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ABSTRACT
CMA-ES is one of the most popular stochastic search algorithms.
It performs favourably in many tasks without the need of extensive
parameter tuning. The algorithm has many beneficial properties,
including automatic step-size adaptation, efficient covariance up-
dates that incorporates the current samples as well as the evolution
path and its invariance properties. Its update rules are composed
of well established heuristics where the theoretical foundations of
some of these rules are also well understood. In this paper we
will fully derive all CMA-ES update rules within the framework of
expectation-maximisation-based stochastic search algorithms using
information-geometric trust regions. We show that the use of the trust
region results in similar updates to CMA-ES for the mean and the
covariance matrix while it allows for the derivation of an improved
update rule for the step-size. Our new algorithm, Trust-Region Co-
variance Matrix Adaptation Evolution Strategy (TR-CMA-ES) is
fully derived from first order optimization principles and performs
favourably in compare to standard CMA-ES algorithm.
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1 INTRODUCTION
Stochastic search algorithms [10, 19] are black box optimizers of a
fitness function that is either unknown or too complex to be mod-
elled explicitly. These algorithms only use the fitness values and
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don’t require gradients or higher derivatives of the fitness function.
Stochastic search algorithms typically maintain a search distribution
over individuals or candidate solutions, which is typically a Gaussian
distribution. This search distribution is used to generate a population
of individuals which are evaluated by their corresponding fitness val-
ues. Subsequently, a new search distribution is computed by either
computing gradient based updates [19], expectation-maximisation-
based updates [7, 12], evolutionary strategies [10], the cross-entropy
method [14] or information-theoretic policy updates [1], such that
the individuals with higher fitness will have better selection proba-
bility. The Covariance Matrix Adaptation - Evolutionary Strategy
(CMA-ES) is one of the most popular stochastic search algorithms
[10]. It performs well in many tasks and does not require extensive
parameter tuning. There are three ingredients for the success of
CMA-ES. Firstly, the covariance matrix update efficiently combines
the old covariance matrix with the sample covariance. Secondly, the
evolution path, which stores the average update direction is also in-
corporated in the covariance matrix to shape future update directions.
Lastly, the step-size adaptation of CMA-ES scales the distribution
efficiently, increasing it when subsequent updates are correlated
while decreasing it otherwise. All these update rules are well es-
tablished heuristics. The foundations of some of these heuristics
are also already theoretically well understood. However, a unique
mathematical framework that explains all these update rules is so
far still missing. In contrast, expectation maximisation-based algo-
rithms [7, 12, 14] (Section 2.2) optimize a clearly defined objective,
i.e., the maximization of a lower-bound. The maximisation of lower
bound in each iteration is equivalent to weighted maximum likeli-
hood estimation (MLE) of the distribution. It is well-known that ML
estimation of the covariance matrix yields a degenerate, over-fitted
distribution [2] which typically results in premature convergence
of the algorithm. We extend the EM-based framework by incor-
porating information geometric trust regions. Using trust regions
will restrict the change of the search distribution in each update.
We implement such trust regions by bounding the Kullback-Leibler
(KL) divergence1 of the search distribution (Section 3). Using these
trust regions, we can recover exactly the same form of covariance
update as in CMA-ES. And the mean update of CMA-ES is a de-
generate case of the trust region update. Furthermore, we can derive

1For simplicity we use ’KL’ and ’KL divergence’ interchangeably



GECCO ’17, July 15–19, 2017, Berlin, GermanyAbbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann

an improved step-size update rule that is based on the same theoret-
ical foundation as the remaining update rules. Our new algorithm,
Trust-Region Covariance Matrix Adaptation Evolution Strategy (TR-
CMA-ES) works favourably in compare to CMA-ES in all tested
scenarios, which includes typical standard benchmark functions and
complex policy optimization tasks from robotics.

1.1 Related Work
We will review CMA-ES and Expectation-Maximisation-based algo-
rithms in the preliminaries section. In this section, we will briefly
review other existing stochastic search algorithms.

The Natural Evolution Strategy (NES) uses the natural gradient
to optimize the expected fitness value under the search distribution
[19]. The natural gradient has been shown to outperform the stan-
dard gradient in many applications in machine learning [6]. The
intuition of the natural gradient is that we want to obtain an update
vector of the parameters of the search distribution that optimises the
value of expected fitness while the KL-divergence between new and
current search distributions is bounded. To obtain this update vector,
a second order approximation of the KL, which is equivalent to the
Fisher information matrix, is used. The resulting natural gradient is
obtained by multiplying the standard gradient with the inverse of the
Fisher matrix. Yet, in contrast to our algorithm, NES family algo-
rithms do not exactly enforce a desired bound of the KL-divergence
but use a constant learning rate [19].

The use of trust regions is a common approach in policy search
to obtain a stable policy update and to avoid premature convergence
[1, 17, 18]. The model-based relative entropy stochastic search al-
gorithm (MORE)[1] uses a local quadratic surrogate to update it’s
Gaussian search distribution. As these surrogates can be inaccurate,
MORE doesn’t exploit the surrogate greedily, but uses a trust region
in form of a KL-bound. This trust region defines how much the
algorithm can exploit the quadratic model. Moreover, MORE explic-
itly bounds the entropy loss to avoid premature convergence. This
method has been shown very competitive when the hyper parameters
are set correctly. Similar trust regions have been used in other policy
search methods such as Relative Entropy Policy Search [17].

Similar to these methods, our framework also uses a KL bound to
define a trust region. However, in difference to all these policy search
methods, firstly we use this bound in an EM-based framework and
secondly we use the reverse KL bound. As the KL is not symmetric,
this is a very important difference. For a more detailed discussion
please see Section 3.

2 PRELIMINARIES
In stochastic search, we want to maximize a fitness function f (x ) :
Rn → R. The goal is to find one or more individuals x ∈ Rn which
have the highest possible fitness value. The only accessible infor-
mation is the fitness values of the individuals. Typically stochastic
search algorithms, maintain a Gaussian distribution on individuals,

x ∼ N (x |µ,σΣ) ,

where µ ∈ Rn , Σ ∈ Rn×n and σ ∈ R+ respectively are the mean(our
current guess of optimum), the covariance matrix and step size
which together define the exploration of the search distribution.2 We

2In this paper σ is used to denote the variance which we refer to it as step size.

seek to find a distribution over individuals x , denoted π (x ;θ ), that
minimises the expected fitness

E[f (x )] =
∫
x
π (x ;θ ) f (x )dx . (1)

At each new iteration t + 1, N individuals x are drawn from the
current Gaussian distribution π (x ,θ t ), with θ t = {µt ,σt ,Σt }. These
individuals are evaluated and, with their fitness values, construct a
dataset {x i , f (x i )}i=1...N that is subsequently used to compute a
new Gaussian search distribution πθ t+1 , with θ = {µt+1,σt+1,Σt+1},
such that better individuals will have higher selection probability.

2.1 Covariance Matrix Adaptation - Evolutionary
Strategy

As CMA-ES will be our main baseline for comparisons, in this
section we briefly explain the update rules of the CMA-ES algorithm
to obtain a new search distribution.

Fitness Transformation. CMA-ES uses a rank preserving trans-
formation of fitness values which makes it invariant under monotone
transformations of the fitness function [9]. In particular, CMA-ES
gives zero weights to the worse half of the population and the weight
of the jth best individuals is proportional to

w j ∝ ln(N /2 + 0.5) − ln(j ). (2)

We will use the same weighting method in our algorithm.
Mean Update Rule. Using the weights, the next distribution

mean µt+1 is set to the weighted sum of the individuals, i.e,

µt+1 =

∑N /2
i=1 wix

Z
, Z =

N /2∑
i=1

wi .

Evolution Path. The evolution path records the sum of consec-
utive update steps, i.e, µt+1 − µt . If consecutive update steps are
towards the same direction, i.e., they are correlated, their updates will
sum up. In contrast, if they are decorrelated, the update directions
cancel each other out. Using the information from the evolution path
leads to significant improvements in terms of convergence speed, as
it enables the algorithm to exploit correlations between consecutive
steps.

Covariance Matrix Update Rule. The covariance matrix update
is computed using the local information about the fitness function
from the individuals, called the rank-µ update, and the information
about the evolution of the distribution contained in the evolution path
pc t+1, called the rank-1 update. The covariance update is defined as

Σt+1 =(1 − cµ − c1)Σt + cµ
N∑
i=1

wi (x i − µt ) (x i − µt )
T

σt︸                                  ︷︷                                  ︸
Rank-µ update

+ c1pc t+1pc t+1
T︸             ︷︷             ︸

Rank-one update

,

where c1 ≥ 0 and cµ ≥ 0 are learning rates which are set by well
established heuristics.

Step Size Update Rule. Subsequently, the evolution path is also
used to find a new step size σt+1 such that the difference between
the distributions of the actual evolution path and an evolution path
under random selection is minimised, see [9] for more details.
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Theoretical Foundation. Recently there are theoretical studies
to justify the update rules of CMA-ES. For example, In [16] and [4]
it has been shown that the CMA-ES mean and rank-µ update rules
can be derived by computing the approximate natural gradient of the
expected fitness under the search distribution. Moreover, Akimoto
et al. [4] nicely sketches the relation between CMA-ES and the EM-
based stochastic search framework conceptually. However, it does
not define a concrete mathematical framework for driving the search
distribution update rules. While these theoretical studies provide
a great understanding of CMA-ES, to the best of our knowledge,
they do not lead to an improvement over the original CMA-ES. One
reason is that, these frameworks [16], [4] do not derive the rank-1 of
CMA-ES and a step-size update rule, which are crucial features of
CMA-ES. Our new algorithm will have all the features of CMA-ES
while it will be fully derived from a single principle.

2.2 Stochastic Search by
Expectation-Maximisation

An alternative view to the formulation in Equation 1 is to convert
the problem into an inference problem [15]. In order to use infer-
ence, the common method is to define a binary fitness event R as
observed variable. To simplify notation we will always write R when
we mean R = 1. The probability of this fitness event is given by
p (R |x ) ∝ C ( f (x )), where C is a monotonically increasing (i.e., rank
preserving) transformation of the fitness values. Intuitively p (R |x )
defines the probability that individual x is the optimum solution.
Hence now we optimise the objective

p (R;θ ) =
∫
x
p (R |x )π (x ;θ )dx , (3)

where p (R;θ ) is the marginal distribution of the event R. We would
now like to find the distribution parameters θ , that maximises p (R;θ ).
We can also maximize any strictly increasing function of p (R;θ ). In
particular, the derivations will be simpler if instead we maximise the
log probability of the event R, i.e,

logp (R;θ ) = log
∫
x
p (R |x )π (x ;θ )dx (4)

To optimise logp (R;θ ), we resort to an iterative expectation max-
imization (EM) algorithm [7, 15]. In each iteration, the EM algo-
rithm iteratively constructs a lower bound on logp (R;θ ) (E-step) and
then optimizes that lower bound to obtain a new search distribution
πt+1 = π (x ;θ t+1) (M-step).

Constructing the lower bound (E-Step). Similar to prior work
[15], we can now introduce a variational distribution q(x ) which is
used to decompose the logp (R;θ ), i.e,

logp (R;θ ) = L (q,θ ) + KL(q(x ) | |p (x |R;θ )), (5)

where the first term

L (q,θ ) =

∫
x
q(x ) log

p (R |x )π (x ;θ )
q(x )

dx (6)

is the lower bound of logp (R;θ ) and second term

KL(q(x ) | |p (x |R;θ )) = −
∫
x
q(x ) log

p (x |R;θ )
q(x )

dx (7)

is the KL-divergence between the variational distribution q(x ) and
the posterior

p (x |R;θ ) =
p (R |x )π (x ;θ )∫
p (R |x )π (x ;θ )dx

, (8)

which is proportional to the search distribution π (x ;θ ) weighted
by fitness event probabilities p (R |x ). Equation 5 holds for any
variational distribution q(x ) and parameters θ , and hence,

logp (R;θ ) ≥ L (q(x ),θ ) (9)

as the KL term is always positive. Note that the lower bound will
be tight at our current distribution parameters θ t , i.e., logp (R;θ t ) =
L (q(x ),θ t ), if we choose a variational distribution q(x ) such that
KL(q(x ) | |p (x |R;θ t )) = 0, which is equivalent to choosing

q(x ) = p (x |R;θ t ) =
p (R |x )π (x ;θ t )∫

x p (R |x )π (x ;θ t )dx
.

This choice of the q(x ) gives us a lower-bound L (p (x |R;θ t ),θ ) on
the logp (R;θ ) such that p (R;θ t ) = L (p (x |R;θ t ),θ t ). Constructing
this lower-bound corresponds to the E-step.

Optimising the lower bound (M-Step). In the M-step, we then
maximise L (p (x |R;θ t ),θ ) with respect to the parameters θ to obtain
a new parameters θ t+1. Typically, p (R |x ) is unknown and we only
have access to sample evaluations for the individual x generated
from the search distribution π (x ;θ t ). In this case, the lower-bound
can be approximated by

L (q(x ),θ ) ≈ 1/N
∑
i

q(x i )

π (x i ;θ t )
log

p (R |x i )π (x i ;θ )
q(x i )

dx

≈ 1/N
∑
i
wi logπ (x i ;θ ) + const., (10)

where wi ∝ p (R |x i ). This corresponds to a weighted maximum
likelihood estimate. Please note that in Equation 10, we focus on
terms depending on θ and the others are treated as constant.

Monotonic improvement guarantee. Expectation-Maximization
stochastic search methods inherit a monotonic improvement guaran-
tee from the EM algorithm, i.e., logp (R;θ t ) is always increased (or
stays the same) at each iteration. This is easy to see by noting that the
lower-bound L is tight after the E-step, i.e., logp (R;θ t ) = L (q,θ t ).
Therefore, optimising the lower-bound at the M-step, can only im-
prove logp (R;θ t+1) over logp (R;θ t ).

Disadvantage of EM-based algorithms. While this algorithm
can improve the search distribution, it can quickly result in a de-
generated distribution which stops exploration and would lead to
premature convergence, which is a problem in many of these meth-
ods [12, 14]. The cause of this limitation is mainly the maximum
likelihood estimate (Equation 10) which overfits the current individ-
uals and change the current search distribution drastically[2].

3 TRUST REGIONS FOR COVARIANCE
MATRIX ADAPTATION

In order to remedy the problem of premature convergence in EM-
based algorithms, we will add information-geometric trust region
to the optimization objective of the lower bound. The trust region
regularizes the maximization step and bound the entropy loss of the
new distribution with respect to the current distribution. As we do not
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Iteration 1 Iteration 12 Iteration 24 Iteration 31 Iteration 39
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Figure 1: In this illustration, we use a slightly modified version of the McCormick function with two dimensions. The blue cross shows the optimum
and blue contours have higher value than green contours. In iteration one, the algorithm starts with a small distribution. In each iteration we sample
five individuals. The figures show that our step size strategy effectively controls growing and shrinking of the distribution. At the beginning, it
naturally grows and when it has found the optimum, it naturally shrinks (iteration 24-39). Please note that the step size strategy is derived from a well
defined consistent principle.

fully maximize the lower-bound any more, our algorithm belongs
to the class of generalized Expectation-Maximisation algorithms
[8] which also holds the expectation improvement guarantee of
conventional EM algorithms.

Our constraint optimization problem for optimizing the lower
bound now is given by

θ t+1 = argmax
θ

∑
i
wi logπ (x i ;θ )

s.t. KL
(
π (x ;θ t ) | |π (x ;θ )

)
≤ ϵ , (11)

where ϵ defines the bound on the KL divergence. With this bound
we can define a trust region for our updates to avoid a degenerated
distribution. In next section, we will show how to solve this con-
straint optimisation problem efficiently in closed form for a Gaussian
search distribution. The resulting update strategies match the update
strategies of CMA-ES except for small, but important differences
as we will discuss later in this section. While bounding the KL-
divergence is a well established method [1, 13, 17, 18], it has so far
not been applied to expectation-maximisation stochastic search algo-
rithms. Another interesting observation is that, in difference to many
existing policy search methods that use a trust region [1, 17], we
employ the reverse KL divergence measure, i.e., instead of bounding
KL(π | |πt ) we bound KL(πt | |π

)
. Hence, our derivation reveals an

interesting connection of CMA-ES to many trust region optimization
algorithms that use the forward KL, KL(π | |πt ) which was so far
unknown. Note that in the case of a Gaussian search distribution, we
can solve the optimisation program in equation 11 in closed form
only if we use the reverse KL.

3.1 Update Rules for
Multivariate Normal Distributions

In each iteration, we solve the optimization program given in Equa-
tion 11 with a Gaussian distribution

π (x ;θ ) = (2π )−n/2 |σΣ|−0.5 exp(−0.5(x − µ)T σ−1Σ−1 (x − µ))

and the KL divergence between two Gaussian distributions

KL
(
πt | |π

)
= 0.5

(
tr(σ−1Σ−1σtΣt ) (12)

+ (µ − µt )
T σ−1Σ−1 (µ − µt ) − n + ln

|σΣ|

|σtΣt |

)
.

Where |.| and tr(.) are determinant and trace operators respec-
tively. In general, to solve this constraint optimisation problem, we
first construct the Lagrangian equation, i.e,

L(η,θ ) =
∑
i
wi logπ (x i ;θ ) + η(ϵ − KL

(
πt | |π

)
),

where η is a Lagrangian multiplier. Subsequently, we differentiate
L(η,θ ) we respect to θ and set it to zero to obtain θ∗ which will
depend on the Lagrangian multiplier η. To compute the optimal
value for the Lagrangian multiplier η∗, we can optimize the dual
function L(η,θ∗) which is obtained by setting the optimal θ∗ back
into the Lagrangian. In order to perform an efficient optimization
and to obtain the CMA-ES updates, we employ a coordinate descent
strategy where we optimize for each parameter, i.e, the new mean
µt+1, the covariance matrix Σt+1 and the step size σt+1, indepen-
dently. I.e., when we optimize, for example, for the covariance
matrix Σ, we use the current mean µt and step size σt for the re-
maining parameters. This decoupling have three advantages. Firstly,
it renders the problem to a concave optimisation problem for each
search distribution component. This is easy to verify by observing
that the second derivative of the Lagrangian L(η,θ ) with respect
to each parameter is negative definite. Moreover, this decoupling
allows us to set different ϵ values for each component, i.e., ϵµ ,ϵΣ,ϵσ
for the mean, the covariance matrix and the step size respectively.
Different ϵ lead to different learning rates. We can set a higher
learning rate for the mean and step size than for the covariance as the
covariance matrix has many more parameters which makes it more
frail to overfit. Natural evolutionary strategy algorithms also use dif-
ferent learning rates for mean, step size, and covariance matrix [19].
Finally, by setting the mean to the current mean when optimising for
covariance matrix and step size, we find a covariance matrix Σt+1
and step size σt+1 that increases the likelihood of successful steps
instead of likelihood of successful individuals. CMA-ES also uses
the current mean when obtaining the new covariance matrix. This
approach has been shown to be less prone to premature convergence
[9].

3.1.1 Mean Update Rule. Now, we construct the Lagrangian
for obtaining the new mean, i.e,

L(µ,η) = 2ϵµη − tr(σt−1Σt−1F ), (13)
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where

F =
∑
i
wi (x i − µ) (x i − µ)T + η(µ − µt ) (µ − µt )

T .

To obtain the new mean µt+1 = argmaxµ L(µ,η), we differentiate
the Lagrangian with respect to µ and set it to zero to obtain

µt+1 =
η∗µµt +

∑
wix i∑

wi + η
∗
µ
, (14)

where η∗µ is the optimum Lagrangian multiplier which can be ob-
tained by minimising the convex dual function

дµ (η) = suppµL(η,µ) = L(η,µt+1),

i.e., η∗µ = argminη дµ (η). As indicated in the equation, the dual
function is obtained by setting the optimal solution for the mean
back into the Lagrangian. The dual function is convex and can be
efficiently optimised by any arbitrary non-linear optimiser. We use
fmincon tool in matlab (please see the matlab code for implemen-
tation). If we set a large KL bound for the mean, i.e., ϵµ → ∞,
η will go to 0 and we obtain the original CMA-ES mean update
µt+1 =

∑
wix i/

∑
wi , which is equivalent to the solution of un-

regularized weighted maximum likelihood estimate. In this paper
we always set a large learning rate for mean which results in sim-
ilar mean update as CMA-ES. Investigating the effect of different
learning rates for mean is part of our future work.

3.1.2 Incorporating the Evolution Path. The evolution path
is a crucial ingredient of the performance of CMA-ES [9]. It sum-
marizes the path taken by the recent distribution updates and can be
interpreted as sort of momentum term. In order to exploit the evo-
lution path in our formulation, similar to [3] we treat the evolution
path pc as an individual sample, i.e., our optimisation problem is
now given by

max
θ

∑
i
wi logπ (x i ;θ ) + λ logπ (µt + pc ;θ ) (15)

s.t. KL
(
π (x ;θ t ) | |π (x ;θ )

)
≤ ϵ ,

where λ > 0 is a user-defined weight that specifies the importance of
the evolution path pc with respect to other individuals. Empirically,
we found it is better to use different λ coefficients for the covariance
matrix and the step size, i.e, λΣ, λσ . Please note that we also tried
to use the evolution path to adapt the mean as well. However, we
observed that the learning process gets considerably unstable due to
overshooting the optimum.

3.1.3 Covariance Matrix Update Rule. We construct the co-
variance matrix Lagrangian for the optimisation program in Equation
15, i.e.,

L(η,Σ) = −(
∑
i
wi + λΣ + η) ln |Σ| + η(2ϵΣ + n + ln |Σt |)

− tr(Σ−1 (Σs/σt + ηΣt + λΣpcpc
T /σt )), (16)

where

Σs =
∑
i
wi (x i − µt ) (x i − µt )

T . (17)

To obtain the new covariance matrix Σt+1 = argmaxΣ L(Σ,η), we
differentiate the Lagrangian with respect to Σ−1 and set it to zero to

obtain

Σt+1 =
η∗
Σ
Σt + Σs/σt + λΣpcp

T
c /σt∑

i wi + λΣ + η
∗
Σ

(18)

in closed form. The coefficient η∗
Σ

is again the optimum Lagrangian
multiplier. It can be obtained by minimising the dual function
η∗
Σ
= argminη дΣ (η). Where дΣ (η) = L(η,Σt+1). Now, by changing

variables, i.e.,

1 − α − γ =
η∑

i wi + λΣ + η
, γ =

λΣ∑
i wi + λΣ + η

(19)

α =
1∑

i wi + λΣ + η
,

we can rewrite the equation for Σ as

Σt+1 = (1 − α − γ )Σt + α
Σs
σt
+ γ

pcpc
T

σt
.

Note that as η > 0 and λΣ > 0 we can infer that 0 ≤ α + γ ≤ 1.
Hence, we obtained the exact form of covariance matrix update of
CMA-ES where the second and third terms are called rank-µ and
rank-1 updates respectively. The only difference is that α and γ
are constant coefficients in CMA-ES. Please note that CMA-ES
uses constant coefficients to combine the old covariance matrix with
rank-1 and rank-µ while TR-CMA-ES compute these coefficients
based on satisfying an exact KL bound. We observed that this exact
KL-bound results in different coefficients in each iteration.

3.1.4 Step Size Update Rule. We also construct the step size
Lagrangian for the optimisation program in Equation 15, i.e.,

L(η,σ ) = − (
∑
i
wi + λσ + η) lnσn + η(2ϵσ + n + ln(σt n ))

− σ−1 tr(Σt−1 (λσpcpc
T + Σs ) + ησt I ). (20)

To obtain the new step size σt+1 = argmaxσ L(σ ,η) we differentiate
the Lagrangian with respect to σ−1 and set it to zero to obtain

σt+1 =
nη∗σσt + tr(Σ−1t (Σs + λσpcp

T
c ))

n(
∑
wi + λσ + η

∗
σ )

. (21)

Where Σs is given in equation 17 and the coefficient η∗σ is the
optimal Lagrangian multiplier. It is again obtained by minimising
the dual function η∗σ = argminη дσ (η). Where дσ (η) = L(η,σt+1).
In contrast to the current step size control approaches, our algorithm
naturally increases or decreases the step size σ based on the the
current individuals and the evolution path without explicitly defining
any heuristic. More formally, the step size is adapted to increase the
likelihood of successful steps and the evolution path using the same
mathematical foundations as the updates for the mean and covariance
matrix. CMA-ES only uses the evolution path without using the
current individuals [5]. Figure 1 illustrates the effectiveness of our
search distribution step size update rule. Now, all the updates follow
the same principle.

3.2 Algorithm
Algorithm 1 shows a compact representation of the new stochastic
search method. In each iteration, we generate N individuals x ∈ Rn

and evaluate their fitness values (Lines 1-7). Subsequently, we
compute a weight for each individual based on the fitness value (Line
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Figure 2: Plot of the average number of required fitness evaluations over 20 trials to reach the target fitness value of −10−5 (103 for the unbounded
function ParabR) for 8 different benchmark functions with 5 to 60 dimensions. TR-CMA-ES outperformed CMA-ES in most benchmark functions.
In fact only in some dimensions of ParabR and Cigar functions CMA-ES performs better than TR-CMA-ES.

8). For ease of comparison we use the same rank-based weighting as
CMA-ES. Please see preliminary section for the weighting method.
We compute the number of effective samples (Line 9). Similar
to CMA-ES, we empirically obtained a default setting for hyper
parameters of the algorithm which scales with the dimension of the
problem and size of the population (Line 10). Subsequently we
compute the new mean and new evolution path (Line 11-15). Finally,
we obtain the new covariance matrix and new step size (Line 16-21).
Note that the η∗ are obtained by optimising the dual functions we
explained in the previous section.

4 EXPERIMENTS
In this section, we present our experimental evaluations of TR-CMA-
ES in comparison to CMA-ES. We use two sets of benchmarks, the
standard functions and three simulated robotics tasks where we
compare against CMA-ES algorithm. For all experiments we use
the same hyper parameter setting as given in Algorithm 1. For
comparison, we use the CMA-ES Matlab source code released in
CMA-ES official website 3. We run both algorithms for several trials
for each single experiment. For both algorithms, we used the same
population size and both algorithms will start with a same initial
distribution in each trial. However, initial distribution for each trial
is varied slightly. Also, both algorithms use fixed hyper parameter
settings, i.e, throughout the experiments for both algorithms, we
don’t set any hyper parameters by hand4.

3https://www.lri.fr/∼hansen/cmaes inmatlab.html
4Matlab source code of TR-CMA-ES (with examples) as well as videos regarding
the robotics experiments are available at https://goo.gl/9u15Wf

4.1 Standard Functions
We empirically evaluate TR-CMA-ES on 8 benchmark functions
from [10]. As TR-CMA-ES is a maximiser we multiply all the
functions values by −1 to turn their minimum to a maximum. Now,
except for PrabR function that is unbounded, all other functions have
a global maximum of zero. For both TR-CMA-ES and CMA-ES,
we use the formula given in algorithm 1 to define the population
size. For each trial, we randomly generate the mean of the initial
distribution from a normal distribution with zero mean. We set the
initial covariance matrix as a identity matrix with initial σ = 1. We
ran TR-CMA-ES and CMA-ES on these functions with dimensions
from 5 to 60 and a target fitness of −10−5 (103 for ParabR). We
perform 20 trials for each dimension and report the average number
of fitness evaluations to reach the target fitness.

Results. Figure 2 provides the full results on the set of eight
benchmark functions. The results show that TR-CMA-ES in most of
the cases, outperforms CMA-ES in terms of number of evaluations
to reach the target fitness. In fact only in some dimensions of ParabR
and Cigar functions CMA-ES performs better than TR-CMA-ES.

4.2 Simulated Robotics Tasks
We use a 5-link planar robot that has to reach a given point in task
space as a toy task for the comparisons, see Figure 3(a). We subse-
quently made the task more difficult by introducing hard obstacles,
which results in a discontinuous fitness function. We denote this task
as hole-reaching task, see Figure 3(b). Finally, we evaluate our algo-
rithm on a physical simulation of a robot playing table tennis (Figure
3(c)). For all tasks, we use dynamic motor primitives (DMPs) [11] as
trajectory generator and we optimise the parameters of the DMPs to

https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://goo.gl/9u15Wf
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Figure 3: (a) Planar reaching task: a 5-link planar robot has to reach a via-point v50 = [1, 1] in task space. The via-point is indicated by the red
cross. The postures of the resulting motion are shown as overlay, where darker postures indicate a posture which is close in time to the via-point. (b)
Planar hole reaching task: A 5-link planar robot has to reach the bottom of a hole centring at point [2 0] in task space while avoiding any collision
with the walls. The hole is indicated by the red lines. The postures of the resulting motion are shown as overlay, where darker postures indicate a
posture which is close in time to reach the bottom of the hole. (c) The table tennis task: The incoming ball has a fixed initial velocity. The goal of the
robot is to learn forehand strokes to return the ball to a fixed target position.
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Figure 4: Comparisons for the three simulated robotics tasks which were used for comparison. (a) Reaching task (b) Hole reaching task and (c)
Table Tennis task. Results show that TR-CMA-ES outperforms CMA-ES in terms of number of needed evaluations on all task. In the hole reaching
task as well as in the table tennis task, TR-CMA-ES has a better average final performance than CMA-ES. Please note that y in −10−y is value on y
axis.

achieve optimum movements. For all tasks, we generate 50 samples
in each iterations. We ran 10 trials and we report the average fitness
in each iteration and the standard deviations over all trials. All other
settings are set as before if not stated otherwise.

Planar Reaching Task. For completing the reaching task, the
robot has to reach a via-point v50 = [1,1] at time step 50 with its
end-effector and at the final time stepT = 100 the pointv100 = [5,0].
The reward was given by a quadratic cost term for the distance from
two via-points as well as quadratic costs for high accelerations. The
DMPs goal attractor for reaching the final state was assumed to be
known. Hence, the parameter vector x for a 5-link robot with 5
basis function for each degree of freedom had 25 dimensions. Figure
4(c) shows the learning progress. TR-CMA-ES again outperform
CMA-ES, while both algorithms could find the optimal solution.

Planar Hole Reaching Task. For completing the hole reaching
task, the robot’s end effector has to reach the bottom of a hole (35cm
wide and 1m deep) centered point [2,0] without any collision with
the ground or the hole wall. The reward was given by a quadratic cost
term for the distance to bottom of the hole, quadratic costs for high

accelerations and quadratic costs for collisions with the environment.
Note that this objective function is highly discontinuous due to
the quadratic costs for the collisions. The DMP goal attractor for
reaching the final state in this task is unknown and also need to be
learned. Hence, our lower level policy for a 5-link robot with 5 basis
functions for each degree of freedom had 30 dimensions. Figure 4(b)
shows the results. For this task we report both the maximum fitness
and average fitness in each iteration. In both cases TR-CMA-ES
illustrates a better performance.

Table Tennis Task. In this task, we use a simulated robot arm
(see Figure 3(c)) to learn a forehand hitting stroke in a table tennis
game. The robot is mounted on a floating base and has 8 actuated
joints including the floating base. The goal of the robot is to return
the incoming ball at a target position on the opponent’s side of the
table. The ball is always served with same initial velocities in the
x,y and z directions. To learn the task, we initialize the mean of the
distribution with a initial DMP trajectory obtained by kinaesthetic
teaching, such that the movement generates a single forehand stroke.
We only learn the final positions and final velocities of the DMP
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Algorithm 1 TR-CMA-ES

1: given n(Dimension), N = 4 +
⌊
3 log(n)

⌋
(Number of Individuals)

2: initialize µt=0, σt=0 > 0, pc,t=0 = 0, Σt=0 = I , t = 0
3: repeat
4: for i = 1,...,N do
5: x i = µt + σt × N (0, Σt )
6: fi = f (x i )
7: end for
8: w = Compute Weights({x i , fi }i=1. . .N ) (See preliminaries section)

9: Compute variance effective selection mass: µw =
∑N
i=1wi∑N
i=1w

2
i

10: Set Hyper Parameters

λσ = 1, λΣ = 4n
(n+1.3)2+µw

, ϵΣ = min(0.2, 1.5
µw+ 1

µw
(n+2)2+µw

)

ϵσ =
µ2w
2n , ϵµ = 1000, cc =

µw+2
n+µw+5

11: Update Mean:
12: η∗µ = argminη дµ (η)

13: µt+1 =
η∗µ µt +

∑
wix i∑

wi+η∗µ
14: Compute Evolution Path:
15: pc t+1 = (1 − cc )pc t +

√
cc (2 − cc )µw (µt+1 − µt )

16: Update Covariance:
17: η∗Σ = argminη дΣ (η)

18: Σt+1 =
η∗
Σ
Σt +

∑
i wi

(x i −µt ) (x i −µt )
T

σt +λΣ
pc pc

T
σt∑

wi+λΣ+η
∗
Σ

19: Update Step-Size:
20: η∗σ = argminη дσ (η)

21: σt+1 =
nη∗σ σt +tr(Σt −1 (

∑
i wi (x i−µt ) (x i−µt )

T +λσ pcpc
T ))

n (
∑
wi+λσ +η∗σ )

22: t = t + 1
23: until stopping criterion is met

trajectories as well as the τ time-scaling parameter and the starting
time point of the DMP which results in 18 parameters. The reward
function is defined by the sum of quadratic penalties for missing
the ball (minimum distance between ball and racket trajectory) and
missing the target return position. Figure 4(c) shows the result. TR-
CMA-ES robustly finds the solution in all trials while CMA-ES
could not find good solution in 3 trials out of 10. And TR-CMA-ES
was faster.

5 CONCLUSION
In this paper, we derived the full CMA-ES update equations for mean
and covariance with an expectation-maximization based framework
using information-geometric trust regions. The presented update
for the covariance matrix share the same structure as the CMA-ES
algorithm. However, CMA-ES is not using trust region (i.e., use
constraint on KL), but a penalty on KL is used in the objective
as regularizer. As a consequence, the optimum ’Lagrangian’ mul-
tipliers in CMA-ES are set by hand and remain fixed during the
learning. However they are well established and can be left constant
throughout many applications. In the trust region formulation, the
Lagrangian multipliers are optimized for the given bound ϵ . As we
show, in addition to the theoretical foundation, this algorithm gives
us an improved performance over the original algorithm. In contrast
to the mean and the covariance update, our step-size update does not
match the step-size update from CMA-ES. Both, the TR-CMA-ES
and CMA-ES take advantage of evolution path to set step size σ .
However our update rule for the step size is obtained from the same

principle as used for the mean and the covariance matrix. Given
the similarities in terms of the mean and covariance matrix update
between CMA-ES and our algorithm, our step size control update
rule is more consistent and a more principled than the update rule is
used in standard CMA-ES. The new step-size update also performs
favourably in our experiments and should also be preferred for CMA-
ES due to the consistent derivation. Our algorithm also enjoys all
the invariance properties of the CMA-ES. For future work, we will
investigate the effect of regularized mean update over unregulated
mean update. Moreover we will investigate other theoretical aspects
of our framework such as the theoretical difference between the
forward KL and inverse KL trust region. We will also extend our
framework for solving contextual stochastic search problems and
full reinforcement learning problems.
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