
 Procedia Computer Science 64 (2015) 1232 – 1239

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of SciKA - Association for Promotion and Dissemination of Scientific Knowledge
doi: 10.1016/j.procs.2015.08.509

ScienceDirect
Available online at www.sciencedirect.com

Conference on ENTERprise Information Systems / International Conference on Project
MANagement / Conference on Health and Social Care Information Systems and Technologies,

CENTERIS / ProjMAN / HCist 2015 October 7-9, 2015

CF4BPMN: a BPMN extension for controlled flexibility in business
processes

Ricardo Martinhoa,b,*, Dulce Domingosc, João Varajãod,e

aSchool of Technology and Management, Polytecnic Institute of Leiria, Portugal
bCINTESIS - Center for Health Technology and Services Research

cLaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
dDepartment of Information Systems, University of Minho, Portugal

eCentro Algoritmi, University of Minho, Portugal

Abstract

The need for flexibility in business process languages and tools has evolved over the past few decades, from totally rigid
approaches, to totally flexible ones. The need to allow process designers to control this flexibility has risen due to the fact that, in
the everyday practice, people do not wish for total flexibility. They rather prefer to be guided, even when they feel the need to
change some part of business process. In this paper we propose CF4BPMN, a BPMN language extension to allow modeling and
execution of controlled flexibility in business processes. Using this extension, process designers can express how a certain
process element can or cannot be changed in execution time, taking into account their experience or other organizational
restriction. Then, other process participants can visually learn and follow the advised changes onto a business process in a
controlled manner.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of SciKA - Association for Promotion and Dissemination of Scientific Knowledge.

Keywords: Business processes, BPMN, controlled flexibility, BPMN extension

* Corresponding author. Tel.:
E-mail address: ricardo.martinho@ipleiria.pt

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of SciKA - Association for Promotion and Dissemination of Scientific Knowledge

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.509&domain=pdf

1233 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

1. Introduction

To address changes in environment, business processes need to be flexible. According to the recent study of
Cognini et al. [19], business processes are subject of adaptation mainly due to external environment changes, outside
the competence of the organizations, for example because of a change in the law. Others reasons that justify
business process adaptations are changes in internal environment and in strategic goals, as well as in the approaches
to reach these goals.

Since the early 1990’s, process flexibility has been a constant concern. Process flexibility denotes the ability to
modify only those parts of a process that need to be changed while keeping other parts stable [17].

Although flexibility is considered essential so that processes can cope with expected (or unexpected) exceptions,
in the everyday business practice, process participants do not wish for total flexibility, i.e., changing processes
without any restrictions or guidance. Instead, designers would like to define which changes can be applied, as well as
performers would like to follow advices previously modelled on which and how they can change the elements that
compose business processes [3, 5]. This controlled flexibility can be defined as the ability to control which, where,
how and by whom the elements that composed a business process can or cannot be changed.

Since its release in 2004, BPMN (Business Process Model and Notation) [15] is becoming the leader and a de
facto standard in business process modeling [9]. Considering flexibility features in BPMN business processes, we
can find in the literature some works that take advantage of standard BPMN elements, such as the ad-hoc sub-
process BPMN element, to define more flexible business processes [23, 22]. In addition, some works propose to
extend BPMN with rule-based languages to improve flexibility by design [13] and with versioning features to
support flexibility by changes [1, 2]. The jBPM (http://www.jbpm.org) engine also supports flexibility by change,
including the migration of running process instances.

However, none of the current proposals have the necessary expressivity and features to let the process designer to
advise, and then to guide process performers in changing operations, with distinct degrees of enforcement and
details.

In this paper, we propose CF4BPMN: a BPMN extension for controlled flexibility. The extension allows process
designers to express, within a process model, how it is advised for a process participant to change a certain process
element (including tasks, events, gateways, data objects and swimlanes, for instance), according to the well-known
business process flexibility taxonomy of Regev et al. [18]. Then, process participants can visualize and learn from
the modeled controlled flexibility constraints, and act accordingly, i.e., be guided in changing or not the process
models and/or instances, taking into account the advised changes.

In the next section, we present related work about flexibility in general and particularly concerning BPMN
processes. The BPMN extension for controlled flexibility is presented in section 3. Finally, section 4 concludes the
paper and discusses future work.

2. Related Work

Among others, Regev et al. present in [18] a taxonomy of flexibility in business processes. They classify it
according to three orthogonal (combinable) dimensions:

1. Abstraction level of change, that distinguishes where changes are to be made, i.e., if at the type or instance
levels (or both). Changing the process model (type level) implies changing the defined standard way of working, as
it will affect all instances created there forward. However, change can occur only for certain instances of a process
(instance level), in order to accommodate exceptional situations;

2. Subject of change, representing which modelling elements are to be changed. For instance, considering BPMN,
modelling elements would include 1) flow objects (events, activities, gateways); 2) data (data objects, data inputs
and outputs, data stores); 3) connecting objects (sequence flows, message flows, associations and data associations);
4) swimlanes (pools and lanes); and 5) artifacts (groups and text annotations); and

3. Properties of change, denoting how a modelling element can be changed. We can consider four combinable
properties of change:

1234 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

a) Extent of change, denoting if change is only introduced to an already existing process model (incremental
change), or if change abolishes the existing process model and creates a completely new one (revolutionary change).
Often experts are required to do revolutionary changes to the whole or part of a process model;

b) Duration of change, which can represent temporary or permanent changes. Temporary changes are valid for a
limited period of time, and permanent changes are valid until the next permanent change;

c) Swiftness of change, that expresses if changes are to be applied immediately to all family-related process
models (types) or instances (also the running ones), or deferred only to new process models or instances of the
changed process; and

d) Anticipation of change, that identifies if the change is planned or ad-hoc. Ad-hoc changes are often made to
tolerate exceptional situations, and planned changes are often part of a process redesign.

From some of the most prominent works on workflow flexibility [20, 6], we highlight ADEPT and YAWL. The
ADEPT project starts in 1995 and it is at the origin of the AristaFlow BPM suite [16]. ADEPT covers changes at
both type (model) and instance abstraction levels, and allows process participants to choose between immediately
apply changes to all running instances (with an appropriate migration strategy) or deferring them only to be applied
to new instances. The YAWL environment has been extended with the Worklets Service, which provides sub-
services to support flexibility in workflows (anticipation of change): a selection sub-service, which enables planned
changes for process instances; and an exception handling sub-service, which provides facilities to handle both
planned (expected) and ad-hoc (unexpected) process exceptions at runtime [14]. However, both systems use their
own process modeling language and notation.

In the following, we use this taxonomy to systematize the state of the art on BPMN flexibility. For instance, in
prescriptive modelling approaches, all the alternative workflow paths are included in the process model (or type,
according the mentioned taxonomy). At runtime, the most appropriate execution path is selected for each process
instance. Declarative or constraint-based modelling approaches are considered more flexible, as everything that does
not violate the constraints is allowed [21]. In this case, more flexible process models have fewer constraints. In
addition, many of the workflow patterns [22] can be seen as constructs to support flexibility at the model (type)
abstraction level of change.

BPMN considers the Ad-Hoc Sub-Process object to support flexibility at the model (type) abstraction level of
change, as well as ad-hoc anticipation of change and incremental extent of change. This object is a group of BPMN
activities that can have no required sequence or other control-flow relationships. Here, the subject of change
involves activity type modeling elements, as well as control-flow elements such as sequences or parallel flows. Ad-
hoc sub-processes have a set of activities, but their control-flow and number of executions is determined by
performers at the instance abstraction level of change [15]. In [23], the authors use BPMN ad-hoc sub-processes to
design flexible clinical workflows.

Following a constraint-based modelling approach, in [13], the authors take advantage of their rule-enhanced
business process modeling language (rBPMN) to support flexibility at the model (type) abstraction level of change.
They use rules to define many alternative paths in BPMN processes in a compact way.

In [1] and [2], the authors present a BPMN extension to support process models’ versioning. The jBPM, a BPMN
engine from the JBoss™ company, supports changing models during runtime, including the migration of running
instances. This is an example of process flexibility at both model (type) and instance abstraction levels of change,
with an immediate swiftness of change.

Despite the importance that flexibility has in business processes, in practice, both designers and performers do
not want total flexibility, without any restrictions. Designers want to define which changes can be applied and
performers would like some guidance at least [3, 5, 11]. In [6, 4], the authors present an approach that combines
BPMN processes, rules, events and workflow adaptation patterns, which supports flexibility but also goes a step
further by defining which changes can be applied, in which situations and how. In a more systematic way, Martinho
et al. propose a framework for modelling controlled flexibility in software processes [12, 10]. They propose the
Controlled Flexibility Language and they extend the Unified Modelling Architecture (UMA) metamodel [7] with its
language constructs. To provide it with controlled flexibility, in this paper we extend BPMN with the Controlled
Flexibility Language constructs, as we detail in the next section.

1235 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

3. The CF4BPMN controlled flexibility extension

Extending BPMN to support controlled flexibility includes defining a domain model containing the main
concepts of controlled flexibility language, as well an extension model as described by the native BPMN extension
mechanisms. In this section we define both these models and include also an example of our CF4BPMN extension
applied to a BPMN diagram.

3.1. Conceptual Domain Model for Controlled Flexibility

Based on our previous work on concept maps and ontologies for controlled flexibility in software processes [10],
we propose the Controlled Flexibility Language (CFL) whose UML metamodel is presented in Figure 1.

Figure 1 – The Controlled Flexibility Language (CFL) metamodel (extended version from [12])

The metamodel is based on the notion of constraint of change (COfChange), which defines that a change to a
certain business process element can be constrained either positively (if it is changed, it can or must be done in a
certain way), or negatively (if a change occurs, it should not or cannot be done in a certain way). The CFL
metamodel has three related substructures, denoted by different grey-shaded classes and their corresponding
associations:

1. ConFlexElement and COfChange;
2. CFLExpression, CFLPart, CFLNameLiteral, CFLTypeLiteral and CFLValue; and
3. CFLExpression and the corresponding hierarchy of expressions, including the shared association between

ExpressionDecorator and CFLExpression.
The first substructure illustrates a composite association between ConFlexElement and COfChange. The

ConFlexElement on the right defines an abstract superclass for all possible process elements for which the
process designer can define controlled flexibility. A controlled flexibility-enabled element is a process element

1236 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

which has, at least, one COfChange associated. The composite association also denotes that a constraint of change
only exists within the context of a ConFlexElement. In turn, a COfChange has a one-to-one association with
CFLExpression, defining that constraints of change must have exactly one expression.

The second substructure includes the definition and associations of the CFLExpression class. It represents a
literal expression (string), which will contain all the semantic information of a COfChange. For example, we can
consider a CFLExpression with a body attribute containing the following string:

{tbAdvice:TBAdvice=recommended, absLevel:AbsLevel=model}

The expression informs a process participant that it is recommended to change the model representation of the
constrained ConFlexElement. We can observe that the expression follows a tuple-like format, and results from
the composition of a variable number of CFLPart elements (two for the example above). Each CFLPart has a
name literal (CFLNameLiteral), a type literal (CFLTypeLiteral) and a value (CFLValue). For the example
above, the first CFLPart instance is defined by a tbAdvice name literal, a TBAdvice type literal and the
recommended value. A CFLExpression must have, at least, one CFLPart, and a CFLPart belongs only to one
CFLExpression at a time. The CFLTypeLiteral of a part is optional (association with multiplicity of 0..1 to
1), and therefore the expression above can also be written in its simplest form:

{tbAdvice=recommended, absLevel=model}

The third substructure of the CFL constructs is composed by CFLExpression and the corresponding hierarchy
of expressions, along with the shared association between ExpressionDecorator and CFLExpression. The
structure applies the Decorator structural software pattern of Gamma et al. [8]. A constraint of change must be able
to assume different degrees of detail in its definition. It can vary from having a single AdviceExpression, to a
combination of CFLExpression elements, composing a constraint of change with more detail. The expression
example above is itself a combination of a TBAdviceExpression with an AbsLevelExpression. The
Decorator pattern from Gamma et al. [8] avoids the disadvantage of static subclassing. It enables a process engineer
to combine several CFLExpressions of different types into a global one. This means that a mandatory
AdviceExpression (leaf expression) can be decorated with other (non-leaf) expressions at runtime by the
process engineer. The result is still a single CFLExpression object, which begins by being a single
AdviceExpression, to which is later added responsibilities through the CFLExpression decorators, such as
the AbsLevelExpression one. Back to the expression example above, its concrete implementation comprises a
leaf TBAdviceExpression and an AbsLevelExpression decorator.

3.2. BPMN Extension

The BPMN 2.0 meta-model includes an extensibility mechanism to add non-standard attributes and elements to
standard BPMN elements. A BPMN extension consists of four elements:

1. Extension - binds/imports an ExtensionDefinition and its attributes to a BPMN model definition;
2. ExtensionDefinition - defines and groups additional attributes that can be added to BPMN elements;
3. ExtensionAttributeDefinition - defines new attributes that can be added to BPMN elements; and
4. ExtensionAttributeValue - contains the attribute value.
Figure 2 presents the class diagram of BPMN extension. By associating a BPMN element with an

ExtensionDefinition, every BPMN element which subclasses the BPMN BaseElement can be extended
with additional attributes.

The name of the extension we propose, CF4BPMN, is the value of the ExtensionDefinition attribute
name. The value of the mustUnderstand attribute of the Extension class is false - if the BPMN tool does not
understand this extension, it can ignore it, losing the controlled flexibility support. The new CF4BPMN attributes
are COfChange, CFLExpression, and CFLPart, defined as ExtensionAttributeDefinitions.

1237 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

Definitions

* extensions

Extension

mustUnderstand: boolean

BaseElement

id: String

ExtensionDefinition

name: String

* extensionDefinitions

ExtensionAttributeValue

ExtensionAttributeDefinition

name: String
type:String
isREference: Boolean

Element*

extensionValues

definition

*

*

extensionAttribute
Definition

*

extensionAttributeDefinition

valueRef
0..1

value

Figure 2 - BPMN extension class diagram

3.3. BPMN Extension application example

Our extension includes also an altered graphical representation of the BPMN elements that are to be marked as
controlled flexibility-enabled elements. This is achieved by marking these elements with a green-coloured
background, and associating them an annotation element (also coloured), which will contain the CFLExpression
body text, as described in section 3.1. Figure 3 shows, as an example, the BPMN diagram of the Elaboration phase
of the Unified Process (UP), as detailed in [24] with controlled flexibility-enabled elements.

Figure 3 – BPMN diagram with controlled flexibility elements for the Elaboration phase of the UP software development process

1238 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

In this example, we can observe the following four applications of the CF4BPMN extension:
1. Data object labeled “Use case model (briefly described)”, with the CFLExpression value of

{tbAdvice=denied, absLevel=model}, meaning it that are denied (tbAdvice - text-based
advice) any changes performed at the model (type) abstraction level of change;

2. Sequential Multi-Instance subprocess, with the CFLExpression value of
{tbAdvice=discouraged, duration=temporary}, meaning that it is discouraged to make
temporary changes to this subprocess, i.e., changes valid only for a limited period of time (referring to
the duration property of change described in section 2).

3. Merge parallel gateway, with the CFLExpression value of {vbAdvice=70%,
absLevel=instance, operation=synch_partial}, meaning that 70% (vbAdvice –
value-based advice) of instances were changed in order to allow for a partial synchronization of
incoming paths (i.e., the gateway allowed for the process to proceed for the next element with only one
incoming path reaching it);

4. The lane labeled “Use case engineer”, with the CFLExpression value of {tbAdvice=allowed,
absLevel=instance, swiftnessMode=immediate}, meaning that changes to whom is
going to perform the Tasks in this lane are allowed, but only at the instance abstraction level of change,
being immediately applied to all (running) instances of this element.

It is important to notice that our work assumes that flexibility is unconstrained (i.e. totally free) for any unmarked
BPMN element. For instance, changes to the “Define architecture” Task in Figure 3 are completely allowed (not
constrained by any expression).

The same way, any flexibility concept not referred within the CFLExpressions should assume a default value.
For instance, the CFLExpression on the sequential multi-instance subprocess does not explicitly refer the
abstraction level of change, meaning that the included advice may be assumed for both models and instances of this
element’s abstraction level of change (default value for absLevel=model_instance).

4. Conclusions and future work

In this paper we proposed the CF4BPMN extension in order to enable controlled flexibility in business processes.
Through this extension, process designers are able to express which, where and how certain elements of a business
process can be changed. This allows for other process participants to be aware of the advised changes they can
perform on a business process. The concepts behind these advised changes are taken from the business process
flexibility taxonomy in [18], from which we derived an extension metamodel. The metamodel is based on the notion
of constraints of change, which in turn include a tuple-like text-based expression stating the controlled flexibility to
which a certain process element is subjected to.

In our extension to BPMN we propose the use of green-coloured process elements to distinguish them from those
which have not controlled flexibility. We also use coloured annotations to convey the tuple-like constraint
expressions defined in our metamodel, taking advantage of a well-established way to add extra information to
BPMN diagrams.

Future work includes the implementation of CF4BPMN in a BPMN-compliant business process suite, comprising
the necessary process design and execution features. We are also pursuing organizations where there is already an
informal way of controlling flexibility in business processes. This will allow us to test our extension and to improve
it taking into account additional requirements from real-world scenarios.

References

1. Ben Said, I., Mohamed Amine Chaabane, and Eric Andonoff. "A model driven engineering approach for modelling versions of business
processes using BPMN." In Business Information Systems (2010), . Springer Berlin Heidelberg, 254-267.

2. Ben Said, I.; Chaabane, Ma.; Bouaziz, R.; Andonoff, E., "Flexibility of collaborative processes using versions and adaptation patterns," In
Proceedings of the IEEE 9th International Conference on Research Challenges in Information Science (RCIS), (2015), 400-411,

3. Bider, I. (2005). Masking Flexibility Behind Rigidity: Notes on How Much Flexibility People are Willing to Cope With. In Proceedings of
the 17th International Conference on Advanced Information Systems Engineering (CAiSE’05).

1239 Ricardo Martinho et al. / Procedia Computer Science 64 (2015) 1232 – 1239

4. Birgit Zimmermann and Markus Doehring. 2011. Patterns for flexible BPMN workflows. In Proceedings of the 16th European Conference
on Pattern Languages of Programs (EuroPLoP '11), 2011.

5. Borch, S. E. and Stefansen, C. (2006). On Controlled Flexibility. In Proceedings of the 7th Workshop on Business Process Modeling,
Development and Support (BPMDS’06) co-located with the 18th Conference on Advanced Information Systems Engineering (CAiSE’06).

6. Döhring, M., Zimmermann, B., & Karg, L. (2011, January). Flexible workflows at design-and runtime using BPMN2 adaptation patterns.
In Business Information Systems (pp. 25-36). Springer Berlin Heidelberg.

7. Eclipse Foundation. The Unified Metamodel Architecture Metamodel v1.1, (2008).
8. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley.
9. Harmon P, Wolf C. The State of Business Process Management. Business Process Trends; 2008. http://www.bptrends.com/bptrends-

surveys/, last access: 27/03/2015.
10. Martinho, R., Domingos, D., & Varajao, J. (2010). Concept maps for the modelling of controlled flexibility in software processes. IEICE

TRANSACTIONS on Information and Systems, 93(8), 2190-2197.
11. Martinho, R., Varajao, J., & Domingos, D. (2008, September). A two-step approach for modelling flexibility in software processes.

In Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering (pp. 427-430). IEEE Computer
Society.

12. Martinho, Ricardo, João Varajão, and Dulce Domingos. "FlexSPMF: A Framework for Modelling and Learning Flexibility in Software
Processes." In Proceedings of the 2nd World Summit on the Knowledge Society: Visioning and Engineering the Knowledge Society. A Web
Science Perspective, (2009), Springer-Verlag, 78-87.

13. Milanovic, M.; Gasevic, D.; Rocha, L. "Modeling Flexible Business Processes with Business Rule Patterns", In Porceedings of the 15th
IEEE International Enterprise Distributed Object Computing Conference (EDOC), (2011), 65 - 74

14. Nick Russell and A.H.M. ter Hofstede. Surmounting BPM Challenges: The YAWL Story. Special issue of Computer Science - Research and
Development on Flexible Process-aware Information Systems 23(2):67-79, May 2009.

15. Object Management Group (OMG), Business Process Model and Notation (BPMN) Version 2.0, 2011.
16. Dadam, P. and Manfred Reichert. The ADEPT project: a decade of research and development for robust and flexible process support.

Computer Science - Research and Development, (2009), 23(2), 81–97.
17. Regev, G. and Wegmann, A. (2005). A Regulation-Based View on Business Process and Supporting System Flexibility. In Proceedings of

the 17th International Conference on Advanced Information Systems Engineering (CAiSE’05), volume 1, 91–98.
18. Regev, G., Soffer, P., & Schmidt, R. Taxonomy of Flexibility in Business Processes. In Proceedings of the CAISE*06 Workshop on

Business Process Modelling, Development, and Support (BPMDS '06), 2006
19. Riccardo Cognini, Flavio Corradini, Stefania Gnesi, Andrea Polini, and Barbara Re. 2014. Research challenges in business process

adaptability. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC '14). ACM, New York, NY, USA, 1049-
1054.

20. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., and van der Aalst,W. M. P.(2008a). Process Flexibility: A Survey of contemporary
Approaches. In Proceedings of Advances in Enterprise Engineering I, 4th International Workshop CIAO! and 4th International Workshop
EOMAS, 20th Conference on Advanced Information Systems Engineering (CAiSE’08), 2008.

21. van der Aalst, W. M., Adams, M., ter Hofstede, A. H., Pesic, M., & Schonenberg, H. Flexibility as a Service. In Database Systems for
Advanced Applications, 2009, Springer Berlin Heidelberg, 319-333.

22. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Patterns. Distributed and Parallel Databases,
14(1):5–51, 2003.

23. Yao, W., & Kumar, A. (2013). Conflexflow: Integrating flexible clinical pathways into clinical decision support systems using context and
rules. Decision Support Systems, 55(2), 499-515.

24. Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., & Booch, G. (1999). The unified software development process (Vol. 1). Reading:
Addison-Wesley.

