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Abstract: The development of indoor positioning solutions using smartphones is a growing activity
with an enormous potential for everyday life and professional applications. The research activities
on this topic concentrate on the development of new positioning solutions that are tested in specific
environments under their own evaluation metrics. To explore the real positioning quality of
smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is
needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded
datasets is a valid way to generate open data for comparing the different solutions created by
research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition,
the different datasets created, the teams participating in the event, and the results they obtained.
We compare these results with other competition-based approaches (Microsoft and Perf-loc) and
on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for
the community are addressed along the paper. Our analysis paves the way for future developments
on the standardization of evaluations and for creating a widely-adopted benchmark strategy for
researchers and companies in the field.
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1. Introduction

Indoor positioning, location and navigation are hot research topics whose market is expected to
growth at a 42% annual rate in the next five years, with an expected worth of 41 billion USD by 2022 and
58 billion USD by 2023 [1,2]. The keys for the success of these areas are diverse: the variety of devices
that can be used for localization and tracking (smartdevices [3,4], and open hardware platforms with
commercial off-the-shelf or custom accessories [5–7], among others); the target applications ( automated
stocktaking in a warehouse [8], ambient assisted living [9], vehicle navigation [10], urban mobility [11],
health and patient’s monitoring [12–14], robotics [15], epidemic tracking [16], customer tracking [17],
finding objects [18], among many others); and the background diversity of the involved professionals,
which includes data scientists, machine learning experts, computer scientists, telecommunications and
industrial engineers and physicists, among many others.

In contrast to outdoor positioning, where the majority of systems and applications rely
on GNSS, many technologies have emerged to provide positioning indoors. They are based
on: Wireless Communication Technologies (Wi-Fi [5,19,20], BLE [18,21], RFID [22,23], FM [24],
Ultra Wide Band [18,25,26]), Ultrasounds [27,28], IMU’s [13,29–31]; signals of opportunity [32],
Optical and Vision [11], visible light [4], and Magnetic, [33] among others. Selecting the right
technology might not be an easy task since many features have to be balanced, such as target
application, deployment costs, required accuracy, tolerable uncertainty or needed computational
resources. In general, each base indoor positioning technology has a well-defined domain of
applications: Wi-Fi fingerprinting is usually applied in smartphone applications, whereas UWB
is more suitable for complex applications where higher accuracy is required. Hybrid systems which
combine several technologies in a single system for enhanced location accuracy or robustness also
exist ([11,34–36]).

The topics related to indoor positioning are very diverse, and they are enriched by the expertise
of the community working on it. The International Conference on Indoor Positioning and Indoor
Navigation (IPIN) [37] is the venue where researchers, professionals, and companies (featuring diverse
backgrounds and interests) annually meet to debate about technologies, deployments and practical
applications of indoor positioning. However, the works presented in this conference, and other related
conferences and publications, tend to show the results of experiments carried out in the authors’
facilities using their own testbeds. The diversity on evaluation approaches makes it impossible
to compare two solutions with the information provided about their respective works, since the
evaluation set-up (scenario, contexts, suppositions, strategies, and so on) might be radically different
in both set-ups. In addition, researchers are not able to reproduce the evaluation set-ups found in the
literature if the collected data are not made available by the researchers.

An illustrative example of the evaluation diversity problem can be found in two works presented
at the 2017 IPIN conference [38,39]. The former shows the evaluation results in some corridors
(inside an area of ≈30 m × 90 m, with 90 reference points), whereas the latter shows results in
an office (11.5 × 28 m2, 5 APs and 1645 calibration fingerprints), a trade fair (3422 m2 and 18 APs)
and a warehouse (826.32 m2 and 70 Bluetooth beacons). Although both works present valid results,
the differences in covered area, density and distribution of APs, number of reference fingerprints,
and so on, make quantitative comparisons among them difficult.

Since 2015, the IPIN Conference holds an indoor positioning competition [40]. Through the
definition of different tracks, the competition aims to provide an unbiased comparison of the solutions
provided by the competitors in different contexts. This paper describes the results from the latest
edition of the IPIN competition, held in Sapporo, Japan (October 2017), focusing especially in the
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Smartphone-based (off-site) track. This track (Track 3 in the competition) allowed the off-site evaluation
of working indoor positioning systems that rely on data collected using smartphones. The competition
organizers provided pre-collected databases for training, validation and evaluation to competitors.
The use of databases allows an evaluation of the competing solutions that is independent of how data
are collected, since all users have exactly the same data, i.e., competitors cannot deploy infrastructure
and perform custom calibration mapping that would affect the system evaluation. Despite our focus
on Track 3, the authors of this paper believe that our conclusions are applicable to the IPIN competition
as a whole, since there is a common need to overcome the diversity evaluation problem previously
mentioned and provide useful tools and frameworks for evaluating indoor positioning systems.

Nowadays, providing databases with pre-recorded data is becoming more popular in the scientific
literature, since it provides a way for third-party researchers to validate the positioning method
proposed by the authors or provide alternative methods. In our opinion, sharing positioning data
fosters the development of new localization algorithms.

Databases can be introduced by publishing a data descriptor paper (e.g., [24,33,41]) or by
providing supplementary data in a full research article (e.g., [8]). The 2017 IPIN conference organized
the first session dedicated to evaluation (session chaired by Nobuhiko Nishio on 19 September 2017
with five contributions), where databases and other evaluation aspects were the main goal of the works.
In previous editions, the evaluation topics were considered residual and presented under the umbrella
of other main research works.

The creation of the ISC (International Standards Committee) of IPIN [42] was announced during
the 2017 IPIN Conference. This Committee aims to develop and promote open standards for indoor
positioning and indoor navigation through the collaboration of academia, industry and government
organizations around the globe, where evaluation will also be a fundamental pillar.

The competition organization, the dedicated sessions and the proliferation of standards, such
as ISO/IEC 18305:2016 [43], demonstrate that the indoor community is interested in providing
databases and harmonize the evaluation of indoor positioning systems under equal conditions.
This paper presents our experiences through the 2017 IPIN competition in joining together normalized
database creation, experimentation, evaluation metrics and a discussion about comparing indoor
positioning systems.

To sum up, the main aim of this paper is threefold: showing the results of the competition,
demonstrating that all competitions are useful for the research community and discussing about
improving the evaluation of indoor positioning systems.

The rest of this paper is organized as follows: Section 2 introduces the evaluation problems found
in the literature and the initiatives to evaluate indoor positioning systems. Section 3 describes the IPIN
competition, with special interest of the Smartphone-based (off-site) track and competing systems.
Section 4 presents the competition results. Section 5 shows the lessons learned, from the organization’s
and the participants’ points of view.

2. Related Work

The indoor positioning community is concerned about the evaluation problem, as demonstrated by
the proliferation of many different initiatives to promote the evaluation of indoor positioning systems.

Several specific initiatives for evaluating indoor positioning systems have been proposed. First,
operative indoor positioning prototypes are being evaluated through competitions, which might
include tracks to cover different contexts. Those competitions not only evaluate working systems,
but, in some on-line cases, also the ability for deploying a proper infrastructure in a short period of
time. Second, open evaluation benchmarking testbeds and web platforms are emerging to provide
a large variety of evaluation setups for indoor positioning systems. Third, many researchers are
providing the collected data used in their experiments in public/general-purpose repositories or in
personal/institutional websites.



Sensors 2018, 18, x 4 of 27

In general, the indoor community is adopting more open and transparent evaluation procedures
which enable further comprehensive comparative works. The adoption of open evaluation approaches
should be seen as a unique opportunity to share different complementary ideas, increase the motivation
of the indoor community to improve the accuracy of current systems and, above all, consolidate the
indoor positioning as an emerging topic. Since the indoor positioning topics are diverse, they are
expected to have multiple open alternatives for open evaluation.

2.1. Indoor Competitions

The Microsoft Indoor Localization Competition at the International Conference on Information
Processing in Sensor Networks (IPSN) is one of the most popular indoor localization
competitions [44–46]. In all editions, teams from industry and academia were encouraged to participate
in an event where their performance was compared in the same space in the conference venue.
Although all positioning techniques were allowed a priori, some restrictions were applied: end-users’
manual measurements were forbidden, competitors could deploy up to 10 devices as infrastructure
to provide indoor positioning (not available for other competitors), jamming other deployments
was not allowed, and the competitors had to show their results on an easy-to-carry portable device
(smartphone, tablet, laptop or similar).

The EvAAL initiative [47–49] organized the first public international (indoor) localization
competitions in 2011–2013, which were focused on indoor localization and tracking for ambient
assisted living (AAL). The 2012 and 2013 editions included additional tracks, such as the activity
recognition for AAL. Later, the International Conference on Indoor Positioning and Indoor Navigation
carried out its first competition in 2014 by adopting the EvAAL framework. In 2015, the EvAAL-ETRI
competition was held in the IPIN conference [50]. The IPIN Competition has formally adopted the
EvAAL framework since 2016 [51].

PerfLoc [52] is an on-going prize competition organized by the US National Institute of
Standards and Technology (NIST) for development and performance evaluation of smartphone
indoor localization and tracking applications based on a huge dataset [52]. The provided data
cover smartphone sensors, Radio Frequency (RF) signal strength, and GPS data collected in four
large buildings by means of four different smartphones. The generated dataset covers more than
30,000 square meters of space, more than 900 evaluation points professionally surveyed and a total of
≈16 h of recorded data with each smartphone.

The Geo IoT World conference also provided an indoor location testbed [53] where some leading
solutions in indoor positioning were assessed in 2016 and 2017. The testbed admits different positioning
technologies: the phone-based segment, the infrastructure-free segment and solutions with a dedicated
hardware. The two editions of the Indoor Location Testbed evaluated 12 solutions from 9 companies,
such as: BlooLoc, GipsTech, Accuware (former Navizon), HERE, Indoo.rs, Lambda4, Movin, NexToMe
or Senion.

2.2. On-Line Benchmarking Platforms

In addition to the competitions, platforms allowing the comparison of different solutions have
great importance.

The EVARILOS benchmarking platform (EBP) [54], with a competition held in 2014, had the
objective of automating the evaluation process [55]. The EVARILOS benchmarking proposal defines
an evaluation criterion [56] which is aligned with the upcoming ISO/IEC JTC 1/SC 31 standard for
evaluating RF-based IPSs. Although it targets radio frequency-based systems, some of their ideas
could be applied to broader scenarios. In fact, the EBP has been useful for objectively capturing the
performance and comparing several solutions using multiple evaluation metrics in multiple events
and scenarios [45,57].

The IndoorLoc Platform [58] is a public repository for comparing and evaluating indoor positioning
algorithms. The platform is a centralized website where researchers can access a public repository of
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datasets for indoor positioning, evaluate their indoor positioning system on well-established reference
databases with blind test sets, analyze positioning methods and interact with the platform.

2.3. Databases

Although the IndoorLoc Platform facilitates the access to reference databases, there are other
databases available online for download.

It has become a trend to publish the databases in personal/research group websites [59,60] or in
on-line repositories, such as The Community Resource for Archiving Wireless Data At Dartmouth
(CRAWDAD) platform [61–65], UCI Machine Learning Repository [66–70], or Zenodo [71,72].
To spread their availability, data-descriptor papers can be published [73] or databases can be
referenced/included as Supplementary Materials of a particular research work [71].

As commonly done in machine learning, the evaluation of an indoor positioning system using
a wide variety of datasets represents its general accuracy better since many evaluation contexts are
considered. In addition, the availability of datasets allows comprehensive comparative studies that
provides researchers with a better overview of all works related to, for instance, an indoor positioning
technology. Unfortunately, there is not a well-established consensus about how to collect (strategies to
generate the dataset) and provide this data (file format) yet.

3. The IPIN 2017 Competition

The Evaluating Ambient Assisted Living initiative (EvAAL) aims at establishing benchmarks and
evaluation metrics for comparing Ambient Assisted Living solutions and it has organised international
competitions on indoor localization and indoor activity recognition since 2011.

In 2017, EvAAL members applied their experience to the organization of IPIN 2017 Competition,
which was held during the IPIN Conference (16–21 September 2017, Sapporo, Japan). The competition
was composed of four tracks:

• Track 1: Smartphone-based (on-site)
• Track 2: Pedestrian Dead Reckoning Positioning (on-site)
• Track 3: Smartphone-based (off-site)
• Track 4: PDR for warehouse picking (off-site)

This paper focuses on the organization, results and lessons learned in the 2017 IPIN competition’s
Smartphone-based (off-site) track, which might be considered as a continuation of the Smartphone-based
track from the previous IPIN competition. The following subsections will describe the main aspects of
this database off-site competition.

3.1. The Off-Site Track Rules

The main features of the 2017 IPIN Competition - Smartphone-based (off-site) track were:

1. An off-site competition approach where the organizers provided the required data for calibration,
validation and evaluation. It was forbidden for competitors to survey the evaluation scenarios by
themselves. This constraint guaranteed that all competitors had the same data for participating
in the competition. All competitors were notified about the existence of public-access databases
that were collected for the previous 2016 IPIN Competition [74].

2. The data were provided as logfiles recorded by a dedicated Android application (GetSensorData v2,
which is available at [75] and which was first used in [32]). A logfile contains sensors’
measurements and landmark labels recorded while the actor followed a continuous trajectory.

3. A natural movement is assumed in most captured data. Some special movements were also
considered: turns, moving backward/laterally at certain points and changing floors through
stairs. The user speed was approximately constant while recording the data with stops at some
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positions. It is important to note that the data were collected by a human, and not a controlled
constant speed device, which makes the data closer to a natural movement.

4. None of the collected dataset included artificial phone holding. The smartphone was either
stable in front of actor’s face or chest, which is a typical position for reading or typing on the
phone, or with the arm downwards while holding the phone with a hand. In only very few cases,
the phone was near the actor’s ear simulating a phone call. This unpredicted variability is closer
to reality.

5. Each logfile covered a trajectory in one of the evaluation buildings and it was recorded by an actor
using a smartphone. The provided data are diverse because they consist of multiple trajectories
taken at three different buildings. A total of eight people participated in the database creation
and 10 devices were used.

6. The scenarios remained unaltered during the collection process. Only one of them changed,
because BLE beacons had been previously deployed in a small area for testing purposes.
The information about the location of those beacons was provided to competitors.

With respect to the 2016 IPIN off-site competition [74], the competition organizers introduced
only a few changes. Most features were kept in order to create a stable data format and maintain the
natural way of capturing the information, and also to encourage previous competitors to participate
again, year after year, as the learning curve for them to compete is low. The few changes added in this
current 2017 edition were introduced with the goal of increasing the interest for the competition itself,
such as adding an additional RF technology (BLE), and providing an additional natural phone motion
for a more challenging positioning problem. Those changes are summarized as follows:

1. Bluetooth Low Energy data were available.
2. Position of BLE beacons and a few Wi-Fi APs was provided.
3. In a few cases, the actor simulated a phone call while data were being captured, to add a

natural motion.
4. More raw-data per building were provided.

The competition environment comprised a total of three buildings: CAR (CSIC Arganda, Madrid,
Spain), UJIUB (Universitat Jaume I, Castellón, Spain) and UJITI (Universitat Jaume I, Castellón, Spain),
all of which were also part of the 2016 IPIN Competition.

Description of Datasets

Raw geo-referenced data were provided as a set of logfiles for training and validation purposes,
which corresponds to a stream of sensor data registered sequentially. Each line in the file corresponds
to a register, a single sensor reading, stored as plain text. The register fields are separated by semicolons
and contain the values provided by the sensor, the timestamps and a header that identifies the type of
sensor. The register named POSI does not correspond to any sensor and it provides the ground truth
location provided by the users. The sampling rate of each kind of sensor depends on the Android
device and operating system version.

Three types of datasets were available to competitors: training, validation and test. There was
no substantial difference between them regarding the sensor’s registers. Only the training and
validation logfiles contained the POSI registers with the geo-referenced positions of the reference
points. The position was provided as latitude and longitude (WGS84 format) and the identifiers for
floor and building.

All datasets were simultaneously published on April 2017, i.e., five months before the deadline that
the competitors had for submitting their location estimation results. Table 1 shows the information
about the collected logfiles in each scenario.

Similarly, Table 2 shows the information about the collected data in the IPIN 2016 competition
for comparative purposes. First, the 2017 IPIN Competition provided validation data, which allowed
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competitors to test their systems with geo-referenced data. In 2016, the validation strategy relied
on the competitor and specific data for this purpose was not provided. Second, all datasets were
simultaneously published in April 2017, instead of the two stage release (training and test) done
in 2016. Third, the number of buildings was reduced to three because the organizers performed a more
exhaustive data collection in each building and due to the available time for creating, checking and
publishing all datasets. Despite this reduction, in 2017, the organizers provided ≈40% more data with
respect to the 2016 edition. Considering only the three buildings, in 2017, the organizers provided
an increase of ≈134% in accumulated distance, of ≈83% in reference positions, and of ≈170% in
accumulated time in comparison to the 2016 competition.

Table 1. Resume of the logfiles provided to 2017 IPIN competitors.

Scenario Subset Logfiles Total Length (m) Num. Ref. Points Total Duration (s)

CAR
Train 9 ≈3720 450 9551

Validation 3 ≈1865 225 4512
Test 2 ≈1180 126 2620

UJITI
Train 4 ≈3795 424 4105

Validation 2 ≈410 59 874
Test 2 ≈590 95 1134

UJIUB
Train 12 ≈3425 702 4755

Validation 4 ≈1450 332 2544
Test 3 ≈1450 284 2764

total 38 ≈17,890 2697 32,859

Table 2. Resume of the logfiles provided to 2016 IPIN competitors.

Scenario Subset Logfiles Total Length (m) Num. Ref. Points Total Duration (s)

CAR Train 4 ≈2180 254 4295
Test 2 ≈1085 152 2447

UJITI Train 2 ≈1640 561 1724
Test 2 ≈740 121 673

UJIUB Train 5 ≈1615 294 2286
Test 1 ≈375 91 730

UAH Train 6 ≈3035 320 5603
Test 4 ≈2200 214 4755

total 26 ≈12,860 2007 22,513
total * 16 ≈7630 1473 12,155

total * considers only CAR, UJITI and UJIUB buildings.

Once the datasets were actually used in the competition, some issues were found:

• Regarding the ground truth data, which were provided by POSI lines in training and validation
logfiles, some competitors suggested to have more reference data and shorten the period between
two consecutive POSI entries in the logfiles. However, the data collection, which included marking
each reference point, was not an easy task.

• The organizers included a tricky transition between floors in one of the logfiles. This transition
(stairs area) was not included in the training and validation logfiles and was considered a good
way to test the robustness of competing IPS when facing unexpected events.

• The floor penalty was applied whenever a competing system misidentified the floor. However,
in floor transitions (stairs areas), a system may provide an estimation very close to the evaluation
point and yet be prone to miss the floor. Some competitors indicated that future competitions should
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take into account these special cases. The competition organizers are considering to integrate a
more realistic error distance metric [76] to calculate the positioning error in next editions.

The competition organizers appreciate the honest feedback from competitors and will work on
balancing the competitors suggestions and competition challenges.

3.2. Submission of Results and Evaluation

After processing the evaluation logfiles (test subsets), participants could perform up to three
different submissions of indoor location estimates. The estimates had to be provided at a pace of
0.5 s, starting from the first timestamp available in each logfile. The estimations had to adhere to the
following format: timestamp, latitude, longitude, floor, and building.

Each submission was evaluated considering the estimates provided for the seven evaluation
logfiles. The base positioning error was defined as the geometric distance between the two-dimensional
(latitude and longitude) real position as recorded by competition organizers and the estimated position
provided by the competing IPS. This base error is commonly referred as two-dimensional positioning
error or X-Y error. Furthermore, we took into account floor and building mis-identifications during the
trajectories. In this case, 15 and 50 m penalties were added to the geometric error if the IPS had not
correctly estimated the floor and building, respectively. Thus, the positioning error is defined in this
paper as the two-dimensional positioning error plus the penalties terms. The final metric used for the
competition results was the third quartile (75% percentile) of this joint positioning error.

Of the three alternative sets of estimations submitted by the competing teams to the tests, only the
one with the best results was considered for the ranking of competitors.

3.3. The Competing Teams

This section highlights the main features of the competing teams and references their works in
the IPIN 2017 proceedings:

• The UMinho team: Adriano Moreira, Maria João Nicolau, António Costa, Filipe Meneses.
University of Minho and Centro de Computação Gráfica, Guimarães, Portugal.

• The AraraDS team: Tomás Lungenstrass, Joaquín Farina, Juan Pablo Morales. AraraDS,
Santiago, Chile.

• The Yai team: Wei-Chung Lu, Wen-Chen Lu, Ho-Ti Cheng, Shi-Shen Yang, Shih-Hau Fang,
Ying-Ren Chien and Yu Tsao. Yuan Ze University, National Ilan University, Academia Sinica
Research Center for Information Technology Innovation, Taiwan.

• The HFTS team: Stefan Knauth. Stuttgart University of Applied Sciences, Stuttgart, Germany [77].

3.3.1. UMinho Team

The approach used by the UMinho team on the 2017 edition of the competition is a refinement of
the solution used in the previous year competition [78]. The core of the positioning estimation solution
is a plain Wi-Fi fingerprinting estimation algorithm based on the k-nearest neighbours classifier.
The optimum use of this base algorithm in the context of the IPIN 2017 competition required, however,
a set of additional data manipulation and estimation processes. A brief description of these additional
techniques is provided next. One of the challenges of using fingerprinting with the provided datasets
is that a radio map has to be constructed, which requires the estimation of the positions where the
samples were collected. This is a consequence of the time offset between the POSI records and the
time instant when fingerprints were collected (refer to Moreira et al. [78] for the used approach).
Compared to the previous edition, the problem of building the radio map extended to the new BLE
fingerprints. The approach of the UMinho team was to experiment with two solutions: (i) build one
single radio map by merging Wi-Fi and BLE fingerprints into a single vector (considering BLE access
points as Wi-Fi access points); and (ii) build independent radio maps, one for Wi-Fi and one for
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BLE, and then use one or the other to estimate the position associated to each testing Wi-Fi or BLE
fingerprint, respectively. This solution aimed at exploring the added information provided by the
BLE samples, where available. The second enhancement was related to the use of barometric pressure
data to help in estimating the correct floor. A barometric pressure profile is defined as a smoothed
version of the temporal variation of the measured atmospheric pressure along the route. Pressure
profiles are useful to detect changes in the floor along the route, but cannot be used to estimate the
absolute floor. Therefore, the absolute floor estimations provided by Wi-Fi fingerprinting was used
to automatically fit the pressure profile. While in 2016 these data were always used when they were
available in the testing datasets, the solution of 2017 used the barometric pressure data only after
verifying the correlation between the pressure profile (the time series representing the estimated floor
along the time) and the floor estimated through the Wi-Fi fingerprinting estimator. When a good
correlation was observed, the pressure profile was used to better define the time instant of transition
between floors; otherwise, only the Wi-Fi estimations were used as they proved to be more reliable.
Information about the mobility profile of the users (being in motion or standing still) can be used
to improve the performance of positioning methods based on fingerprinting. Among other aspects,
fingerprints collected while the user is not moving can be merged together to generate a less noisy
fingerprint and, potentially, improve the position accuracy. The UMinho approach to create a mobility
profile, for each route, is based on processing accelerometers’ data and detect steps [78]. Additionally,
visual inspection of the accelerometers’ data was used to estimate the initial smartphone calibration
procedure. While information about this process has not been provided to the competitors, the patterns
observed in the accelerometers’ data suggests that such procedure has been used at the beginning
of most of the routes. In this year’s competition, the process to estimate the mobility profile was
improved, and then used to merge all the Wi-Fi fingerprints collected while the user was detected as
standing still.

3.3.2. AraraDS Team

AraraIPS is Arara’s proprietary indoor positioning technology. This startup has rapidly grown
during its four years of existence to become the largest Wi-Fi network administrator in Chile. Arara is
engaged in developing advanced knowledge solutions and producing high-quality technology to
address modern business and industry challenges. AraraIPS has been one of the central issues in their
research agenda for the last year. In spite of being still in an early development stage it is already
a functional and promising indoor positioning system.

AraraIPS’ approach to indoor positioning has four distinctive characteristics: it is based on
a cartographic paradigm (fingerprinting), it uses a discretization of the predicted floor/building, it is
measurement-agnostic (i.e., its abstract formulation is not specific to any kind of signal or measurement
such as Wi-Fi, magnetic field, BLE, etc.), and it exploits measurement history. In the following
paragraphs, these features will be shown to get a better understanding of how AraraIPS works.

Fingerprinting has become a relevant technique in indoor positioning approaches.
Traditional positioning methods are generally based upon one such principle as trilateration or
triangulation, in which sufficient geometric information (with respect to reference landmarks) singles
out the position of the object to be located. These methods are based on underlying hypotheses
(e.g., clear line of sight between object and reference landmark is needed to establish a functional
one-to-one relation between distance and signal intensity) which usually do not hold in the dynamic,
cluttered context of indoor spaces. Even though cartographic approaches still need to take care of
changing environment, they can adapt to obstruction and other conditions that naturally occur in
indoor spaces and thus avoid the pitfalls of traditional positioning techniques. From Arara’s point of
view, this is a crucial property for a successful positioning system.

Arara’s system also relies on the discretization of the underlying indoor space. In practice,
this means that a graph is built from the map of a venue, in which nodes are possible locations where
the tracked device can be found and edges connect neighboring nodes. This effectively turns the
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positioning problem into a classification one, in which the prediction is one of finitely many possible
locations. It has the further advantage of ruling out inaccessible locations (e.g., walls) and thus not
complicating the prediction task unnecessarily. An example of a generated graph is shown in Figure 1.

Fingerprinting also has the additional advantage of not needing any a priori knowledge about the
nature of the measured quantities (provided that they are effectively vector fields in the indoor space).
Arara’s system was expected to be as scalable and flexible as possible, and this was taken as a feature
of the model. This is not a property that provides improved performance, but a desirable commercial
feature for AraraIPS to be able to adapt fully and simply to varying operating conditions. Therefore,
the system uses a very general probabilistic model for measurements taken at a given location, which
is common to all mapped quantities.

Figure 1. Sample graph on a hardware store map.

To make the system scalable, which is a fundamental concern, it does not rely on the installation
and maintenance of additional hardware. The Arara’s team considers that the available information
(Wi-Fi, magnetic field, and possibly BLE) under typical operating conditions in most buildings is not
discriminative enough by itself to yield a sufficiently precise prediction. Hence, the solution proposed
(and the final ingredient in the system) is to enrich the information available to the prediction module
by taking into account the history of measurements, exploiting the fact that measurements taken
close in time will be strongly correlated. Thus, it is expected to narrow in the prediction on the true
position, with greater and greater confidence as time goes by. The mathematical formulation of this is
enclosed in what the Arara’s team called “random walk model”. The output of the algorithm is thus
a probability distribution over all possible nodes.

For the competition, the fingerprinting method was adapted to use the available data.
The predictions submitted are almost solely based on Wi-Fi information (GNSS is used outside
buildings and PDR was “cosmetically” used for prediction interpolation in one submission with no
actual improvement in results). This was mostly because the system is currently under development
and reliable PDR techniques have not yet been implemented/developed. One of the submissions of
Arara’s team included an experimental feature using future information to improve present predictions
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with worse, inconsistent results. More work is still needed to look deeper into it to understand what is
actually going on.

3.3.3. YAI Team

An increasing growth of indoor localization solutions has been witnessed during the past few
years. Although many different positioning approaches exist, the YAI team uses the traditional
fingerprinting approach to address indoor positioning in the IPIN competition. Positioning was
divided into three main stages parts:

1. Determination of the correct building;
2. determination of the correct floor; and
3. estimation of the latitude and longitude coordinates.

First, the YAI team uses the GPS data to determine the correct building. Due to the buildings
distribution, this stage should not require any other advanced method in order to determine the
correct building.

Second, the Wi-Fi data were used to determine the floor differences. Wi-Fi fingerprints were
labelled with the floor numbers. Then, the corresponding access point and its RSS value are used
to calculate the Euclidean Distance between the training fingerprints and the testing fingerprints.
The minimum distance in the RSSI space provided the predicted floor number. Pressure data was used
to revise the final prediction of floor.

Third, data from Wi-Fi, Accelerometer and Magnetometer were used to determine the coordinates
(longitude and latitude). This algorithm consists of two differentiated fine-grained positioning systems:

• if the distance between the two consecutive points is less than 5 m, the accelerometer and
magnetometer data are used to predict the trajectory of the walking person; and

• if the distance between the two consecutive points is more than 5 m, Wi-Fi Fingerprinting approach
is used to determine the coordinates.

The members of the YAI team found that using accelerometer and magnetometer data provided
accurate results but the mean error increased remarkably as the distance between two points became
larger. Thus, the threshold value was set to 5 m in order to switch to the fingerprinting-based
positioning system.

In the Wi-Fi fingerprinting based approach, the YAI team labelled the Wi-Fi data with coordinates.
Then, the corresponding access point and its RSS value were used to calculate the Euclidean Distance
between the training point and the testing point. Finally, the minimum distance provided the
predicted coordinates.

The competing system introduced by the YAI team was tested on the validation logfiles.
The building identification was 100%, whereas the floor identification was higher than 95%. The mean
error of all three building is 4.412 m for building CAR, 4.532 m for building UJITI and 4.829 m for
building UJIUB. The results using the validation data were in line with the results provided in previous
competitions for the three buildings.

3.3.4. HFTS Team

The HFTS team combined PDR/Wi-Fi algorithms [77] and employed GNSS, Wi-Fi, accelerometer,
compass, and gyroscope data. In their system, step detection is performed by peak detection of the
accelerometer data, and compass and gyroscope are used for heading estimation. Drift compensation
and step length estimation is performed by a particle filter using the information of floor plans to
detect the most likely path (see also [79,80]). Floor detection is based on position and received signal
strength indicator (RSSI) evaluation. RSSI positioning is performed using the scalar product correlation
fingerprinting algorithm [81].
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Heading estimation is performed by combining gyroscope and magnetic information: the gyroscope
is able to detect heading changes quite accurately on a short timescale, but will drift in the long-term.
Therefore, the algorithm stabilizes the gyroscope heading with the compass heading. Compass heading
is subject to strong local magnetic perturbations but shows no drift on a long-term scale. The estimated
heading is calculated by summing gyroscope heading changes immediately, but relaxing back to
magnetic heading with a configurable constant.

The particle filter contains a constant number of particles. Besides the position, a particle state
also comprises individual step length and heading offset values. The filter is updated each time a step
is detected: All particles are moved according to the estimated heading, individually modified by the
particle specific offsets. Each time a particle collides with, for example, a wall, it is replaced by a new
one. For collision detection, the provided floor plans are used. New particles are seeded at the position
of an existing particle, but with an own step length and heading offset value.

A particular feature of the algorithm is its backtracking capability. By recursively tracking back
the history of a particle, a continuous track can be estimated for each individual particle, allowing
a posteriori elimination of failed particles. This leads to a significant accuracy increase for cases where
the position information is not needed in real time.

The HFTS 2017 competition algorithm includes fusion of PDR and Wi-Fi results: To keep the
concept of continuous particle movement, i.e., no sudden displacement of particle positions, the Wi-Fi
information is used to adjust the particle movement parameters which are heading and step length.
This is described by the following equations:

l′ = (1− astep)l + astepl
dWi−Fi
dPDR

(1)

Θ′ = Θ + ahead · arccos
dPDR · dWi−Fi
dPDR dWi−Fi

(2)

Starting at the position R(t1) of a past time t1, the vector dPDR to the current position R(t2)PDR is
compared with the vector dWi−Fi connecting from R(t1) to the position R(t2)Wi−Fi, which is obtained
by Wi-Fi. From the obtained distances dWi−Fi and dPDR a corrected step length l′ Equation (1) is
calculated; from the angle between the vectors, a corrected heading Θ′ Equation (2) is derived.
To balance between PDR and Wi-Fi positions, coupling factors or gains astep and ahead are introduced
for the step- and the heading correction. Using values in the interval [0, 1] the effect of RSSI on the
PDR position can be adjusted. While for astep typically small values below 0.1 were used, the angle
gain has been useful set to values of 0.5.

On stairs, the step length changes considerably and is dependent on the stairs stride. It is typically
about half of the normal step length. This is taken into account by marking stair areas with a dedicated
color in the floor maps. The collision check also includes a stair check based on the map marking.
The particle filter then adjusts the step length accordingly to a predefined value, for the corresponding
particles. The stair information is also used in the handling of floor change processing: Floor changes
may only occur when passing stairs. At the moment when a floor change is detected, all particles not
situated on a marked stair area are removed from the particle filter. This increases the convergence of
the particle filter. The scheme could also be used to handle elevators or escalators.

The particle filter may also get empty i.e., all particles are discarded. This may for example happen
when the number of particles is too small, the heading estimation has a high error or the floor plan is
not correct, i.e., people can walk through walls. A possible approach to solve the issue could be to
seed new particles at random positions for example around the known Wi-Fi position. However, the
reseeding of new particles at new positions cuts the link to the particles history, thereby disabling the
particular backtracking feature of the algorithm.

The chosen solution is to suspend the collision detection for a short time in cases where all
particles would collide. The confinement of the particle cloud is then performed by the Wi-Fi position:
Particles for which the distance to the Wi-Fi position exceeds a configurable value are discarded.
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In summary, the algorithm exhibits the following particular features:

• PDR Offset cancellation is not only map-based but also Wi-Fi based: The particle movement
process of the particle filter includes a Wi-Fi based heading offset and step length correction.
Depending on parameter setting, this may lead to ignoring Wi-Fi, mixing Wi-Fi and inertial sensor
information or completely adjust to Wi-Fi positions.

• The particle filter uses Wi-Fi results as a bound to remove outliers: By keeping an estimated Wi-Fi
position, particles exceeding a configurable distance from the Wi-Fi position are removed from
the particle filter, thus keeping the particle cloud confined to a certain radius.

• The PDR algorithm considers floor areas on which a level change may occur, e.g., stairs and
elevators. These areas are marked manually on the floor map. This allows step length adjustment
for stairs and, in combination with Wi-Fi floor change detection, particle filter “flushing”,
e.g., removal of particles which are not on a floor change area.

• In cases where the particle filter loose all particles, the map requirement is withdrawn,
e.g., particles may cross walls. They are still confined to some extend by the Wi-Fi position.

4. Results

This section presents the track 3 IPIN 2017 competition results and, after that, those results are
compared with the results of other competitions.

4.1. Competition Results

The competition results for the total 505 evaluation points are shown in Table 3 and Figure 2,
with special emphasis on the third quartile of the positioning errors with penalties (the competition
score). All results correspond to the best set of results (the one reporting the lowest score) among the
three sets submitted by all competitors.
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Figure 2. Competition Results in CDF (Cumulative Distribution Function) representation for the seven
logfiles as a whole (CDF represented by a solid lines for each team). Alternative metric based on the
mean positioning error (applying floor penalties) is represented by vertical dashed lines.
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Table 3. Competition Results—Third Quartile of the positioning error with penalties (in meters) on the
505 test points.

UMinho Team AraraDS Team Yai Team HFTS Team

Score (m) 3.48 3.53 4.41 4.45

The winner of this edition was the UMinho team (Score: 3.48 m) followed closely by AraraDS
team (Score: 3.53 m). The difference between their scores was just 5 cm, which demonstrates the quality
of both competing systems regarding the competition metric. The Yai and HFTS teams were third
and fourth in the competition rank, respectively. The CDF shown in Figure 2 ratifies the competition
principal rank. The values presented in Table 3 are the error values that Figure 2 shows associated
to 75 percentile for each team. Figure 2 also presents with vertical dashed lines the mean positioning
error (with penalties included).

4.2. Detailed Results

Although the ranks provided in the IPIN competition correspond to the third quartile of the
positioning error, we consider that more details are needed to understand why a comprehensive
evaluation of indoor positioning systems (including different scenarios and contexts) is useful.

The detailed extended evaluation results are shown in Table 4 and Figure 3, where results on each
of the logfiles are shown (third quartile, mean positioning error, two-dimensional error (or horizontal
error) and floor detection rate). The table also includes two aggregated results in the top and bottom
lines: All logfiles and Average. The All logfiles metric corresponds to the mean positioning error or the
floor detection rate for the 505 evaluation points as a whole. The Average metric line, considers the
average of the mean results shown for the seven logfiles. In all these metrics, all logfiles correspond to
the best set of results out of the three files allowed to be presented by the competitors.

The results provided by the two aggregation alternatives (all logfiles and average) slightly differ
from the competition metric since they are based on the average of the positioning error and hit
detection rate instead of the third quartile. In addition, both aggregation alternatives are different
to each other as the numerical results in the table reflects. This difference is because the former
aggregation alternative averages all reference points with equal weight and the later corresponds to
the average of the averaged accuracy of each logfile. In this second approach (average) the weight
among all points is different as not all logfiles contain the same amount of reference points, so that
shorter experiments have more weight.

In view of these alternative results, and comparing them to the third quartile official metric,
the competition organizers consider that the main metric used in the competition represents the
general accuracy of the competing systems, but the extended information is also useful for developers
and community to understand how each system works on each considered scenario and context.

Although the UMinho team provided the best score and aggregated results, it is worth noting
that the AraraDS team provided the best results in logfile 2; the Yai team provided the highest floor
detection in the evaluation logfiles collected at the UJIUB building (logfiles 3, 4 and 5); and the HFTS
provided the lowest mean positioning error in the logfiles collected at the UJITI building (logfiles 6
and 7). This fact demonstrates that comprehensive evaluation procedures are useful, not only to obtain
a winning system but also to show the complexity of developing an indoor positioning system that
provides the best results in all contexts and scenarios.

According to the individual CDF plots, it can bee seen that the CDFs for logfiles 1, 3, 4 and 5
(Figure 3) resemble the CDF for the positioning results considering all logfiles (Figure 2).

Logfiles 1 and 2 correspond to CAR building. The CDFs show that the UMinho and AraraDS
teams are the bests for logfile 1, and the AraraDS and HFTS teams are the best ones for logfile 2.
Although both evaluation logfiles were collected almost simultaneously by two independent actors
following a similar trajectory, logfile 2 was collected by means of a “new” device (not used in training
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and validation) which might have negatively affected a few competing systems (especially for the
UMinho and Yai teams).

Logfiles 3, 4 and 5 correspond to the UJIUB building and the three CDFs are similar. It seems that
the results provided in logfile 5 are slightly worse than in the other two logfiles collected in the same
building (logfiles 3 and 4).

Logfiles 6 and 7 correspond to two independent trajectories in the UJITI building. The CDFs show
that the HFTS team was the best team in this building (with a mean positioning error lower than 2 m
in both cases).

The individual results and CDFs show that the results are not homogeneous and they depend on
the scenario and context. The UMinho team won the competition, but the AraraDS and HFTS were the
best in three individual logfiles using the competition metric (the third quartile). The accuracy does
not only depend on the scenario, but also on the evaluation context: particular disturbances present in
the environment, device used for positioning or, even, actor interaction as the results of logfile 5 show.

Table 4. Extended Competition Results—3rd quartile (3rd Q), Mean Positioning error (MPE),
Two-dimensional error (X-Y) and Floor detection rate (Flr) on each logfile and aggregated metrics

UMinho Team AraraDS Team

3rd Q (m) MPE (m) X-Y (m) Flr (%) 3rd Q (m) MPE (m) X-Y (m) Flr (%)

All Logfiles 3.48 3.00 2.44 96.24 3.53 3.74 2.67 92.87
Logfile 01 3.59 3.06 3.06 100 3.78 3.72 3.72 100
Logfile 02 4.51 3.73 3.73 100 3.60 3.46 3.46 100
Logfile 03 2.72 2.51 1.87 95.74 2.76 4.04 2.12 87.23
Logfile 04 2.67 2.74 1.77 93.55 3.17 4.14 1.72 83.87
Logfile 05 3.91 3.70 2.31 90.72 4.74 4.47 3.23 91.75
Logfile 06 3.73 2.46 2.46 100 3.48 2.65 2.65 100
Logfile 07 3.56 2.55 2.55 100 3.07 2.43 2.13 98
Average 3.53 2.96 2.53 97.14 3.52 3.56 2.72 94.41

Yai Team HFTS Team

3rd Q (m) MPE (m) X-Y (m) Flr (%) 3rd Q (m) MPE (m) X-Y (m) Flr (%)

All Logfiles 4.41 3.51 3.36 99.01 4.45 3.52 2.89 95.84
Logfile 01 4.24 4.08 4.08 100 4.94 4.19 4.19 100
Logfile 02 6.00 4.66 4.66 100 4.32 3.83 3.83 100
Logfile 03 3.47 2.86 2.54 97.87 4.65 3.64 2.68 93.62
Logfile 04 3.85 2.97 2.81 98.92 4.16 3.43 2.47 93.55
Logfile 05 4.68 3.86 3.55 97.94 5.22 4.63 3.24 90.72
Logfile 06 4.09 2.95 2.95 100 1.77 1.67 1.67 100
Logfile 07 4.75 3.39 3.39 100 2.21 1.71 1.71 100
Average 4.44 3.54 3.43 99.25 3.90 3.30 2.83 96.84
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Figure 3. Competition Results—Cumulative Distribution Function of the positioning error plus the
mean positioning error (vertical dashed lines) in each logfile.
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Finally, Table 5 introduces a comparison of the results provided by the winners of the Track 3
in the 2016 and 2017 editions. Although the main score reported in 2017 is 2 m lower than in 2016,
one challenging building was not considered in the 2017 edition, therefore a direct comparison of both
scores should not be done. To overcome this issue, the comparison can be done building by building
or by computing the average error considering all the logfiles belonging to the CAR, UJITI and UJIUB
buildings. For the CAR building, the results are worse than in 2016, even though BLE tags were
introduced in this building. For the UJIUB, the results are better (considering the positioning error
and floor detection rate). For the UJITI building, the results in both editions are similar (the difference
is just 24 cm). The average error is similar in both editions (2.73 vs. 2.96), but the deviation is lower
this year, which indicate that the average values are more representative for the three scenarios in
2017. Considering the CAR, UJITI and UJIUB buildings, the 2016 and 2017 competitions were similarly
challenging for the competing teams.

It is worth noticing that the most challenging scenario in the 2016 edition was the UAH building
according to the winner’s results; this fact could make us reconsider the re-inclusion of this building
or the inclusion of challenging huge scenarios such as shopping malls in the evaluation process.
The main problem of including this kind of scenarios is the extraordinary time needed to obtain
a dense enough surveying.

At first sight, the organisers have detected that the results are more coherent in 2017 than in 2016
edition. Two teams provided very competitive results with a difference of just 5 cm in the competition
metric, but the other two teams also provided good accuracy. The difference between the winner and
the last ranked team is≈1 m in 2017. In 2016, the difference of the winner with respect to the runner-up
team was much higher (≈1.5 m), and one competing team provided a very large positioning error
(higher than 40 m). It seems that providing a large set of training and validation data has benefited all
competitors at the expense of a comprehensive data log procedure from the organization team.

Table 5. Average results of 2016 & 2017 IPIN Competition winners in the different evaluation scenarios.

2016 Winner (Score: 5.85) 2017 Winner (Score: 3.85)

MPE (m) Flr (%) MPE (m) Flr (%)

Average logfiles CAR 1.98 ± 0.35 100 ± 0 3.4 ± 0.47 100 ±0
Average logfiles UJIUB 5.16 ± 0 89.01 ± 0 2.98 ± 0.63 93.34 ± 2.52
Average logfiles UJITI 2.27 ± 0.33 100 ± 0 2.51 ± 0.06 100 ± 0
Average logfiles UAH 10.37 ± 6.55 93.18 ± 8 - -

Average (all logfiles except UAH) 2.73 ± 1.39 97.8 ± 4.91 2.96 ± 0.55 97.14 ± 3.85

Competitors in the current competition that also participated in previous editions were able to
evaluate their systems over the time and track the implemented modifications. Moreover, having the
historical data is useful for the indoor research community because a real comparative study of working
systems is shown in real-life scenarios.

4.3. The IPIN Competition Track 3 and Other Competitions

The results provided in the Microsoft (MS-IPSN) and IPIN Competitions are shown in Table 6,
whereas Table 7 shows their evaluation features: number of tracks/trajectories, total evaluation length
(accumulated distance between evaluation points), number of reference/evaluation/control points,
and the total evaluation duration.
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Table 6. Indoor Competitions—Winner’s results.

Competicion Track Winner’s Accuracy (m) Metric

MS-ISPN 2014 infrastructure-based 0.72 MPE
MS-ISPN 2014 infrastructure-free 1.76 MPE
MS-ISPN 2015 infrastructure-based 0.31 MPE
MS-ISPN 2015 infrastructure-free 0.2 MPE

IPIN 2015 Smartphone (on-site) 6.6 3rd Quartile
IPIN 2015 PDR 2.4 3rd Quartile
IPIN 2015 Smartphone (off-site) 8.3 3rd Quartile

MS-ISPN 2016 2D Positioning 1.2 MPE
MS-ISPN 2016 3D Positioning 0.16 MPE

IPIN 2016 Smartphone (on-site) 5.4 3rd Quartile
IPIN 2016 PDR 1.5 3rd Quartile
IPIN 2016 Smartphone (off-site) 5.8 3rd Quartile
IPIN 2016 Robotics 0.1 3rd Quartile

MS-ISPN 2017 2D Positioning 2.2 MPE
MS-ISPN 2017 3D Positioning 0.03 MPE

IPIN 2017 Smartphone (on-site) 8.8 3rd Quartile
IPIN 2017 PDR 2.04 3rd Quartile
IPIN 2017 Smartphone (off-site) 3.48 3rd Quartile

The context must be considered when comparing the results provided by the competition
winners. The technological solution that won the MS-ISPN 2017 competition provided the lowest
mean positioning error in the table (3 cm) and it was the best solution in its competition track.
Although the positioning error is very low, it cannot be directly compared to the winners of the
other competitions since the competitions do not share the same requirements. The winner of the
MS-ISPN 2017 competition was based on LIDAR, which is not allowed in smartphone and PDR
based applications and competition tracks. In addition, we cannot state that the winner of the IPIN
2017 Competition Track 3 is better than the winner of the IPIN 2017 Track 1 (Smartphone-based
competitions), because the evaluation scenarios and rules were different in both tracks. In particular,
the evaluation scenario of the IPIN Tracks 1 and 2 was very challenging in 2017, and the competitors
of IPIN 2017 Tracks 1 and 2 had to provide the position estimations in real-time.

Another important difference among the competitions is how the tracks (or categories) are defined.
In the IPIN competition, the tracks are device oriented (smartphone or PDR mainly). In addition,
the IPIN competition provides different tracks for on-site and off-site competitions, even if the same
base device is used. In the MS-ISPN competition, a black-box evaluation is adopted and the systems
are evaluated with independence of the technology employed for localization. In 2014 and 2015,
the MS-ISPN competition provided two competition categories according to the infrastructure
required for positioning (infrastructure-free or infrastructure-based). In 2016 and 2017, the MS-ISPN
categories were 2D and 3D positioning. In general, the existing competitions cover different
aspects of categorising the indoor positioning in order to consider the wide diversity of indoor
positioning systems. Thus, the importance of having all those diverse initiatives to compare indoor
positioning systems.

Table 7. Indoor Competitions—Features of the evaluation trajectories.

Competition Trajectories Length (m) Ref. Points Duration (s)

MS-ISPN 2014 1 N/A 20 <1200
MS-ISPN 2015 1 162 20 <900

IPIN 2015 Tracks 1 & 2 1 645 62 852–981
MS-ISPN 2016 1 81 15 <900

IPIN 2016 Tracks 1 & 2 1 674 56 718–1129
IPIN 2016 Track 3 9 4398 578 8605

IPIN 2016 Track 3 * 5 2198 364 3850
MS-ISPN 2017 1 91 20 N/A

IPIN 2017 Track 1 & 2 1 530 58 667–809
IPIN 2017 Track 3 7 3220 505 6518

* Considering only the buildings present in the IPIN 2017 Track 3.
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The appropriate context is also relevant for the features shown in Table 6. Although the competitions
share a common goal, the evaluation of indoor positioning systems, the target evaluated systems and
contexts are different.

First, the Microsoft competition aimed at a real-time evaluation of working competing systems,
where the evaluator stood for a few seconds at pre-defined test points. Competitors had a strict
time slot for their system evaluation (15–20 min) and they were able to sense the environment and
deploy any hardware the day before. Due to time and logistic constraints, the number of evaluation
points was between 15 and 20 and the evaluation scenario comprised only a few rooms and corridors.
Furthermore, the categories established are not oriented to a particular technology. Systems using
visible light, ultrasounds, IMU or Radio-frequency based systems, among others have competed under
the same category. Smartphone based systems have also participated in this competition, being a Wi-Fi
fingerprinting-based system the winner of the infrastructure-free category in 2014.

Second, the IPIN Competition (Tracks 1 and 2) also aimed at a real-time evaluation in multi-floor
environments, where an actor followed a trajectory defined by a sequence of test points. The evaluation
trajectory covered the IPIN conference venue and its access was not restricted (it was not a closed
test environment). Since the evaluation path was long and covered different floors (in all editions)
and buildings (only in 2015 edition), the evaluation of competitors was done in parallel. In IPIN
Tracks 1 and 2, hardware deployment in the evaluation area was forbidden. Due to time constraints,
the number of evaluation points was about 60 and the evaluation length trajectory was about 500–600 m.
Track 1 has been devoted to smartphone-based positioning, whereas foot-mounted devices have been
used in Track 2 since 2015.

Third, the IPIN Competition (Track 3) aimed at the off-site evaluation of smartphone-based
solutions in complex multi-floor environments. Since the competition was run off-line and off-site,
there was not strict time restrictions to meet. In the on-line competitions, the organizers have usually
had one day to evaluate all competing teams during the conference. With an off-site competition,
the competition can be done in advance and the results can be presented during the conference.
The competition timings allows the collection of longer evaluation trajectories—with an accumulated
length of ≈4.4 km and ≈3.2 km in 2016 and 2017, respectively—that include many evaluation
points—more than 500 in both editions.

In real-time on-site competitions, it might not feasible to evaluate each competitor in a extremely
long trajectory or in a very large scenario. On the one hand, the timing and logistic restrictions might
be a severe issue. In current on-site competitions, more than 20 teams are evaluated the same day.
In addition, competitors can deploy (potentially expensive) hardware in some competitions (e.g., the
Microsoft Competition allows infrastructure-based systems), whose costs might be prohibitive in very
large scenarios. On the other hand, the probability of having a wide variety of unexpected errors might
increase during the evaluation in long evaluation trajectories, such as application hangs, battery drain,
or actor’s fatigue, among many others.

The off-site competitions, such as IPIN Track 3, offer the possibility of evaluating the positioning
accuracy in long tracks with a high number of reference points. This evaluation procedure assures that
all competing teams have at their disposal the same data and information about the environment at
calibration and evaluation stages. Moreover, diversity is introduced in the evaluation paths since data
are gathered in different buildings, by different people and with different devices (smartphones in
this case). However, having a very large evaluation path with diversity is not a synonym of being a
better evaluation procedure. The evaluation procedure used in the off-site competition cannot take into
consideration the ability of the competing teams to successfully deploy their localization infrastructure
in the environment for positioning purposes. In addition, the off-site competition cannot take into
consideration the ability of the competing teams to perform an optimal survey of the environment
and successfully calibrate an indoor positioning system for the evaluation area. Finally, the real-time
component is not present in the off-site competitions, where the competitors have the opportunity of
post-processing the position estimated before its final submission. In addition, the competing systems
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in on-site competitions must be robust because if they fail during the evaluation window, they might
not have another chance to compete.

We consider that the strategies followed in real-time on-site competitions are suitable for
evaluating indoor positioning systems. Off-site competitions can be considered a complementary
evaluation strategy, where a more comprehensive evaluation (in terms of positioning error calculated
over a large evaluation path with embedded diversity) can be done. However, the “comprehensive”
evaluation of the positioning error in off-site competitions is done at the expense of not considering
some hidden evaluation aspects, for example, the availability of the indoor positioning system, ability
to successfully adapt or customize the competing system to a particular scenario in a few hours,
and ability of optimally surveying the environment, among other features.

5. Conclusions

In this paper, we have shown the results obtained by the competitors in Track 3 of the IPIN 2017
competition, regarding off-site evaluation of smartphone-based solutions. Results have been compared
with previous (2016) competition and with other competitions.

5.1. Competitors’ Feedback and Lessons Learned

The competitors provided to the organizing team many suggestions to improve the competition,
being the most representative ones:

• Provide more detailed data without gaps (e.g., without skipping multiple floors or rooms).
• Try to minimize unexpected events like missing stairs areas in training and validation log files.
• Code the floor transitions with a special floor code (e.g., 3.5 for transitions between the third and

fourth floors) to minimise the unfair large positioning errors near areas close to floor transitions.

After a positive discussion with competitors, the organizers detected two major concerns about
the competition.

• Registration of datasets. The registration of data in the logfiles for the competition is done in
a continuous way with minor stops. Some competitors, especially those that mainly rely on
fingerprinting, felt uncomfortable with this procedure because they prefer a static registration,
or at least a very slow continuous motion (0.2 m/s), in order to have more stable Wi-Fi fingerprints
and more samples. They also would like a dense survey with many points, and no testing
experiments outside of the surveyed area. We understand this point of view, but we also consider
the current relevance of the generation of fingerprinting solutions from incomplete or low sampled
scenarios, surveyed by actors in motion (the way that crowd-sourced fingerprints are registered
by persons at malls, for example). Next editions could include some sites with a high density
of points taken at static positions, just to observe how some systems can benefit from it, but we
consider that we should keep the core of the current registration approach.

• Metric fairness. Regarding the metric used in the IPIN competition, which is based on the
third quartile plus some penalties generated by floor or building identification mistakes,
some competitors suggested that the weights for those penalties were too large (for example,
the 15 m penalty for a wrong floor estimation). The usage of those penalties emphasizes that
a positioning service must pay high importance to guaranteeing a correct floor indication.
For some applications, a wrong floor indication can be very adverse for the location service
provided. For example, a mistake in a floor number can make the user to lose valuable time
when navigating in a mall from one section to another, and, most importantly, could lower the
user interest in that service since it is perceived as misleading. The 15 m penalty is even a small
penalty considering the time needed to correct our route from a failure due to a floor mistake.
The competition organizers are considering in further editions to determine the positioning error
using a more realistic distance, which computes the walkable distance between the estimated and
real position.
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To improve the future editions of the off-site smartphone-based competition, the aspects analysed
in this paper must be reinforced, maintained, promoted or changed. The main goal of the competition is
to provide a forum and a evaluation procedure that embrace all competitors while keeping challenging
competition conditions that mimic realistic and diverse environments.

5.2. General Conclusions

The general conclusions reached after the competition are as follows.

• Databases are important for comprehensive comparisons. The creation of different databases, in different
buildings, with different actors, different smartphones, and with a high degree of diversity is,
in general, the only way we can analyse the performance of systems with enough detail. We have
seen from our analysis that some teams created algorithms whose behavior was better in a certain
environment, or even for test occurrences, than others. Our feeling is that the typical evaluation
procedure for IPS found in the literature, where a team selects a particular building and compares
its method with a ground truth or with another approach, is prone to excessive fine-tuning of
algorithms, and insufficient to conclude that the proposed positioning approach is robust and
accurate enough for real-life uncontrolled scenarios. Competitions are a good way to collect
experimental data of diverse sites for the creation of banks of databases against with to compare.

• Competition motivates competitors from Academia. Research involved in non-commercial applications
does not commonly have the pressure of providing the best accurate working systems in every
possible scenario. Once the details of their base system have been published (using their own
experimental set-up in most of cases), the resources are dedicated to explore novel aspects
and features of indoor localization. However, an annual competition that involves challenging
participants from academia or industry forces every competitor to be highly competitive and
to develop accurate working systems, ad not just prototypes. This fact boosts their motivation
to improve and refine their systems to levels that are not usually considered in traditional
R & D works.

• Competition integrates Academia and Industry. Competitions can be seen as showrooms where both
worlds, Academia and Industry, show their developments, advances and interesting findings.
Although the main aim of a competition is to compete and win, synergies between the competitors
can be consolidated after the competition. In fact, informal contacts between competitors were
detected after presenting the competition results. Creating a forum, to discuss about indoor
positioning and establish new contacts, was one of the competition pillars.

• Competitions must be diverse. Although this paper presents the results of experiences of the 2017
off-site smartphone-based competition, there are other interesting competitions and evaluation
initiatives available which consider different base positioning technologies (not smartphone-based
such as PDR, UWB, and Ultrasound), real-time evaluation, joint off-line and on-line evaluation,
among many other evaluation features. We consider that diversity in competitions is important,
because it allows a huge indoor positioning community to be represented.

• Competitions need to cover multiple scenarios and contexts. The results of Track 3 from IPIN 2017
Competition show an interesting finding: none of the competing systems provided the best
accuracy (positioning error, X-Y error and floor hit detection rate) in all the evaluation logfiles.
This finding demonstrates that the accuracy of a positioning system depends on the scenario
and context. Therefore, to have a comprehensive evaluation, as many as possible scenarios and
contexts have to been considered in the evaluation set-up, thus avoiding winners that provide high
accuracy for specific settings but perform poorly under other scenarios and contexts. However,
considering multiple scenarios and contexts might not be feasible in on-site competitions, because
the time constraints are very tight. Even for off-site competitions, the effort of considering
multiple scenarios and contexts is huge, because the time required for planning the data collection,
gathering the raw data and performing post-processing is considerable.
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• Competitions need continuity. Although all competitions are important, the ones with continuity
are particularly relevant. Continuity is an essential feature in order to track the competition
evolution and to keep the motivation of competitors. Annual competitions, such as the IPIN and
MS competitions, enable competitors to participate each year. The teams from the University
of Minho and the Technical University of Stuttgart have participated in all three editions of this
competition and they have received valuable feedback to refine their systems.

Finally, one of the most important findings of this paper is that the evaluation procedure of
indoor positioning systems should be diverse and include different evaluation contexts and scenarios.
Finding a golden method encompassing in all scenarios and contexts was not easy in the 2017 IPIN
competition (Track 3, Smartphone-based off-site) according to the detailed results presented in this
paper: each competing system stands out in a particular context or scenario in the 2017 competition.
Although the UMinho team provided the best competition scores, the other competing systems also
provided interesting partial results. Although diversity in evaluation is desirable, it is not possible
under some circumstances. It is worth mentioning that a trade-off between diversity and time
constraints has to be met in on-site competitions, which is less strict in off-site competitions. In general,
all competitions have had a positive impact on the evaluation of indoor positioning systems and the
positioning research field.

Supplementary Materials: The following are available online at: http://indoorloc.uji.es/ipin2017track3/files/
logfiles2017.zip.
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