`_getbytes

Thread-2`cmd

Thread-2`handle

Thread-2`execute Thread-2`__init__

Thread-2`emit

Thread-2`_log

Thread-2`inner

Thread-2`_getblock_inet

Thread-2`cmd

Thread-2`emit

Thread-2`serve_forever

Thread-2`handle_one_request

Thread-2`mapi_create_stream

Thread-2`execute

Thread-2`handle

Thread-2`add_new_stream

Thread-2`callHandlers

Thread-2`_eintr_retry

Thread-2`connect

Figure 9.: Flame Graph corresponding to creating a stream at IoT Web Server.

Making a batch insert Flame GraphReset Zoom Search

Thread-3`wrapper

Thread-3`__call__

Thread-3`handle_one_request

Thread-3`_eintr_retry

Thread-3`__init__

Thread-3`run

Thread-3`serve_forever

Thread-3`getfqdn

Thread-3`_getblock

Thread-3`command

Thread-3`handle

Thread-3`execute
Thread-3`run_wsgi

Thread-3`dispatch_request

Thread-3`_handle_request_noblock

Thread-3`validate_and_insert

Thread-3`create_file_if_n..

Thread-3`cmd

Thread-3`_getblock_inet

Thread-3`__init__
Thread-3`server_bind

Thread-3`full_dispatch_request

Thread-3`post

Thread-3`flush_baskets

Thread-3`make_server

Thread-3`__bootstrap_inner

Thread-3`__init__

Thread-3`finish_request

Thread-3`run_simple

Thread-3`_getbytes

Thread-3`process_request

Thread-3`wsgi_app

Thread-3`dispatch_request

Thread-3`run
Thread-3`start_flask_iot_app

Thread-3`mapi_flush_baskets

Thread-3`handle

Thread-3`serve_forever

Thread-3`view

Thread-3`validate_and_ins..

Thread-3`execute

Thread-3`inner

Figure 10.: Flame Graph corresponding to make a 1000 tuple batch insert at IoT Web Server.

58

Reading from a Output Basket Flame GraphReset Zoom Search

Thread-2`_handlePacket

Thread-2`read_next_batch

Thread-2`init_websockets

Thread-2`_parseMessage

Thread-2`run

Thread-2`handleMessage

Thread-2`read_next_tuples

Thread-2`serveforever

Thread-2`__bootstrap_inner

Thread-2`_handleData

Thread-2`read_stream_batch
Thread-2`read_tuples

Figure 11.: Flame Graph corresponding to read 1000 tuples from a Output Basket at IoT Web API.

59

8.2. Performance Evaluation 60

Normally, the IoT Web Server creates a thread per request, but for profiling, this was
changed into one single thread per web server. This change was necessary to make the dis-
crimination between the waiting and processing phases of the web servers more transparent
on the charts.

Figure 9 depicts the Flame Graph of creating a stream RESTful request in the IoT Web
Server. This request produces several MAPI requests to store the newly created stream in
the database, as well as additional information for the IoT Web Server, such as the flushing
parameters of the stream. The stream creation is maintained by the mapi_create_stream

and validate_schema_and_create_stream function calls. The chart shows that only the
MAPI connection calls and files access are present in the charts. Other instructions such as
validating the request’s JSON schema are efficient enough to not be caught by the profiling
thread. The validate_schema_and_create_stream function call takes longer, because it
had to flush existing baskets, and hence it requires to call the streaming engine to retrieve
them and create the next set of baskets. This call also requires creating a MAPI connection
for the stream itself to flush, whenever the flushing parameter is fulfilled. As an immediate
conclusion, the performance of IoT Web Server largely depends on the efficiency of the MAPI
connection and the storage of the baskets.

However the batch insert is the main point of examination for the IoT Web Server, as
it will become the predominant action in the long term. To profile this request, a 1000
tuple batch insert was done on the stream as created on Figure 9. The Flame Graph of
this batch insert is shown in Figure 10. The stream has 4 columns (including the implicit
timestamp): a varchar column with maximal 32 characters, an integer column with both
a minimum and maximum value, a real column with a default value and another nullable
integer column. On the batch all the tuples were missing, with two fifths of them missing
the nullable column, and other two fifths missing the column with a default value. The
validate_and_insert call provides extra calls for the validation of the tuples and trans-
pose them into batches for each column. Despite these calls, the writing segment took
much longer, and only the validate_and_insert was depicted on the chart. During the
flush_baskets, the MAPI call and the creation of new set of baskets took about the same
time. This confirms again the same issues about stream creation, and these two issues
should be considered the most important for performance improvements on the IoT Web
Server.

Finally, Figure 11 shows the process of reading the inserted 1000 tuples by the Web API
Server. The implementation of this server is very straightforward, and hence the resulting
Flame Graph is very simple. In this chart we observe that the read_next_batch is the most
expensive call in the reading process. In this function, there is an extra call to convert
the binary data into textual data which is very small to be shown on the chart. Also in
the read_tuples call, there is an extra call to transpose the columns, thus re-creating the

8.2. Performance Evaluation 61

original tuples. However processing files is the main bottleneck of the Web API Server
likewise seen in the IoT Web Server. In the end, the implementation of both web servers in
the web servers is still very efficient in the most parts.

8.2.2 Tomograph on the streaming engine

To profile the streaming engine of AIoTA, the Tomograph tool of MonetDB is used. Tomo-
graph is a tool to chart parallel query plan executions and detect performance issues in
MonetDB [Gawade and Kersten, 2013] in a similar way to Flame Graphs.

For the profiling we used the continuous query, whose detailed on the MAL plan was
discussed in Section 7.4.2. As continuous queries run in the background, it is difficult for
Tomograph to detect them, as this tool profiles regular SQL queries. For this reason, the
profiling was executing normally the continuous query explicitly, outside the iot scheduler.
To make it comparable to previous tests, 1000 distinct tuples were inserted on the mentioned
temperature stream table. Figure 12 shows the generated Tomograph (the image blank-
spaces were cropped to save space). The original MAL plan can be found on Appendix
C.1.2.

8.2. Performance Evaluation 62

Figure 12.: Result tomograph from temperature examination continuous query.

In the upper part of Figure 12 shows the memory usage during the continuous query
execution. The following chart shows the percentage of utilization of all 8 CPU cores
(starting the count from 0). The darker the orange tone is, the higher the CPU usage is.
Note that these two charts plot the memory and CPU usage for the whole system, instead
of only the MonetDB activities. The memory usage kept roughly constant, showing the
streaming engine’s space efficiency. The CPU usage chart shows that only two cores were
intensively used, due to the small parallelization opportunities in the query plan.

The query performance and bottlenecks can be found in the last chart, where it shows
the MAL execution of each working thread. Note that not all activities here shown, are
precisely related to the CPU usage chart, as tomograph does not provide the information
of which thread is being executed by which core. The x-axis shows the time lapse, with the
different MAL instructions depicted in different colors (the choice of colors is irrelevant).

8.2. Performance Evaluation 63

The narrower white bars reveal the moments, when the threads were waiting for the next
MAL executable instruction to become available.

In the last chart, the querylog.define MAL instruction defines the call to procedure
explicitly, as it was not present in the original plan. The execution of this query has low
parallelism. The reason is that the sql.append instruction writes results in shared memory,
meanwhile parallelization creates race conditions and hence it cannot be applied. The first
sql.append call is the longest instruction to execute, because it has to find the results table
in the SQL catalog and prepare the writing cursor at the end of it to write the aggregations
results. The language.dataflow also takes a long time, because it has to wait for the
parallel executions to finish. In this plan it is evident that more parallelism could be applied
(e.g. parallel the aggr.count and aggr.avg calls), hence the MonetDB team is working to
enhance the dataflow optimizer.

As it possible to observe in the last chart, the overhead of the basket calls is not significant
in the plan execution, despite existing 1000 tuples on them which would reflect on the
basket.bind call. This execution took about 6.5 milliseconds, very comparable to the same
execution with 100 tuples which took about 6 milliseconds. The same test was repeated
replacing the streaming table with a regular one with 1000 tuples and it took about 14
milliseconds. The language.dataflow operator was called more often in the regular table’s
plan, also a small overhead was induced by the sql.delta call, therefore the execution time
is more than doubled. The full MAL for the regular table is in Appendix C.1.1.

Note that the Tomograph code is still experimental, and likely still needs improvements.
At the end of the main work thread are shown 6 unknown MAL executions. It is not
known if it’s on fact a bug on Tomograph or calls performed by other running routines on
MonetDB.

8.2.3 AIS benchmarking tests

Automatic Identification System (AIS)

The Automatic Identification System (AIS) [Guard, 2014] is a ship monitoring and tracking
system used by ship and vessel traffic services (VTS) to exchange data electronically be-
tween these entities also including AIS base stations and satellites. AIS data supplements
marine radars providing information for collision avoidance and other in a comparable way
to airplane control in airports.

AIS equipment include a VHF transceiver with a positioning system such as a GPS and
other electronic navigation sensors. The information provided include the vessel’s coordi-
nates, speed, course, etc. The AIS equipment can then be tracked by nearby AIS base sta-
tions, or AIS satellites when out of range. The possible applications are collision avoidance,
accidents investigation, marine search and rescue (SAR) operations and Aids to Navigation

8.2. Performance Evaluation 64

(AtoN). The last one is a standard developed to broadcast the positions and names of pos-
sible obstacles in the sea, such as navigation aid objects and dynamic data like weather and
currents in order to aid navigation.

AIS transceivers work in one of two channel frequencies: A and B. Class A transceivers
are targeted at large commercial vessels, such as passenger ship. Due to their high impor-
tance, these transceivers transmit more frequently (every 3-5 seconds) and with more data.
Class B transceivers are targeted at ship or boats with lower importance such as recreational
usage. These transceivers transmit less often (around every 30 seconds), with less potency
and data.

For information exchange, AIS uses a set of 27 message types for distinct purposes, in-
cluding position report, binary data transmission, interrogation, acknowledgment, etc.3 To
view these messages in a computer, the signal must be demodulated in radiotelephone first
under the AIS frequencies and then converted into a digital format.

Testing scenario

CWI holds an AIS transceiver, tracking the AIS data around Amsterdam. For this project, a
dataset from June 22nd of 2016 was used to create streaming data. There was a total of 1370
distinct vessels and 12 stations with a total of 1824370 AIS messages from the recordings.
About 94% of these messages were of 1, 2, 3, and 4 message types, which were about vessels
and stations position reports. Therefore the benchmark queries were designed based on
these message types.

For the testing scenario, 11 AIS related continuous queries were created to test AIoTA
against PipelineDB. The queries are of different levels of complexity, so as to evaluate the
performance of several main operations: reading from the input stream, join stream data
with a persistent relation and join streams in the current window. Some queries output
their results to a stream, while other queries persist their results in regular tables.

In the benchmark it was recreated a situation in which several vessels send AIS data
simultaneously to the server, while trying to find the server’s saturation point. With this
in mind, we measured the evolution of latency against the throughput of inputs on the
server for all 11 continuous queries. The comparison will comprise the streaming engine
by itself with a MAPI connection, the streaming engine and the IoT Web Server together to
accommodate the real world scenario and PipelineDB using its native client.

In many benchmarks such as TPC-H, the overall latency of a SQL query is measured. In
our case, this type of test is not feasible, because continuous queries run infinitely. At the
same time, if we prefer to evaluate the latency by taking a snapshot of a result of continuous
query, the evaluation would prevail over the performance of a regular SQL query, which is

3 All available message types and description: http://www.e-navigation.nl/system-messages?order=field_
msg_id&sort=desc

http://www.e-navigation.nl/system-messages?order=field_msg_id&sort=desc
http://www.e-navigation.nl/system-messages?order=field_msg_id&sort=desc

8.2. Performance Evaluation 65

not related to streaming at all. Instead, our tests will calculate the overall values of latency
and throughput of the database system while performing inserts on a single stream, while
running benchmark queries in the background and increasing the number of clients. The
tests start with 16 clients, doubling in every consecutive test until 1024 clients. The window
used was a 10 second time window.

In every test, each vessel represents a client, who sends its position data in an interval of
3, 4 or 5 milliseconds (the interval was downed from seconds to milliseconds to accomplish
the tests in a shorter time). The interval given to each vessel will be deterministic for every
test, which means that if a vessel gets to send data every 4 milliseconds during the first test,
the same interval will be used for the remaining tests for that vessel.

The objective of each test is to study the behavior of the system under increasing work-
load and to detect the saturation point of the system. To determine the saturation point,
it is pretended to calculate the ideal number of clients, so it satisfies the best combination
of latency (time to execute a single request) and the throughput (number of requests pro-
cessed within an unit of time). Remember that is expected to obtain the lowest latency and
the highest throughput possible, thus this point becoming the saturation point. After that
the latency is expected to grow indefinitely and the throughput will decrease. Therefore
the best number of clients will be represented on the lowest right corner point of each line
in every test.

Table 11 briefly describes all 11 AIS queries and the addressed features (e.g. stream joins,
aggregations, usage of geomodule).

As stated in the functional evaluation (Section 8.1.2), AIoTA and PipelineDB architectures
are divergent, thus creating the same continuous queries while under the conditions of
both systems becomes difficult. To make this possible, the AIS benchmark queries were
implemented for both AIoTA and PipelineDB in the most similar way possible. Despite
this, some queries could not be implemented on PipelineDB.

The following three setups were benchmarked: IoT Web Server and the streaming en-
gine of AIoTA together, just the streaming engine of AIoTA using a MAPI connection
and PipelineDB using its native client. The tests executed in PipelineDB use continuous
transforms to output query results. However, since continuous transforms do not support
aggregates on queries, AIS query 2 cannot be evaluated on PipelineDB. In addition be-
cause Stream-to-Stream joins are not supported by PipelineDB, AIS queries 5 and 6 can be
executed only on AIoTA.

8.2. Performance Evaluation 66

Description Features Output
1 Get the speed of vessels (in knots). A simple Selection from a stream. Stream

2 Compute the number of distinct
vessels seen in the last 10 seconds.

Aggregation over a stream. Persistent
relation

3 Find currently anchored ship. Selection from a stream. Persistent
relation

4 Compute the number of ship turn-
ing a degree over 180 degrees.

Selection from a stream. Stream

5 For every ship, find the closest
neighbor ship.

Join between the same stream. Persistent
relation

6 For each station, find the ship
within a radios of 3 km.

Join between two streams and se-
lection.

Stream

7 Which vessels are currently an-
chored at the harbors.

Join a stream with a persistent re-
lation and selection. Usage of
geospatial information.

Stream

8 Track the movements of a ship S. A projection from a stream. Persistent
relation

9 Notify when a ship S arrived at any
harbor.

Join a stream with a persistent re-
lation and selection. Usage of
geospatial information.

Stream

10 Estimated time of arrival of ship S
at harbor H.

Join a stream with a persistent rela-
tion. Usage of geospatial informa-
tion. The output table must be con-
tinuously updated.

Persistent
relation

11 Calculate average speed observed
per ship.

Continuous update over a stream
(Section 7.3).

Persistent
relation

Table 11.: AIS benchmark queries.

The versions of the tested libraries were: PostgreSQL 9.5.3, PipelineDB 0.9.5 and ZeroMQ
4.1.5 (library used by PipelineDB for inter-process communication), as well the stated ver-
sion of MonetDB in the functionality evaluation. In the IoT Web Server tests Python requests
library 2.11.1 was used for HTTP requests, while on the streaming engine tests, the pymon-
etdb library 1.0.2 was used for the MAPI client.

Due to the potential verbosity caused by displaying the results of all AIS queries, only
some of them are displayed here. The MonetDB and PipelineDB implementation of the AIS
benchmark queries are included in Appendix D. The latency and throughput of the three
test setups of queries 1, 3 and 11 are shown in Figures 13, 14 and 15, respectively. A general
observation we can make is that AIoTA performs better.

8.2. Performance Evaluation 67

Figure 13.: Evolution of average latency and throughput for AIS query 1 with the number of clients.

Figure 14.: Evolution of average latency and throughput for AIS query 3 with the number of clients.

8.2. Performance Evaluation 68

Figure 15.: Evolution of average latency and throughput for AIS query 11 with the number of clients.

Despite considerable efforts, we did not succeed to make PostGIS work with PipelineDB.
As a consequence, the queries 7, 9 and 10 crashed on PipelineDB and could not be evaluated.
Meanwhile, MonetDB uses the pthread library to create a thread for each client on the
server. The code is barely tested with a high number of clients, hence MonetDB becomes
unstable in these situations, and many of the AIS tests crashed and had to be repeated
again. Therefore, we were not able to obtain results on MonetDB with 1024 clients.

The first main difference is Stream Processing vs Batch Processing. In PipelineDB, when-
ever a tuple enters the system, the related queries need to be evaluated, while on AIoTA,
the related queries get evaluated only once every 10 seconds. As a consequence, writes
in PipelineDB have much higher latencies than in AIoTA. At the same time, as more com-
putations were required from the testing system, the overall throughputs on PipelineDB
decrease.

Another performance bottleneck in PipelineDB is that for each new client, PipelineDB
creates a new process, and it does the same for every continuous transform and continuous
query. It uses ZeroMQ for inter-process communication. It is noticeable that this setup
influences the performance of the tests compared to AIoTA. In AIS test 11 with 1024 clients,
the system’s shared memory crashed, which shows potential problems with high number
of clients in PipelineDB as well.

The IoT Web Server + streaming engine implementation is generally in the middle of the
other two implementations. Due to inter-process communication and the baskets’ flushing,
it has higher latencies and lower throughputs compared to the streaming engine alone test.
The overhead induced by the IoT Web Server + streaming engine implementation is expected,

8.2. Performance Evaluation 69

however is also necessary, because in AIoTA, we want provide a convenient interface to IoT
devices. However, IoT Web Server + streaming engine implementation generally performs
better when compared to PipelineDB even without any special optimizations. In some tests
such as AIS Q3, the MonetDB’s instability with the pthread library will lead to an earlier
saturation point, and it is predicable that the IoT Web Server + streaming engine implemen-
tation would get surpassed by PipelineDB with 1024 clients, if the test concluded. Despite
this, the current IoT Web Server + streaming engine implementation is still satisfactory.

Finally, we can conclude that Batch Processing used in AIoTA leads to a better perfor-
mance, at the cost of losing a smooth processing of the streams with Stream Processing.
However the inter-process communication seems to be a significant factor in determining a
system’s performance. So this should be carefully taken into account in a system’s design.

9

C O N C L U S I O N A N D F U T U R E W O R K

9.1 conclusion

The growth of connected networks and embedded systems through the Internet-of-Things
has motivated the continued development of streaming engines. Distinct requirements lead
to different approaches to build streaming engines for different use case scenarios. Some
systems introduced load shedding to drop tuples for performance, while others introduced
specific query operators to mimic streams in the most authentic way possible.

In recent times, big software companies, such as Microsoft, Oracle and IBM already
integrated a DSMS solution into their products (Section 2.9). This means that the DSMS
concept is expanding, and soon it will be possible to create the first SQL standard for
streaming on databases.

Meanwhile, in this project, we were able to build a simple but flexible streaming engine
capable of answering many of the discussed streaming requirements. Most of the MonetDB
kernel remained unchanged after the integration of the streaming engine (Section 7.4.2),
hence it was possible to finish it in the available time. To make that possible, we leave to
the user to decide handling of the behavior of the streaming engine by using SQL defined
procedures, including timestamping, windowing and handling of the output. The possible
combinations cover a fairly broad spectrum of streaming features.

In our implementation, we managed to build a streaming engine over a database, which
granted us a number of important benefits, such as a well-known query language (SQL),
optimized relational operators and efficient storage. However, there are other features that
are harder to achieve, such as handling stream imperfections (tuples out-of-order, tuples
missing) and transactions involving streams. In the end, every system has its own benefits
and detriments, hence build a streaming engine that answers all the streaming requirements
perfectly is extremely difficult to achieve.

Despite being far from a real commercial product, AIoTA already provides a flexible API
in both web servers, while taking advantage of the MonetDB kernel in the streaming engine.
As revealed in the evaluation chapter, AIoTA already shows satisfying functionality and
performance in comparison to PipelineDB. Currently the code is held at the experimental

70

9.2. Future Work 71

”iot” branch of MonetDB, but will be merged with the main branch soon enough and
available on MonetDB’s next release for general use.

Finally, AIoTA showed to be a reliable streaming engine for continuous queries over
large amount of continuously and rapidly arriving data. This property is important for IoT
processing, as the technology continues to grow and is expected to generate high loads of
data [Violino, 2013].

9.2 future work

Needless to say, the first AIoTA prototype has left plenty of opportunities open for future
work.

Extending the SQL language became a recurrent task in many DSMSs (Section 2.4). Previ-
ously, DataCell attempted to extend MonetDB’s query language to accommodate streaming
behavior [Liarou et al., 2013]. The reason was to give priority to debug the streaming engine
while developing the prototype. Rather than extend the SQL parser, it is preferred to build
a reliable streaming engine on simple database object such as a procedure, which makes
it easier to debug. For this reason extending the SQL language has a very low priority on
AIoTA, and it will be left as future work.

As said before, MonetDB’s kernel code was left mostly unchanged during AIoTA devel-
opment. A future step would be adding streaming related plan optimizations as mentioned
in Section 2.8. To make that possible, some query operators have to be rewritten, which
were not given priority during this project. The Rate-based optimization will be preferable
for IoT and batch processing, as it allows to produce higher throughput rates for continuous
queries. If possible, this optimization will be taken into consideration in future develop-
ment of AIoTA.

The scheduler is the main component in the streaming engine, as it is responsible for
selecting the continuous queries to execute. The current scheduling is linear, which means
that continuous queries are selected by registering order. Later on, we should consider
extending the scheduler’s policy to include additional fairness, optimize the system’s re-
sources usage and more importantly a closer implementation to the Stream processing model
[Babcock et al., 2004].

Synopsis structures have the functionality to provide fast response to queries over a big
amount of data while reducing the memory usage [Gibbons and Matias, 1999]. Many
DSMSs, such as PipelineDB, have integrated synopsis structures natively as data types. The
addition of these structures in AIoTA would be beneficial for several reasons: approximat-
ing joins, calculate more complex aggregates such as quantiles, and making query estima-
tions, while predicting the stream size and choosing the better query plan for a continuous
query. The available synopsis structures include sampling methods, histograms and sketches.

9.2. Future Work 72

There is room for improvement in the web servers as well. New RESTful API’s can be
added to the IoT Web Server to control the scheduler, such as pausing streams and stop
the scheduler for several cycles. Similarly, the Web API Server can be improved to include
new publisher/subscriber notifications. Currently the notifications happen along with bas-
kets creation, which is slow. As a future work, the MonetDB kernel can be extended to
include asynchronous notifications to clients. PostgreSQL already accomplishes this with
the LISTEN\NOTIFY statements.1 In this way, the notifications can happen in a faster way
than the current implementation.

Meanwhile have been developed OSI application layer protocols, specific to IoT devices.
The MQ Telemetry Transport (MQTT) protocol is a publish-subscribe protocol over TCP,
designed for situations where the network bandwidth is limited.2 The MQTT is bandwidth
efficient, has low resource requirements for IoT devices, while offering message delivery
requirements at the same time. Similarly, the Constrained Application Protocol (CoAP) is
a protocol designed by IETF for low-power devices and limited network bandwidths with
support for multicast over UDP.3 This protocol has been aligned with HTTP, but for IoT
usage by reducing some of the overheads introduced by HTTP. These two protocols have
wide IoT usage [Sutaria and Govindachari, 2013], thus adopting them in the IoT Web Server
would provide additional performance for AIoTA. To further improve performance, IoT
devices might provide/receive data in binary format instead of the JSON format, however it
must be taken into consideration that different systems have distinct binary representations
which should be considered in a future implementation.

In the evaluation chapter, the inter-process communication through the baskets was the
main bottleneck showing in the Flame Graphs. As a future work, improvements should be
researched. Moving the baskets storage into the main memory instead of leaving them on
disk is one of the possible strategies.

1 More information in the official documentation: https://www.postgresql.org/docs/9.5/static/

sql-notify.html and https://www.postgresql.org/docs/9.5/static/sql-listen.html

2 ISO 20922 specification: http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
3 RFC 7252 specification: https://tools.ietf.org/html/rfc7252

https://www.postgresql.org/docs/9.5/static/sql-notify.html
https://www.postgresql.org/docs/9.5/static/sql-notify.html
https://www.postgresql.org/docs/9.5/static/sql-listen.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
https://tools.ietf.org/html/rfc7252

B I B L I O G R A P H Y

Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A new model
and architecture for data stream management. The VLDB Journal, 12(2):120–139, August
2003. ISSN 1066-8888. doi: 10.1007/s00778-003-0095-z. URL http://dx.doi.org/10.

1007/s00778-003-0095-z.

Daniel J. Abadi, Wolfgang Lindner, Samuel R. Madden, and Jorg Schuler. An integration
framework for sensor networks and data stream management systems. Demonstration.
VLDB, 2004.

Charu C. Aggarwal. An Introduction to Data Streams, pages 1–8. Springer US, Boston, MA,
2007. ISBN 978-0-387-47534-9. doi: 10.1007/978-0-387-47534-9 1. URL http://dx.doi.

org/10.1007/978-0-387-47534-9_1.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven Lax,
Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: Fault-tolerant
stream processing at internet scale. In Very Large Data Bases, pages 734–746, 2013.

M. Al-Kateb, Byung Suk Lee, and X.S. Wang. Adaptive-size reservoir sampling over data
streams. In Scientific and Statistical Database Management, 2007. SSBDM ’07. 19th Interna-
tional Conference on, pages 22–22, July 2007. doi: 10.1109/SSDBM.2007.29.

Cristina Alcaraz, Pablo Najera, Javier Lopez, and Rodrigo Roman. Wireless sensor networks
and the internet of things: Do we need a complete integration? In 1st International
Workshop on the Security of the Internet of Things (SecIoT’10), page xxxx, Tokyo (Japan),
December 2010. IEEE, IEEE.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query language:
Semantic foundations and query execution. The VLDB Journal, 15(2):121–142, June 2006.
ISSN 1066-8888. doi: 10.1007/s00778-004-0147-z. URL http://dx.doi.org/10.1007/

s00778-004-0147-z.

Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. Bipartite Graphs and Their
Applications. Cambridge University Press, New York, NY, USA, 1998. ISBN 0-521-59345-X.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys Thomas. Operator
scheduling in data stream systems. The VLDB Journal, 13(4):333–353, December 2004.

73

http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/978-0-387-47534-9_1
http://dx.doi.org/10.1007/978-0-387-47534-9_1
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z

Bibliography 74

ISSN 1066-8888. doi: 10.1007/s00778-004-0132-6. URL http://dx.doi.org/10.1007/

s00778-004-0132-6.

Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIGMOD
Rec., 30(3):109–120, September 2001. ISSN 0163-5808. doi: 10.1145/603867.603884. URL
http://doi.acm.org/10.1145/603867.603884.

Mike Barnett Robert DeLine Danyel Fisher John C. Platt James F. Terwilliger John Werns-
ing Badrish Chandramouli, Jonathan Goldstein. Trill: A high-performance incre-
mental query processor for diverse analytics. VLDB Very Large Data Bases,
August 2015. URL https://www.microsoft.com/en-us/research/publication/

trill-a-high-performance-incremental-query-processor-for-diverse-analytics/.

Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zaniolo. A data stream
language and system designed for power and extensibility. In Proceedings of the 15th ACM
International Conference on Information and Knowledge Management, CIKM ’06, pages 337–
346, New York, NY, USA, 2006. ACM. ISBN 1-59593-433-2. doi: 10.1145/1183614.1183664.
URL http://doi.acm.org/10.1145/1183614.1183664.

Sharma Chakravarthy and Qingchun Jiang. Stream Data Processing: A Quality of Service
Perspective Modeling, Scheduling, Load Shedding, and Complex Event Processing. Springer
Publishing Company, Incorporated, 1st edition, 2009. ISBN 0387710027, 9780387710020.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert Henry, Robert
Bradshaw, and Nathan. Flumejava: Easy, efficient data-parallel pipelines. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), pages 363–
375, 2 Penn Plaza, Suite 701 New York, NY 10121-0701, 2010. URL http://dl.acm.org/

citation.cfm?id=1806638.

Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. Gigas-
cope: A stream database for network applications. In Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’03, pages 647–651, New
York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi: 10.1145/872757.872838. URL
http://doi.acm.org/10.1145/872757.872838.

CWI. Monetdb architecture. https://www.monetdb.org/Documentation/Manuals/

MonetDB/Architecture, 2015. Accessed: 2015-10-30.

Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join processing
over data streams. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’03, pages 40–51, New York, NY, USA, 2003. ACM. ISBN
1-58113-634-X. doi: 10.1145/872757.872765. URL http://doi.acm.org/10.1145/872757.

872765.

http://dx.doi.org/10.1007/s00778-004-0132-6
http://dx.doi.org/10.1007/s00778-004-0132-6
http://doi.acm.org/10.1145/603867.603884
https://www.microsoft.com/en-us/research/publication/trill-a-high-performance-incremental-query-processor-for-diverse-analytics/
https://www.microsoft.com/en-us/research/publication/trill-a-high-performance-incremental-query-processor-for-diverse-analytics/
http://doi.acm.org/10.1145/1183614.1183664
http://dl.acm.org/citation.cfm?id=1806638
http://dl.acm.org/citation.cfm?id=1806638
http://doi.acm.org/10.1145/872757.872838
https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture
https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture
http://doi.acm.org/10.1145/872757.872765
http://doi.acm.org/10.1145/872757.872765

Bibliography 75

Dennis de Vries. Amsterdam krijgt crowdsourced iot-netwerk, rest
van de wereld volgt snel. http://siliconcanals.nl/nieuws/

the-things-network-lanceert-gratis-iot-netwerk-amsterdam/, August 2015.
Accessed: 2016-07-18.

Dave Evans. The internet of things how the next evolution of the internet is changing
everything. http://www.iotsworldcongress.com/documents/4643185/0/IoT_IBSG_

0411FINAL+Cisco.pdf, April 2011. Accessed: 2015-12-14.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch.
Scalable and Fault-tolerant Stateful Stream Processing. In Andrew V. Jones and Nicholas
Ng, editors, 2013 Imperial College Computing Student Workshop, volume 35 of OpenAccess
Series in Informatics (OASIcs), pages 11–18, Dagstuhl, Germany, 2013. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-63-7. doi: http://dx.doi.org/10.
4230/OASIcs.ICCSW.2013.11. URL http://drops.dagstuhl.de/opus/volltexte/2013/

4266.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, 2000. AAI9980887.

Minos Garofalakis. Wavelets on Streams, pages 3446–3451. Springer US, Boston, MA, 2009.
ISBN 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9 453. URL http://dx.doi.org/

10.1007/978-0-387-39940-9_453.

Mrunal Gawade and Martin Kersten. Tomograph: Highlighting query parallelism in a
multi-core system. In Proceedings of the Sixth International Workshop on Testing Database Sys-
tems, DBTest ’13, pages 3:1–3:6, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2151-8.
doi: 10.1145/2479440.2479444. URL http://doi.acm.org/10.1145/2479440.2479444.

Thanaa M. Ghanem, Moustafa A. Hammad, Mohamed F. Mokbel, Walid G. Aref, and
Ahmed K. Elmagarmid. Incremental evaluation of sliding-window queries over data
streams. IEEE Trans. Knowl. Data Eng., 19(1):57–72, 2007. URL http://dblp.uni-trier.

de/db/journals/tkde/tkde19.html#GhanemHMAE07.

T.M. Ghanem. Supporting predicate-window queries in data stream management systems.
In Data Engineering Workshops, 2006. Proceedings. 22nd International Conference on, pages
x139–x139, 2006. doi: 10.1109/ICDEW.2006.140.

Phillip B. Gibbons and Yossi Matias. Synopsis data structures for massive data sets.
In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’99, pages 909–910, Philadelphia, PA, USA, 1999. Society for Industrial and Applied
Mathematics. ISBN 0-89871-434-6. URL http://dl.acm.org/citation.cfm?id=314500.

315083.

http://siliconcanals.nl/nieuws/the-things-network-lanceert-gratis-iot-netwerk-amsterdam/
http://siliconcanals.nl/nieuws/the-things-network-lanceert-gratis-iot-netwerk-amsterdam/
http://www.iotsworldcongress.com/documents/4643185/0/IoT_IBSG_0411FINAL+Cisco.pdf
http://www.iotsworldcongress.com/documents/4643185/0/IoT_IBSG_0411FINAL+Cisco.pdf
http://drops.dagstuhl.de/opus/volltexte/2013/4266
http://drops.dagstuhl.de/opus/volltexte/2013/4266
http://dx.doi.org/10.1007/978-0-387-39940-9_453
http://dx.doi.org/10.1007/978-0-387-39940-9_453
http://doi.acm.org/10.1145/2479440.2479444
http://dblp.uni-trier.de/db/journals/tkde/tkde19.html#GhanemHMAE07
http://dblp.uni-trier.de/db/journals/tkde/tkde19.html#GhanemHMAE07
http://dl.acm.org/citation.cfm?id=314500.315083
http://dl.acm.org/citation.cfm?id=314500.315083

Bibliography 76

John Greenough. The internet of things will be the world’s most massive de-
vice market and save companies billions of dollars. http://uk.businessinsider.

com/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T, Novem-
ber 2014. Accessed: 2016-05-09.

Brendan Gregg. The flame graph. Queue, 14(2):10:91–10:110, March 2016. ISSN 1542-7730.
doi: 10.1145/2927299.2927301. URL http://doi.acm.org/10.1145/2927299.2927301.

Georg Gruetter. The internet of things for the rest of us. http://blog.bosch-si.com/

categories/technology/2012/09/the-internet-of-things-for-the-rest-of-us/, 9

2012. Accessed: 2015-11-16.

USA Coast Guard. Automatic identification system overview. http://www.navcen.uscg.

gov/?pageName=aismain, 2014. Accessed: 2016-07-22.

Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms
for histogram construction problems. ACM Trans. Database Syst., 31(1):396–438, March
2006. ISSN 0362-5915. doi: 10.1145/1132863.1132873. URL http://doi.acm.org/10.

1145/1132863.1132873.

Rui Han and Xiaoyi Lu. On big data benchmarking. CoRR, abs/1402.5194, 2014. URL
http://arxiv.org/abs/1402.5194.

Derrick Harris. Survey shows huge popularity spike for apache spark. http://fortune.

com/2015/09/25/apache-spark-survey/, September 2015. Accessed: 2016-02-22.

Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos, and Peter Boncz. Po-
sitional update handling in column stores. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10, pages 543–554, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.1807227. URL
http://doi.acm.org/10.1145/1807167.1807227.

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a cracked database. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing,
China, June 12-14, 2007, pages 413–424, 2007. doi: 10.1145/1247480.1247527. URL http:

//doi.acm.org/10.1145/1247480.1247527.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender, and Martin
Kersten. Monetdb: Two decades of research in column-oriented database architectures.
IEEE Data Eng. Bull, 2012.

Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom, Hari
Balakrishnan, Uǧur Çetintemel, Mitch Cherniack, Richard Tibbetts, and Stan Zdonik.

http://uk.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T
http://uk.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T
http://doi.acm.org/10.1145/2927299.2927301
http://blog.bosch-si.com/categories/technology/2012/09/the-internet-of-things-for-the-rest-of-us/
http://blog.bosch-si.com/categories/technology/2012/09/the-internet-of-things-for-the-rest-of-us/
http://www.navcen.uscg.gov/?pageName=aismain
http://www.navcen.uscg.gov/?pageName=aismain
http://doi.acm.org/10.1145/1132863.1132873
http://doi.acm.org/10.1145/1132863.1132873
http://arxiv.org/abs/1402.5194
http://fortune.com/2015/09/25/apache-spark-survey/
http://fortune.com/2015/09/25/apache-spark-survey/
http://doi.acm.org/10.1145/1807167.1807227
http://doi.acm.org/10.1145/1247480.1247527
http://doi.acm.org/10.1145/1247480.1247527

Bibliography 77

Towards a streaming sql standard. Proc. VLDB Endow., 1(2):1379–1390, August 2008. ISSN
2150-8097. doi: 10.14778/1454159.1454179. URL http://dx.doi.org/10.14778/1454159.

1454179.

Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver Spatscheck. A
heartbeat mechanism and its application in gigascope. In Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, VLDB ’05, pages 1079–1088. VLDB Endow-
ment, 2005. ISBN 1-59593-154-6. URL http://dl.acm.org/citation.cfm?id=1083592.

1083716.

Robert Kajic. Evaluation of the stream query language cql. Master’s thesis, Uppsala Uni-
versity - Department of Information Technology, 2010.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter
heron: Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’15, pages 239–250, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.2742788. URL
http://doi.acm.org/10.1145/2723372.2742788.

Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages and data models for
database sequences and data streams. In Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30, VLDB ’04, pages 492–503. VLDB Endowment, 2004.
ISBN 0-12-088469-0. URL http://dl.acm.org/citation.cfm?id=1316689.1316733.

Erietta Liarou. MonetDB/DataCell: leveraging the column-store database technology for efficient
and scalable stream processing. PhD thesis, University of Amsterdam, January 2013.

Erietta Liarou, Stratos Idreos, Stefan Manegold, and Martin L. Kersten. Enhanced stream
processing in a dbms kernel. In Proceedings of the 16th International Conference on Extending
Database Technology (EDBT), pages 501–512, Genoa, Italy, 2013.

David Luckham. What’s the difference between esp and cep? http://www.complexevents.

com/2006/08/01/what%E2%80%99s-the-difference-between-esp-and-cep/, August
2006. Accessed: 2016-07-15.

Sergiy Matusevych, Alex Smola, and Amr Ahmed. Hokusai — sketching streams in real
time. In Proceedings of the 28th International Conference on Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 2012. URL http://www.cs.cmu.edu/~amahmed/papers/hokusai.

pdf.

Brian Babcock Mayur, Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding
techniques for data stream systems. In In Proc. of the 2003 Workshop on Management and
Processing of Data Streams (MPDS, 2003.

http://dx.doi.org/10.14778/1454159.1454179
http://dx.doi.org/10.14778/1454159.1454179
http://dl.acm.org/citation.cfm?id=1083592.1083716
http://dl.acm.org/citation.cfm?id=1083592.1083716
http://doi.acm.org/10.1145/2723372.2742788
http://dl.acm.org/citation.cfm?id=1316689.1316733
http://www.complexevents.com/2006/08/01/what%E2%80%99s-the-difference-between-esp-and-cep/
http://www.complexevents.com/2006/08/01/what%E2%80%99s-the-difference-between-esp-and-cep/
http://www.cs.cmu.edu/~amahmed/papers/hokusai.pdf
http://www.cs.cmu.edu/~amahmed/papers/hokusai.pdf

Bibliography 78

Martin Kersten Milena Ivanova and Fabian Groffen. Advances in Databases and Informa-
tion Systems: 16th East European Conference, ADBIS 2012, Poznań, Poland, September 18-21,
2012. Proceedings, chapter Just-In-Time Data Distribution for Analytical Query Process-
ing, pages 209–222. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-
3-642-33074-2. doi: 10.1007/978-3-642-33074-2 16. URL http://dx.doi.org/10.1007/

978-3-642-33074-2_16.

Hannes Muhleisen. Citus data cstore fdw (postgresql column store)
vs. monetdb tpc-h shootout. https://www.monetdb.org/content/

citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout, 7 2014. Accessed:
2016-05-01.

Tadao Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of the IEEE,
volume 77, pages 541–580, April 1989. doi: 10.1109/5.24143. URL http://dx.doi.org/

10.1109/5.24143.

Mohammad Obaid, Ekaterina Kurdyukova, and Elisabeth Andre. City pulse: Support-
ing going-out activities with a context-aware urban display. In Proceedings of the 9th
International Conference on Advances in Computer Entertainment, ACE’12, pages 529–532,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-34291-2. doi: 10.1007/
978-3-642-34292-9 51. URL http://dx.doi.org/10.1007/978-3-642-34292-9_51.

Kostas Patroumpas and Timos Sellis. Window specification over data streams. In Current
Trends in Database — Technology EDBT 2006, volume 4254 of Lecture Notes in Computer Sci-
ence, pages 445–464. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-46788-5. doi: 10.
1007/11896548 35. URL http://www.springerlink.com/content/h2462885511852k5/.

Shao Qian and YiLi Lu. A modified chain scheduling algorithm in data stream system.
In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on,
volume 4, pages 568–570, Feb 2010. doi: 10.1109/ICCAE.2010.5451576.

Mark Raasveldt. Vectorized udfs in column-stores. Master’s thesis, Utrecht University,
Utrecht, The Netherlands, December 2015.

Saeed Shahrivari. Beyond batch processing: Towards real-time and streaming big data.
CoRR, abs/1403.3375, 2014. URL http://arxiv.org/abs/1403.3375.

Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of real-time
stream processing. SIGMOD Rec., 34(4):42–47, December 2005. ISSN 0163-5808. doi:
10.1145/1107499.1107504. URL http://doi.acm.org/10.1145/1107499.1107504.

Ronak Sutaria and Raghunath Govindachari. Making sense of interoperability: Protocols
and standardization initiatives in iot. In 2nd International Workshop on Computing and

http://dx.doi.org/10.1007/978-3-642-33074-2_16
http://dx.doi.org/10.1007/978-3-642-33074-2_16
https://www.monetdb.org/content/citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout
https://www.monetdb.org/content/citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-3-642-34292-9_51
http://www.springerlink.com/content/h2462885511852k5/
http://arxiv.org/abs/1403.3375
http://doi.acm.org/10.1145/1107499.1107504

Bibliography 79

Networking for Internet of Things (CoMNet-IoT) held in conjunction with 14th International
Conference on Distributed Computing and Networking (ICDCN 2013), 2013.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, San-
jeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat,
Sailesh Mittal, and Dmitriy Ryaboy. Storm@twitter. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’14, pages 147–156, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2376-5. doi: 10.1145/2588555.2595641. URL
http://doi.acm.org/10.1145/2588555.2595641.

Stratis D. Viglas and Jeffrey F. Naughton. Rate-based query optimization for streaming
information sources. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’02, pages 37–48, New York, NY, USA, 2002. ACM. ISBN
1-58113-497-5. doi: 10.1145/564691.564697. URL http://doi.acm.org/10.1145/564691.

564697.

Bob Violino. The ’internet of things’ will mean really, really big
data. http://www.infoworld.com/article/2611319/computer-hardware/

the--internet-of-things--will-mean-really--really-big-data.html, July 2013.
Accessed: 2016-01-07.

wot.io. wot.io data service exchange for connected device platforms. https://www.wot.io/
wp-content/uploads/2015/11/WOT_045-Product-Brief_4pgs-FINAL-web.pdf, Novem-
ber 2015. Accessed: 2015-12-14.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=1863103.1863113.

Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic plan migration
for continuous queries over data streams. In Proceedings of the 2004 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’04, pages 431–442, New York,
NY, USA, 2004. ACM. ISBN 1-58113-859-8. doi: 10.1145/1007568.1007617. URL
http://doi.acm.org/10.1145/1007568.1007617.

http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/564691.564697
http://doi.acm.org/10.1145/564691.564697
http://www.infoworld.com/article/2611319/computer-hardware/the--internet-of-things--will-mean-really--really-big-data.html
http://www.infoworld.com/article/2611319/computer-hardware/the--internet-of-things--will-mean-really--really-big-data.html
https://www.wot.io/wp-content/uploads/2015/11/WOT_045-Product-Brief_4pgs-FINAL-web.pdf
https://www.wot.io/wp-content/uploads/2015/11/WOT_045-Product-Brief_4pgs-FINAL-web.pdf
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://doi.acm.org/10.1145/1007568.1007617

A
I O T W E B S E RV E R I M P L E M E N TAT I O N D E TA I L S

The source code of IoT Web Server is available here: https://dev.monetdb.org/hg/MonetDB/
file/iot/clients/iotclient.

a.1 server arguments

The IoT Web Server takes the following arguments:

usage: main.py [-f [DIRECTORY]] [-l [FILE_PATH]] [-po [POLLING]] [-n [NAME]]

[-ih [HOST]] [-ip [PORT]] [-ah [HOST]] [-ap [PORT]] [-h [HOST]]

[-p [PORT]] [-d [DATABASE]] [-u [USER]] [-?]

optional arguments:

-f [DIRECTORY], --filesystem [DIRECTORY]

Baskets location directory (default: /var/iotserver)

-l [FILE_PATH], --log [FILE_PATH]

Logging file location (default:

/var/log/iot/iotserver.log)

-po [POLLING], --polling [POLLING]

Polling interval in seconds to the database for

streams updates (default: 60)

-n [NAME], --name [NAME]

Host identifier name. If not provided, the machine

MAC address will be used by default

-ih [HOST], --ihost [HOST]

Administration server host (default: 0.0.0.0)

-ip [PORT], --iport [PORT]

Administration server port (default: 8001)

-ah [HOST], --ahost [HOST]

Application server host (default: 127.0.0.1)

-ap [PORT], --aport [PORT]

80

https://dev.monetdb.org/hg/MonetDB/file/iot/clients/iotclient
https://dev.monetdb.org/hg/MonetDB/file/iot/clients/iotclient

A.2. Supported Data Types 81

Application server port (default: 8000)

-h [HOST], --host [HOST]

MonetDB database host (default: 127.0.0.1)

-p [PORT], --port [PORT]

Database listening port (default: 50000)

-d [DATABASE], --database [DATABASE]

Database name (default: iotdb)

-u [USER], --user [USER]

Database user (default: monetdb)

-?, --help Display this help

a.2 supported data types

The list contains all available data types on IOT Web Server. The available data types were
made as much compatible with MonetDB’s data types1. For each column definition, one of
the types from the list must be provided along with the column’s name.

For IoT usage, some extra types are added for further validations if necessary. These
types are converted internally to an existing MonetDB type, therefore they exist just for
added validation. The respective MonetDB mapping is represented after the dash symbol
(”-”) (e.g. MAC - Char(17), the IoT type MAC maps into MonetDB’s Char type with 45

bytes in length).

text, string, clob - clob

String types with unbounded length. The to be inserted data value must be provided as a
JSON string.

char, varchar - char

MonetDB’s string types with a bounded length. The limit parameter must be provided as
an integer. Later on, the insertion must be handed over as a JSON string within the limit.

uuid - uuid

An Universally Unique Identifier according to RFC 41222.
An UUID example is 550e8400-e29b-41d4-a716-446655440000.

1 MonetDB data types: https://www.monetdb.org/Documentation/Manuals/SQLreference/Datatypes
2 About RFC 4122: https://www.ietf.org/rfc/rfc4122.txt

https://www.monetdb.org/Documentation/Manuals/SQLreference/Datatypes
https://www.ietf.org/rfc/rfc4122.txt

A.2. Supported Data Types 82

mac - char(17)

A Media Access Control Address identifier. A MAC example is 48-2C-6A-1E-59-3D. As Mon-
etDB does not have a MAC equivalent data type yet, the data is stored as char(17).

url - url

A Uniform Resource Locator as a specific type of a URI is validated according to RFC 3987.3

inet - inet

An IPv4 address. An IPv4 example is 234.124.12.88.

inetsix - char(45)

An IPv6 address. The value must be a JSON String. As MonetDB does not have an Ipv6
equivalent data type yet, the data is stored as char(45).

regex - clob

A string always validated with a provided regular expression. The JSON must contain a
regex key with the regular expression. As MonetDB does not have a regex equivalent data
type yet, internally is represent as a CLOB. For example "regex": [0-9a-zA-Z]*, means a
string with only alphanumeric characters.

enum - char

A SQL CHAR type validated over a pre-defined array of values. During creation in the
JSON, the values key must be presented with a JSON array of strings containing the values
of the enum (ex: "values": ["red", "blue", "green"]). The default value, if present,
must be one of the values.

For all the upcoming types, minimum and maximum values can be added for valida-
tion. During the stream creation, if desired these values must be specified in the JSON as
"maximum": and "minimum": respectively. As an example:
{"name":"hour","type": "integer", "minimum":0, "maximum": 23} creates an integer
column bounded between 0 and 23.

3 About RFC 3987: https://www.ietf.org/rfc/rfc3987.txt

https://www.ietf.org/rfc/rfc3987.txt

A.2. Supported Data Types 83

tinyint, smallint, integer, bigint, hugeint - tinyint, smallint, integer, bigint, hugeint

These types represent signed integers. The type name specifies the bit capacity (8, 16, 32,
64 and 128 respectively). If the value is grater than the bit capacity, it will be truncated. The
insertion must be provided as a JSON integer. During the bootstrap, the server will check
if hugeint type is supported by the MonetDB server.

real, float, double - real, double

Floating point numbers where the type name specifies its bit capacity. If the inserted value
is grater than the bit capacity, it will be truncated to the nearest value. real numbers are 32
bit, while float and double are 64 bit. The insertion must be provided as a JSON float.

decimal, numeric - decimal

Numbers with a specific precision and scale. The precision must be between 1 and 18
(default 18), and the scale between 0 and the precision (default 0). The insertion must be
supplied as a JSON float. If Hugeint type is available, then the max precision possible will
be 38 (e.g. {"name":"taxrate","type": "decimal", "precision":12, "scale": 10}).

boolean - boolean

A true or false value. The inserted column has to be a JSON boolean.

date - date

A date in the in the Gregorian Calendar. The insertion must be expressed as a string in
format YYYY-MM-DD (e.g. 2016-07-31). Likewise numbers, a minimum and a maximum
values can be defined for further validation in Date, Time and Timestamp types.

time - time

The time of the day with timezone. The insertion must be expressed as a string in the
regular expression format HH:MM:SS\.sss(Z|([+-]HH:MM))? (e.g. 12:30:45.222+01:00).

timestamp - timestamp

A timestamp according to RFC 33394 with timezone. The regular expression is the standard
ISO 86015 string with timezone.
An example ISO 8601 string insertion is 2016-07-19T12:09:58+02:00.

4 About RFC 3339: https://www.ietf.org/rfc/rfc3339.txt
5 About ISO 8601 format: https://www.w3.org/TR/NOTE-datetime

https://www.ietf.org/rfc/rfc3339.txt
https://www.w3.org/TR/NOTE-datetime

A.3. RESTful API 84

interval - interval

Intervals of time according to the grammar provided in MonetDB documentation6 without
the precision. The insertion must be supplied as a JSON integer.

a.3 restful api

All features of the IoT Web Server are available through a RESTful API. In this section, each
RESTful resource’s URI is listed along with the corresponding HTTP method: GET, POST
or DELETE. In a request URI parameters are indicated by the ”<” and ”>” symbols, and
should be replaced by their actual value.

a.3.1 Administration Server

The administration server provides the functionality to create and delete streams. Should
be listening exclusively on localhost.

/context - POST method

Creates a stream using a pre-defined JSON schema. The JSON must include the stream’s
schema, the stream’s name, the flushing method which can be time based (time), tuple
based (tuple) or automatic (auto), and the stream’s columns description. For tuple based
flushing, the number of tuples to flush must be provided using the number field. For time
based flushing, the interval field tells the time units between flushes and the unit field must
be ”s”, ”m” or ”h” for seconds, minutes or hours respectively. For each column, one must
specify its type, name, and optionally, a default value and if this column’s value is nullable.
See Appendix A.2 for all supported data types, and their formats.

If the has hostname parameter is supplied as true, then an additional column will be
created in the stream with the IoT Web Server’s replica hostname where each tuple was
inserted (to be used with horizontal scaling). A JSON request example for this resource is
shown bellow:

{

"schema": "measures",

"stream": "temperature",

"has_hostname": false,

"flushing": {

"base": "time",

6 Grammar for time intervals: https://www.monetdb.org/Documentation/SQLreference/Temporal

https://www.monetdb.org/Documentation/SQLreference/Temporal

A.3. RESTful API 85

"number": 5,

"interval": "m"

},

"columns": [

{ "type": "real", "name": "temperature", "nullable": true },

{ "type": "clob", "name": "sensorid", "default": "living room" }

]

}

The corresponding create SQL statement would be:
CREATE STREAM TABLE measures.temperature (temperature REAL NULL, sensorid

TEXT NOT NULL DEFAULT "living room", implicit_timestamp TIMESTAMP WITH TIME

ZONE NOT NULL);

The STREAM keyword is used to identify this table as a stream table as opposed to a regular
table. This distinction is necessary for the plan generation of continuous queries (Section
7.4). Note that a implicit_timestamp column is automatically added to denote the time of
insertion of the tuple.

/context - DELETE method

Deletes an existing stream. Only the stream’s schema and name are required. To delete the
stream created in the previous example, one can use the following JSON request:

{

"schema": "measures",

"stream": "temperature"

}

/streams - GET method

Returns a JSON response with details about all the streams currently active on the IoT Web
Server. For each stream, besides its schema and name, it has the hostname column and an
implicit timestamp (streams created in MonetDB do not have this timestamp), it provides
description of its columns, and the flushing method with the number of tuples inserted in
the current basket. An example response with one stream is shown bellow:

{

"streams_count": 1,

"streams_listing": [

{

"schema": "measures",

A.3. RESTful API 86

"stream": "temperature",

"has_timestamp": true,

"has_hostname": false,

"flushing": {

"base": "time",

"number": 5,

"interval": "m",

"tuples_inserted_per_basket": 0

},

"columns": [

{ "type": "real", "name": "temperature", "nullable": true },

{ "type": "clob", "name": "sensorid", "default": "living room" }

]

}

]

}

a.3.2 Application Server

The application server supplies resources to make insertions on streams. Should be listen-
ing to all network interfaces.

/streams - GET method

Same as /streams - GET method from Administration Server above.

/stream/<schema name>/<stream name> - POST method

Insert a batch of tuples on the given stream in the URI. The insertion must be an array of
JSON objects with pairs of column-value. All tuples are validated according to the data
types defined for each column and the JSON schema generated for the stream. If there is
an invalid tuple, none of the tuples are inserted. The implicit timestamp and the host iden-
tifier are automatically added by the server as well the default and null values. Bellow is an
example showing how to insert several tuples into the ”temperature” stream in the ”mea-
sures” schema, with a POST /stream/measures/temperature request. For the first tuple,
the ”sensorid” value is ”living room” as the default value, while the third ”temperature”
value is NULL.

[

{ "temperature": 32.6 },

A.3. RESTful API 87

{ "sensorid": "kitchen", "temperature": 34.2 },

{ "sensorid": "bathroom" }

]

/stream/<schema name>/<stream name> - GET method

Returns a JSON response with details about the requested stream. In the same format as the
responses in the /streams resource, but contains information at only one stream. Bellow is
an example JSON response of GET /stream/measures/temperature after the tuples in the
above request have been inserted:

{

"schema": "measures",

"stream": "temperature",

"has_timestamp": true,

"has_hostname": false,

"flushing": {

"base": "time",

"number": 5,

"interval": "m",

"tuples_inserted_per_basket": 3

},

"columns": [

{ "type": "real", "name": "temperature", "nullable": false },

{ "type": "clob", "name": "sensorid", "nullable": false }

]

}

B
W E B A P I S E RV E R I M P L E M E N TAT I O N D E TA I L S

The source code of Web API Server is available here: https://dev.monetdb.org/hg/MonetDB/
file/iot/clients/iotapi.

b.1 server arguments

The Web API Server takes the following arguments:

usage: main.py [-f [DIRECTORY]] [-l [FILE_PATH]] [-po [POLLING]] [-sh [HOST]]

[-sp [PORT]] [-h [HOST]] [-p [PORT]] [-d [DATABASE]]

[-u [USER]] [-?]

optional arguments:

-f [DIRECTORY], --filesystem [DIRECTORY]

Baskets location directory (default: /var/iotapi)

-l [FILE_PATH], --log [FILE_PATH]

Logging file location (default:

/var/log/iot/iotapi.log)

-po [POLLING], --polling [POLLING]

Polling interval in seconds to the database for

streams updates (default: 60)

-sh [HOST], --shost [HOST]

Web API server host (default: 0.0.0.0)

-sp [PORT], --sport [PORT]

Web API server port (default: 8002)

-h [HOST], --host [HOST]

MonetDB database host (default: 127.0.0.1)

-p [PORT], --port [PORT]

Database listening port (default: 50000)

-d [DATABASE], --database [DATABASE]

Database name (default: iotdb)

88

https://dev.monetdb.org/hg/MonetDB/file/iot/clients/iotapi
https://dev.monetdb.org/hg/MonetDB/file/iot/clients/iotapi

B.2. WebSockets API 89

-u [USER], --user [USER]

Database user (default: monetdb)

-?, --help Display this help

b.2 websockets api

A Websockets session is asynchronous, which means that a request or response message
might be provided at any time during the session. For that reason, all messages are la-
beled with an identifier to discriminate the client’s request on the server, and the respective
response to the client using a defined JSON schema.

Clients requests must be handed over as text frames, with a JSON formatted string. All
the requests must include a request field indicating the intended action to perform in the
server, followed by the other specific fields depending on the request. The possible requests
are listed bellow. The featured examples use the temperatures stream also used in the IoT
Web Server’s examples. These examples can be interpreted as the output of a continuous
query that performs the identity function on the input stream (copying the input to the
output with no changes), thus generating the same output content.

b.2.1 Requests

To be performed by the web clients.

subscribe

Subscribes for notifications of new baskets from a specific output stream. Whenever a
basket is created, the server sends a notification message indicating the number of inserted
tuples in the new basket. The web client has to specify the stream’s name and schema. To
subscribe to our temperature stream, the following JSON would suffice:

{

"request": "subscribe",

"schema": "measures",

"stream": "temperature"

}

unsubscribe

Unsubscribes a previous subscribed stream for a client. The web client has to specify the
stream’s name and schema. The format of the request is the same as above, just changing
the request keyword from ”subscribe” to ”unsubscribe”.

B.2. WebSockets API 90

read

Reads output result from baskets generated by a stream. The web client does not have to
be subscribed to the stream in order to read from it. It is possible to provide an offset, a
limit and a basket number where the read should start. The request will always provide
a result, even if the query results in zero tuples. If the number of tuples in the available
baskets is less than requested in the request, the remaining tuples will be retrieved from
the next basket if exists. The web client has to specify the stream’s name and schema. An
example request for the temperatures stream is as follows:

{

"request": "read",

"schema": "measures",

"stream": "temperature",

"basket": 1,

"offset": 0,

"limit": 3

}

info

Retrieves information about a giving stream if a stream’s name and schema are provided,
otherwise all existing streams in the system. To request information of the temperature
stream:

{

"request": "info",

"schema": "measures",

"stream": "temperature"

}

b.2.2 Responses

To be delivered by the Web API Server.

error

A message reporting an internal error occurred on the server. The message contains a string
explaining the error. The following error message happens when the web client attempts
to unsubscribed from a not-subscribed stream:

B.2. WebSockets API 91

{

"response": "error",

"message":

"Stream measures.temperature is not present in the user’s subscriptions!"

}

subscribed

Message confirming the subscription to new baskets notifications of a stream.

{

"response": "subscribed",

"schema": "measures",

"stream": "temperature"

}

unsubscribed

Message confirming the removal of a subscription to new baskets notifications of a stream.
The message format is the same as the ”subscribed” response, only with the response type
changed into ”unsubscribed”.

removed

If a stream is removed in the MonetDB engine (using the SQL Front-End), while there are
still clients subscribed, then this message is sent. The message format is the same as the
”subscribed” response, only with the response type changed into ”removed”.

notification

Notification of a new basket creation for a subscribed stream. The message contains the bas-
ket number and the number of tuples in the new basket. An example notification response
for the temperatures stream is as follows:

{

"response": "notification",

"schema": "measures",

"stream": "temperature",

"basket": 2,

"count": 50

}

B.2. WebSockets API 92

read

Response message for a read query. Contains a list of the reconstructed tuples from the
output baskets. If a column has a null value, the JSON’s null value will be used. The
query result for the early ”read” request for the temperatures stream is as follows:

{

"response": "read",

"schema": "measures",

"stream": "temperature",

"count": 3,

"tuples": [

{ "sensorid": "living room", "temperature": 32.6,

"implicit_timestamp": "2016-06-17T09:23:22+00:00" },

{ "sensorid": "kitchen", "temperature": 34.2,

"implicit_timestamp": "2016-06-17T09:23:22+00:00" },

{ "sensorid": "bathroom", "temperature": null,

"implicit_timestamp": "2016-06-17T09:23:22+00:00" }

]

}

data

Returns a info message regarding all the streams in the system. It provides the details of
each column definition, number of baskets and the number of tuples in each. Note that the
possible types list are restricted to the MonetDB kernel. An example with the temperatures
stream:

{

"response": "data",

"streams_count": 1,

"streams_listing": [

{

"schema": "measures",

"stream": "temperature",

"columns": [

{ "name": "sensorid", "type": "clob",

"nullable": false, "default": "living room" },

{ "name": "temperature", "type": "real",

"nullable": true, "default": null },

{ "name": "implicit_timestamp", "type": "timestamp with time zone",

B.2. WebSockets API 93

"nullable": false, "default": null }

],

"baskets_count": 3,

"baskets_listing": [

{ "number": 1, "count": 3 },

{ "number": 2, "count": 25 },

{ "number": 3, "count": 12 }

]

}

]

}

info

Message with details about a stream including both columns and baskets details. The
message format is similar to a ”data” response, but with information of only one stream.
The JSON ”streams listing” array gets deprecated, and the single stream data is provided
in the core JSON object.

{

"response": "info",

"schema": "measures",

"stream": "temperature",

"columns": [

{ "name": "sensorid", "type": "clob",

"nullable": false, "default": "living room" },

{ "name": "temperature", "type": "real",

"nullable": true, "default": null },

{ "name": "implicit_timestamp", "type": "timestamp with time zone",

"nullable": false, "default": null }

],

"baskets_count": 3,

"baskets_listing": [

{ "number": 1, "count": 3 },

{ "number": 2, "count": 25 },

{ "number": 3, "count": 12 }

]

}

C
M O N E T D B S T R E A M I N G E N G I N E I M P L E M E N TAT I O N D E TA I L S

c.1 final mal execution plans

This section lists the final MAL execution plans (after all optimizers have been applied)
for the queries evaluated on Section 7.4.2 using the respective optimization pipelines. For a
better understanding of these plans, a reading over the MAL reference on MonetDB website
is recommended, as a full description of MAL language would be too verbose to detail on
this report.1

c.1.1 Regular table

The following MAL plan depicts the final execution plan for the example query on a regular
table using the EXPLAIN statement, using the default pipe optimization pipeline.

+---+

| mal |

+===+

| function user.s16_1():void; |

| X_45:void := querylog.define("explain insert into results select |

| min(val), count(*), avg(val) from |

| temperature;", "default_pipe",29); |

| barrier X_64 := language.dataflow(); |

| X_0 := sql.mvc(); |

| C_1:bat[:oid] := sql.tid(X_0,"iot","temperature"); |

| X_4:bat[:lng] := sql.bind(X_0,"iot","temperature","val",0); |

| (C_7:bat[:oid],r1_8:bat[:lng]) := sql.bind(X_0,"iot","temperature", |

| "val",2); |

| X_10:bat[:lng] := sql.bind(X_0,"iot","temperature","val",1); |

| X_12 := sql.delta(X_4,C_7,r1_8,X_10); |

1 MAL reference: https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference

94

https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference

C.1. Final MAL Execution Plans 95

| X_13 := algebra.projection(C_1,X_12); |

| X_14 := aggr.min(X_13); |

| exit X_64; |

| X_16 := sql.append(X_0,"iot","results","minimum",X_14); |

| barrier X_67 := language.dataflow(); |

| X_19:bat[:timestamp] := sql.bind(X_16,"iot","temperature","t",0); |

| (C_21:bat[:oid],r1_22:bat[:timestamp]) := sql.bind(X_16,"iot", |

| "temperature","t",2);|

| X_23:bat[:timestamp] := sql.bind(X_16,"iot","temperature","t",1); |

| X_24 := sql.delta(X_19,C_21,r1_22,X_23); |

| X_25 := algebra.projection(C_1,X_24); |

| X_26 := aggr.count(X_25); |

| X_27 := calc.int(X_26); |

| exit X_67; |

| X_29 := sql.append(X_16,"iot","results","tuples",X_27); |

| X_31:bat[:dbl] := batcalc.dbl(3,X_13); |

| X_35:dbl := aggr.avg(X_31); |

| X_36 := calc.lng(X_35,18,3); |

| X_39 := sql.append(X_29,"iot","results","average",X_36); |

| sql.affectedRows(X_39,1); |

| end user.s16_1; |

| #inline actions= 0 time=10 usec |

| #remap actions= 1 time=12 usec |

| #costmodel actions= 1 time=3 usec |

| #coercion actions= 1 time=5 usec |

| #evaluate actions= 0 time=2 usec |

| #aliases actions= 0 time=6 usec |

| #mergetable actions= 0 time=28 usec |

| #deadcode actions= 0 time=7 usec |

| #aliases actions= 0 time=4 usec |

| #constants actions= 0 time=5 usec |

| #commonTerms actions= 0 time=5 usec |

| #projectionpath actions= 0 time=3 usec |

| #deadcode actions= 0 time=5 usec |

| #reorder actions= 1 time=26 usec |

| #reduce actions=24 time=9 usec |

| #matpack actions= 0 time=2 usec |

| #dataflow actions=28 time=21 usec |

C.1. Final MAL Execution Plans 96

| #multiplex actions= 0 time=2 usec |

| #profiler actions= 1 time=4 usec |

| #candidates actions= 1 time=1 usec |

| #garbagecollector actions= 1 time=16 usec |

| #total actions= 1 time=291 usec |

+---+

c.1.2 Streaming table

The next MAL plan details the final execution plan for the example query on a streaming
table using the iot.show procedure call, using the iot pipe optimization pipeline.

+--+

| mal |

+==+

| unsafe function user.iot_examine_temperatures():void; |

| X_0 := sql.mvc(); |

| X_34 := basket.register(X_0,"iot","temperature",0); |

| X_38 := basket.lock(X_34,"iot","temperature"); |

| barrier X_63 := language.dataflow(); |

| C_1:bat[:oid] := basket.tid(X_0,"iot","temperature"); |

| X_4:bat[:lng] := basket.bind(X_34,"iot","temperature","val"); |

| X_8 := aggr.min(X_4); |

| exit X_63; |

| X_10 := sql.append(X_38,"iot","results","minimum",X_8); |

| X_13:bat[:timestamp] := basket.bind(X_10,"iot","temperature","t"); |

| X_16 := aggr.count(X_13); |

| X_17 := calc.int(X_16); |

| X_19 := sql.append(X_10,"iot","results","tuples",X_17); |

| X_21:bat[:dbl] := batcalc.dbl(3,X_4); |

| X_25:dbl := aggr.avg(X_21); |

| X_26 := calc.lng(X_25,18,3); |

| X_29 := sql.append(X_19,"iot","results","average",X_26); |

| X_39 := basket.tumble(X_29,"iot","temperature"); |

| catch SQLexception:str; |

| iot.error("user","examine_temperatures",SQLexception); |

| exit SQLexception:str; |

| catch MALexception:str; |

| iot.error("user","examine_temperatures",MALexception); |

C.1. Final MAL Execution Plans 97

| exit MALexception:str; |

| basket.unlock(X_39,"iot","temperature"); |

| end user.iot_examine_temperatures; |

| #inline actions= 0 time=6 usec |

| #candidates actions= 1 time=2 usec |

| #remap actions= 1 time=15 usec |

| #iot actions= 1 time=149 usec |

| #costmodel actions= 1 time=2 usec |

| #coercion actions= 0 time=3 usec |

| #evaluate actions= 0 time=5 usec |

| #aliases actions= 0 time=32 usec |

| #mergetable actions= 0 time=94 usec |

| #deadcode actions= 0 time=11 usec |

| #aliases actions= 0 time=9 usec |

| #constants actions= 3 time=10 usec |

| #commonTerms actions= 0 time=7 usec |

| #projectionpath actions= 0 time=14 usec |

| #deadcode actions= 0 time=8 usec |

| #reduce actions=33 time=13 usec |

| #matpack actions= 0 time=4 usec |

| #dataflow actions=31 time=28 usec |

| #multiplex actions= 0 time=4 usec |

| #profiler actions= 1 time=1 usec |

| #garbagecollector actions= 1 time=26 usec |

| #total actions= 1 time=726 usec |

+--+

D
A I S B E N C H M A R K Q U E R I E S

In this chapter, we include the AIoTA and PipelineDB implementations of the AIS bench-
mark queries. In each query, current timestamp is retrieved to indicate the time of execution
of the query.

d.1 aiota queries

The following SQL code represents the baseline for all AIS queries in AIoTA. According
to AIS benchmark query itself, the output table aisr and the continuous query aisq will
change. For the IoT Web Server + streaming engine tests, one extra SQL statement is used for
the IoT Web Server table to specify its flushing parameters. With the configuration bellow, it
tells the server to flush the vessels stream every 10 seconds.

CREATE SCHEMA ais;

SET SCHEMA ais;

CREATE STREAM TABLE vessels (implicit_timestamp TIMESTAMP, mmsi INTEGER,

lat REAL, lon REAL, nav_status SMALLINT, sog REAL, rotais SMALLINT);

INSERT INTO iot.webserverstreams /* Front-End + Back-End only */

SELECT tabl.id, 2 , 10, ’s’ FROM sys.tables tabl

INNER JOIN sys.schemas sch ON tabl.schema_id = sch.id

WHERE tabl.name = ’vessels’ AND sch.name = ’ais’;

CREATE [STREAM] TABLE aisr

CREATE PROCEDURE aisq()

CALL iot.heartbeat(’ais’, ’vessels’, 10000);

CALL iot.query(’ais’, ’aisq’);

98

D.1. AIoTA Queries 99

d.1.1 AIS query 1

CREATE STREAM TABLE aisr (calc_time TIMESTAMP, mmsi INTEGER, sog REAL);

CREATE PROCEDURE aisq()

BEGIN

INSERT INTO aisr WITH data_time AS (SELECT current_timestamp AS cur_time)

SELECT cur_time, mmsi, sog FROM vessels CROSS JOIN data_time

WHERE (implicit_timestamp, mmsi) IN

(SELECT max(implicit_timestamp), mmsi FROM vessels GROUP BY mmsi);

END;

d.1.2 AIS query 3

CREATE TABLE aisr (calc_time TIMESTAMP, mmsi INTEGER);

CREATE PROCEDURE aisq()

BEGIN

INSERT INTO aisr WITH data_time AS (SELECT current_timestamp AS cur_time)

SELECT cur_time, mmsi FROM vessels CROSS JOIN data_time

WHERE nav_status = 1 AND (implicit_timestamp, mmsi) IN

(SELECT max(implicit_timestamp), mmsi FROM vessels GROUP BY mmsi);

END;

d.1.3 AIS query 11

CREATE TABLE aisr (calc_time TIMESTAMP, mmsi INTEGER,

speed_sum REAL, speed_count INTEGER);

CREATE PROCEDURE aisq()

BEGIN

UPDATE aisr SET

calc_time = current_timestamp,

speed_sum = speed_sum + (SELECT COALESCE(SUM(sog), 0)

FROM vessels INNER JOIN aisr ON vessels.mmsi = aisr.mmsi),

speed_count = speed_count + (SELECT COUNT(*)

FROM vessels INNER JOIN aisr ON vessels.mmsi = aisr.mmsi)

FROM vessels WHERE aisr.mmsi = vessels.mmsi;

D.2. PipelineDB queries 100

INSERT INTO aisr WITH

data_time AS (SELECT current_timestamp AS cur_time),

new_inserts AS (SELECT mmsi, SUM(sog) AS sum_sog, COUNT(*) AS count_tuples

FROM vessels WHERE mmsi NOT IN (SELECT mmsi FROM aisr) GROUP BY mmsi)

SELECT cur_time, mmsi, sum_sog, count_tuples

FROM new_inserts CROSS JOIN data_time;

END;

d.2 pipelinedb queries

With the continuous transforms feature of PipelineDB, the user must specify a procedure
object to execute whenever a tuple arrives at the stream. To insert into another stream,
PipelineDB provides the pipeline_stream_insert procedure. However, to insert in a reg-
ular table, the user needs to create a trigger (see AIS queries 3 and 11). For every test using
PipelineDB, the following SQL code was used:

CREATE SCHEMA IF NOT EXISTS ais;

SET SCHEMA ’ais’;

CREATE STREAM vessels (implicit_timestamp TIMESTAMP, mmsi INTEGER,

lat REAL, lon REAL, nav_status SMALLINT, sog REAL, rotais SMALLINT);

CREATE {STREAM | TABLE} aisr ...

CREATE CONTINUOUS TRANSFORM aisq AS ...

d.2.1 AIS query 1

CREATE STREAM aisr (calc_time TIMESTAMP, mmsi INTEGER, sog REAL);

CREATE CONTINUOUS TRANSFORM aisq AS

SELECT clock_timestamp(), mmsi, sog FROM vessels

THEN EXECUTE PROCEDURE pipeline_stream_insert(’ais.aisr’);

d.2.2 AIS query 3

CREATE TABLE aisr (calc_time TIMESTAMP, mmsi INTEGER);

D.2. PipelineDB queries 101

CREATE OR REPLACE FUNCTION insert_into_aisr() RETURNS TRIGGER AS $$

BEGIN

INSERT INTO ais.aisr VALUES (NEW.sel_time, NEW.mmsi);

END; $$ LANGUAGE plpgsql;

CREATE CONTINUOUS TRANSFORM aisq AS

SELECT clock_timestamp() AS sel_time, mmsi FROM vessels WHERE nav_status = 1

THEN EXECUTE PROCEDURE insert_into_aisr();

d.2.3 AIS query 11

CREATE TABLE aisr (calc_time TIMESTAMP, mmsi INTEGER, speed_sum REAL,

speed_count INTEGER);

CREATE OR REPLACE FUNCTION insert_into_aisr() RETURNS TRIGGER AS $$

BEGIN

IF EXISTS (SELECT 1 FROM ais.aisr WHERE mmsi = NEW.mmsi) THEN

UPDATE ais.aisr SET

calc_time = NEW.calc_time,

speed_sum = speed_sum + NEW.speed_sum,

speed_count = speed_count + NEW.speed_count WHERE mmsi = NEW.mmsi;

ELSE

INSERT INTO ais.aisr VALUES

(NEW.calc_time, NEW.mmsi, NEW.speed_sum, NEW.speed_count);

END IF;

END; $$ LANGUAGE plpgsql;

CREATE CONTINUOUS TRANSFORM aisq AS

SELECT clock_timestamp() AS calc_time, mmsi, sog AS speed_sum, 1 AS speed_count

FROM vessels THEN EXECUTE PROCEDURE insert_into_aisr();

	1 Introduction
	1.1 Contextualization
	1.2 Problem Statement
	1.3 Objective
	1.4 Structure of the Document

	2 Related Work
	2.1 Motivation for Streaming Systems
	2.2 Real Life Applications of Streaming
	2.3 Programming Models
	2.4 Streaming Query Languages
	2.5 Windows
	2.6 Streaming Operators and Continuous Queries
	2.7 Time and Order
	2.7.1 Timestamps
	2.7.2 Order

	2.8 Query Optimizations
	2.9 Streaming Engines Outline
	2.9.1 Apache Storm
	2.9.2 Apache Spark Streaming
	2.9.3 PipelineDB
	2.9.4 DataCell

	3 MonetDB Overview
	3.1 Column-wise Storage
	3.2 Internal Representation
	3.3 Query Processing

	4 AIoTA Platform
	4.1 Design Considerations
	4.2 AIoTA Architecture Overview
	4.3 AIoTA Workflow

	5 IoT Web Server Implementation
	5.1 RESTful Systems
	5.2 IoT Web Server Bootstrap
	5.3 IoT Web Server Life-Cycle
	5.4 Data Types Mapping
	5.5 RESTful API

	6 Web API Server Implementation
	6.1 WebSockets Protocol
	6.2 Web API Server Bootstrap
	6.3 WebSockets API

	7 MonetDB Streaming Engine Implementation
	7.1 Scheduler
	7.1.1 Petri-net model
	7.1.2 Continuous queries scheduler
	7.1.3 Concurrent continuous queries

	7.2 SQL Catalog
	7.2.1 Scheduling procedures
	7.2.2 Windowing functions and procedures
	7.2.3 Baskets procedures
	7.2.4 Debugging functions and procedures
	7.2.5 SQL catalog example

	7.3 Aggregations on Continuous Queries
	7.4 Continuous Query Plans and Optimizations
	7.4.1 New iot optimizer
	7.4.2 Query execution comparison

	8 Evaluation
	8.1 Functional Evaluation
	8.1.1 Stream processing requirements
	8.1.2 Comparison against the state of the art

	8.2 Performance Evaluation
	8.2.1 Flame Graphs on the web servers
	8.2.2 Tomograph on the streaming engine
	8.2.3 AIS benchmarking tests

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	A IoT Web Server Implementation Details
	A.1 Server Arguments
	A.2 Supported Data Types
	A.3 RESTful API
	A.3.1 Administration Server
	A.3.2 Application Server

	B Web API Server Implementation Details
	B.1 Server arguments
	B.2 WebSockets API
	B.2.1 Requests
	B.2.2 Responses

	C MonetDB Streaming Engine Implementation Details
	C.1 Final MAL Execution Plans
	C.1.1 Regular table
	C.1.2 Streaming table

	D AIS benchmark queries
	D.1 AIoTA Queries
	D.1.1 AIS query 1
	D.1.2 AIS query 3
	D.1.3 AIS query 11

	D.2 PipelineDB queries
	D.2.1 AIS query 1
	D.2.2 AIS query 3
	D.2.3 AIS query 11

