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1. Introduction

In recent years, spatio-temporalmodelling has become one of themost interesting and, at the same
time, challenging research areas of natural sciences. This has been largely fueled by the increased
availability of inexpensive, high-speed computing. Such availability has enabled the collection and
management of large spatial and spatio-temporal datasets across many fields, has facilitated the
widespread usage of sophisticated geographic information systems (GIS) software to create attractive
displays, and has endowed the ability to investigate challenging, evermore appropriate and realistic
models (Gelfand et al., 2010). The relevant literature is growing fast and along directions that range
from theoretical works to methodological developments to real world applications. Spatio-temporal
systems modelling involves the synthesis of a rich interdisciplinary body of knowledge for which it
is necessary to establish a solid theoretical foundation and a science-based methodology with both
researchers and practitioners in mind.

A spatial point process is a stochastic process each of whose realisations consists of a finite or
countably infinite set of points in the plane. Spatio-temporal point processes are considered as being
a hybrid of the spatial and temporal components, by extending the definition of spatial point processes
to include time. Because the spatial location can always be considered as one component of a multi-
dimensional mark, the evolution of spatial features with time is often of special interest. Despite such
considerations, studies of spatio-temporal models have lagged well behind those of simple temporal
models, and even those of purely spatial models. No doubt the reasons have been largely practical,
notably the difficulty of compiling good spatio-temporal datasets and the heavy computations needed
to analyse them. One way to observe these processes is to consider the spatial location itself viewed
as a mark for a simple point process in time, thereby providing one route to likelihood analyses of
spatio-temporal models. Further characteristics, such as magnitude, spatial extent, or even duration,
can be added as additional marks. Thus, the study of spatio-temporal point processes leads almost
inevitably to the more general study of evolving spatial fields, although practical modelling in this
direction is still limited and very subject-specific. In this context, principled statistical modelling and
residual analysis are at the core of many outstanding research works. Indeed, for gridded forecasts,
deviance residuals seem ideally suited for model comparison. And for replicated spatial or spatio-
temporal point patterns, looking for methods of assessing whether all spatial point patterns share a
common spatial distribution or there are specific features is of primary interest.

This special issue is dedicated to the VIII International Workshop on Spatio-temporal Modelling
(METMAVIII)which tookplace inValencia (Spain) from1 to 3 June 2016. The purpose of thisworkshop
is to promote the development and application of spatial, temporal, and mainly spatio-temporal
statistical methods to different fields related to the environment. This meeting is an opportunity to
bring together several communities with common research interests, such as the development and
use of statistical methods in the environmental sciences. In addition, the special issue is also related
to the second Galician-Portuguesemeeting of Biometry, with applications to Health Sciences, Ecology
and Environmental Sciences (BIOAPP2016) thatwas held in Santiago de Compostela (Spain), 30–2 July
2016. The aimof thismeeting is to disseminate the latest advances in the development and application
of statistical methods in life sciences.

Papers coming from these two conferences span the field of spatio-temporal statistical con-
tributions with a focus on environmental and biometrical problems. Papers presented at METMA
workshop are mainly focused on spatial and spatio-temporal statistical techniques solving problems
in environment, health and biometry. And a large proportion of papers presented at BIOAPP also
focuses on spatial or spatio-temporal problems. The conference topics included statistical analyses of
animal or plant species in ecological studies, seismic data, temperatures and monthly precipitation,
daily ozone concentration values, air pollution data, breast cancer incidence rates, mussels, wildfires,
pore structures in pharmaceutical coatings, hake recruitment and cancer mortality data.

In light of the above considerations, the articles of this special issue have been carefully selected to
present a variety of conceptual frameworks, powerful methods and comprehensive techniques that
address a number of interesting problems in environmental and biometrical sciences. In particular,
this special issue comprises papers mainly dealing with point processes (Gabriel et al., 2017; Fuentes-
Santos et al., 2017; Baddeley, 2017; Eckardt and Mateu, 2017; Häbel et al., 2017), geostatistical
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techniques (Hristopulos and Tsantili, 2017; García-Soidán and Cotos-Yáñez, 2017; Fernández-Casal
et al., 2017; Monteiro et al., 2017; Alegría et al., 2017), geoaddtive modelling (Duarte et al., 2017),
Bayesian inference approaches (Thaden et al., 2017; Paradinas et al., 2017; Ugarte et al., 2017), and
finally one paper dealing with complexity measures in the multifractal domain (Esquivel et al., 2017).

We now comment on the different lines within each of the above mentioned fields of research
developed in the papers comprising this special issue.

In the field of spatial and spatio-temporal point processes, the first-order intensity function and
its corresponding density function play a fundamental role in the statistical analysis. In particular,
mapping the intensity of objects means a difficult task as soon as these objects are not accessible
by automated methods. The knowledge at large scale of the underlying process variability can then
only be obtained through sampling and spatial prediction. Thus prediction of the intensity of a point
process at locations where it has not been observed, conditional to the observation using the best
linear unbiased combination of the point process realisation in the observation window is a key
aspect as performed in Gabriel et al. (2017). Here, the weight function associated to the predictor
is the solution of a Fredholm equation of second kind, and the kernel and the source term of the
Fredholm equation are related to the second-order characteristics of the point process through the
pair correlation function. In this context, comparing the spatial distribution of two spatial point
patterns is an important issue inmany scientific areas such as ecology, epidemiology or environmental
risk assessment. However, up to date, the analysis of multitype point processes has been mainly
focused on searching for interactions between events of different patterns, i.e. on the second-order
structure, while the first-order structure has received less attention. Fuentes-Santos et al. (2017)
propose testing the similarity between two spatial point patterns through the comparison of their
densities of event locations. They consider a squared discrepancymeasure to propose a nonparametric
statistical test. The asymptotic normal distribution of the associated statistic provides a calibration
procedure.

The intensity function constitutes also the base for the analysis of the spatial inhomogeneity, and
forms a building block of performing inference through likelihood analysis. In this context, Baddeley
(2017) develops a general approach to spatial inhomogeneity in the analysis of spatial point pattern
data. The ideas of local likelihood are applied to the composite likelihoods that are commonly used
for spatial point processes. For Poisson point processes, local likelihood is already known; for Gibbs
point processes Baddeley (2017) develops a local version of Besag’s pseudolikelihood, and for Cox
point processes and Neyman–Scott cluster processes a local version of the Palm likelihood of Ogata
and Katsura is developed. Using recent results for composite likelihood and for spatial point processes,
Baddeley (2017) develops tools for statistical inference, including intensity approximations, variance
estimators, localised tests for the significance of a covariate effect, and global tests of homogeneity.
Bandwidth selection methods are also considered.

When we focus on events that occur randomly in space or space–time on networks, a different
story comes into play. Eckardt and Mateu (2017) develop spatial dependence graph models (SDGMs),
and network intensity functions. While SDGMs are undirected graphical models which capture the
conditional independence structure of multivariate spatial point processes, network intensity func-
tions describe the first-order properties of point patterns that occur on arbitrary network structures.

A final point considered here is when combining both inhomogeneity and anisotropy. Spatial
characterisation and modelling of the structure of a material may provide valuable knowledge on
its properties and function. In particular, for a drug formulation coated with a polymer film, under-
standing the relationship between pore structure and drug release properties is important to optimise
the coating film design. Häbel et al. (2017) use methods from image analysis and spatial statistics
to characterise and model the pore structure in pharmaceutical coatings. More precisely, they use
and develop point process theory to characterise the branching structure of a polymer blended
film with data from confocal laser scanning microscopy. Point patterns, extracted by identifying
branching points of pore channels, are both inhomogeneous and anisotropic. Therefore, Häbel et
al. (2017) introduce a directional version of the inhomogeneous K-function to study the anisotropy
and then suggest two alternative ways to model the anisotropic three-dimensional structure. The
methods presented will be useful for anisotropic inhomogeneous point patterns in general and for
characterizing porous material in particular.
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On a different vein of spatial statistics, covariance functions constitute the core of a more for-
mal geostatistical modelling approach. Motivated by the generation of non-separable, physically
motivated covariance functions, Hristopulos and Tsantili (2017) construct a non-separable space–
time covariance function based on a diffusive Langevin equation. They employ ideas from statistical
mechanics to express the response of an equilibrium random field to a driving noise process bymeans
of a linear, diffusive relaxation mechanism. The equilibrium field is assumed to follow an exponential
joint probability density which is determined by a spatial local interaction model. They use linear
response theory to express the temporal evolution of the random field around the equilibrium state
in terms of a Langevin equation. The latter yields an equation of motion for the space–time covariance
function, which can be solved explicitly at certain limits. Bymeans of the turning bands transform, the
authors derive a non-separable space–time covariance function in three space dimensions and time.

Theoretical models are assessed by variograms, and these are often estimated by non-parametric
Nadaraya–Watson type estimators. It is then needed to analyse properties of the L2-deviations of
these estimators, as proposed by García-Soidán and Cotos-Yáñez (2017) for both the anisotropic
and the isotropic settings. Their convergence in distribution is established, which provides the
basis for addressing practical problems, such as the construction of goodness-of-fit tests for the
variogram and, therefore, for modelling the spatial dependence. For estimation purposes, the authors
propose proceeding through the least squares criteria, whose consistency is proved, together with a
reformulation of the globalmeasures for the kernel-type estimators. Then, the resulting critical points
can be approximated by appealing to the bootstrap approaches. In addition, Fernández-Casal et al.
(2017) provides nonparametric estimators of the conditional variance and the dependence structure
of a heteroscedastic spatial process. When assuming zero mean along the domain, the approximation
of the variance can be addressed by linear smoothing of the squared observations. Then, the variogram
can be estimated from the standardised data. In the presence of a non-zero deterministic trend, the
author suggests a modification of the latter method that involves the residuals obtained from a local
linear estimation of the trend, together with corrections of the biases derived from the use of these
residuals.

A more practical approach is motivated when analysing the spatial and temporal dynamics of
spatiotemporal data sets, characterised by high resolution in the temporal dimension, which is a
common fact in many application areas, namely environmental modelling. In particular, air pollution
data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time
imposed by social habits, anthropogenic activities and meteorological conditions. Monteiro et al.
(2017) propose a two-stage modelling approach which combined with a block bootstrap procedure
correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for
the space–time phenomenon under study.

Finally, geostatistical modelling of data on spheres motivated by problems of data on the planet
Earth is a welcome modern area of research. Alegría et al. (2017) consider a multivariate spatial
random field with each component having univariate marginal distributions of the skew-Gaussian
type. They assume that the field is defined spatially on the unit sphere embedded in R3, allowing for
modelling data available over large portions of planet Earth. Their model admits explicit expressions
for themarginal and cross-covariances. Since inference based on the full likelihood is computationally
unfeasible, Alegría et al. (2017) propose a composite likelihood approach based on pairs of spatial
observations, and illustrate the effectiveness of the method through simulation experiments and the
analysis of minimum and maximum temperatures.

When analysing data from cancer screening programs, flexible regression specifications are re-
quired to account for the highly complex structure in such data. Duarte et al. (2017) analyse data
from a breast cancer screening program conducted in central Portugal and consider an extension of
structured additive regression models where, in addition to the possibility to include nonlinear and
spatial effects, they can include a trivariate interaction between attendance rate, detection rate and
mortality rate in the screening program.While spatial effects capture unobserved heterogeneity at the
level of municipalities, the trivariate interaction proves to be important to understand the complex
interaction effects resulting from the diversity in municipalities’ coverage and attendance rates.

A wide area of interest for statisticians is that of modelling and understanding ecological in-
terrelationships between species and their environment, and the corresponding spatio-temporal
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dynamism. Thaden et al. (2017) investigate how adult mussels and mussel seeds (of Mytilus gallo-
provincialis) interactwhile simultaneously accounting for environmental factors. The authors develop
a recursive bivariate simultaneous equation model which considers the environmental endogeneity
of the mussels. In order to address the potentially highly complex ecological patterns, they include
environmental factors via integrating multivariate autoregressive discrete spatial effect priors into
the framework of simultaneous equation models. This allows for general correlation structures of
the spatial effects and thus avoids the restrictive (implicit) assumption that adult mussels and
mussel seeds of the same species react independently to their environment. Having a neater idea
of the spatio-temporal dynamism and environmental relationships of species is essential for the
conservation of natural resources. Many spatio-temporally sampled processes result in continuous
positive (0, ∞) abundance datasets that have many zero values observed in areas that lie outside
their optimum niche. In such cases the most common option is to use two-part or hurdle models,
which fit independent models and consequently independent environmental effects to occurrence
and conditional-to-presence abundance. This may be correct in some cases, but not as much in others
where the detection probability is related to the abundance. Paradinas et al. (2017) infer the spatio-
temporal dynamism of ecological processes and fit more robust environmental effects in two-part
models. On the one hand they propose different spatio-temporal structures to infer the fundamental
spatio-temporal behaviour of the process under study. On the other hand, they propose the use
of shared component modelling to estimate more robust model effects in related semi-continuous
datasets by combining information from occurrence and conditional-to-presence abundance. The
authors implement all the proposed model structures in a case study on hake recruitment.

We finally make a note on two interesting research lines. One is disease mapping, and here
models incorporating splines have been considered for smoothing risks. Although these models
are very flexible, they can be computationally demanding in certain cases. One, two, and three-
dimensional B-splines (penalized or unpenalized) are considered in Ugarte et al. (2017) to model
space–time interactions. Model identifiability issues are discussed and appropriate constraints are
clearly established. As computing time could be a limitation in real practice, integrated nested Laplace
approximations are used for model fitting and inference. The complete set of proposed models are
illustrated using cancermortality data in small areas. The other one is the definition of newparametric
families of complexity measures in the multifractal domain, as proposed in Esquivel et al. (2017).
Their families of complexitymeasures come from the scaling limiting behaviour of generalised Renyi-
entropy-based product complexity measures. These families are related to incremental functionals of
the curve of generalised Renyi dimensions. In particular, the significance in this context of the first
derivative of the generalised dimensions curve, and specifically the indicators given by its minimum
value and the corresponding value of the deformation parameter, is justified. The practical usefulness
of the multifractal complexity measures proposed, for characterisation and assessment of structural
dynamical changes in a spatiotemporal system with multifractal behaviour, is illustrated with the
study of real data from a seismic series involving a central period of high activity within a regular
regime.
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