
Cluster Comput
DOI 10.1007/s10586-017-0861-0

An ideal IoT solution for real-time web monitoring

Pedro Diogo1 · Nuno Vasco Lopes2 · Luis Paulo Reis1,3,4

Received: 28 November 2016 / Revised: 12 January 2017 / Accepted: 6 February 2017
© Springer Science+Business Media New York 2017

Abstract For the internet of things (IoT) to fully emerge,
it is necessary to design a suitable system architecture
and specific protocols for this environment. The former
to provide horizontal solutions, breaking away the cur-
rent paradigm of silos solutions, and thus, allowing the
creation of open and interoperable systems; while the lat-
ter will offer efficient and scalable communications. This
paper presents the latest standards and ongoing efforts to
develop specific protocols for IoT. Furthermore, this paper
presents a new system, with the most recent standards for
IoT. Its design, implementation and evaluation will be also
described. The proposed system is based on the latest ETSI
M2M specification (ETSI TC M2M in ETSI TS 103 093
V2.1.1. http://www.etsi.org/deliver/etsi_ts/103000_103099/
103093/02.01.01_60/ts_103093v020101p.pdf, 2013b) and
theMQTT protocol (IBM, Eurotech inMQTTV3.1 Protocol
Specification pp 1–42, http://public.dhe.ibm.com/software/
dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.
pdf, 2010). With this solution it is possible to show how we

B Pedro Diogo
pedrodiogoum@gmail.com

Nuno Vasco Lopes
nvlopes@dsi.uminho.pt

Luis Paulo Reis
lpreis@dsi.uminho.pt

1 DSI/EEUM – Departamento de Sistemas de Informação,
Escola de Engenharia, Universidade do Minho, Guimarães,
Portugal

2 Department of Information Systems, ALGORITMI Centre,
University of Minho, Guimarães, Portugal

3 Centro ALGORITMI, Universidade do Minho, Guimarães,
Portugal

4 LIACC – Laboratório de Inteligência Artificial e Ciência de
Computadores, Porto, Portugal

can create new applications to run over it and the importance
of designing specifically tailored for IoT communication pro-
tocols in order to support real-time applications.

Keywords IoT · Standards · Horizontal solution

1 Introduction

The internet of things is a new technology which is rapidly
evolving. Gartner, the world’ s leading information technol-
ogy research and advisory company, said, inDecember 2013,
that the internet of things will grow to 26 billion units in
2020, resulting in 1.9$ trillion in global economic value-add
through sales into diverse end markets [1]. Similarly, Cisco
also said that it will create, from 2013 to 2022, a 14.4$ trillion
of value at stake for companies and industry [2]. However,
as the IoT is not just about connecting things to the Internet,
but a complex technology composed of a seamless intercom-
munication and coordination of objects, data, processes and
services, there is a need to make use of standardized open
architectures and protocols to make all of these interactions
as easy and efficient as possible. Furthermore, its complex-
ity covers almost the whole open systems interconnection
model (OSI), with different protocols being adapted and cre-
ated to meet the needed requirements for the technology to
emerge. because of this it is difficult to define a single solu-
tion for every application domain. Furthermore, not every
IoT system needs the same protocol stack and/or overall
architecture—given the specific application, some protocols
and/or architectural guidelines should be adopted to meet
the requirements of that particular application. However, for
IoT to be fully expanded and have smarter and more rich
applications, it is crucial to design scalable and interopera-
ble systems. Its richness lies on this paradigm: a complex vast

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0861-0&domain=pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_103093v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_103093v020101p.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf


Cluster Comput

coordination of sensed data (typical constrained devices), its
processing (cloud services, for instance) and overall coor-
dination of the corresponding action triggers which might
occur at different IoT systems. As a simple example, one
can think of a seamless interconnection of a simple wearable
device monitoring a person’s heart rate (typical current silos
and proprietary applications) with another IoT system—a
clinical facility, as an example. This concept is illustrated in
Fig. 14. The figure shows the ETSI M2M’ s entities called
SCL (Service Capability Layer) and its standardized refer-
ence pointsmId,mIa anddIamakes all of this interconnection
possible.

In essence, there is a need to define a way of intelli-
gently interconnect different IoT systems. This is possible
by adopting the latest, specifically defined for the IoT,
protocols and standards and by interworking different tech-
nologies. As a mean to achieve such a thing, a set of
abstraction layers combined with a RESTful API are the
basis needed to build such a system. This eases both the
integration of each system on the web—crucial for the
technology to fully emerge as it could offer a simple UI
for the end user -, and the development of richer applica-
tions, by crossing data in an already well established way
(web services) with different IoT systems and with overall
already existing Web applications and services. As men-
tioned before, different application scenarios need different
requirements, like security, latency and a specific messaging
pattern, for instance. With this in mind, it is crucial for IoT
systems to incorporate proper bindings in order to satisfy
each application scenario. It would then be the developer’s
choice to chose which protocols to use on its own applica-
tion.

In this paper, the results of a thorough study of the
state-of-the-art is presented, discussing which protocols and
standards should be adopted and how we could achieve
the so desired IoT system. In order to demonstrate how
it could be achieved an IoT system has been developed.
The developed system uses only open-source hardware and
software which is already compliant to the most complete,
and already available, IoT architecture to date (ETSI M2M
[3]) and the best suited network and application protocols
(6LoWPAN adaptation layer [4], CoAP [5] and MQTT [6]).
To demonstrate how the health sector could benefit from
an open internet of things system architecture, a real-time
heart rate data web monitoring testbed was set. As this
data must be transmitted in real-time, a set of proper pro-
tocols were used (MQTT and Web Sockets). This subset of
the system demonstrates the need for standard IoT/M2M
systems to bind its functionalities to other proper proto-
cols. As a means to prove it, an experiment was conducted
comparing the efficiency of MQTT versus the built-in stan-
dardized subscription mechanism found on ETSI’s M2M
specification.

2 Related work

This section denotes the on going efforts of major entities to
develop a standard architecture forM2Mand IoT systems and
the necessary components to achieve and support the ideal
IoT. Entities like ETSI andOMAhave developed a full fledge
standard architect for IoT (ETSI M2M [7] and LWM2M [8],
respectively), while others are focusing on developing guide-
lines and designing smart objects. These smart objects are
a nice practice, as it is an attempt to standardize the way
IoT systems consume and interact with common “things”,
by means of known semantics. While these smart objects
alone will not solve IoT’s issues alone, its combination with
latest architectural standard and specifically tailored for IoT
protocols might do so. The following sub-sections will detail
each case.

2.1 ETSI M2M

ETSI M2M TC’s mission is to deploy an end-to-end archi-
tecture, providing an horizontal solution where services can
serve multiple vertical applications, while offering inter-
operability between them, independently of the underlying
network and technology. It standard, ETSI M2M, is com-
posed of three main area domains: M2M Device Domain,
M2M Network Domain and M2M Application Domain.
Across these domains are three standard Reference Points
connecting them, by means of a set of Service Capabili-
ties. Figure 1 depicts the high level architecture. The Service
Capabilities are present in each SCL (Service Capabilities
Layer)—DSCL, GSCL and NSCL (Device, Gateway and
Network, respectively). A RESTful architecture style was
adopted, where information is represented by resources. The
SCL holds this standardized resource hierarchical tree struc-
ture. The information present on each resource can then be
exchanged between the different SCL over the Reference
Points (dIa, mId and mIa), via standardized procedures. As

Fig. 1 ETSI’s M2M high level system architecture [9]

123



Cluster Comput

Fig. 2 Simple use of SCL resources to exchange data (adapted from
[7])

it follows a RESTful architecture, it is possible to manip-
ulate the information using CRUD methods (Create, Read,
Update, Delete) in a Client-Server model.

These SCL allow for management of information related
to applications and devices like registration, access rights,
security and authentication, data-transfer, subscription/
notification and group management [10,11]. All of this is
achieved by RESTFul operations using HTTP or CoAP, as
CoAP binding is also part of the standard, over the stan-
dardized resource tree. As a simple example of how this
RESTful Architecture works across the SCLs, a diagram
is shown Fig. 2 denoting a typical scenario where a sleepy
Device (D) sends data to a Network Application (NA). First,
theDevicewrites data to theDSCL throughNSCL (UPDATE
verb); then, the NSCL notifies the NA of that resource
change (notify means either a response of a RETRIEVE or
an UPDATE, if a polling or the asynchronous mechanism is
used, respectively); at last, the NA reads the new resource
change. For the sake of simplicity, the illustrated diagram
represents only the events flow, hiding all methods, proto-
cols and responses used in real applications.

The different Reference Points mIa, mId, dIa, and mIm
have their own purpose. They all, fundamentally, offer the
same mechanisms, but at different domains. dIa offers a
generic and extendable mechanism for Device Applica-
tion (DA) and Gateway Application (GA) to interact with
DSCL (Device Service Capability Layer) or GSCL (Gate-
way Service Capability Layer). This allows the applications
to register in the SCL, request read/write permissions on
the NSCL, GSCL or DSCL, subscribe and notify to/of spe-
cific events and request managing capabilities of groups.
mIa functionality is identical to that of dIa, but the inter-
action is between the Network Application (NA) and the
NSCL (Network Service Capability Layer) and it may be
used to to request device management actions like firmware
update. Likewise, mId follows the same pattern, but over
IP connectivity between DSCL/GSCL to NSCL backed by
security features. The last Reference Point defined in the
Functional Architecture [7], mIm, is a special one used only

for inter-domain across different M2M Service Provider;
its capabilities differ from mIm when there is no NSCL
registration—if this happens, the offered capabilities are
some of those offered by mIm like request to read/write
information in the NSCL, GSCL or DSCL across two dif-
ferent M2M Service Providers, if properly authorized to do
so. The previously mentioned device management capability
is possible because of BBF TR-069 [12] and OMA DM [13]
compatibility and integration with the standard [3].

2.2 oneM2M

ETSI was not the only SDO (Standards Development Orga-
nization) working on a M2M architecture—others had their
own solution as well, which would lead to interoperabil-
ity problems and a slow development of the global M2M
market. To avoid any duplication of work between SDOs
involved in the same domain, and to agree on a truly global
standard M2M architecture, oneM2M was born. In January
2012, seven SDOs—ARIB, ATIS, CCSA, ETSI, TIA, TTA,
and TTC -, have agreed on a Global Initiative for M2M
Standardization [14]. As they have agreed on an open col-
laboration with other interested organizations and parties,
many others have joined in to contribute in different lev-
els of functionality—OMA, responsible for LWM2M, IPSO
Alliance and Continua Health Alliance, as Partners Type
2, are some examples. Six months later, in July 2012, the
oneM2M partnership project was established having ETSI
TCM2Mwork being transferred over to form its basis. Fun-
damentally, oneM2M Partnership Project aims to establish a
cooperation “in the production of globally applicable, access-
independent M2M Service Layer specifications, including
Technical Specifications and Technical Reports related to
M2M Solutions” [15].

OneM2M ’s ambition to release specific Technical Spec-
ifications on different transport layer protocol bindings (like
CoAP, HTTP, MQTT and, possibly, XMPP) combined with
the inclusion of device management, abstraction layers and
semantics view make it a very compelling uniform Stan-
dard. The Candidate Release [16] was available for public
commenting on August 2014 which already specifies the
functional architecture, CoAP and HTTP protocol bindings
[17,18] and mappings to device-management related pro-
tocols like OMA DM, OMA LWM2M and BBF TR-069
[19,20].

Its functional architecture is depicted in Fig. 3 and one
can easily spot its resemblance to ETSI M2M. Like ETSI
M2M, the resources described in the architecture can all
be interacted via a RESTful API and its primitives, the ser-
vice layer messages sent overMca andMcc reference points,
are then mapped to the appropriate transport layer protocols
like CoAP, HTTP and MQTT [22]. Bellow these transport
layer protocol bindings is the underlying network to which

123



Cluster Comput

Fig. 3 oneM2M functional architecture [21]

Fig. 4 oneM2M—primitives [23]

oneM2Mwill also define a set of bindings to. This last feature
will be possible via NSE (Network Services Entity) which
provides services of the underlying network to the CSEs
(Common Services Entity), like device management, loca-
tion and device triggering. The services provided by CSE are
called CSF (Common Services Functions) and these are the
key services functions with which AE (Application Entity)
and CSEs interact with via the appropriate reference points.
The interaction between AE and CSE is made by primitives,
as illustrated in Fig. 4. Each CRUD (Create, Update, Retrieve
and Delete) operation is mapped to one or more primitives
which is then further mapped to transport layer protocols like
HTTP, CoAP or MQTT.

2.3 LWM2M

This new standard (Technical Specification Candidate Ver-
sion 1.0, released in December 2013 [8]) is a fresh new
approach to Device Management and was designed hav-
ing IoT in mind. It is different from OMA DM standard,
which is mainly used in Cellular devices, in a sense that it
is suitable for any kind of device as long as it uses IP (Cel-
lular, WiFi, 6LowPAN, as examples) and was designed for
constrained devices and environments. It is an unique solu-

tion that enables both Management and Application data. In
essence, OMA Lightweight M2M (LWM2M) is built upon
CoAP and DTLS protocol with bindings to UDP and SMS
(for Cellular Device management) and offers an extensible
Object and Resource model for application semantics which
can be published to OMA public registry. This use of known
application semantics provides interoperability and abstrac-
tion between different IoT/M2M systems.

The Device Management functionalities are as follows:

– Bootstrapping automatically connect the device to the
right server using key management.

– Device Configuration change parameters of the device
and network settings.

– Firmware Update Over-the-Air (OTA) software updates
(to overcome latest security problems, apply patches,
enhancements, etc.)

– Fault Management automatic error reporting from the
device and ability to query it. For debugging purposes
such as network unreachability and misconfigured appli-
cations and/or services.

And, as it is also a solution for Application’s Data, it also
allows for:

– Configuration &Control in-app configuration of settings
(control commands to define new Application’s parame-
ters)

– ReportingNotificationmechanism to alert for new sensor
values, alarms and events.

Its architecture is simpler than ETSI’s and oneM2M’s. Fig-
ure5 illustrates its components and relationships between
them.

Fig. 5 OMA lightweight M2M architecture [24]

123



Cluster Comput

With LWM2M’s architecture, there is a small LWM2M
Client library in a constrained device which uses the stan-
dardized interfaces to manage the built-in Objects created by
the Device Manufacture and/or the Application Developer.
Managing these known objects between the Client and the
multiple M2M Applications, as long as they have authoriza-
tion to do so, is, therefore, very straightforward, allowing
for greater interoperability and abstraction when making use
of standard Objects (detailed further). The LWM2M server
works as an intermediate between the M2M Applications
and the Devices itself—it can command the Device to Read,
Write, Execute, Create or Delete Objects and its resources
(also detailed further).All of these commands are sent to the
Device via four interfaces:

– Bootstrapping it is possible to do pre-provisioning out of
theSIMcardorflashmemory, or initiate the configuration
mechanism between Client and Server by making use of
initial shared keys, server configuration andACL (Access
Control List), for example.

– Registration the LWM2M Client can alert the LWM2M
Server of its existence and capabilities, by means of
Resource Directory (another IETF standard).

– Management & Service Enablement used when the
Server wants to send operations and commands to
the Client. Allows for Device Management and Ser-
vice Enablement over the previously announced, by the
Client, Objects and Resources. The Client responds via
this interface as well.

– Information Reporting allows for periodically report of
resource information by the LWM2M Client in case of
triggered events and/or alarms. The notification mecha-
nism is possible due to CoAP’s observation feature.

The stack is very small as well, as it uses simple protocols
and technologies. CoAP, DTLS and UDP are all lightweight
enough, efficient and secure to be used in constrained envi-
ronments and SMSbinding is optional but amust for Cellular
use. DTLS is used between LWM2M Server and LWM2M
Client to secure all the information exchanged between these
two endpoints.

2.4 iPSO Alliance

The IPSO Alliance main objective is to educate, document
and support the use of IP for the IoT, while defining the
“appropriate protocols, architecture and data definitions for
Smart Objects so that engineers and product builders will
have access to the necessary tools for “how to build the
IoT RIGHT” [25]. It is a much needed Alliance for IoT,
giving their efforts on the use of semantics for the whole
IoT. These semantics help to represent, in a standard way,

common resources like temperature, light control and power
control, as examples.

IPSO has published a guideline [26], which should not
be recognized as a standard, on how to define Smart Objects
using aRESTful design for commonM2MApplications such
as HomeAutomation and Building Automation. This defines
how a Smart Object can represent its available resources
and how to interact with other Smart Objects and back-
end services, using the defined set of REST interfaces. The
goal here is to show vendors simple guidelines on using
IP and Web-based technology to develop and rapidly test
interoperability among devices and services. Following these
guidelines assures compatibility with the previously men-
tioned OMA LWM2M. As stated before, third party SDOs
can define and register Objects on the OMNA—and that is
what IPSO has done. OMNA LWM2M Object & Resource
Directory [24] lists the resources already defined by the IPSO
Alliance.

2.5 Conclusion

Each standard has its own particularities, and, as it hap-
pens with transport layer protocols, each serves a purpose.
One standard does not fit all, but a combination might be a
good solution. As IoT-A is not really a functional architec-
ture, but an architecting framework, not much can be said at
this point; however, this might change in the future as IoT
Forum will continue to work its defined ARM so that a a
set of re-usable ARM-profiles can be built, to be immedi-
ately adopted by IoT Architects. In a much more advanced
phase, is ETSI’s M2M architecture. It is flexible enough to
be widely adopted by either IoT/M2M architects and Appli-
cation/Services Developers. Its REST API combined with
the decoupling of different Services Layer allow for rich
applications to be build, while inter-exchanging informa-
tion and application data with each other, extending their
functionality. However, it was not really designed to be sup-
ported in small and constrained devices. For a device to
be fully compliant with ETSI M2M, its application (DA—
DeviceApplication)must support the correct HTTP orCoAP
(if built-in bindings or Interworking Proxies are supported)
methods to specific URIs with complex XML data.

For real constrained devices, the OMA DM included in
ETSIM2M functional architecture might be too complex for
such devices. The Remote Entity Management (REM) Ser-
vice Capability must be supported at both Device/Gateway
level and Network level. As the OMA DM standard was
initially conceived for not so constrained devices and envi-
ronments, its natively inclusion in ETSI M2M might be
obsolete for real IoT systems. ETSI has laid the foundations
for a standard M2M architectural framework; however, as
IoT differs from M2M, its standard must support other suit-
able for IoT protocols.

123



Cluster Comput

Contrary to OMA DM, OMA Lightweight M2M’s
(LWM2M) architecture seems to be more suitable for real
IoT systems as some key features are specifically tailored
for IoT. It was designed having real constrained devices in
mind with the much needed Device Management functions,
while adopting open IETF standards designed for typical
IoT scenarios (CoAP, DTLS, Resource Directory, UDP and
SMS bindings). Although its architecture is not as com-
plex and rich as ETSI M2M, it offers some advantages
over the latter. Its interfaces offer much needed functional-
ities to IoT systems, like: bootstrapping (which allows for
a device to automatically connect securely to the correct
server), on-the-fly application and devices re-configuration
(proper adaptation of the device to the network), security
(over UDP and, very important, firmware update to patch
security issues). These combined with application data (send
and retrieve data using CoAP and UDP/SMS) makes it a
very compelling option for an IoT system architect. Also
very important is OMA’s Naming Authority (OMNA) which
allow for simple known semantics to be registered through its
extensible model object—like the ones defined by the IPSO
Alliance. As it is also very light, most constrained devices
need only a small library to support the whole protocol—
device manager and application data.

Finally, OneM2M seems to tackle both ETSI M2M’s and
LWM2M’s cons by combining the two. It is a more modern
standard that takes ETSI M2M as its basis while offering
binding to most commonly used IoT protocols and tools like
MQTTandWebSocket (still awork in progress, as evidences
found in [22] and [27] suggest so). Its LWM2M integration
makes OneM2M the most complete standard ready to target
both M2M and IoT solutions supporting all functionalities
and services needed by both while, at the same time, provid-
ing a concrete way for Application and Services Developers
to interact with. This is what is needed in IoT tomakeway for
richer, smarter and interoperable Applications across every
domain.

3 Proposed IoT systems

In order to achieve a more generic design that could poten-
tially improve interoperability between other IoT Systems,
a proposal is here presented. The goal is to showcase how
IoT/M2MSystems should be deployed from now on, as there
are new standards and frameworks that will ease the inter-
connection and interoperability across those systems. This
is possible by not simply adopting one architectural stan-
dard, but a collection of different ones, which, together, offer
the ultimate framework every IoT/M2M designer needs. It
was designed with abstraction in mind, hiding much of what
is represented with current IoT protocols and standards. Its
foundation is based on middleware abstraction layers, ETSI
M2M Architecture, LWM2M and iPSO Alliance.

IoT should be open and all things should be able to com-
municate with each other, even if indirectly—one device,
or “thing”, should be able to alert other “thing”, which is
part of a different IoT System, that something occurred.
With this, many autonomous and intelligent systems could
be born to provide an even better quality of life, since there
would be smarter and broader coordination of data and their
corresponding action triggers. An example would be the
IoT System deployed on an elderly disabled person’s smart
house: if the system detected a major fall, it could imme-
diately alert that person’s family and even trigger an alert
on a nursing facility’s IoT System, so that they could take
immediate action by sending appropriate help to the correct
location. These different IoT Systems would be independent
andwould not be designedwith this interactivity inmind—in
the future, already deployed IoT Systems will not communi-
cate with other IoT Systems, because they were not designed
to do so nor have the needed capabilities. This is why IoT
needs a standard System Architecture (not one standard), so
that new systems can, in the future, talk with others, creating
more intelligent, useful and efficient applications.

With this in mind, Fig. 14 illustrates the layers, at different
levels, needed for all of this, and how different systems could
interact with each other. The added flexibility comes from
the use of ETSI’s M2M standard interfaces (mIa, dIa and
mId) and Service Capabilities Layers at different domains:
device’s, gateway’s and network’s. With ETSI M2M specifi-
cation as the core of the proposed architecture, different IoT
Systems would be ready to interact with each other, even if
they do not use the same protocol at the device domain. This
way, a system using 802.15.4 to transmit MQTT-SN mes-
sages, would also be able to send data to another Gateway
from another system, independently of its protocols in use.
To put in other words, an MQTT node would talk to a differ-
ent CoAP node in a different system, while also having both
a different radio link (802.15.4 and Bluetooth, for example).

With a proper M2M/IoT architecture, a specific device,
which was initially designed to work in a silo manner (Fig.
6), could then interact with a different Network Applica-
tion (NA) and/or Gateway, providing both a different service
to the user and/or an uninterrupted service, if the mobile
device connected to a different Gateway, at a different loca-
tion. This is something ETSI TC M2M has also realized,
when analyzing TS 102 689 [28], which refers to M2M Ser-
vice Requirements. This Technical Specification describes
two particular requirements that are much needed for IoT
Systems. Although not mandatory for all systems, they were
discussed because of thework reported in previousTR (Tech-
nical Requirements), where different use cases for different
areas were presented. To satisfy much of those use cases, the
two particular requirements were: Trusted Applications and
Mobility. Trusted Applications means that the M2M Core
could handle requests for trusted M2M Applications by pro-

123



Cluster Comput

Fig. 6 Current M2M/IoT silos

viding a streamlined authentication procedure—the M2M
System would then support Trusted Applications, as they
were pre-validated by the M2M Core. The Mobility require-
ment simply means that if the underlying network supports
such mechanism and roaming, the M2M System should be
able to make use of such mechanisms. Using Fig. 14 as a
reference, it is easier to showcase these two functionalities:
Trusted Applications (Fig. 8) and Mobility (Fig. 7). Com-
bining the two of them with LWM2M’s pre-provisioning
and auto-configuration of devices, would result in a truly
ubiquitous IoT System where connectivity, reachability and
intelligent coordination would always be possible, which
could then make way for smarter Network Applications and
new overall services at a personal (end-user) and industry
level. With LWM2M’s bootstrapping capabilities, any kind
of device would be assured of continuous communications if
moved from its original domain area or IoT System. In other
words, future Bluetooth mobile devices with IP connectivity
(Bluetooth Smart [29,30]) would be able to auto-connect to
other Gateways of different IoT Systems, and, thus, ensure
continuous Internet connectivity. The seamless integration
with current Internet services would be possible trough a
well documentedRESTfulAPI, support for known semantics
and various protocol bindings. For instance, having Fig. 14
as a reference, Network Applications from System 1 could
discover devices present at System 2, through ETSI M2M
discovery mechanism (or even CoAP’s, if supported by the
node itself), consume the data with a protocol of its choice
(some protocols are more suited to specific application/use
cases then others) then properly interact with it by making
use of known semantics (like IPSO’s).

Having this in mind, it is easy to conclude that one
M2M/IoT standardized architecture like ETSI M2M might
not be enough for all solutions. A combination of differ-
ent ones with proper bindings to different protocols, use of
known semantics and a simple, yet well documented, REST-

Fig. 7 IoT system architecture proposal—mobility

Fig. 8 IoT system architecture proposal—trusted applications

ful API with which one can easily interact with and integrate
into the exiting Web, is what is currently needed to achieve
the so called internet of things.

Next, a use case is presented and detailed, where an IoT
Systemwas developed. It follows the architectural guidelines
mentioned before, using as much both free and open source
code, tools and frameworks as possible.

123



Cluster Comput

Fig. 9 System’s high-level architecture

4 Use case—a real-time web monitoring system

4.1 Overview

The implemented system made use of as much open-source
hardware and software as possible, while being low cost at
the same time. For this matter, one Arduino Mega [31] and
a Raspberry Pi [32] were used for the WPAN and to sim-
ulate the cloud service. The overall high-level architecture
is depicted in Fig. 9. ETSI M2M architecture was adopted,
as it is a finalized specification [3] and because there was
already available a developed Java tool compliant to the
standard, called OM2M [33]. With this setup, it was pos-
sible to develop a full-fledge ETSI M2M-compliant system,
with support for legacy and non-compliant M2M devices
(Arduino), by extending the OM2M tool, while at the same
time supporting real real-time communications.

The Arduino platform was used as a 6LoWPAN node, by
extending its basic functionalities with the so-called shields.
Combining aWireless Proto Shield [34] with a Xbee Series 1
module [35]. With this hardware, the Arduino platform was
transformed into a 802.15.4 node. As it needed to have IPv6
capabilities, a dedicated 6LoWPAN library was installed
[36]with limited CoAP capabilities (simple non-confirmable
PUT messages). Similarly, the Raspberry Pi—the WPAN’s
Border Router and simulated cloud service -, had its basic
functionalities expanded by means of a dedicated 802.15.4
interface (Nooliberry, from Noolitic [37]) which was proven
to work with the 6LoWPAN software module called 6lbr
[38]. These two different modules were the only hardware

used for the whole IoT system. With the Raspberry Pi’s abil-
ity to run as a 6LoWPAN Border Router, the Arduino was
able to perform SAA (Stateless Address Auto-configuration)
and thus obtaining its own unique global IPv6.

This architecture allows for, fundamentally, two differ-
ent things: first, it forms the basic layer to extend the whole
system to other technologies, protocols, and devices; and,
secondly, it supports real-time web monitoring. The first
is possible by extending the OM2M tool by developing
different interworking plugins (like Zigbee technology and
Phidgets devices which are already built-in [33] and by defin-
ing special protocol bindings which works best for each
scenario. For this particular solution, an interworking proxy
unit and a MQTT protocol binding were developed. These
two were implemented under the GIP module (Gateway
Interworking Proxy) allowing both the adaptation of the non-
compliant Arduino node to interact with the GSCL (Gateway
Service Capability Layer), and the protocol binding from
CoAP to MQTT and Web Socket, for the real-time monitor-
ing requirement. This is detailed further.

4.2 Raspberry Pi

ARaspberry Piwas used towork both as a 6LoWPANBorder
Router and as a Gateway of the M2M device domain area. It
was able to fulfill all the necessary needs, while being a small
and low cost linux computer. With it, it was possible to:

1. Establish an IPv6 tunnel connection, via Gogo6 [39] tun-
nel broker and the gogoc [40] softwaremodel.Anaccount
was created at Gogo6, so the tunnel can assign a /56 pre-
fix and a static address. The prefix is transmitted over the
RA (Router Advertisement), as seen next.

2. Form and maintain the 6LoWPAN, via the 6lbr [38] soft-
ware module and radvd [41]. radvd is responsible to send
the RA messages via 802.15.4 to the Arduino nodes, so
they can proceed with SAA (Stateless Address Autocon-
figuration)

3. Initialize the three ETSI M2M modules: GIP, GSCL and
NSCL. These modules are detailed further at Sect. 4.4.

4. Initialize the web server, which serves the real-time web
monitoring page to the clients.

To summarize what software components are part of the
Rasberry Pi, Fig. 10 showcase their stacking and basic func-
tionalities.

4.3 Arduino

The Arduino device, as a typical 6LoWPAN node, has one
function only: to sense and send data (CoAP PUT) back
to the gateway. However, before looping into that state,
it must configure itself to work as a 6LoWPAN node. To

123



Cluster Comput

Fig. 10 Raspberry Pi’s software modules overview

achieve such thing, the μIPv6Stack library [36] and part
of its counterpart, ρIPv6Stack, [42] were used. ρIPv6Stack
differs from μIPv6Stack in that it possess a simplified ver-
sion of RPL and, as the authors say but which could not be
confirmed, reduced CoAP capabilities. With the first one,
μIPv6Stack, the authors claimed that there was CoAP sup-
port, but there was not a single file under its libraries’ folder
that indicated so. Because of that, the CoAP Engine found
on the ρIPv6Stack library was adopted and modified to work
underρIPv6Stack.However, this calledCoAPEngine library
serves only one purpose: to send CoAP Non-Confirmable
PUTmessages. As this solution does not require further func-
tionality besides this sensing and reporting, the library was
enough. Fewmodifications to the source codewas needed.As
the called CoAP Engine was designed to work in combina-
tion with ρIPv6Stack, that link had to be broken. This library
was then re-configured to work with the μIPv6Stack library.

Once the device boots, it starts the Xbee module, IP stack
andUDP. If everything is ok, it starts broadcastingRS (Router
Solicitation). Once it is has a properly configured global
unique IPv6 (detailed further, under Chapter 6) it will report
this address in its first registration. After the registration, it
loops and sends periodically the sensed data according to its
configuration. All different CoAP messages (the unique reg-
istration one and the forthcoming periodically sensed data)
is reported solely to the Raspberry Pi’s GIP module, which
is detailed further.

4.4 ETSI M2M compliance

The main software components of this system’s architecture
are the GSCL, NSCL, GIP and NA. These nomenclatures

follow ETSI’s M2M specification as they are compliant to
the standard. By making use of such GSCL and NSCL enti-
ties, via OM2M, there was built-in support to interact with
the different SCLs which then allowed the creation of appli-
cations. The applications created were then the NA (Network
Application) and theGIP, asmentioned before. Adopting this
standard drastically strengthens the solution’s interoperabil-
ity and ability to interwork with other solutions and different
technologies. This horizontal layer of services is indepen-
dent of the underlying network and with its RESTful API, it
is easy to parse data and interact with other solutions. Dis-
covery, reachability, addressing, generic communication and
application enablement are all features part of the SCL.With
the RESTful API, applications and/or services can, upon
successful authentication, register new applications, retrieve
data and manage access rights, as examples. The NA and
the GIP are prime examples of what can be built upon the
standard.

GIP

Because theArduino is not compliantwithETSIM2M, a spe-
cial Interworking Proxy was developed, at the gateway. One
of its goals is to translate specific CoAPmessages sent by the
node to a special set of HTTP POST messages with a special
body and to a special URI. For instance, a simple registration
of a device/application is composed of five different HTTP
POSTmessages; this means that, for the Arduino application
to be created at theGSCL, there is a need to sequentially issue
five different HTTP POST messages to different URI’s and
with different bodies, after decoding one single CoAP mes-
sage. This CoAP message is sent by the Arduino only once,
after successful initialization and configuration of the IP and
UDP stack. Once registered, the GIP translates the upcoming
periodic CoAP messages reporting the new sensed data.

As there was a need to deliver the sensed data in real-
time and to render this data in a browser, the same GIP was
adjusted to support just that. It was designed thisway because
the Arduino was already sending data to this location and
because there was already built-in support to bridge from and
to CoAP, HTTP and MQTT (through ponte [43]). Because
the whole GIP was developed in Node.js, support for fast and
scalable real-time web applications was guaranteed. With all
these abilities, all that was needed was to use the right mod-
ules and combine them together. Besides the ponte module,
its dependent mosca [44] (MQTT Broker) and mows [45]
together formed the combination for MQTT over WebSock-
ets support right bellow the MQTT broker.

NA

The NA simulates a typical application that could be built
over ETSI M2M standard (NSCL and GSCL, specifically).

123



Cluster Comput

Once the sensing node (Arduino, in this case) is reporting
data to the GSCL, higher-level applications at the network-
domain can properly interact with the appropriate NSCL to
retrieve this data. This is what the NA does. It first inter-
acts with the GSCL, via the NSCL, to discover what kind
of applications are registered (Arduino nodes) and then cre-
ates a subscription to that particular resource, using ETSI
M2M standard procedure. The supportingmethod is an asyn-
chronous subscription, meaning that the NAmust be a server
application listening on an ip and port for incoming data.
Once the Arduino reports new data, the GSCL will automat-
ically send an HTTP POST with a XML encoded body with
the new reported value to the listening NA.

ETSI M2M’s subscription mechanism might be good
enough for some applications, but not for the needed real-
time web monitoring solution. It is not lightweight enough
and would not scale as well as a proper PUB/SUB type of
messaging pattern protocol would, likeMQTT. Furthermore,
OM2M implements, by default, non-persistent connectivity,
resulting in aggravated overload. An experiment was set to
properly analyze the differences introduced when using both
mechanisms (ETSI M2M’s and MQTT’s). This is detailed at
Sect. 4.6.

4.5 Node.js & real-time web monitoring support

Having the system in compliance to ETSI M2M standard
is a good starting point, however, that standard, as it is,
lacks some functionalities required for this particular solu-
tion. Specifically, there is no real-time monitoring support.
ETSIM2M does, in fact, support synchronous (long polling)
and asynchronous subscriptions to new events, but those
mechanisms rely solely on HTTP POST messages for every
new update. The synchronous type of subscription is not a
real push notification mechanism, as the client needs to keep
polling the server for new data, which is not optimal for
real-time monitoring. On the other hand, the asynchronous
mechanism does support instant notifications to a specific
listening application. This last mechanism was adopted for
the developed NA, as detailed before. As there are specific
protocols designed that work best for this type of messaging
pattern (publish/subscribe, or PUB/SUB), like MQTT, this
protocol was used to enable real-time web monitoring, when
coupled with Web Sockets technology.

To support this real-time web monitoring, Node.js mod-
ules were adopted. Node.js is a “platform built on Chrome’s
JavaScript runtime for easily building fast, scalable net-
work applications.” [46] Its event-driven non-blocking I/O
model make it ideal for this kind of IO-bound applications,
as stated by the authors: “Node.js uses an event-driven,
non-blocking I/O model that makes it lightweight and effi-
cient, perfect for data-intensive real-time applications that
run across distributed devices.” [46] In a simplified manner,

Fig. 11 Node.js’s event loop [49]

Node.js manages to do just that by taking away the normal
waiting time for I/O tasks to complete and replacing it by
small CPU activity, by means of an event loop and a thread
pool. The Node.js event loop is a single-thread application,
however, the I/O is delegated to a thread pool which is main-
tained by the OS. The event loop keeps grabbing code from
the event queue and execute it, while there is no callbacks
from previously stacked IO tasks. Once the previously I/O
task is completed, the callback will be picked up by the event
loop and process it right away. Thismechanism is represented
in Fig. 11. It is a little bit different from what is typically
found in other language programming models, but it serves
its purpose (fast and scalable IO-bound applications) very
well, as it abstracts the low level complex event loop and all
the necessary OS’s callbacks in a very simplified way, as a
Javascript programming language. It is possible to do so, due
to its bindings to the OS and the fundamental dependencies
on libraries supporting thread pool (libeio [47]) and event
loop (libev [48]). These low level bindings and dependencies
are written in C++ and C code while the upper node standard
library allows for developers to leverage this non-blocking
I/O programming model by means of Javascript’s callbacks
and anonymous functions. For this matter, the whole GIP
and its built-in real-time web monitoring support was devel-
oped as single-thread Node.js application. By making use of
the appropriate modules, it was easy to provide support for
MQTT and Web Socket communication, under the GIP.

Extending ETSI M2M to support bindings for this type of
communication protocols greatly enhances its overall ability
to support different IoT applications, as each of them have
its own pre-requisites. The OneM2M partnership is already
working on this, as they have too realized the importance
of proper built-in protocol bindings [22]. This mechanism
could also be incorporated onto the OM2M platform, as it
supports the development of external plugins; however, due
to the real-time nature of the application at hand, an exter-
nal application developed entirely on Node.js supporting the
Interworking Proxy (needed for the Arduino and its CoAP

123



Cluster Comput

to work with ETSI M2M, as explained before) and MQTT
plus WebSocket support was thought to be the best solution.
These separate applications (the NA making use of ETSI
M2M standardized subscription method and the Web appli-
cation making use of MQTT and Web Sockets) allowed for
setting up an experiment where different metrics were mea-
sured, comparing both latency the traffic load differences.
The results can be found in Sect. 4.6 and they fundament the
need for IoT/M2M standards to built-in different protocol
bindings.

Real-time web monitoring

Currently, the ETSI M2M standard specifies that, in order
to subscribe for new data, an IP and listening Port must be
passed on to the GSCL which will, in turn, send an HTTP
POST to the specified location as soon as the application
reported new data (like the previously mentioned NA). At
first sight, this does not appear to be a practical solution,
since there are proper protocols for this kind of messaging
pattern. One should expect that, over time, once there are
thousands of Device Applications (DA) and subscriptions,
it would be difficult to handle and scale such a large num-
ber of notifications. Furthermore, in the future, there will
be a need to monitor sensors and/or devices in real-time, so
a better mechanism should be adopted. This asynchronous
HTTP reporting mechanism is not ideal for this solution and
itwould not scale aswell as a proper Pub/Sub protocolwould.
For this matter, a combination of MQTT-binding and Web
Sockets was developed under the GIP. Besides taking away
the complexity of theHTTPnotificationmechanism, theWeb
Application communicates directlywith theGIP, taking away
the processing time between this one and the GSCL.

On the server end, the GIP is leveraging the ponte module
(detailed before) and its ability to seamlessly bridge from
CoAP to MQTT. As this module is embedded in the GIP, it
was also configured to make use of its capabilities to work
as a MQTT broker using the dependent mosca [44] and its
built-in Web Socket mechanism through mows [45]. All in
all, ponte is a powerful tool that wraps a plethora of other
modules to provide a fast, event-based mechanism to bridge
HTTP, CoAP andMQTT services and messages. Once prop-
erly configured, the GIP was ready to both automatically
bridge fromCoAP toMQTT as it was possible to connect and
subscribe to itsMQTT broker viaWeb Socket. The client end
needed only to use the appropriate Javascript library which
allows the use ofWebSockets to connect to the broker, which
was part of the Eclipse’s Paho open-source project [50,51].

This Web page was designed to solely demonstrate how
real-time monitoring web-based monitoring solutions can be
built, using standard and appropriate IoT protocols and tech-
nology. By leveraging Node.js capabilities to scale and offer
fast real-time I/O bound applications, CoAP, Web Sockets

Fig. 12 Real-time monitoring via web sockets

Table 1 Traffic comparison when using ETSIM2M standard subscrip-
tion method and MQTT

HTTP (bytes) MQTT (bytes)

BR → NA 715 15

NA → BR 395 0

Total per message 1110 15

Total session 33300 511

Diff. Factor 65,17× 1×

and MQTT, a future-proof solution was deployed using only
already available open source libraries and tools. The Web
page was designed to work for this particular scenario only.
There is no way to choose which broker we want to connect
and which topics we wish to subscribe to—all of this is hard-
coded for the particular solution. Figure12 showcases the
Web page developed. The graph is updated as soon as new
data comes in through the Web Socket (in form of a MQTT
Publish message).

4.6 MQTT versus ETSI M2M standard subscription
mechanism (HTTP)

This section show the practical difference when adopting
current ETSI M2M standard subscription mechanism and
MQTT’s. For this, it was tested both the traffic and latency
found in each case. As a normal NSCL would be part of an
IoT/M2M Service Provider, located at the network domain,
changes in the previously mentioned solution (where both
GSCL and NSCL were functioning at the domain/gateway
domain) had to be done. To approximate the experiment with
a real life properly-deployed IoT solution, both the NSCL
and NA were installed on a VPS (Virtual Private Server),
located in the USA, and the MQTT client on a Macbook Air,
located in a domestic Spanish network. Although theNAwas
in the same computer as the NSCL, the transmitted data was
coming directly from the Border Router’s GSCL which was
located in a domestic Portuguese network.

123



Cluster Comput

Fig. 13 ETSI M2M standard subscription method versus MQTT

With only one subscription in the whole system (the one
used for the test), it was already possible to notice a con-

siderable difference of 788ms average. This was expected as
the standard ETSI M2M subscription mechanism depends
heavily on new TCP sessions for every new notification
(non-persistent connectivity of OM2M’s) with a complex
XML payload. This experiment, detailed in Fig. 15, lasted
for 37min with the Arduino node reporting new data every
10s. For best results, the different machines’ clocks were
synchronized with the same server, using (Network Time
Protocol). As one of the two machines used was a Mac-
book Air, the chosen NTP server for both machines was
“time.apple.com”. It is important to notice that during this
experiment, there was only one active subscription reg-
istered at the GSCL. In the future, it is expected for
an IoT system to be composed of thousands of devices,
applications and subscriptions. The graph shows the delay
noticed on each message and the accumulated for the
whole experience. In the end, the accumulated delay was
of 2 m 52 s and 700 ms. Also important to notice is
the 0 m 7 s 647 ms delay occurred at the 66th message

Fig. 14 Internet of things standardized system architecture

123



Cluster Comput

Fig. 15 Delay difference between MQTT and standard ETSI M2M subscription mechanism

and various others in the range of almost 2 s. It clearly
demonstrates how inadequate it currently is for real-time
solutions.

One could argue that this difference could be debatable
given the nature of Node.js event-driven, non-blocking IO
model. There is no certainty that it first bridges to MQTT
rather than HTTP. However, it is expected for the first to
happen because the MQTT client (Web page) is automat-
ically subscribed to the same CoAP’s resource, whereas
in the case of HTTP bridging, the application needs first
to decode the incoming CoAP URI to then forward to an
external HTTP service. This is why the experiment lasted
for 37min, with a total of 219 updates. Independently of
the result—which bridging takes place first -, the aver-
age difference was still 788ms, being the MQTT solution
faster. This could be analyzed with further deeper debug-
ging.

The next experiment tested how much data was actu-
ally transmitted during the whole session and for each new
notification. Making use of Wireshark, it was possible to
conclude that there is a big difference between the standard-
ized ETSI M2M solution and that of MQTT’s. For starters,
the standard subscription initializes a new TCP connection
every time it wants to report data—in real-time monitor-
ing, it is expected that new data comes in very frequently
and, thus, the session should be open all the time, for effi-
ciency reasons. Also, as there is no way to tweak the QoS,
the NA automatically replies with another HTTP POST for
every notification. MQTT takes all of this complexity and

inefficiency away. First, it keeps a single TCP connection
open during the entire subscription and, secondly, it is pos-
sible not to wait for ACK messages, by setting the level
of QoS to 0 when subscribing to the specific topic. Again,
for real-time monitoring, there is no need to acknowledge
the reception of every single notification. If, however, one
feels the necessity of such, a simple adjustment of the QoS
parameter would assure so. Table1 summarizes the find-
ings, when using Wireshark. As detailed in the table, the
difference is quite big: 65 times bigger when compared to
MQTT protocol with QoS parameter set to 0. The reason for
this is that, as per RFC 2616 [52], for every POST mes-
sage received, a response code of 200 (OK) or 204 (No
Content) should be sent whenever the resource can not be
identified by the URI. As the NA was developed merely to
showcase how one can interact with ETSI M2M architec-
ture, the 204 reply code is sent automatically by ponte, with
a total of 395 bytes. Had this reply been completely ignored,
the overall generated traffic would still be roughly 42 times
greater than that of MQTT’s. Figure13 illustrates what is
actually happening during each notification, when making
use of ETSI M2M’s standard subscription mechanism and
MQTT’s, respectively. The NA subscription model could be
more efficient if OM2M’smechanism had support for persis-
tent connection. As Wireshark has demonstrated there a new
TCP connection is established whenever there is new data to
be reported.

This experiment shows how important it is for IoT stan-
dard architectures to have this kind of built-in protocol

123



Cluster Comput

binding and why MQTT is such a good protocol for IoT. As
Cisco estimates that 50 billion devices and objects will be
connected to the Internet by 2020 [53] this traffic efficiency
is much needed. MQTT offers even more flexibility and scal-
ability capacity, has documented before in Chapter 2. All of
these factors are crucial to provide real-time monitoring.

5 Conclusion

This work has focused on the most promising M2M/IoT
architectural standards and protocols, demonstrating how
they can solve the current IoT issues and, thus, achieving the
ultimate envisioned IoT. As it will have amajor impact on the
health sector, a testbed was set to demonstrate how real IoT
systems can currently be deployed using open standards and
open-source tools. With this testbed implementation and val-
idation, one can conclude that an IoT architecture should be
as generic as possible, meaning that it should be designed to
cover the most different use cases typically found in IoT and
M2M. The real-time monitoring web-based solution, found
in this testbed, is a prime example of how such flexibility is
needed. If this solution had not been well adapted to meet the
real-time requirement, the IoT architecture adopted (ETSI
M2M) would not be able to deliver such a service. This
is something of utmost importance and that is something
the next generation of IoT standards (oneM2M, specifically)
will tackle, by combining even more technologies into the
standard (like device management via LWM2M, for exam-
ple) and protocol bindings like MQTT. Having this standard
architecture with different horizontal layers offering funda-
mental functionalities, while being network agnostic, is a
major breakthrough andwill allow the IoT to fully grow up to
its potential. Interacting with the services via a standardized
RESTful API will make way for newWeb and mobile based
applications to grow and directly interact with the already
well established Internet. In the end, this will, ultimately,
result in smarter, fully aware IoT applications which com-
bine different data sources and mechanisms to trigger events
in other IoT systems/applications, offering the end-user a
better quality of life with simplified, smart and autonomous
real-life actions.

The system deployed fulfilled the pre-determined require-
ments using state-of-the-art open source tools compliantwith
the most complete IoT standard—ETSI M2M. This allowed
for a development of an open solution completely future
proof with the next iteration of the standard: oneM2M . This
proof of concept demonstrated that it is possible to use low
cost embedded devices that are not compliant to the standard
itself, by developing internal InterworkingProxieswhich are,
in fact, praised by the standard. Besides, it was possible to
notice something really important for IoT: a combination
of a real-time web monitoring solution and storage of this

aggregated data. The former by combining a MQTT binding
at the Interworking Proxy and the latter by interacting with
the standard using the documented RESTful API—Network
Application (NA), specifically, which discovers new applica-
tions and subscribes to its updates. The results have shown a
difference of 788ms and a traffic increase of, at least, 42 times
fold, which fundaments the need to use proper protocols and
messaging patterns.

As a final note, one should denote that the internet of
things, due to its own broad nature, is applicable at very
different areas, each of them having their own prerequisites
and singularities. This means that while there is a need to
make all of these different systems cross-compatible and
interoperable, there is also a demand to define specific mech-
anisms necessary to solve specific solutions. With this in
mind, one can conclude that the most sophisticated standard
IoT architecture is the one that presents greater flexibility to
adapt to other technologies (and standards and protocols, for
that matter), while abstracting this interworking and binding
mechanisms. ETSIM2M laid the foundation for this horizon-
tal abstraction layer, but it must be completed with the much
needed proper protocol bindings and different various inter-
working processes. OneM2M is already working on this and
it might be the much needed common framework for the IoT.
This cross-compatibilitywith different standards,where each
serves its own purpose, is part of the needed capabilities to
achieve the desired IoT, as demonstrated over at Sect. 3. The
developed system takes all of this into account and showcases
how future-proof it is and how it would be ready to interact
with other IoT systems, inter-exchanging relevant data. At
another level, accompanying the evolution of the IoT, this
data would then become relevant knowledge, which would
trigger appropriate actions on other different IoT Systems.
This is what is possible to achieve with the so called inter-
net of things, when its issues are sorted out and there is a
consensus across the whole industry and literature.

6 Future work

There are many different areas where the developed solu-
tion could be improved. For instance, there is no guaranteed
privacy at the device domain area. This is an issue for all
constrained devices and the Arduino is not an exception.
Although the model used had 8KB of SRAM, the minimal
code size needed for a modified version of the already opti-
mizedDTLS library (tinyDTLS [54]) is 9812 bytes [55]. This
makes it hard for constrained devices to use both CoAP and
DTLS/TLS, and that is something the IETFWorking Group,
called LWIG (Light-Weight ImplementationGuidance [56]),
is actually working on. However, this could be temporarily
mitigated by implementing relic-toolkit [57]which is fast and
its code footprint is small enough to fit in the used Arduino

123



Cluster Comput

Mega as per [58] findings—the final Arduino code devel-
oped for this solution could still hold 3342 bytes of code
which would be enough to hold the needed 2804 bytes, if the
NIST K163 algorithm was chosen [58]. Besides this encryp-
tion at the PAN level, the OM2M tool should also be able
to encrypt the exchanged data. Currently, it supports only
a basic “username/password” type of authentication mech-
anisms encoded to base64. As both GSCL and NSCL work
at the network layer (and, thus, not a constrained environ-
ment), they already possess the ability to provide security
over the Internet, if cryptographic protocols like TLS (Trans-
port Layer Security) were adopted.

Although the chosen prototyping board (Arduino) was
capable of doing the necessary minimum for the whole solu-
tion to work properly, it has demonstrated not to be fully
capable of adopting typical IoT technology. It was possi-
ble to configure real IPv6 routing over a 802.15.4 radio
link, however, it was not possible to communicate directly
with it from any other IPv6 endpoint. Tests were made
by simply sending IPv6 UDP packets, but the used library
could not recognize the UDP datagram, although it did rec-
ognized the incoming IP packet. Further research on the
adopted library would have to be done to understand what
was actually preventing this. Had this been possible, the
GSCL could have been re-configured to support a mech-
anism called Application Point of Contact (aPoC). This
aPoC is an attribute of the registered application in the
SCL and once the “aPoCPaths” were configured, it would
then be possible to re-target incoming HTTP POST mes-
sages aimed at the SCL directly to the Arduino using the
CoAP protocol. If such real IPv6 end-to-end bi-directional
communication was possible, this GSCL’s aPoC feature
would allow for real direct orders to reach the nodes (like
a start/stop button on a web page to start/stop the report-
ing mechanism on the node). The CoAP library was also
very limited. In essence, it only supported the transmission
of non-confirmable PUT messages. However, that feature
was indeed the only needed one for the whole IoT solution
to work as intended.

In order to achieve the ultimate optimal solution, there
would have to be changes at both hardware and software
level. As the Arduino has showed limited capabilities to
work as a full fledge 6LoWPAN node, new more capable
boards would have to be used. As there are many platforms
proven to work properly as a 6LoWPAN node, by support-
ing Contiki OS [59], those could be a good upgrade. Also, by
natively supporting Contiki OS, there would also be support
to a complete CoAP implementation, as it is part of the OS.
After having this basic layer, thewhole solution could then be
improved by making use of the much praised LWM2M stan-
dard. As mentioned before, this standard offers some great
functionalities to IoT Systems. As it works with CoAP, it
would be possible to also bring this standard to both clients

(new boards) and the Raspberry Pi, by porting the recent
project calledWakaama (formerly known as liblwm2m) [60].
Also important, these boards would then be much more effi-
cient and secure by supporting sleeping mode and privacy
through DTLS.

With all these additions, the solution would be compliant
to the next upcoming universal M2M/IoT standard that is
oneM2M. Heading towards this standard, which will pro-
vide bindings to MQTT and LWM2M, would allow for
further development of the ultimate features mentioned in
Sect. 3: trusted applications and mobility. At this point, a
new framework supporting oneM2M and its needed bind-
ings would be developed, or further improvements to the
oM2M would be made. As this tool runs on top of an
OSGi Equinox runtime, it would be possible to extend its
functionalities by developing new plugins. Alternatively,
the new oneM2M framework could be developed com-
pletely in Node.js to leverage its great capabilities to deal
with I/O-bound applications and systems. Either way, secu-
rity using TLS could also be developed to secure the
whole communications at the network level (Figs. 14,
15).

Acknowledgements This project was funded by Fundo Europeu de
Desenvolvimento Regional (FEDER), by Programa Operacional Fac-
tores de Competitividade (POFC) - COMPETE and by Fundação para a
Ciência eTecnologia, on theScopeof projects: PEstC/EEI/UI0319/2015
and PEstC/EEI/UI0027/2015. This paper is a result of the project
“SmartEGOV: Harnessing EGOV for Smart Governance (Foundations,
methods, Tools) / NORTE-01-0145-FEDER-000037”, supported by
Norte PortugalRegionalOperational Programme (NORTE2020), under
the PORTUGAL 2020 Partnership Agreement, through the European
Regional Development Fund (EFDR).

References

1. Gartner: Gartner Press Release, STAMFORD, Conn. http://www.
gartner.com/newsroom/id/2636073 (2013)

2. Bradley, J., Barbier, J., Handler, D.: Embracing the internet of
everything to capture your share of $ 14 . 4 Trillion, http://www.
cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf (2013)

3. ETSI TC M2M: ETSI TS 103 093 V2.1.1. http://www.etsi.
org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_
103093v020101p.pdf (2013b)

4. 6lowpanWG, Internet Engineering Task Force (IETF): IPv6 over
Low power WPAN (6LoWPAN). http://datatracker.ietf.org/wg/
6lowpan/ (2012)

5. Shelby, Z., Hartke, K., Bormann, C. RFC 7252—the constrained
application protocol (CoAP). Tech. rep., http://www.rfc-editor.org/
rfc/pdfrfc/rfc7252.txt.pdf (2014)

6. International Business Machines Corporation (IBM), Eurotech:
MQTT V3.1 Protocol Specification, pp 1–42, http://public.
dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_
Protocol_Specific.pdf (2010)

7. ETSI: ETSI TS 102 690 - Machine-to-Machine communications
(M2M): Functional architecture. RTS/M2M-00002ed211, http://
www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_
60/ts_102690v020101p.pdf (2013)

123

http://www.gartner.com/newsroom/id/2636073
http://www.gartner.com/newsroom/id/2636073
http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_103093v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_103093v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_103093v020101p.pdf
http://datatracker.ietf.org/wg/6lowpan/
http://datatracker.ietf.org/wg/6lowpan/
http://www.rfc-editor.org/rfc/pdfrfc/rfc7252.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc7252.txt.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf


Cluster Comput

8. Open Mobile Alliance: Lightweight machine to machine
technical specification candidate Ver 1.0. http://technical.
openmobilealliance.org/Technical/technical-information/
release-program/release-program-copyright-notice?
rp=154&r_type=technical&fp=Technical%2FRelease_
Program%2Fdocs%2FLightweightM2M%2FV1_
0-20131210-C%2FOMA-TS-LightweightM2M-V1_
0-20131210-C.pdf (2013)

9. Pareglio, B.: Overview of ETSI M2M architecture (October),
http://docbox.etsi.org/workshop/2011/201110_m2mworkshop/
02_m2m_standard/m2mwg2_architecture_pareglio.pdf (2011)

10. Boswarthick DTOTM: Status of machine to machine standards
work in TC M2M and oneM2M. http://www.etsi.org/plugtests/
COAP2/Presentations/03_ETSI_M2M_oneM2M.pdf (2012)

11. Lu, G.: Overview of ETSI M2M Release 1 Stage 3—API and
resource usage. http://docbox.etsi.org/workshop/2011/201110_
m2mworkshop/02_m2m_standard/m2mwg3_api_andresource_
usage_lu.pdf (2011)

12. The Broadband Forum: TR-181 Device Data Model for TR-069.
http://www.broadband-forum.org/technical/download/TR-181_
Issue-2_Amendment-7.pdf (2013)

13. OMA: OMA device management V1.2. http://technical.openmob
ilealliance.org/Technical/technical-information/release-program
/current-releases/dm-v1-2 (2008)

14. ETSI : Major Standards Development Organizations Agree on a
Global Initiative for M2M Standardization. http://www.etsi.org/
news-events/news/381-news-release-17-january-2012 (2012)

15. Koss, J.: oneM2M—a global initiative for M2M standardization.
http://goo.gl/RBcjkR (2012)

16. OneM2M: oneM2M candidate release August 2014. http://www.
onem2m.org/technical/candidate-release-august-2014 (2014f)

17. OneM2M: CoAP protocol binding technical specification. http://
www.onem2m.org/candidate_release/TS-0008-CoAP_Protocol_
Binding-V-2014-08.pdf (2014a)

18. OneM2M: HTTP protocol binding technical specification. http://
www.onem2m.org/candidate_release/TS-0009-HTTP_Protocol_
Binding_V-2014-08.pdf (2014b)

19. OneM2M: Management enablement (BBF). http://www.onem2m.
org/candidate_release/TS-0006-Management_Enablement_
(BBF)-V-2014-08.pdf (2014c)

20. OneM2M: Management enablement (OMA). http://www.onem2
m.org/candidate_release/TS-0005-Management_Enablement
(OMA)-V-2014-08.pdf (2014d)

21. OneM2M: oneM2M functional architecture baseline draft. http://
www.onem2m.org/candidate_release/TS-0001-oneM2M-Functi
onal-Architecture-V-2014-08.pdf (2014g)

22. OneM2M: oneM2M—developing MQTT Protocol Binding ftp://
ftp.onem2m.org/Meetings/TP/2013meetings/20131209_TP8_
Miyazaki/oneM2M-TP-2013-0388-WI_for_MQTT_binding.
DOC (2013)

23. OneM2M:RFC 5139—oneM2M service layer protocol core speci-
fication. http://www.onem2m.org/candidate_release/TS-0004-Co
reProtocol-V-2014-08.pdf (2014h)

24. Open Mobile Alliance: OMNA lightweight M2M (LWM2M)
object & resource registry. http://technical.openmobilealliance.
org/Technical/technical-information/omna/lightweight-m2m-lwm
2m-object-registry (2014)

25. IPSO Alliance: About IPSO—vision and mission. http://www.
ipso-alliance.org/about/mission (2014)

26. IPSOAlliance, Shelby, Z.: The IPSO application framework (draft-
ipso-app-framework-04), pp. 1–19, http://www.ipso-alliance.org/
technical-information/ipso-guidelines (2012)

27. OneM2M: OneM2M—WebSocket based Notification ftp://
ftp.onem2m.org/Meetings/PRO/20140407_PRO10.0_Berlin/
PRO-2014-0160R01-WebSocket_based_Notification.DOC
(2014e)

28. ETSI TC M2M: ETSI TS 102 689 - Machine-to-Machine com-
munications (M2M); M2M service requirements. http://www.
etsi.org/deliver/etsi_ts/102600_102699/102689/02.01.01_60/ts_
102689v020101p.pdf (2013a)

29. Bluetooth SIG Inc: Updated Bluetooth® 4.1 Extends the Founda-
tion of Bluetooth Technology for the Internet of Things. http://
www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=
197 (2013)

30. Siekkinen, M., Hiienkari, M., Nurminen, J.K., Nieminen, J. How
low energy is bluetooth low energy? Comparative measurements
with ZigBee/802.15.4, pp. 232–237 (2012)

31. Arduino (2014b) Arduino Mega 2560. http://arduino.cc/en/Main/
arduinoBoardMega2560 (2014)

32. Raspberry Pi Foundation: Raspberry Pi Model B. http://www.
raspberrypi.org/products/model-b/ (2012)

33. Alaya, M.B., Banouar, Y., Monteil, T., Chassot, C., Drira,
K.: OM2M: extensible ETSI-compliant M2M service platform
with self-configuration capability. Procedia Comput. Sci. 32,
1079–1086 (2014). doi:10.1016/j.procs.2014.05.536. http://www.
sciencedirect.com/science/article/pii/S1877050914007364

34. Arduino (2014a) Arduino—Wireless Proto Shield. http://arduino.
cc/en/Main/ArduinoWirelessProtoShield (2014)

35. Digi International Inc: XBee® 802.15.4. http://www.digi.com/
products/wireless-wired-embedded-solutions/zigbee-rf-modules/
point-multipoint-rfmodules/xbee-series1-module (2014)

36. Télecom Bretagne: Arduino-IPv6Stack. https://github.com/tele
combretagne/Arduino-IPv6Stack/ (2012)

37. Noolitic: Noolitic’s Nooliberry. https://github.com/Noolitic/Nooli
berry/wiki (2013)

38. CETIC: 6lbr—adeployment-ready6LoWPANBorderRouter solu-
tion based on Contiki. http://cetic.github.io/6lbr/ (2014)

39. Gogo6: Freenet6 Tunnel Broker. http://www.gogo6.com/freenet6/
tunnelbroker (2014a)

40. Gogo6: gogoCLIENT Download Page. http://www.gogo6.com/
profiles/profile/show?id=gogoCLIENT (2014b)

41. Litechorg: Linux IPv6 router advertisement daemon (radvd). http://
www.litech.org/radvd/ (2014)

42. Télecom Bretagne: Arduino-pIPv6Stack. https://github.com/tele
combretagne/Arduino-pIPv6Stack (2013)

43. Collina, M.: ponte—the Internet of Things Bridge for REST devel-
opers. https://www.npmjs.org/package/ponte (2014)

44. Collina, M.: mosca—MQTT broker as a module. https://www.
npmjs.org/package/mosca (2013a)

45. Collina, M.: Use MQTT from the browser, based on MQTT.js
and websocket-stream. https://www.npmjs.org/package/mows
(2013b)

46. Joyent, I.: Node.js official website. http://nodejs.org (2014)
47. Lehmann, M.: Libeio’s offical web page. http://software.schmorp.

de/pkg/libeio.html (2014a)
48. Lehmann, M.: Libev’s official web page. http://software.schmorp.

de/pkg/libev.html (2014b)
49. Kunkle, J.: Node.js presentation. http://kunkle.org/

nodejs-explained-pres/#/event-loop (2014)
50. Eclipse: Paho—open source messaging for M2M. http://www.

eclipse.org/paho/ (2013)
51. Eclipse: Paho—JavaScript client. http://www.eclipse.org/paho/

clients/js/ (2014)
52. Fielding, R., Gettys, J., JMHFLMPLTBL: RFC 2616—hypertext

transfer protocol – HTTP/1.1. http://www.w3.org/Protocols/
rfc2616/rfc2616-sec9.html#sec9.5 (1999)

53. Cisco: the IoT opportunity. http://www.cisco.com/web/solutions/
trends/iot/indepth.html (2014)

54. Bergmann, O.: tinydtls web page. http://tinydtls.sourceforge.net/
(2013)

55. Bergmann, O., Gerdes, S., Bormann, C.: Simple keys for simple
smart objects. Work smart object secur. http://www.lix.poly

123

http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/release-program-copyright-notice?rp=154&r_type=technical&fp=Technical%2FRelease_Program%2Fdocs%2FLightweightM2M%2FV1_0-20131210-C%2FOMA-TS-LightweightM2M-V1_0-20131210-C.pdf
http://docbox.etsi.org/workshop/2011/201110_m2mworkshop/02_m2m_standard/m2mwg2_architecture_pareglio.pdf
http://docbox.etsi.org/workshop/2011/201110_m2mworkshop/02_m2m_standard/m2mwg2_architecture_pareglio.pdf
http://www.etsi.org/plugtests/COAP2/Presentations/03_ETSI_M2M_oneM2M.pdf
http://www.etsi.org/plugtests/COAP2/Presentations/03_ETSI_M2M_oneM2M.pdf
http://docbox.etsi.org/workshop/2011/201110_m2mworkshop/02_m2m_standard/m2mwg3_api_andresource_usage_lu.pdf
http://docbox.etsi.org/workshop/2011/201110_m2mworkshop/02_m2m_standard/m2mwg3_api_andresource_usage_lu.pdf
http://docbox.etsi.org/workshop/2011/201110_m2mworkshop/02_m2m_standard/m2mwg3_api_andresource_usage_lu.pdf
http://www.broadband-forum.org/technical/download/TR-181_Issue-2_Amendment-7.pdf
http://www.broadband-forum.org/technical/download/TR-181_Issue-2_Amendment-7.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/dm-v1-2
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/dm-v1-2
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/dm-v1-2
http://www.etsi.org/news-events/news/381-news-release-17-january-2012
http://www.etsi.org/news-events/news/381-news-release-17-january-2012
http://goo.gl/RBcjkR
http://www.onem2m.org/technical/candidate-release-august-2014
http://www.onem2m.org/technical/candidate-release-august-2014
http://www.onem2m.org/candidate_release/TS-0008-CoAP_Protocol_Binding-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0008-CoAP_Protocol_Binding-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0008-CoAP_Protocol_Binding-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0009-HTTP_Protocol_Binding_V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0009-HTTP_Protocol_Binding_V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0009-HTTP_Protocol_Binding_V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0006-Management_Enablement_(BBF)-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0006-Management_Enablement_(BBF)-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0006-Management_Enablement_(BBF)-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0005-Management_Enablement(OMA)-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0005-Management_Enablement(OMA)-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0005-Management_Enablement(OMA)-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0001-oneM2M-Functional-Architecture-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0001-oneM2M-Functional-Architecture-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0001-oneM2M-Functional-Architecture-V-2014-08.pdf
ftp://ftp.onem2m.org/Meetings/TP/2013 meetings/20131209_TP8_Miyazaki/oneM2M-TP-2013-0388-WI_for_MQTT_binding.DOC
ftp://ftp.onem2m.org/Meetings/TP/2013 meetings/20131209_TP8_Miyazaki/oneM2M-TP-2013-0388-WI_for_MQTT_binding.DOC
ftp://ftp.onem2m.org/Meetings/TP/2013 meetings/20131209_TP8_Miyazaki/oneM2M-TP-2013-0388-WI_for_MQTT_binding.DOC
ftp://ftp.onem2m.org/Meetings/TP/2013 meetings/20131209_TP8_Miyazaki/oneM2M-TP-2013-0388-WI_for_MQTT_binding.DOC
http://www.onem2m.org/candidate_release/TS-0004-CoreProtocol-V-2014-08.pdf
http://www.onem2m.org/candidate_release/TS-0004-CoreProtocol-V-2014-08.pdf
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://www.ipso-alliance.org/about/mission
http://www.ipso-alliance.org/about/mission
http://www.ipso-alliance.org/technical-information/ipso-guidelines
http://www.ipso-alliance.org/technical-information/ipso-guidelines
ftp://ftp.onem2m.org/Meetings/PRO/20140407_PRO10.0_Berlin/PRO-2014-0160R01-WebSocket_based_Notification.DOC
ftp://ftp.onem2m.org/Meetings/PRO/20140407_PRO10.0_Berlin/PRO-2014-0160R01-WebSocket_based_Notification.DOC
ftp://ftp.onem2m.org/Meetings/PRO/20140407_PRO10.0_Berlin/PRO-2014-0160R01-WebSocket_based_Notification.DOC
http://www.etsi.org/deliver/etsi_ts/102600_102699/102689/02.01.01_60/ts_102689v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102689/02.01.01_60/ts_102689v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102689/02.01.01_60/ts_102689v020101p.pdf
http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=197
http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=197
http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=197
http://arduino.cc/en/Main/arduinoBoardMega2560
http://arduino.cc/en/Main/arduinoBoardMega2560
http://www.raspberrypi.org/products/model-b/
http://www.raspberrypi.org/products/model-b/
http://dx.doi.org/10.1016/j.procs.2014.05.536
http://www.sciencedirect.com/science/article/pii/S1877050914007364
http://www.sciencedirect.com/science/article/pii/S1877050914007364
http://arduino.cc/en/Main/ArduinoWirelessProtoShield
http://arduino.cc/en/Main/ArduinoWirelessProtoShield
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module
https://github.com/telecombretagne/Arduino-IPv6Stack/
https://github.com/telecombretagne/Arduino-IPv6Stack/
https://github.com/Noolitic/Nooliberry/wiki
https://github.com/Noolitic/Nooliberry/wiki
http://cetic.github.io/6lbr/
http://www.gogo6.com/freenet6/tunnelbroker
http://www.gogo6.com/freenet6/tunnelbroker
http://www.gogo6.com/profiles/profile/show?id=gogoCLIENT
http://www.gogo6.com/profiles/profile/show?id=gogoCLIENT
http://www.litech.org/radvd/
http://www.litech.org/radvd/
https://github.com/telecombretagne/Arduino-pIPv6Stack
https://github.com/telecombretagne/Arduino-pIPv6Stack
https://www.npmjs.org/package/ponte
https://www.npmjs.org/package/mosca
https://www.npmjs.org/package/mosca
https://www.npmjs.org/package/mows
http://nodejs.org
http://software.schmorp.de/pkg/libeio.html
http://software.schmorp.de/pkg/libeio.html
http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libev.html
http://kunkle.org/nodejs-explained-pres/#/event-loop
http://kunkle.org/nodejs-explained-pres/#/event-loop
http://www.eclipse.org/paho/
http://www.eclipse.org/paho/
http://www.eclipse.org/paho/clients/js/
http://www.eclipse.org/paho/clients/js/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.cisco.com/web/solutions/trends/iot/indepth.html
http://www.cisco.com/web/solutions/trends/iot/indepth.html
http://tinydtls.sourceforge.net/
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/papers/OlafBergmann.pdf


Cluster Comput

technique.fr/hipercom/SmartObjectSecurity/papers/OlafBergman
n.pdf (2012)

56. Cao, Z., Cragie, R., Haberman, B.: Light-weight implementation
guidance (lwig) working group. https://datatracker.ietf.org/doc/
charter-ietf-lwig/ (2011)

57. Aranha, D.F., Gouvêa, C.P.L.: Relic is an efficient library for cryp-
tography. https://code.google.com/p/relic-toolkit/ (2013)

58. Sethi, M., Arkko, J., Keranen, A., Rissanen, H.: Practi-
cal considerations and implementation experiences in secur-
ing smart object networks. http://www.arkko.com/publications/
draft-aks-crypto-sensors.txt (2012)

59. Thingsquare: Contiki: the open sourceOS for the internet of things.
http://www.contiki-os.org/ (2014)

60. Navarro, M.S.D., Vermillard, J.: Wakaama (LWM2M library).
http://eclipse.org/proposals/technology.liblwm2m/ (2013)

PedroDiogo is a youngSoftware
and Networks Engineer with a
passion for Entrepreneurship. He
founded a startup right after fin-
ishing his MSc thesis on Internet
of Things and published a paper
with IEEE connected with CISTI
(Iberian Conference on Informa-
tion Systems and Technologies).
He is currently working at a
Portuguese IoT-related company,
developing products and ser-
vices for Smart Cities, while also
being actively involved in dif-
ferent European R&D projects,
such as EMBERS.

NunoVascoLopes is a researcher
of UNU-EGOV (United Nations
University Operating Unit on
Policy Driven Electronic Gover-
nance). He holds two Postdoc-
toral positions, one in Internet
of Things, Computer Science,
at the University of Coimbra
and another in Electronic Gov-
ernance at United Nations Uni-
versity. Currently, he is being
working at the Universidade do
Minho and at the United Nations
University. He began his career
as a professor in 1998, since than
he has been teaching at several

public and private universities. During is working life he has been
involved in several National, European and International projects such
as Electronic Governance for Context-Specific Public Service Delivery,
Knowledge Society Policy Handbook, Policy Monitoring on Digital
Technology for Inclusive Education, Intelligent Computing for Internet
and Services, Internet of Things for Disable People, Smart Defense and
Smart Cities for Sustainable Development. He also gives in a regular
basis professional courses, seminars and workshops on ICT, elearning,
computer networks, cybersecurity, smart cities, among others. His cur-
rent research interests are Smart Cities, e-Governance, Public Service
Delivery, Mobile Networks, Cybersecurity, Quality of Service, Real-
TimeServices,VehicularNetworks,Nano-Communication and Internet
of Things.

Luis Paulo Reis is an Associate
Professor at the University of
Minho in Portugal and Director
of LIACC–Artificial Intelligence
and Computer Science Labora-
tory where he also coordinates
the Human-Machine Intelligent
CooperationResearchGroup.He
is a IEEE Senior Member and
vice-president of both the Por-
tuguese Society for Robotics
and the Portuguese Association
forArtificial Intelligence.During
the last 25 years he has lec-
tured courses, at the University,
on Artificial Intelligence, Intel-

ligent Robotics, Multi-Agent Systems, Simulation and Modelling,
Educational/Serious Games and Computer Programming. He was prin-
cipal investigator of more than 10 research projects in those areas. He
won more than 50 scientific awards including wining more than 15
RoboCup international competitions and best papers at conferences
such as ICEIS, Robotica, IEEEICARSC and ICAART. He supervised
17 PhD and 100 MSc theses to completion. He organized more than 50
scientific events and belonged to the Program Committee of more than
250 scientific events. He is the author of more than 300 publications in
international conferences and journals (indexed at SCOPUS or ISIWeb
of Knowledge).

123

http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/papers/OlafBergmann.pdf
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/papers/OlafBergmann.pdf
https://datatracker.ietf.org/doc/charter-ietf-lwig/
https://datatracker.ietf.org/doc/charter-ietf-lwig/
https://code.google.com/p/relic-toolkit/
http://www.arkko.com/publications/draft-aks-crypto-sensors.txt
http://www.arkko.com/publications/draft-aks-crypto-sensors.txt
http://www.contiki-os.org/
http://eclipse.org/proposals/technology.liblwm2m/

	An ideal IoT solution for real-time web monitoring
	Abstract
	1 Introduction
	2 Related work
	2.1 ETSI M2M
	2.2 oneM2M
	2.3 LWM2M
	2.4 iPSO Alliance
	2.5 Conclusion

	3 Proposed IoT systems
	4 Use case—a real-time web monitoring system
	4.1 Overview
	4.2 Raspberry Pi
	4.3 Arduino
	4.4 ETSI M2M compliance
	GIP
	NA

	4.5 Node.js & real-time web monitoring support
	Real-time web monitoring
	4.6 MQTT versus ETSI M2M standard subscription mechanism (HTTP)

	5 Conclusion
	6 Future work
	Acknowledgements
	References




