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ABSTRACT. The variogram provides an important method for measuring the dependence of attri-
bute values between spatial locations. Suppose that the nature of the sampling process leads to the
presence of clustered data; it would be advisable to use a variogram estimator that aims to adjust for
clustering of samples. In this setting, the use of a non-parametric weighted estimator, obtained by
considering an inverse weight to a given neighbourhood density combined with the kernel method,
seems to have a satisfactory behaviour in practice. This paper pursues a theoretical study of the
cluster robust estimator, by proving that it is asymptotically unbiased as well as consistent and by
providing criteria for selection of the bandwidth parameter and the neighbourhood radius. Numeri-
cal studies are also included to illustrate the performance of the considered estimator and the sug-
gested approaches.

Key words: cluster, isotropy, kernel method, variogram

1. Introduction

Among existing geostatistical methods, variogram analysis provides a useful tool for sum-
marizing spatial data and measuring the dependence of attribute values between spatial loca-
tions. Under certain regularity conditions, the variogram is used with kriging to predict the
value of the spatial variable at an unsampled point; see, for instance, Stein (1999). The
approach differs from classical regression in that local features can affect the solution. The
measurements in the vicinity of the investigated point are expected to be more closely related
than others to the unknown true value; so the relative contribution of each individual data
value depends on its relative location. Hence, the estimation of the variogram plays a de-
cisive role in kriging theory, as the optimal values of these relative contributions require
the variogram function, which is, in general, unknown.

The importance of an accurate estimation of the variogram is not only restricted to geo-
statistics, but has implications for a broad spectrum of areas, such as hydrology, atmospheric
science, possibly epidemiology, etc; whenever one wishes to make predictions for quantities
that are continuously defined over some convex domain; see, for instance, Cressie (1993) and
references therein.

Typically, one assumes that the sampling points are uniformly spread over the observation
region. However, the sampling strategy may originate non-uniform sampling density, lead-
ing to the presence of clustered data. Observations that are clustered in space are in most
cases driven by external factors, such as the existence of specific geographic or demographic
spots; or they may be needed to better characterize short-range variability, which requires a
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denser sampling, but sometimes too costly to cover the whole study region. In this context,
the behaviour of the traditional variogram estimators may significantly decay, as shown in the
foregoing works such as Kovitz & Christakos (2004) or Menezes (2005), and as exemplified
by the numerical study which we shall present.

Our paper describes a modification of the kernel estimator aiming to adjust for cluster-
ing of samples and minimize the negative impact on variogram estimation, which was first
approached in Menezes & Tawn (2003) (or see Menezes, 2005). In here, we proceed with
the theoretical study of the suggested variogram estimator, proving its consistency and un-
biasedness. Additionally, we propose values for its unknown smoothing parameters, two user-
adjustable quantities that affect the performance of the variogram estimator.

The rest of this paper is structured as follows. In section 2 we place the work in the context
of the existing literature, pointing out the similarities and differences with the most common
variogram estimators. Section 3 introduces additional notation and summarizes the main
assumptions considered in our asymptotic study. In section 4 the fundamental properties of
the proposed nonparametric variogram estimator are established. The results derived for bias
and variance are then used for the optimal bandwidth selection in section 4.1; this optimal
value requires itself the value for the neighbourhood radius, the second smoothing parameter.
Comments on the neighbourhood radius selector are included in section 4.2. The numerical
studies are described in section 5 and the proofs are developed in section 6.

2. Variogram estimators

For the sake of simplicity, we have considered isotropic processes, where the variogram
becomes a function of the distance, instead of the difference, of the spatial locations. This
restriction can be relaxed by assuming geometric anisotropy or by fitting a distinct vario-
gram in each of several directions. Let {Z(x) : x ∈ D ⊂ Rd} be a spatial random process,
where D is a bounded region with positive d-dimensional volume. Suppose that n data, Z(x1),
Z(x2), . . . , Z(xn), are collected at known spatial locations x1, x2, . . . , xn. The random process
is intrinsically stationary if the following conditions are satisfied:

(i) E[Z(xi)−Z(xj)]=0, ∀ xi, xj ∈D;
(ii) Var[Z(xi)−Z(xj)]=2�(‖xi −xj‖), ∀ xi, xj ∈D.

The function 2�(·) defines the variogram function and �(·) is termed the semivariogram.
So the variogram of an intrinsic and isotropic process reduces to

2�(‖xi −xj‖)=E[(Z(xi)−Z(xj))2].

Consequently, we can estimate the variogram from sample data replacing the previous theo-
retical expectation by the corresponding sample average. The variogram estimator most com-
monly adopted was proposed in Matheron (1963) and it can be represented by the weighted
average

2�̂(u)=
∑n

i =1

∑n
j =1 wij(u)[Z(xi)−Z(xj)]2∑n

i =1

∑n
j =1 wij(u)

, (1)

where wij(u)= I{‖xi−xj‖=u}. In practice, this estimator is usually smoothed by taking a toler-
ance region T around u; it can then be represented by 2�̂(u(l)) with wij(u(l))= I{‖xi−xj‖∈T (u(l))}
and l =1, . . . , K . Journel & Huijbregts (1978) recommends that the number of distinct pairs
(xi, xj) in each T (u(l)) be at least 30; the regions {T (u(l)) : l =1, . . . , K} are chosen to be dis-
joint and to accomplish the previous recommendation. Hence, the Matheron estimator can
be obtained from simple averages within distance bins. This approach is convenient, but the
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estimator can continue to be highly variable. Namely, it can be affected by atypical values
because of the squared term, and thus alternative estimators have been proposed aiming to
be more robust to outliers; for example, by working instead with square root absolute differ-
ences as described in Cressie (1993).

Suppose now that we take the weights in expression (1) as

wij(u)=K
(

u −‖xi −xj‖
h

)
,

where K is a symmetric, zero-mean and bounded density function, with compact support
[−C, C]. The positive number h is usually called bandwidth. The resulting variogram
estimator is commonly referred to as the kernel estimator. The Matheron estimator would
correspond to the election of K as the uniform kernel, with a tolerance region being given
by (u − hC, u +hC). The choice of the bandwidth h would then be similar to the choice of
the bin size that defines the tolerance of each size-class T (u(l)).

The alternative election of a unimodal kernel function K , such as the Gaussian or the
Epanechnikov kernels, allows for more sophisticated smoothing methods. The binning pro-
cess is not needed and an estimate of the variogram function can be obtained in any distance.
In this case, the choice of bandwidth, h, becomes a crucial task. Moreover, note that the
difference between choosing a uniform or a non-uniform kernel means to adopt a simple or
a weighted average for each estimate, respectively. The weights are at their maximum when
the distance between two points is close to u, and zero values if |(u −‖xi −xj‖)/h|> C ⇐⇒
‖xi −xj‖ �∈ [u −hC, u +hC]. Consequently, it offers a smoother estimation of the variogram.

The binned variogram from Matheron together with the kernel smoothed variogram are
included in most software available to practicing statisticians/geostatisticians. An example is
the geoR library from R, which offers a kernel estimator for exploratory purposes with the
bandwidth being chosen by the user (Ribeiro & Diggle, 2001). Garcia-Soidán et al. (2004)
suggests a transformed version of the kernel estimator, not restricted to exploratory aims but
allowed to be used in kriging. They adapt the Nadaraya–Watson (NW) regression estima-
tion to the context of spatial data and study several properties of the resulting estimator; an
asymptotically optimal bandwidth selector is then obtained. The performance of this kernel
estimator and the one from Matheron is compared in Menezes et al. (2005), where a numeri-
cal study is carried out under different kinds of spatial dependence situations, suggesting the
usual superiority of the former estimator.

In any case, both foregoing estimators are badly affected by clustered data, as illustrated in
Fig. 1, where the notation ‘NW kernel’ identifies the Nadaraya–Watson kernel estimator. Two
distinct sampling designs were looked at: in case A, the complete spatial randomness (CSR)
design; and in case B, a design presenting a strong cluster. Gaussian data were generated on
those locations, considering the same theoretical semivariogram model for the dependence
structure. This theoretical model was plotted against the estimates obtained from Matheron
and NW kernel estimators. The worst estimates of case B are, at least partially, justified by the
sample locations not being sufficiently spatially representative of the overall data, as they are
irregularly distributed over the observation region. The Matheron estimator seems to be more
vulnerable than the NW kernel estimator to unequal samples density, although the latter is
also affected. These results were confirmed in the numerical study presented in section 5.

A compensation for the unpopulated areas is then proposed, by suggesting an inverse weight
to a given neighbourhood density and, simultaneously, joining the benefits of the NW kernel
estimator even though not directly related to the clustering issue. In (1), it is suggested that

wij(u)= 1√
ni ×nj

×K
(

u −‖xi −xj‖
h

)
, ni =

∑
k

I{‖xi−xk‖≤�}, (2)
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Fig. 1. Behaviour of �̂ under non-clustered (CSR) and clustered sampling.

where ni represents the number of points that fall within the circle of radius � and centre
xi (Fig. 2). The idea is to adjust the contribution from any sample point xi according to its
number of neighbours ni ; as the variogram estimator sums contributions from pairs of data
points (xi, xj), the product ninj represents the joint contribution of the pair; the square root
is adopted as a scale corrector. The resulting variogram downweights squared increments of
Z(·) based on the geometric mean of the local densities of observations around each of the
observation locations making up the increment.

Declustering methods are quite intuitive, and their need is well recognized in the spatial
statistics literature to estimate spatially representative mean trends for clustered data (see e.g.
Goovaerts, 1997; Isaaks & Srivastava, 1989). In contrast, the corresponding need for the reli-
able estimation of the second-order spatial structures is not normally considered. The pre-
sence of clustered sample data is, however, not negligible at all as illustrated in Fig. 1 and
analysed by Kovitz & Christakos (2004). These authors suggest a modified form of Matheron
estimator that also incorporates some declustering weights, but based on zones of proximity.
Each zone of any data point is defined by the area of the Voronoi polygon that contains all
points closer to that interior data point than to any other data point. The performance of
this modified estimator of the variogram is analysed in terms of a numerical application.

In our case, we shall prove that the variogram estimator proposed for clustered data enjoys
good properties, such as asymptotic unbiasedness and consistency. This empirical variogram
requires the selection of two user-adjustable values: the kernel bandwidth h and the neigh-
bourhood radius �. The first will be treated via the MSE, i.e. the mean square error. The
latter will result from the analysis of the density estimation of the distance between points
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Fig. 2. Two examples of sampling designs are represented in the left panels. The corresponding density
estimations of the distances are represented in the right panels. The ni gives the number of points that
fall within the circle of radius � and centre xi.

derived on the observation region. The declustering factor can be applied to any degree to
which a data set may be clustered, inclusively to a complete spatial randomness design; the
drawback would be the unnecessary additional computational effort, even though this is not
expected to be much significant. One possibility here, is to adopt some metrics to assess the
degree of clusteredness such as those described in Kovitz & Christakos (2004), which help
to decide if common estimators are not recommended. An alternative simple metric can be
based on the observation of the standard deviation of

√
ninj for all existent pairs (xi , xj), as

a low value is expected in the case of CSR design.

3. Assumptions

Let {Z(x) : x∈D⊂Rd} be an intrinsic and isotropic random process. The observation region
D will be considered to be increasing and a random design will be assumed for the spa-
tial locations, as described next. This strategy, proposed in Hall et al. (1994) and adopted in
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Garcia-Soidán et al. (2004) is a compromise between the infill asymptotics and the increasing
domain asymptotics regimes, which allows to achieve consistent estimation of the variogram
function.

(A1) D=Dn =�D0 where �=�n diverges to +∞ and D0 ⊂ Rd is a bounded and fixed
region.

(A2) xi =�vi , i =1 . . . n, where vi is a realization of a random sample Vi from f0, the
density function defined on D0.

(A3) For all v∈D0 and for some positive constants d1 and d2, one has d1 ≤ f0(v)≤d2.

In (A3), we assume that the density f0 does not exhibit holes of odds probabilities (very
low or high) in D0, so that f0 is regular enough. Typically, we expect the uniformity of f0 in
D0, in a sense of all points in D0 have the same probability of being sampled. The clustering
of data is determined by external factors to the spatial variable of interest Z. In some cases,
for example of the study of air pollution, clustering can also be justified by a prior scientific
knowledge of the variable of interest, such as the expected local level of air contamination.
This situation results into the dependence between the sample points v and the random field
Z, claiming f0 to be a function of Z. The estimation of f0 under this dependency is beyond
the scope of this work.

Several hypotheses are now required as regards the second- and fourth-order moments of
the random process.

(A4) � admits three continuous derivatives in a neighbourhood of u, for all u > 0.
(A5) There is a bounded and continuously differentiable function g : R3d → R satisfying

that Cov
[
(Z(xi)−Z(xj))2, (Z(xk)−Z(xl))2

]=g(xi −xj, xi −xk, xi −xl)=g(y1, y2, y3).
We also assume that for any �> 0, one has:

sup
‖y2‖≥r

∧‖y3‖≥r
{|g(y1, y2, y3)| : ‖y1‖≤�‖, ‖y2 −y3‖≤�} r→∞−→0.

For instance, in the context of a Gaussian process, it follows that:

Cov
[
(Z(xi)−Z(xj))2, (Z(xk)−Z(xl))2

]
=2
[
�(‖xi −xk‖)+ �(‖xj −xl‖)− �(‖xi −xl‖)− �(‖xj −xk‖)

]2
and, afterwards, one may take

g(y1, y2, y3)=2
[
�(‖y2‖)+ �(‖y3 −y1‖)− �(‖y3‖)− �(‖y2 −y1‖)

]2
so that condition (A5) is satisfied provided that the semivariogram is bounded and
has a finite sill.

The idea behind assumption (A5) is to impose a condition on the covariance between Z(xi)−
Z(xj) and Z(xk)−Z(xl) when locations (xi, xj) are distant from (xk, xl).

The final conditions will be referred to the convergence rates required of the bandwidth h
and the neighbourhood radius �.

(A6) {h+�−1 +�d n−1 +(nh)−1} n→∞−→ 0,
(A7) �=�a, for some a > 0.

4. Main results

Let {Z(x) : x ∈D⊂Rd} be an intrinsic and isotropic random process. Denote by Z(x1), . . . ,
Z(xn) the values of the process observed at spatial locations x1, . . . , xn, respectively.
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The new kernel semivariogram estimator proposed in the case of clustered data is defined
as follows:

�̂(u)=
∑n

i =1

∑n
j =1

1√
ni×nj

×K
(

u−‖xi−xj‖
h

)
[Z(xi)−Z(xj)]2

2
∑n

i =1

∑n
j =1

1√
ni×nj

×K
(

u−‖xi−xj‖
h

) , u ≥0, (3)

where ni =
∑

k I{‖xi−xk‖≤�} and nj =
∑

k I{‖xj−xk‖≤�}; h and � represent the bandwidth and neigh-
bourhood radius selectors, respectively.

Remark 1. For the edge effect correction, sometimes required in statistics of spatial analy-
sis based on the counting of neighbours within a given distance, one can consider a local cor-
recting factor given by ni/V (B), where V (B)=��2⋂D is the volume of the ball (xi, �) inside
the observation region.

The asymptotic results for the expectation and variance of above estimator are presented
in the following theorems. Derivation of the these results requires the assumptions introduced
in the previous section, leading us to a desirable consistent estimation.

Theorem 1
Assume that conditions (A1)–(A4) are satisfied. Additionally, suppose the convergence rates
stated in (A6). Then, for u > 0, one has

E [�̂(u)]= �(u)+ 1
2

cK �′′(u)h2 +o
(
h2
)
,

where cK =∫ z2K (z) dz.

This theorem also shows that the proposed estimator is asymptotically unbiased. See
section 6.1 for a sketch of this proof.

Remark 2. Note that previous result is strictly attained on u ≥ Ch, although, as stated,
theorem 1 would remain valid for any u > 0 and large n, since the bandwidth parameter h
tends to 0 as n increases. To appreciate the latter, take into account that, under isotropy, the
variogram domain is restricted to non-negative values; in addition, the kernel function opera-
tes on the distances ‖xi −xj‖∈ [u −Ch, u +Ch], where interval [u −Ch, u +Ch] is assumed to
be wholly contained within the domain of �. Then, according to theorem 1, the bias of �̂(u)
is of the exact order h2 for u ≥ Ch; however, near the endpoint 0, u < Ch, an order h rather
than h2 is expected, because of the boundary effect. As suggested in Garcia-Soidán et al.
(2004), the adoption of a specific combination of boundary kernels is a possible solution to
keep the same rate of convergence.

For the analysis of the asymptotic efficiency, we proceed with the variance result of the
proposed variogram estimator. A decreasing variance estimate means a growing efficiency of
the estimator, as it will tend to be more accurate.

Theorem 2
Assume the hypotheses required in theorem 1. Additionally, suppose that assumptions (A5) and
(A7) are satisfied. Then, for u > 0, one has

Var [�̂(u)]= Bd (u)dK

2ud−1A2
d

Ed (n, a)n−2�d h−1 + Cd (u)
A2

d

Fd (n, a)n−1

+ Dd (u)
4A2

d

Gd (n, a)�−d +o(n−2�d h−1 +n−1 +�−d +h4),
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where dK =∫ (K (z))2 dz and Ad , Bd (u), Cd (u), Dd (u), Ed (n, a), Fd (n, a) and Gd (n, a) are as given
in (8), (12), (13), (14), (9), (10) and (11), respectively.

The proof of above theorem is sketched in section 6.2.
The fundamental idea behind our asymptotic study is the observation region may be con-

sidered expansible, in Dn =�nD0 [see assumption (A1)]. As the region Dn grows, more loca-
tions are expected. As a consequence of stationarity, the spatial dependency, described by the
theoretical �, is kept unchanged. The estimate of � may suffer some impact resulting from a
larger sample size, because new distances may be used in the estimation process.

This reasoning of expansion must occur in a controlled way. A possible negative effect of
adopting a too large expansion rate is to make the ‘radius of influence’, known as the range,
into a negligible value when compared to the maximum distance on Dn. This would lead us
to a meaningless spatial dependency on the observation region.

Remark 3. With respect to the convergence rates stated in (A6), furthermore, we can take

�d = c1nc0 +o(nc0 ) (4)

for some constants c0 > 0 and c1 > 0. The expansion rate is established by constant c0, i.e. a
smaller value for c0 means a slower expansion for Dn.

Bear in mind the above relationship �d =O(nc0 ) and suppose O1, O2 and O3 identify the
convergence rates of the first, second and third terms of the conditional variance, respectively.
Then

O1 =O(n−2�d h−1)=O(n−(2−c0)h−1),

O2 =O(n−1),

O3 =O(�−d )=O(n−c0 ).

As a result from (A6), one has 0 < c0 < 1, which conveys that O2 is of a lesser order than O1

and O3 and, therefore, the contribution of O2 to the variance is asymptotically negligible. As
a result of this, an alternative expression for the variance may be written as below.

Corollary 1
Assume the hypotheses required in theorem 2. Additionally, suppose the convergence rate an-
nounced in (4) is satisfied. Then, for u > 0, one has

Var [�̂(u)]= Bd (u)dK

2ud−1A2
d

Ed (n, a)n−2�d h−1 + Dd (u)
4A2

d

Gd (n, a)�−d +o
(

n−2�d h−1 +�−d +h4
)

,

where dK =∫ (K (z))2 dz and Ad , Bd (u), Dd (u), Ed (n, a) and Gd (n, a) are as given in (8), (12),
(14), (9) and (11), respectively.

4.1. Bandwidth selector h

We now intend to use the information available in the sampled data to make guesses about
the optimal kernel bandwidth h. Ideally, we would like these to be educated guesses that are
likely to originate a �̂ close to the true value of �. Of course, we need some definition of being
‘close’. One of the most common measures is the MSE, which is defined as

MSE[�̂(u)]=E
[
(�̂(u)− �(u))2

]
.
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Hence, we propose the selection of the optimal kernel bandwidth, as the value that minimizes
the MSE function, originating a local bandwidth selector.

Then, according to the previous results, one has

MSE [�̂(u)]=(Bias [�̂(u)]
)2 +Var [�̂(u)]

� c2
K �′′(u)2

4
h4 + Bd (u)dK Ed (n, a)

2ud−1A2
d

n−2�d h−1 + Dd (u)Gd (n, a)
4A2

d

�−d .

From here, for u > 0, the bandwidth parameter that asymptotically minimizes the MSE [�̂(u)]
becomes

hopt(u)=
[

Bd (u)dK Ed (n, a)
2ud−1A2

d c2
K �′′(u)2

]1/5

n−2/5�d/5.

Remark 4. Alternatively, one might deal with a global bandwidth parameter, by minimi-
zing the Mean Integrated Square Error, or MISE, defined as

MISE[�̂(u)]=
∫

R
(MSE[�̂(u)]) du =

∫
R

(
Bias [�̂(u)]

)2
du +

∫
R

Var [�̂(u)] du

for some R ⊂ [0, +∞). For instance, we may take R = [m0, m], where m= sup{‖xi −xj‖ : xi, xj ∈
D}
and some constant m0, 0 < m0 < m. The resulting optimal bandwidth would be

hopt =
[∫

R
Bd (u)
ud−1 du dK Ed (n, a)

2A2
d c2

K

∫
R �′′(u)2 du

]1/5

n−2/5�d/5,

where cK =∫ z2K (z) dz, dK =∫ (K (z))2 dz and Ad , Bd (u) and Ed (n, a) are as given in (8), (12)
and (9), respectively.

Both derived local and global bandwidth expressions involve the unknown function �(u).
For this purpose, a simple parametric approach, such as the first one presented in Zimmer-
man & Zimermman (1991) (see Table 1 in Menezes et al., 2005), may be used to estimate
�(u). This parametric estimation can be improved by being incorporated into an iterated non-
parametric procedure.

From the convergence rate given in (4), the bandwidth parameter that asymptotically
minimizes the MSE [�̂(u)] becomes

hopt(u)=
[

c1
Bd (u)dK Ed (n, a)
2 ud−1A2

d c2
K �′′(u)2

]1/5

n−(2−c0)/5. (5)

With this selection of the bandwidth parameter, it follows that

MSE [�̂(u)]=O(n−4(2−c0)/5I{c0 > 8
9 } +n−c0 I{c0≤ 8

9 })

and the minimum order is achieved for c0 =8/9.

Remark 5. In the case of R2 the optimal bandwidth in (5) becomes

hopt(u)=
[

B2(u) dK E2(n, a)
2 uA2

2 c2
K �′′(u)2

]1/5

n−2/9, (6)

where we fixed c1 =1; cK and dk are constants dependent on the chosen kernel function; A2

in (8) results from the isotropy assumption and it simplifies to 2�; B2(u) in (12) is a measure
of the spatial correlation and, for the Gaussian case, it can be approximated by 8A2�(u)2;
and, finally, E2(n, a) in (9) is a measure of how the points are distributed on D0.
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4.2. Neighbourhood radius selector �

This section is concerned with the problem of selecting a suitable neighbourhood radius �
when estimating the semivariogram given in (3). This second smoothing parameter is to be
used as a global measure all over the observation region. The estimates of the semivariogram
�(u) seem not to be significantly affected by small deviations of the � value, according to our
experience. Bear in mind, however, that if �→0 then the resulting �(u) estimator tends to be
equal to the Nadaraya–Watson one. The other extreme of too large value for � is not inter-
esting neither, as all locations will be treated in the same way and we aim to upweight areas
with low density.

One possibility here is to take the � quantity as the mode of a histogram of the distances.
Thus, based on counts of distances between sample locations, one gets an indicator value to
be used globally as the neighbourhood radius.

This approach can be implemented as follows. For a given point and for a list of equi-
spaced distances, one must count how the remaining n−1 points are spread within that list
of distances. After repeating this for all n points, the partial sum organized by the distances,
give us the distance for the maximum count, i.e a proposal for � value.

Many methodologies for cluster analysis are directly motivated from those derived for
kernel density estimation (see e.g. Wong & Lane, 1983; Silverman, 1986; Cuevas et al., 2001).
They support the natural idea that clusters correspond to peaks in the underlying density
function f on Rd . In our case, we are more interested on the density estimation of the
distances between locations than on the density estimation of the locations themselves.

So, additionally, we propose two equivalent approaches based on the density estimation
of the distances. Suppose {xi}n

i =1 locations in Rd , then define

dj =‖xi −xk‖, j =1, . . . ,
n(n−1)

2
.

First, a kernel estimation is applied on equispaced distances, ranging from the lowest to the
largest sampled distance dj . An alternative maybe that of applying the estimation on the sam-
pled distances themselves. The � quantity may then be derived from the maximum of these
functions or even from, for instance, the 10 per cent highest values. The quantities obtained
are analogous.

In Fig. 2, two examples of sampling designs are considered in the left panels. The first sug-
gests the presence of a cluster and the second suggests the presence of two clusters. In the
right panels, the corresponding density estimation of the distances between sample locations
are plotted and their global maximum values are marked. The resulting value is a global pro-
posal for �, so that any point xi on the observation region is now associated to a measure
ni for the total number of neighbours within distance �.

All these naive approaches for the derivation of the � value present similar results. So, we
argue that they all are good candidates to be used as a neighbourhood radius selector.

5. Numerical study

To analyse the performance of the proposed semivariogram estimator for clustered data,
simulations of spatial data in IR2 were carried out. Gaussian data were generated on the
observation region D ⊂ R2 by selecting a theoretical variogram model to specify the spatial
dependency. The region D is assumed to be equal to �D0, where D0 is the bounded and fixed
square unit. The new estimator is compared against the estimator of Matheron and the one
using the Nadaraya-Watson kernel, both given in (1). The symmetric Epanechnikov kernel
was employed in the two previous kernel-type estimators.
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The optimal local bandwidth for the robust to clusters estimator can be derived as a func-
tion of lag u, as given in (6) with c0 =8/9 and c1 =1, so that the corresponding scale factor
is �=n4/9. We considered a sample size n=100 and a theoretical exponential variogram with
a nugget effect of 0.6, a sill of 1.336 and the corresponding range equal to 5.0.

Regarding the above bandwidth expression, note that cK identifies the variance of the
Epanechnikov kernel and dK identifies the integral of this squared kernel. As we are in IR2,
the A2 in (8) is reduced to 2�, and B2(u) in (12) becomes 16��(u)2. As the bandwidth deri-
vation needs itself an estimation of the semivariogram �(u) and its second derivative, a pilot
parametric estimation was used for this purpose. To estimate E2(n, a), given in (9), the existing
integrals were numerically approximated to a sample average, as∫

g(w) dw =
∫

g(w)
f0(w)

f0(w) dw =Ef0

[
g(W)
f0(W)

]
where f0(w) is the density function of W.

So, Ê2 may be derived, as follows:

Ê2(n, â)=
1
N

∑N
i =1 f̂0(wi)/Ĥ(â, wi)2(

1
N

∑N
i =1 f̂0(wi)/Ĥ(â, wi)

)2 ,

where N =5000 is the number of extra points generated from density f0; â = �̂/�, where �̂ is
obtained as the maximum of a kernel density estimator of the distances; Ĥ(â, wi)=ni/n, being
ni the number of original sampled points within the circle of centre wi and radius â; and f̂0

results from a non-parametric density estimation of the spatial locations in D0.
A conclusive analysis of the behaviour of the semivariogram estimators included in our

comparative study must be based on results from several independent cases. We then gen-
erate a total of 100 independent data sets and, for each one, derive the integrated square
error (ISE) between the estimator and the theoretical semivariogram. The ISE, defined as∫ �

� [�̂(u)− �(u)]2 du, was approximated numerically through the trapezoid rule. In Table 1, the
mean values of the resulting ISEs are compared for two distinct sampling designs:

• A CSR design, where spatial locations are uniformly distributed on D;
• A clustered design, where 40% of the total spatial locations are gathered together into

one sub-region of D.

As the observation region D depends on �, we decided to group the mean values of the
ISEs into four classes of lags: (0, 0.6�), (0, 0.3�), (0, 0.2�) and (0, 0.1�). To easily compare
columns, all ISE values were standardized by dividing them by the corresponding integral
interval, �−�.

According to Table 1, the new empirical estimator from (3), named ‘RobCluster’, offers
a better performance in the presence of clustered data. Under a CSR model, the NW
kernel estimator and the new estimator present similar results, and better than those from
Matheron’s proposal.

Table 1. Mean values of the standardized ISEs, from the empirical estimators

u ≤ 0.6� u ≤ 0.3� u ≤ 0.2� u ≤ 0.1�

CSR Matheron 1.270 0.943 0.819 0.763
NW kernel 0.527 0.314 0.276 0.291
RobCluster 0.500 0.307 0.276 0.298

CLUSTER Matheron 1.519 1.141 0.889 0.568
NW kernel 0.582 0.525 0.488 0.400
RobCluster 0.392 0.294 0.243 0.245

The total number of replicas is 100 and in each replica the total sample size is 100.
NW: Nadaraya–Waston.
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Table 2. Mean values of the standardized ISEs, from valid estimators

u ≤ 0.6� u ≤ 0.3� u ≤ 0.2� u ≤ 0.1�

CSR Matheron 0.861 0.672 0.609 0.577
NW kernel 0.504 0.285 0.223 0.201
RobCluster 0.479 0.279 0.231 0.214

CLUSTER Matheron 0.925 0.848 0.764 0.519
NW kernel 0.490 0.475 0.473 0.385
RobCluster 0.364 0.278 0.229 0.217

The total number of replicas is 100 and in each replica the total sample size is 100.
NW: Nadaraya–Waston.

The three previous empirical estimators are advised not to be used within the inference and
prediction context, as they are not valid and may originate a negative mean square prediction
error. There are several different approaches to achieve a valid estimator and their perfor-
mances are compared in Menezes et al. (2005). In here, these empirical estimators
were fitted through a reiterated WLS criterion to a class of permissible variograms following
Shapiro & Botha (1991); for coding purpose, the routine QPROG from IMSL library was
used to resolve the quadratic programming problem. See Christakos (1984) for more detail
on the issue of permissibility.

In Table 2, we summarize the mean values of the standardized ISEs, considering the valid
version of the previous three estimators. Once more, one may confirm the better behaviour
of the proposed variogram under clustered data.

Alternatively, a global bandwidth (see Remark 4) could have been chosen. In this case,
the optimal expression for bandwidth h would not depend on lag u, as it would depend in-
stead on some integrals of u. Bear in mind, a global bandwidth is expected to originate faster
simulations when compared to a local one, as it avoids a specific estimation for each lag u.
The natural drawback is to propose a less accurate solution.

6. Proofs

6.1. Proof of theorem 1

Our strategy of proof is similar to the one from Hall et al. (1994) and Garcia-Soidán et al.
(2004), together with the following lemma.

Lemma 1
Let {Xn} be a sequence of uniformly bounded random variables such that Xn =o(1) almost surely
(a.s.). Then, E[X r

n ]=o(1), for all r.

According to this lemma, as

Bias [�̂(u)]=EZ, P [�̂(u)− �(u)]=EP
[
EZ
[
�̂(u)− �(u) |V1, . . . , Vn

]]
with P identifying the random process for the spatial locations, then our target becomes the
derivation of the order of EZ

[
�̂(u)− �(u) |V1, . . . , Vn

]
. Future references to EZ[�̂(u) |V1, . . . , Vn]

will be simplified to E[�̂(u) |V1, . . . , Vn].

E[�̂(u) |V1, . . . , Vn]=E
[∑

wij(u)[Z(xi)−Z(xj)]2

2
∑

wij(u)
|V1, . . . , Vn

]

=
∑

wij(u)�(‖xi −xj‖)∑
wij(u)

,

where wij is given in (2).
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Write a1(u)=∑wij(u) and a2(u)=∑wij(u)�
(‖xi −xj‖

)
. The spatial locations have been

taken as xi =�vi, 1≤ i ≤n; see conditions (A1) and (A2). Then,

E
[
�̂(u) |V1, . . . , Vn

]− �(u)= a2(u)−a1(u)�(u)
a1(u)

. (7)

Below we shall show that the following orders hold for u > 0:

a1(u)=ud−1Ad n�−d h
∫

f0(w)2

H(a, w)
dw +o(n�−d h) a.s.,

a2(u)−a1(u)�(u)= 1
2

cK �′′(u)ud−1Ad n�−d h3
∫

f0(w)2

H(a, w)
dw +o(n�−d h3) a.s.,

where H(a, w)=∫‖y‖≤a f0(w −y) dy.
Consequently, by considering the latter relations and applying lemma 1 to (7), one obtains

E [�̂(u)]− �(u)=E
[

a2(u)−a1(u)�(u)
a1(u)

]
= 1

2
cK �′′(u)h2 +o

(
h2
)

,

which would allow one to conclude theorem 1 is valid.

Order of a1(u): For u > 0, as the kernel function K is compactly supported, one has

a1(u)=
∑
i /=j

K
(

u−‖xi−xj‖
h

)
√

ninj
+nK

(u
h

)
=
∑
i /=j

K
(

u−‖xi−xj‖
h

)
√

ninj
.

Proceeding in a similar way as in the proof of theorem 3.1 of Garcia-Sóidan et al. (2004),
the dominant term of a1(u) is given by n2�, where

�=E

⎡
⎣ K

(
u−�‖V1−V2‖

h

)
√∑

k1, k2
I{�‖V1−Vk1

‖≤�, �‖V2−Vk2
‖≤�}

⎤
⎦ .

Consider the new random variables W1 =V1 −V2, . . . , Wn−1 =V1 −Vn.
Have also in mind that a realization of W1 obeys to K

(
(u −�‖w1‖)h

)→0 unless ‖w1‖→0.
This happens as K is compactly supported, i.e. K (z)=0 if |z|> C, meaning that �−1(u−Ch)≤
‖w1‖≤�−1(u +Ch). Then

�=
∫

. . .
∫ K

(
u−�‖w1‖

h

)
fn−1(w1, . . . , wn−1)√

1+2
∑n−1

k1 =1 I{‖wk1
‖≤ �

� } +∑n−1
k1, k2 =1 I{‖wk1

‖≤ �
� , ‖wk2

−w1‖≤ �
� }

dw1 . . . dwn−1.

As a marginal distribution, fn−1(w1, . . . , wn−1) can be written as
∫

fn(w, w1, . . . , wn−1) dw =∫
f0(w)f0(w −w1) . . . f0(w −wn−1) dw, and because of assumption (A7), we obtain

�=
∫

. . .
∫ K

(
u−�‖w1‖

h

)
f0(w)f0(w −w1) . . . f0(w −wn−1)√(

1+2
∑n−1

k1 =1 I{‖wk1
‖≤a}
)

+
(∑n−1

k1, k2 =1 I{‖wk1
‖≤a, ‖wk2

−w1‖≤a}
) dw dw1 . . . dwn−1.

The expression under the square root of � may be simplified as follows⎛
⎝1+2

n−1∑
k1 =1

I{‖wk1
‖≤a}

⎞
⎠+
⎛
⎝ n−1∑

k1, k2 =1

I{‖wk1
‖≤a, ‖wk2

−w1‖≤a}

⎞
⎠

=
⎛
⎝3+2

n−1∑
k1 =2

I{‖wk1
‖≤a}

⎞
⎠+

⎛
⎜⎜⎝

n−1∑
k1 =1

I{‖wk1
‖≤a} +

n−1∑
k1, k2 =1

k1 /=k2

I{‖wk1
‖≤a, ‖wk2

‖≤a}

⎞
⎟⎟⎠
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=
⎛
⎝3+2

n−1∑
k1 =2

I{‖wk1
‖≤a}

⎞
⎠+

⎛
⎜⎜⎝1+3

n−1∑
k1 =2

I{‖wk1
‖≤a} +

n−1∑
k1, k2 =2

k1 /=k2

I{‖wk1
‖≤a‖}I{‖wk2

‖≤a}

⎞
⎟⎟⎠

=4+5
n−1∑

k1 =2

I{‖wk1
‖≤a} +

n−1∑
k1, k2 =2

k1 /=k2

I{‖wk1
‖≤a‖}I{‖wk2

‖≤a}.

Then

�=
∫

. . .
∫ K

(
u−�‖w1‖

h

)
f0(w)2f0(w −w2) . . . f0(w −wn−1)√

4+5
∑n−1

k1 =2 I{‖wk1
‖≤a} +∑n−1

k1, k2 =2
k1 /=k2

I{‖wk1
‖≤a}I{‖wk2

‖≤a}
dw . . . dwn−1.

Now, convert w1 = (w(1), . . . , w(d)) to spherical polar coordinates with the transformation

w(i) = r cos�i

i−1∏
j =0

sin �j ,

where sin �0 = cos�d =1, 0 ≤ �d−1 < 2� and 0 ≤ �i <�, for i =1, . . . , d − 2. The corresponding
Jacobian transformation is given by

rd−1Jd (�1, . . . , �d−1)= rd−1(sin �1)d−2(sin �2)d−3 . . . sin �d−2.

Furthermore, suppose
∑

k1≥2 I{‖wk1
‖≤a} =k and apply some basic combinatory rules to

obtain

�=
(∫ �

0
. . .
∫ �

0

∫ 2�

0

∫ m0

0
rd−1Jd (�1, . . . , �d−1)K

(
u −�r

h

)
dr d�1 . . . d�d−1

)

×
n−2∑
k =0

(n−2
k

)∫
f0(w)2H(a, w)k(1−H(a, w))n−2−k dw√

4+5k +k(k −1)
,

where m0 = sup{‖x‖ : x ∈D0} and H(a, w)=∫‖y‖≤a f0(w −y) dy.
Finally, with the following change of variable

t =h−1(u −�r)⇒ r =�−1(u − th)⇒dr =−�−1h dt,

and as K is compactly supported, it becomes

�=
(∫

. . .
∫

Jd
(
�1, . . . , �d−1

)
d�1 . . . d�d−1

)(∫ u
h

u−m0�
h

(
�−1(u − th)

)d−1
K (t)�−1h dt

)

×
n−2∑
k =0

(n−2
k

)∫
f0(w)2H(a, w)k(1−H(a, w))n−2−k dw

k +2

�ud−1Ad�
−d h
∫

f0(w)2
n−2∑
k =0

(n−2
k

)
H(a, w)k(1−H(a, w))n−2−k

k +2
dw,

where

Ad =
∫

. . .
∫

Jd
(
�1, . . . , �d−1

)
d�1 . . . d�d−1. (8)
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The foregoing expression for � tends to

ud−1Ad�
−d h

1
n

∫
f0(w)2

H(a, w)
dw

by applying known properties of the binomial theorem and the binomial distribution as
sketched next

n−2∑
k =0

(n−2
k

)
Hk(1−H)n−2−k

k +2
= 1

n(n−1)H2

n−2∑
k =0

(
n

k +2

)
(k +1)Hk +2(1−H)n−(k +2)

= 1
n(n−1)H2

{
n∑

k =0

(
n
k

)
kHk(1−H)n−k −

n∑
k =0

(
n
k

)
Hk(1−H)n−k + (1−H)n

}
� 1

nH
.

So

∫
f0(w)2

n−2∑
k =0

(n−2
k

)
H(a, w)k(1−H(a, w))n−2−k

k +2
dw = 1

n

∫
f0(w)2

H(a, w)
+o
(

1
n

)

because of condition (A3), which asserts that the integral performed over variable w is
bounded.

Order of a2(u)−a1(u)�(u): Similarly, for u > 0, one has

a2(u)−a1(u)�(u)=
∑
i /=j

K
(

u−‖xi−xj‖
h

)
√

ninj
(�(‖xi −xj‖)− �(u)),

and one may prove that the dominant term in here is given by n2�, where

�=E

⎡
⎣ K

(
u−�‖V1−V2‖

h

)
√∑

k1, k2
I{�‖V1−Vk1

‖≤�, �‖V2−Vk2
‖≤�}

(�(�‖V1 −V2‖)− �(u))

⎤
⎦.

Let us again convert w1 = (w(1), . . . , w(d)) to spherical polar coordinates and perform the
change of variable t =h−1(u −�r), to obtain that

�=Ad

(∫ u
h

u−m0�
h

(
�−1(u − th)

)d−1
K (t)(�(u − th)− �(u))�−1h dt

)

×
n−2∑
k =0

(n−2
k

)∫
f0(w)2H(a, w)k(1−H(a, w))n−2−k dw

k +2
.

Asymptotically, by using condition (A4), the expression (�(u − th) − �(u)) may be reduced
to the second term of its Taylor expansion, i.e. 0.5�′′(u)(−th)2. Then, the dominant term of
� becomes
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1
2

cK �′′(u)ud−1Ad�
−d h3 1

n

∫
f0(w)2

H(a, w)
dw,

where cK =∫ z2K (z) dz.

6.2. Proof of theorem 2

Let us start by considering that

Var [�̂(u)]=Var
[
E
[
�̂(u) |V1, . . . , Vn

]]+E
[
Var
[
�̂(u) |V1, . . . , Vn

]]
.

By using theorem 1 and lemma 1, it is straightforward to see that for u > 0

Var
[
E
[
�̂(u) |V1, . . . , Vn

]]=o(h4).

We need now to check that Var
[
�̂(u) |V1, . . . , Vn

]=O(n−2�d h−1 +n−1 +�−d ), and again by
lemma 1, it will lead us to the convergence rate of E

[
var
[
�̂(u) |V1, . . . , Vn

]]
. Consequently,

the convergence rate stated in theorem 2 will be proved to be valid.
About the detailed expression obtained for the conditional variance, we have,

Var
[
�̂(u) |V1, . . . , Vn

]=E
[(

�̂(u)−E[�̂(u) |V1, . . . , Vn] |V1, . . . , Vn
)2
]

=E

[(∑
i /=j wij(u)

(
(Z(xi)−Z(xj))2 −E[(Z(xi)−Z(xj))2]

)
2
∑

i /=j wij(u)

)

×
(∑

k /=l wkl (u)
(
(Z(xk)−Z(xl))2 −E[(Z(xk)−Z(xl))2]

)
2
∑

k /=l wkl (u)

)]

=
∑

i /=j wij(u)
∑

k /=l wkl (u)Cov
[
(Z(xi)−Z(xj))2, (Z(xk)−Z(xl))2

]
(

2
∑

i /=j wij(u)
)2

= (2a1(u))−2
∑
i /=j
k /=l

K
(

u −‖xi −xj‖
h

)
K
(

u −‖xk −xl‖
h

)

× 1√
ninj

1√
nknl

g
(
xi −xj, xi −xk, xi −xl

)= 2e1(u)+4e2(u)+ e3(u)
4(a1(u))2

,

where function g(·) is defined according to condition (A5) and

e1(u)=
∑
i /=j

K
(

u−‖xi−xj‖
h

)2
g(xi −xj, 0, xi −xj)

ninj
⇐ (i =k ∧ j = l),

e2(u)=
∑
i /=j
j /=l

K
(

u−‖xi−xj‖
h

)
K
(

u−‖xi−xl‖
h

)
g(xi −xj, 0, xi −xl)

√
ninj

√
ninl

⇐ (i =k),

e3(u)=
∑

i /=j, k, l
j /=k, l
k /=l

K
(

u−‖xi−xj‖
h

)
K
(

u−‖xk−xl‖
h

)
g(xi −xj, xi −xk, xi −xl)

√
ninj

√
nknl

.
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Then, according to the results from section 6.1. about a1(u), and those from the following
sections about e1(u), e2(u) and e3(u), we obtain:

e1(u)
2(a1(u))2

= Bd (u)dK

2ud−1A2
d

Ed (n, a)n−2�d h−1 +o(n−2�d h−1) a.s.,

e2(u)
(a1(u))2

= Cd (u)
A2

d

Fd (n, a)n−1 +o(n−1) a.s.,

e3(u)
4(a1(u))2

= Dd (u)
4A2

d

Gd (n, a)�−d +o(�−d ) a.s.,

where

Ed (n, a)=
∫

f0(w)2

H(a, w)2
dw

/(∫
f0(w)2

H(a, w)
dw
)2

=O(1), (9)

Fd (n, a)=
∫

f0(w)3

H(a, w)2
dw

/(∫
f0(w)2

H(a, w)
dw
)2

=O(1), (10)

Gd (n, a)=
∫

f0(w)4

H(a, w)2
dw

/(∫
f0(w)2

H(a, w)
dw
)2

=O(1) . (11)

The binomial theorem and some properties of the binomial distribution are used to prove
the validity of the latter expressions. The corresponding orders result from condition (A3).

Order of e1(u): The dominant term of e1(u) is given by n2�1, where

�1 =E

⎡
⎢⎣K
(

u−�‖V1−V2‖
h

)2
g(�(V1 −V2), 0, �(V1 −V2))∑

k1, k2
I{‖V1−Vk1

‖≤a, ‖V2−Vk2
‖≤a}

⎤
⎥⎦

=
∫

. . .
∫ K

(
u−�‖w1‖

h

)2
g(�w1, 0, �w1)f0(w)2f0(w −w2) . . . f0(w −wn−1)

4+5
∑n−1

k1 =2 I{‖wk1
‖≤a} +∑n−1

k1, k2 =2
k1 /=k2

I{‖wk1
‖≤a}I{‖wk2

‖≤a}
dw dw1 . . . dwn−1.

As in section 6.1, we may convert w1 to spherical polar coordinates and make a change
of variable to obtain

�1 =
∫ u

h

u−m0�
h

∫ �

0
. . .
∫ �

0

∫ 2�

0
Jd
(
�1, . . . , �d−1

)(
�−1(u − th)

)d−1
K (t)2�−1h

×g

⎛
⎝(u − th)

(
cos�1, . . . ,

d−1∏
j =0

sin �j

)
, 0, (u − th)

(
cos�1, . . . ,

d−1∏
j =0

sin �j

)⎞⎠dt d�1 . . . d�d−1

×
n−2∑
k =0

(n−2
k

)∫
f0(w)2H(a, w)k(1−H(a, w))n−2−k dw

(k +2)2
.

The dominant term of �1 is given by

ud−1Bd (u)dK �−d h
∫

f0(w)2
n−2∑
k =0

(n−2
k

)
H(a, w)k(1−H(a, w))n−2−k

(k +2)2
dw,
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where dK =∫ (K (z))2dz and

Bd (u)=
∫ �

0
. . .
∫ �

0

∫ 2�

0
Jd (�1, . . . , �d−1)

×g

⎛
⎝u

(
cos�1, . . . ,

d−1∏
j =0

sin �j

)
, 0, u

(
cos�1, . . . ,

d−1∏
j =0

sin �j

)⎞⎠d�1 . . . d�d−1. (12)

By the binomial theorem, we can approximate
n−2∑
k =0

((n−2
k

)
Hk(1−H)n−2−k

)
/(k +2)2 to

1/(n2H(a, w)2), so the foregoing expression for �1 simplifies to

ud−1Bd (u) dK �−d h
1
n2

∫
f0(w)2

H(a, w)2
dw.

Order of e2(u): In here, three distinct indices i, j, l, are involved, thus the dominant term
of e2(u) is given by n3�2, where

�2 =E

⎡
⎣ K

(
u−�‖V1−V2‖

h

)
K
(

u−�‖V1−V3‖
h

)
g(�(V1 −V2), 0, �(V1 −V3))√∑

k1, k2
I{‖V1−Vk1

‖≤a, ‖V2−Vk2
‖≤a}
√∑

k1, k2
I{‖V1−Vk1

‖≤a, ‖V3−Vk2
‖≤a}

⎤
⎦.

As K is compactly supported, we shall have that the dominant term of the expectation
above can be reduced to those values ‖w1‖ and ‖w2‖ tending to 0. Then, it becomes

�2 =
∫

. . .
∫ K

(
u−�‖w1‖

h

)
K
(

u−�‖w2‖
h

)
g(�w1, 0, �w2)√

1+2
∑n−1

k1 =1 I{‖wk1
‖≤a} +∑n−1

k1, k2 =1 I{‖wk1
‖≤a, ‖wk2

−w1‖≤a}

× f0(w)f0(w −w1) . . . f0(w −wn−1)√
1+2

∑n−1
k1 =1 I{‖wk1

‖≤a} +∑n−1
k1, k2 =1 I{‖wk1

‖≤a, ‖wk2
−w2‖≤a}

dw dw1 . . . dwn−1.

After the denominator of the previous expression being simplified, we have:

�2 =
∫

. . .
∫ K

(
u−�‖w1‖

h

)
K
(

u−�‖w2‖
h

)
g(�w1, 0, �w2)

9+7
∑n−1

k1 =3 I{‖wk1
‖≤a} +∑n−1

k1, k2 =3,
k1 /=k2

I{‖wk1
‖≤a}I{‖wk2

‖≤a}

× f0(w)3f0(w −w3) . . . f0(w −wn−1) dw . . . dwn−1.

Now, submitting w1 and w2 to the usual conversion of coordinates and changes of variable,
the dominant term becomes

�2 =�−2h2
∫ �

0
. . .
∫ �

0

∫ 2�

0

∫ �

0
. . .
∫ �

0

∫ 2�

0
Jd
(
�1, 1, . . . , �d−1, 1

)
Jd
(
�1, 2 . . . �d−1, 2

)

×g

⎛
⎝u
(
cos�1,1, . . .,

d−1∏
j =0

sin �j,1

)
, 0, u
(
cos�1,2, . . .,

d−1∏
j =0

sin �j,2

)⎞⎠d�1,1. . .d�d−1,1 d�1,2. . .d�d−1,2

×
(∫ u

h

u−�m0
h

∫ u
h

u−�m0
h

(�−1(u − t1h))d−1(�−1(u − t2h))d−1K (t1)K (t2)dt1 dt2

)

×
n−3∑
k =0

(n−3
k

)∫
f0(w)3H(a, w)k(1−H(a, w))n−3−k dw

9+7k +k(k −1)
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�u2(d−1)Cd (u)�−2d h2
∫

f0(w)3
n−3∑
k =0

(n−3
k

)
H(a, w)k(1−H(a, w))n−3−k

(k +3)2
dw,

where

Cd (u)=
∫ �

0
. . .
∫ �

0

∫ 2�

0

∫ �

0
. . .
∫ �

0

∫ 2�

0
Jd
(
�1, 1, . . . , �d−1, 1

)
Jd
(
�1, 2. . .�d−1, 2

)

×g

⎛
⎝u

(
cos�1,1, . . .,

d−1∏
j =0

sin �j,1

)
, 0, u

(
cos�1,2, . . .,

d−1∏
j =0

sin �j, 2

)⎞⎠d�1,1. . .d�d−1,1 d�1,2. . .d�d−1,2. (13)

By the binomial theorem, the sum
n−3∑
k =0

((n−3
k

)
Hk(1−H)n−3−k

)
/(k +3)2 can also be approxi-

mated to 1/(n2H(a, w)2), so we have that the dominant term of �2 is given by

u2(d−1)Cd (u)�−2d h2 1
n2

∫
f0(w)3

H(a, w)2
dw.

Order of e3(u): In here, four distinct indices i, j, K , l, are involved, thus the dominant term
of e3(u) is given by n4�3, where

�3 =E

⎡
⎣K
(

u−�‖V1−V2‖
h

)
K
(

u−�‖V3−V4‖
h

)
g(�(V1 −V2), �(V1 −V3), �(V1 −V4))√∑

k1, k2
I{‖V1−Vk1

‖≤a, ‖V2−Vk2
‖≤a}
√∑

k1, k2
I{‖V3−Vk1

‖≤a, ‖V4−Vk2
‖≤a}

⎤
⎦.

Proceeding in a similar way to the previous sections and considering condition (A5)
imposed on the covariance between Z(xi)−Z(xj) and Z(xk)−Z(xl), then it follows

�3 �u2(d−1)Dd (u)�−3d h2 1
n2

∫
f0(w)4

H(a, w)2
dw,

where

Dd (u)=
∫ �

0

∫ �

0
. . .
∫ �

0

∫ 2�

0

∫ �

0
. . .
∫ �

0

∫ 2�

0

∫ �

0
. . .
∫ �

0

∫ 2�

0
Jd
(
�1, 1, . . . , �d−1, 1

)

×Jd
(
�1, 2 . . . �d−1, 2

)
Jd
(
�1, 3 . . . �d−1, 3

)
td−1g

⎛
⎝u(cos�1, 1, . . . ,

d−1∏
j =0

sin �j, 1),

(
t cos�1, 3 −u cos�1, 2, . . . , t

d−1∏
j =0

sin �j, 3 −u
d−1∏
j =0

sin �j, 2

)
, t

(
cos�1, 3, . . .,

d−1∏
j =0

sin �j, 3

)⎞⎠
×dt d�1, 1 . . . d�d−1, 1d�1, 2 . . . d�d−1, 2 d�1, 3 . . . d�d−1, 3. (14)
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