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Abs tract 14 

In the present work, the potential hepatoprotective effects of five phenolic compounds 15 

against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated 16 

in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. 17 

t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH 18 

leakage, increased lipid peroxidation, DNA damage as well as decreased levels of 19 

reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell 20 

death induced by t-BHP (when in co-incubation). If the effects of quercetin are given 21 

the reference value 1, the compounds rank in the following order according to inhibition 22 

of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-23 

glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the 24 

compound’s lipophilicity in addition to its antioxidant potential for its biological 25 
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activity. All tested phenolic compounds were found to significantly decrease lipid 26 

peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and 27 

quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the 28 

natural antioxidants tested appeared to be of even greater importance for DNA 29 

protection than for cell survival. The protective potential against cell death was 30 

probably achieved mainly by preventing intracellular GSH depletion. The phenolic 31 

compounds studied here showed protective potential against oxidative damage induced 32 

in HepG2 cells. This could be beneficial against liver diseases where it is known that 33 

oxidative stress plays a crucial role. 34 

 35 

Keywords: Phenolic compounds; Liver; Oxidative stress; HepG2 cells; tert-butyl 36 

hydroperoxide; Antioxidants 37 
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Introduction 38 

An overall increase in cellular levels of reactive oxygen species (ROS) above the cells’ 39 

defenses results in oxidative stress that can ultimately cause cell death. Oxidative stress has 40 

been recognized to be involved in the etiology of several age-related and chronic diseases 41 

such as cancer, diabetes, neurodegenerative and cardiovascular diseases (Tiwari, 2004; Cui 42 

et al., 2004; Ceriello and Motz, 2004; Klaunig and Kamendulis, 2004; Willcox et al., 2004; 43 

Ballinger, 2005; Gibson and Huang, 2005). In particular with respect to liver diseases such 44 

as hepatocellular carcinoma, viral and alcoholic hepatitis and non-alcoholic steatosis, it is 45 

known that ROS and reactive nitrogen species play a crucial role in disease induction and 46 

progression (Adachi and Ishii, 2002; Loguercio and Federico, 2003; Vitaglione et al., 47 

2004). The liver is particularly susceptible to toxicants since the portal vein brings blood to 48 

this organ after intestinal absorption. The absorbed drugs and xenobiotics in a concentrated 49 

form can cause ROS- and free radical-mediated damage that may result in inflammatory 50 

and fibrotic processes (Jaeschke et al., 2002). 51 

Because oxidative stress plays a central role in liver diseases pathology, dietary 52 

antioxidants have been proposed as therapeutic agents to counteract liver damage 53 

(Vitaglione et al., 2004). This same idea has also been suggested for other oxidative stress-54 

based chronic diseases (Tiwari, 2004; Willcox et al., 2004). In fact, several 55 

epidemiological studies have shown that diets rich in fruit and vegetables and other plant 56 

foods (including tea and wine) are associated with a decreased risk of premature death and 57 

mortality from chronic diseases, such as cardiovascular diseases and some types of cancer 58 

(Stanner et al., 2004; Scalbert et al., 2005). Phenolic compounds (PhC), and in particular 59 

polyphenols, are believed to be, at least in part, responsible for such effects. Results from 60 

some human clinical trials support the role of these compounds in prevention of some 61 
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chronic diseases (Ren et al., 2003; Spencer et al., 2004; Tiwari, 2004; Willcox et al., 2004; 62 

Scalbert et al., 2005). 63 

Today much is known about the chemistry and antioxidant potential of PhC as a result of 64 

in vitro chemical and sub-cellular studies (Rice-Evans et al., 1997; Croft, 1998). However, 65 

besides their strong free radical scavenging activity, PhC can also act as antioxidants by 66 

chelating metal ions, preventing radical formation, and indirectly by modulating enzyme 67 

activities and altering the expression levels of important proteins, such as antioxidant and 68 

detoxifying enzymes (Ferguson, 2001; Ross and Kasum, 2002; Ferguson et al., 2004). Few 69 

studies, however, address the biological effects of PhC, and the ones performed using 70 

cellular and in vivo models indicate a poor correlation between the antioxidant potency of 71 

PhC measured in vitro and the compound’s biological activity. The biological effect of 72 

PhC and their in vivo circulating metabolites will ultimately depend on their cellular 73 

uptake and/or the extent to which they associate with cell membranes (Spencer et al., 74 

2004). 75 

HepG2 cells, a human hepatoma cell line, are considered a good model to study in vitro 76 

xenobiotic metabolism and toxicity to the liver, since they retain many of the specialized 77 

functions which characterize normal human hepatocytes (Knasmuller et al., 1998). In 78 

particular, HepG2 cells retain the activity of many phase I, phase II and antioxidant 79 

enzymes ensuring that they constitute a good tool to study cytoprotective, genotoxic and 80 

antigenotoxic effects of compounds (Knasmuller et al., 2004; Mersch-Sundermann et al., 81 

2004). Recently, studies of cytoprotection by natural antioxidants in HepG2 cells have 82 

increasingly been using tert-butyl hydroperoxide (t-BHP), an organic hydroperoxide, as the 83 

toxic agent (Thabrew et al., 1997; Kinjo et al., 2003; Mersch-Sundermann et al., 2004; Lee 84 

et al., 2005a, 2005b; Alia et al., 2006). t-BHP can be metabolized in the hepatocyte by 85 

glutathione peroxidase, generating oxidized glutathione (GSSG) (Sies and Summer, 1975; 86 
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Rush et al., 1985). GSSG is converted back to reduced glutathione (GSH) at the expense of 87 

NADPH by glutathione reductase (GR). Depletion of GSH and NADPH oxidation are 88 

associated with altered calcium homeostasis, leading to loss of cell viability (Bellomo et al., 89 

1982; Martin et al., 2001). Alternatively, t-BHP can be converted into its peroxyl and 90 

alkoxyl free radicals by cytochrome P450 enzymes and by free iron-dependent reactions. 91 

These free radicals can subsequently initiate lipid peroxidation, form covalent bonds with 92 

cellular molecules (such as DNA and proteins) and further decrease GSH levels. The latter 93 

effect, in addition to altering calcium homeostasis, affects mitochondrial membrane 94 

potential, eventually causing cell death (Rush et al., 1985; Nicotera et al., 1988; Masaki et 95 

al., 1989; Davies, 1989; Buc-Calderon et al., 1991; Kass et al., 1992; VanderZee et al., 96 

1996; Hix et al., 2000). 97 

In this study we evaluate hepatoprotective effects of PhC against t-BHP-induced oxidative 98 

damage in HepG2 cells, in order to relate in vitro antioxidant activity with cytoprotective 99 

effects. Two phenolic acids, caffeic acid and rosmarinic acid (an ester of caffeic acid and 100 

3,4-dihydroxyphenyllactic acid), and three flavonoids, luteolin (flavone), luteolin-7-101 

glucoside (flavone glycoside) and quercetin (flavonol), were used (Fig. 1). Firstly, the 102 

concentrations of PhC that protected by 50% (IC50) against t-BHP-induced cell death were 103 

determined. Based on the IC50 values for each compound, biological activity was related to 104 

both antiradical efficiency and hydrophobicity. Subsequently, IC80 values, a concentration 105 

that effectively protects 80% of the cells against t-BHP-induced cell death, were used to 106 

evaluate the effects of each compound on several markers of oxidative damage, such as 107 

intracellular glutathione, lipid peroxidation, glutathione-related enzyme such as 108 

glutathione-S-transferase (GST), GR and glutathione peroxidase (GPox), as well as on 109 

DNA damage. The relative importance of effects of PhC on these parameters to protection 110 

against t-BHP-induced cell death is discussed. 111 
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 112 

Materials and methods 113 

Chemicals 114 

Minimum Essential Medium Eagle (MEM), tert-butyl hydroperoxide, quercetin, 115 

rosmarinic acid, caffeic acid and Bradford reagent were purchased from Sigma-Aldrich 116 

(St. Louis, MO, USA). Fetal bovine serum (FBS) was obtained from Biochrom KG 117 

(Germany). Luteolin and luteolin-7-O-glucoside were purchase from Extrasynthese 118 

(Genay, France). All other reagents were of analytical grade. 119 

 120 

Cell culture 121 

HepG2 cells (hepatocellular carcinoma cell line), obtained from the American Type 122 

Culture Collection (ATCC), were maintained in culture in 75 cm2 polystyrene flasks 123 

(Falcon) with MEM containing 10% FBS, 1% antibiotic-antimycotic solution, 1 mM 124 

sodium pyruvate and 1.5 g/l sodium bicarbonate under an atmosphere of 5% CO2 at 37ºC. 125 

 126 

Assay for t-BHP cytotoxicity and protection by phenolic compounds 127 

HepG2 cells were plated in 24-multiwell culture plates at 2.5×105 cells per well. To study 128 

t-BHP cytotoxicity, forty hours after plating, the medium was discarded and fresh medium 129 

containing t-BHP at various concentrations was added. At different time points, cellular 130 

viability was determined by the MTT assay (Mosmann, 1983) and by lactate 131 

dehydrogenase (LDH) leakage assay (Lima et al., 2005). In order to determine the 132 

concentration of PhC that protects 50% of the cells from damage induced by the toxicant 133 

(IC50), cells were incubated with 2 mM of t-BHP for 5 h to induce significant cell death. 134 

The prevention of LDH leakage (cell death) was measured in co-incubations with PhC 135 

dissolved in DMSO (1% v/v final concentration, controls with DMSO only) at several 136 
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concentrations. The IC50 and the Hill slope – the slope of the PhC concentrations (in 137 

logarithm) plotted versus cell death protection relative to the control (2 mM t-BHP, 5 h) – 138 

were calculated graphically using a computer program (GraphPad Prism, version 4.00, 139 

GraphPad Software Inc.). Based on the dose–response curves of cell death protection by 140 

PhC against the t-BHP-induced oxidative damage in HepG2 cells, the IC80 concentrations 141 

were estimated and used in the following experiments to evaluate the protective potential 142 

of the compounds on several cellular parameters. 143 

 144 

Evaluation of the effects of t-BHP and PhC at the IC80 concentration on lipid peroxidation, 145 

glutathione levels and glutathione-related enzyme activities in HepG2 cells 146 

HepG2 cells were plated in 6-multiwell culture plates at 7.5×105 cells per well. Forty hours 147 

after plating, the medium was discarded and fresh medium containing 2 mM t-BHP and/or 148 

the IC80 concentration of each PhC was added. Five hours later, cell culture medium and 149 

cell scrapings were harvested and kept at -80ºC for following quantification of several 150 

parameters. Cell scrapings were harvested in lysis buffer (25 mM KH2PO4, 2 mM MgCl2, 151 

5 mM KCl, 1 mM EDTA, 1 mM EGTA, 100 µM PMSF, pH 7.5) after rinsing the cells 152 

with PBS (137 mM NaCl, 2.7 mM KCl, 8.5 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4). 153 

 154 

Evaluation of the effects of t-BHP and PhC at the IC 80 concentration on DNA damage in 155 

HepG2 cells 156 

HepG2 cells were plated in 6-multiwell culture plates at 5×105 cells per well. To study t-157 

BHP-induced DNA damage, 16 h after plating, the medium was discarded and fresh 158 

medium containing t-BHP at various concentrations was added. After 1 hour of incubation, 159 

cells were rinsed in warm PBS and then incubated for 5 min with 0.125% (w/v) trypsin in 160 

PBS. The cells were then harvested in PBS to be used in the alkaline version of the comet 161 
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assay for evaluation of DNA damage. To study the protective potential of PhC at IC80 162 

concentration on t-BHP-induced DNA damage, cells were incubated with 200 µM t-BHP 163 

for 1 h to induce significant DNA damage. For that, sixteen hours after plating, the 164 

medium was discarded and fresh medium containing 200 µM t-BHP and/or the IC 80 165 

concentration of each PhC was added to the cells. After 1 h incubation, cells were treated 166 

as above to carry out the comet assay.  167 

 168 

Comet assay 169 

The single cell gel electrophoresis (comet) assay was performed based on previous 170 

descriptions (Klaude et al., 1996; Uhl et al., 1999, 2000) with slight modifications. Briefly, 171 

40,000 cells in PBS were centrifuged (80 ×g , 2 min), the pellet was mixed with 100 µl of 172 

low melting agarose 0.5% (w/v) in PBS, at 37ºC and spread on agarose coated slides. The 173 

agarose was allowed to set at 4ºC for 10 min, and then the slides were immersed in lysis 174 

buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris, pH 10 with NaOH, triton X-100 1% v/v 175 

added fresh) at 4ºC for 2 h. After being rinsed with distilled water, the slides were 176 

immersed in a horizontal electrophoresis tank with electrophoresis buffer (300 mM NaOH, 177 

1 mM EDTA, pH >13) at 4ºC and exposed for 40 min to allow alkaline unwinding. 178 

Afterwards, electrophoresis was carried out under alkaline conditions for 20 min, 300 mA, 179 

at 0.8 V/cm in a cold room (4ºC). Finally, the slides were neutralized by washing three 180 

times for 5 min each with 0.4 M Tris, pH 7.5, at 4ºC, fixed with methanol and kept at 4ºC 181 

until evaluation. For analysis of the comet images, the DNA was stained with ethidium 182 

bromide and scored under a fluorescent microscope using a computer assisted image 183 

analysis system and/or a visual scoring method avoiding analyzing cells at the edges of the 184 

gel. The computer image analyses were done using a public domain image-analysis 185 

program – NIH image (Helma and Uhl, 2000), and the results expressed in terms of tail 186 
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length, tail moment and % DNA in tail of 50 cells in 4 independent experiments. In the 187 

semiquantitative method of visual scoring, the comet images were classified in five classes 188 

according to the intensity of fluorescence in the comet tail, attributing a value of 0, 1, 2, 3 189 

or 4 from undamaged to maximal damage. In this way, the total score for 100 images can 190 

range from 0 (all undamaged) to 400 (all maximally damaged, giving the overall DNA 191 

damage of the cell population expressed in arbitrary units (Duthie and Dobson, 1999; 192 

Duthie, 2003). 193 

 194 

Biochemical analyses 195 

Lipid peroxidation 196 

The extent of lipid peroxidation was estimated by the levels of malondialdehyde measured 197 

using the thiobarbituric acid reactive substances (TBARS) assay at 535 nm following a 198 

methodology previously described (Lima et al., 2005). The results are expressed as 199 

nmol/mg of protein using a molar extinction coefficient of 1.56×105 M-1cm-1. 200 

Glutathione levels 201 

The glutathione levels from the cell cultures were determined by the DTNB-GSSG 202 

reductase recycling assay as previously described (Anderson, 1985), with some 203 

modifications (Lima et al., 2004). The results are expressed as nmol GSH/mg of protein. 204 

Glutathione-related enzyme activities 205 

For measurement of the glutathione-related enzyme activities, the cell scraping 206 

homogenates were centrifuged at 10,000 ×g for 10 min at 4ºC and the supernatant 207 

collected. 208 

GST and GR activities were measured spectrophotometrically at 30ºC as previously 209 

described (Lima et al., 2005) and the results expressed in nmol/min/mg protein (mU/mg). 210 
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The selenium-dependent and -independent GPox activity was assayed as previously 211 

described (Martin-Aragon et al., 2001) with some modifications. Briefly, GPox activity 212 

was measured at 30ºC following NADPH oxidation at 340 nm on a plate reader 213 

spectrophotometer (Spectra Max 340pc, Molecular Devices, Sunnyvale, CA, USA) in the 214 

presence of 1 mM GSH, 0.18 mM NADPH, 1 mM EDTA, 0.5 U/ml GR and 0.7 mM t-215 

BHP in 50 mM imidazole (pH 7.4). The activity was expressed as nmol of substrate 216 

oxidized per minute per mg of protein (mU/mg). 217 

Protein 218 

Protein content was measured with the Bradford Reagent purchased from Sigma using 219 

bovine serum albumin as a standard.  220 

 221 

Antiradical activity 222 

The free radical scavenging (antiradical) activity of PhC was studied against two radicals: 223 

the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH?) and the superoxide radical. 224 

For DPPH scavenging activity, after addition of different concentrations of PhC to DPPH 225 

(90 µM), the percentage of remaining DPPH was determined at different times from the 226 

absorbance at 515 nm using a plate reader spectrophotometer. As suggested by Sanchez-227 

Moreno and collaborators (Sanchez-Moreno et al., 1998), the amount of antioxidant 228 

necessary to decrease by 50% the initial DPPH concentration (IC50) was expressed in terms 229 

of initial concentration of DPPH to make the results easier comparable with other 230 

published results. However, we put the results of the PhC in terms of moles instead of 231 

grams to better relate the results with the chemical structures (Fig. 1) of the PhC studied. 232 

We also calculated the parameter antiradical efficiency (AE) (Sanchez-Moreno et al., 233 

1998) using the estimated TIC50 – time needed to reach the steady state at the corresponding 234 

IC50 concentration, where AE = 1/(IC50 × T IC50). Finally, a new parameter is also shown – 235 
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the Hill slope, the graphically calculated slope from the plotted PhC concentration (in 236 

logarithm) versus the remaining DPPH concentration (GraphPad Prism). The higher this 237 

value, the narrower the concentration range from 0 to 100% of antiradical activity. This 238 

graph was also used to calculate the IC50 of each compound. 239 

The superoxide radical scavenging activity was determined using the phenazine 240 

methosulphate-NADH nonenzymatic assay as previously described (Valentao et al., 2001). 241 

As for DPPH assay, we also show the Hill slope from the graphics used to calculate the 242 

IC50 (GraphPad Prism). 243 

 244 

Measurement of the partition coefficients 245 

The degree of hydrophobicity of the PhC was examined by measuring the partition 246 

coefficients taken in logarithm using an n-octanol/HEPES system (Kow) as previously 247 

described (Areias et al., 2001), at ambient temperature (~25ºC). 248 

 249 

Statistical analysis 250 

Data are expressed as means ± SEM. Statistical significances were determined using a one-251 

way ANOVA followed by the Student-Newman-Keuls post-hoc test. P values = 0.05 were 252 

considered statistically significant. 253 

 254 

Results 255 

t-BHP cytotoxicity  256 

The cytotoxicity of t-BHP to liver cells has been extensively studied although its 257 

mechanisms of action have not been totally established (Sies and Summer, 1975; Cadenas 258 

and Sies, 1982; Bellomo et al., 1982; Rush et al., 1985; Jewell et al., 1986; Nicotera et al., 259 

1988; Masaki et al., 1989; Davies, 1989; Buc-Calderon et al., 1991; Kass et al., 1992; Hix 260 
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et al., 2000; Martin et al., 2001). Recently, HepG2 cells have been used to study the 261 

hepatotoxicity of t-BHP (Kim et al., 1998, 2000; Piret et al., 2002, 2004; Alia et al., 2005), 262 

and this model suggested to evaluate the protective properties of natural compounds and 263 

plant extracts against oxidative damages (Thabrew et al., 1997; Kinjo et al., 2003; Lee et 264 

al., 2005a, 2005b; Alia et al., 2006). However, because the cell’s response to t-BHP 265 

depends on culture conditions, we first studied HepG2 cells’ response to t-BHP dose (1 266 

mM and 2 mM) and incubation time (1-16 h) by measuring LDH leakage and by the MTT 267 

assay (Fig. 2). All our experiments with HepG2 cells were done with a culture medium 268 

containing 10% (v/v) FBS. LDH leakage and MTT assay gave similar results for effects on 269 

cell viability in response to t-BHP at both studied concentrations (Fig. 2). In the subsequent 270 

studies, cell incubations were performed with 2 mM of t-BHP for 5 h to induce 40-50% of 271 

cell death (Fig. 2) and used to evaluate the hepatoprotective potential of PhC against this 272 

oxidant insult. 273 

 274 

Potential hepatoprotective effects of the PhC against t-BHP-induced toxicity in HepG2 275 

cells 276 

The potential hepatoprotective effects of the five PhC against the t-BHP-induced toxicity 277 

(2 mM, 5 h) was evaluated by determining protection of cell viability, as measured by 278 

LDH leakage (Fig. 3) in HepG2 cells. From the graphically computed values (Fig. 3), IC50 279 

and Hill slope values for each compound were obtained (Table 1). As shown in Table 1, of 280 

the tested compounds, luteolin had the highest protective activity against t-BHP-induced 281 

toxicity. The glycosylation of the hydroxyl group at position 7, present in luteolin-7-282 

glucoside, significantly decreased both IC50 and Hill slope (Table 1). Quercetin, the 283 

flavonol of luteolin, in addition to a higher IC50 also had a lower Hill slope, indicating a 284 

lower hepatoprotective potential when compared to the flavone. Rosmarinic and caffeic 285 
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acids had lower protective potentials against the oxidant insult to HepG2 cells when 286 

compared to the flavonoids –  higher IC50 values and lower Hill slopes (Table 1). 287 

Comparing the phenolic acids (Table 1), the polyphenol rosmarinic acid had higher 288 

hepatoprotective potential than caffeic acid, which correlates well with the presence of one 289 

more ortho dihydroxy phenolic structure (Fig. 1). 290 

Based on the dose–response curves of protection from cell death, the PhC IC80 291 

concentrations were extrapolated (Table 1) and used to evaluate the effects of each 292 

compound against t-BHP-induced oxidative injuries in HepG2 cells in terms of lipid 293 

peroxidation, glutathione levels, glutathione-related enzyme activities and DNA damage. 294 

The level of protection of cell viability obtained for each compound was correlated with 295 

the effect on each of the several parameters outlined above. 296 

 297 

Effects of the t-BHP and PhC at the IC80 concentration on lipid peroxidation, glutathione 298 

levels and glutathione-related enzyme activities in HepG2 cells 299 

The incubation of HepG2 cells with 2 mM t-BHP for 5 h decreased cell viability by 40-300 

50% (Fig. 2), along with a significant increase in lipid peroxidation and GSSG levels 301 

(Table 2), as well as a decrease in GSH levels (Fig. 4). The toxicant also significantly 302 

decreased the GR and GPox activities and had no significant effect on GST activity (Table 303 

3). 304 

All the PhC tested at IC80 concentration decreased significantly the t-BHP-induced 305 

increase in lipid peroxidation (Table 2), caffeic acid being the most powerful with a 35% 306 

reduction and the weakest being luteolin-7-glucoside with a 25% reduction. None of the 307 

PhC significantly changed lipid peroxidation and GSSG levels in cells incubated alone 308 

(without t-BHP) for 5 hours. As shown in Table 2, all the compounds reduced the t-BHP-309 

induced increases in GSSG levels, but the effect was significant only for rosmarinic acid. 310 
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The decrease in the GSH levels induced by t-BHP was significantly attenuated by all of the 311 

PhC (Fig. 4). Luteolin-7-glucoside showed the best protective effect (81%) against the t-312 

BHP-induced decrease in GSH levels, followed by luteolin (53%), quercetin (40%), caffeic 313 

acid (36%) and rosmarinic acid (34%). When HepG2 cells were incubated alone with the 314 

PhC for 5 h, rosmarinic acid and the three tested flavonoids slightly decreased basal GSH 315 

levels, although not significantly (Fig. 4). When this effect is taken into consideration, 316 

luteolin-7-glucoside almost completely prevented the decrease of GSH induced by the 317 

toxicant. 318 

When incubated alone with HepG2 cells, luteolin-7-glucoside decreased significantly the 319 

GST activity by 17% (Table 3). As observed in Table 3, the t-BHP-induced decreases in 320 

GR and GPox activities were only slightly attenuated by the PhC, and only quercetin 321 

showed a significant protective effect (19%) on GPox activity. 322 

 323 

t-BHP-induced DNA damage in HepG2 cells 324 

The extent of DNA damage produced by 1-hour incubations with increasing concentrations 325 

of t-BHP were determined by the comet assay and the images analyzed both by computer 326 

assisted program and visual scoring. This model of t-BHP-induced DNA damage in 327 

HepG2 cells has been used by other authors (Woods et al., 1999, 2001). As stated 328 

previously, due to effects of culture conditions a dose–response to t-BHP on DNA damage 329 

was studied. As shown in Figure 5, t-BHP concentrations of 200 µM and higher result in 330 

significant DNA damage as visualized by the comet assay. The semiquantitative method of 331 

visual scoring used has been extensively validated by comparison with computerized 332 

image analysis systems and correlates well with more quantitative measures, such as % 333 

DNA in the tail and tail moment (Duthie, 2003). Our results also showed good correlations 334 

between the semiquantitative method and the parameters given by computer analysis 335 
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system (Fig. 5E). To evaluate the effect of the PhC at IC80 concentration on t-BHP-induced 336 

DNA damage, HepG2 cells were co-incubated for 1 h with the different PhC plus 200 µM 337 

t-BHP, and the DNA damage was assessed using the alkaline version of the comet assay 338 

(results scored using the semiquantitative method). Incubation conditions of 1 h with 200 339 

µM t-BHP were chosen to test the protective effects of PhC because intermediate damage 340 

to the DNA was produced (~200 AU). 341 

 342 

Effects of PhC at the IC 80 concentration on t-BHP-induced DNA damage in HepG2 cells 343 

Of the PhC tested, quercetin and luteolin conferred the best protection against t-BHP-344 

induced DNA damage (Fig. 6). Even if the IC80 concentration for luteolin is 4 times lower 345 

than that for quercetin (Table 1), luteolin gave better protection than the flavonol (76% and 346 

58%, respectively) (Fig. 6). Both quercetin (Fig. 7) and luteolin (data not shown) showed a 347 

concentration-dependent DNA protection. As shown in Figure 7B, the protective effect of 348 

quercetin was visually clear in the comet assay images. Rosmarinic acid (14%) and 349 

luteolin-7-glucoside (18%) also protected significantly from DNA damages, although to a 350 

much lower extent. At IC80 concentration, caffeic acid did not show protection of the 351 

DNA. None of the PhC tested induced DNA damage when incubated alone for 1 h at IC80 352 

concentration (Fig. 6). 353 

 354 

Antiradical activity 355 

The antiradical activity of the PhC used in this study was evaluated by the DPPH and 356 

superoxide radical scavenging assays. Figure 8 shows graphically the results from the 357 

DPPH scavenging assay of caffeic acid as an example, which was used to calculate the 358 

IC50 and the Hill slope for the compound. Rosmarinic acid had the best IC50 values both 359 

against DPPH and superoxide radicals (Tables 4 and 5). The IC50 values in both antiradical 360 
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activity assays for caffeic acid were, as expected, significantly higher than those for 361 

rosmarinic acid, but both compounds showed similar Hill slopes. Quercetin presented 362 

lower IC50 values than the other flavonoids against both radicals (Tables 4 and 5). On the 363 

other hand, quercetin had the lowest AE (Table 4). Comparing luteolin with its glucoside, 364 

the aglycone had a slightly lower IC50 and a higher Hill slope against both radicals. In the 365 

case of the DPPH scavenging activity, the higher AE value with a similar IC50 means that 366 

for luteolin-7-glucoside the time needed for it to reach the steady state at the corresponding 367 

IC50 concentration was shorter than for luteolin. 368 

The antiradical activity of some of these PhC has been extensively studied by many 369 

authors (Sanchez-Moreno et al., 1998; Moridani et al., 2003; Butkovic et al., 2004; Parejo 370 

et al., 2004; Kosar et al., 2004), and our results are, in general, in agreement with theirs. 371 

 372 

Partition coefficients 373 

The degree of hydrophobicity of the PhC was examined by measuring the partition 374 

coefficients using an n-octanol/HEPES system. Flavonoids are much more hydrophobic 375 

than phenolic acids (Table 6). As expected, the glycosylation of the hydroxyl group at 376 

position 7 of luteolin decreased considerably the degree of hydrophobicity of this 377 

compound. Luteolin had a slightly higher PC than that of quercetin (Table 6). The 378 

experimentally determined hydrophobicity of these two flavonoids has often been referred 379 

in the literature, but the results are controversial. Some authors describe luteolin as more 380 

hydrophobic than quercetin (Brown et al., 1998; Areias et al., 2001; Murata et al., 2004) 381 

whereas others hold the opposite to be true (Moridani et al., 2003). The computer program 382 

that can be accessed at http://www.esc.syrres.com, the KowWin (LogKow) software, gives 383 

a lower degree of hydrophobicity for quercetin than for luteolin, 1.48 and 2.36, 384 

respectively. This program uses fragmental analysis of the compound’s structure for the 385 
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prediction and the computed values show usually a high correlation with quoted 386 

experimental values (r2 = 0.95). 387 

 388 

Discussion 389 

The present work demonstrates that all the tested PhC possess protective effects against t-390 

BHP-induced cell death in HepG2 cells. Conferred protection decreased in the following 391 

order: luteolin > quercetin > rosmarinic acid > luteolin-7-glucoside > caffeic acid as shown 392 

by IC50 values. Considering the compounds’ hydrophobicity (luteolin > quercetin > 393 

luteolin-7-glucoside > rosmarinic acid > caffeic acid) and the antiradical activity evaluated 394 

both for DPPH (rosmarinic acid > quercetin > caffeic acid > luteolin > luteolin -7-glucoside) 395 

and superoxide radical (rosmarinic acid > quercetin > luteolin > luteolin-7-glucoside > 396 

caffeic acid) scavenging activities, the results show that the hepatoprotective potential of 397 

these PhC correlates primarily with their degree of hydrophobicity and only secondarily 398 

with their antiradical capacity. In fact, Rice-Evans et al. (1996) and Spencer et al. (2004) 399 

suggested that the antioxidant biological activity of PhC will depend more heavily on the 400 

extent to which they associate, interact and permeate cell membranes than on its antiradical 401 

activity alone. In agreement with this, it was only for compounds with comparable 402 

hydrophobicities, such as the two tested phenolic acids, that a direct correlation between 403 

biological activity and antiradical activity was obtained. 404 

The importance of the compound’s lipophilicity in addition to the antiradical capacity is 405 

corroborated by comparisons between structurally related compounds. When luteolin is 406 

glycosylated at position 7 in the A ring to become luteolin-7-glucoside, the compound’s 407 

hydrophobicity decreases dramatically. As a result, although the antiradical activity of 408 

luteolin-7-glucoside was only slightly affected (5% to 11%), its biological activity 409 

decreased dramatically (about 13 times lower) when compared with that for luteolin. The 410 
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results observed for quercetin and luteolin also implicate hydrophobicity as an important 411 

factor for this cytoprotective antioxidant effect of compounds. The absence of the hydroxyl 412 

group at position 3 (C ring) decreases the antiradical (hydrogen-donating) activity of 413 

luteolin while increasing its hydrophobicity relative to quercetin. In agreement with the 414 

previously stated, in co-incubations with t-BHP, luteolin showed the best protection with 415 

an IC50 four times lower than that for quercetin. Also, in certain types of non cellular 416 

lipophilic oxidation systems, luteolin showed higher antioxidant effects than those of 417 

quercetin (Brown et al., 1998; Filipe et al., 2001; Hirano et al., 2001). 418 

The importance of the compounds’ hydrophobicity is also shown by comparing the results 419 

between rosmarinic acid and luteolin-7-glucoside. Although rosmarinic acid had higher 420 

antiradical scavenging activity, because the degree of hydrophobicity of luteolin-7-421 

glucoside was higher than rosmarinic acid, both compounds showed similar biological 422 

effect (similar IC50 values). 423 

Because our model of cytoprotection tests the PhC in co-incubations with the toxicant, 424 

their antioxidant effects may reflect mainly their direct actions on mediators of t-BHP 425 

toxicity. These direct effects include, besides the antiradical scavenging or hydrogen-426 

donating activity measured in this study, the compounds’ ability to chelate metal ions 427 

(Rice-Evans et al., 1996). Iron chelation could indeed be important for the protection 428 

against t-BHP toxicity, which is known to be mediated by intracellular iron ions (Hix et al., 429 

2000). PhC may also indirectly act as antioxidants in cells by modulating the activity of 430 

antioxidant, detoxifying and repairing enzymes as well as enzymes involved in the 431 

bioactivation of xenobiotics (Ferguson, 2001; Ross and Kasum, 2002; Ferguson et al., 432 

2004). In the present study, where short term simultaneous incubations were used, PhC 433 

protection through increased activity of glutathione-related enzymes seems not to be 434 

relevant. In fact, the activity of GST, an important phase II detoxifying enzyme (Ferguson, 435 
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2001; Ferguson et al., 2004), was decreased rather than increased in controls exposed to 436 

luteolin-7-glucoside, the only compound that had a significant effect on glutathione-related 437 

enzymes. Longer term pre-incubations would provide the opportunity for induction of 438 

proteins and enzymes, such as antioxidant enzymes, by interaction with antioxidant 439 

response elements (Ferguson et al., 2004). 440 

t-BHP-induced cell death was accompanied by increased lipid peroxidation and GSSG 441 

levels, and DNA damage as well as decreased GSH levels and glutathione-related enzyme 442 

activity. The increase in GSSG levels was not in the same range as the decrease in GSH 443 

levels. This indicates that t-BHP reduced GSH levels mainly through formation of GSH 444 

conjugates rather than oxidation to GSSG. These effects are in accordance with previous 445 

studies in liver cells (Sies and Summer, 1975; Bellomo et al., 1982; Rush et al., 1985; 446 

Jewell et al., 1986; Nic otera et al., 1988; Masaki et al., 1989; Buc-Calderon et al., 1991; 447 

Kass et al., 1992; Thabrew et al., 1997; Martin et al., 2001; Kinjo et al., 2003; Alia et al., 448 

2005, 2006; Lee et al., 2005a, 2005b). However, particularly in HepG2 cells, t-BHP 449 

exposure conditions are different among different studies published so far (Thabrew et al., 450 

1997; Kim et al., 1998, 2000; Piret et al., 2002, 2004; Kinjo et al., 2003; Alia et al., 2005, 451 

2006; Lee et al., 2005a, 2005b). Previous reports indeed alert to the fact that different 452 

origins of HepG2 clones, culture medium composition and cultivation time (age of cells) 453 

may affect the experimental outcome through differences in sensitivity towards drugs 454 

(Knasmuller et al., 2004; Mersch-Sundermann et al., 2004). It therefore becomes 455 

imperative to characterize the cells’ response to the toxicant as well as the experimental 456 

conditions used for the detection of protective effects of test compounds. 457 

In an attempt to explain the observed cytoprotective effects of the tested PhC, we looked at 458 

their effects at IC80 concentration on several markers of cellular oxidative stress, such as 459 

lipid peroxidation, glutathione levels and DNA damage. 460 
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t-BHP-induced lipid peroxidation in HepG2 cells was attenuated by all tested PhC at IC80 461 

concentrations to a similar extent, of about 30% (25% to 35%). A good correlation seems 462 

to exist between hepatoprotective effects and the prevention of lipid peroxidation. The 463 

ability of PhC to chelate metal ions and/or to act as chain breaking antioxidants by 464 

scavenging (as hydrogen donors) lipid alkoxyl and peroxyl radicals (Rice-Evans et al., 465 

1996; Brown et al., 1998) could provide an explanation for the observed reduction in lipid 466 

peroxidation. Nevertheless, the extent of this reduction was relatively small, only about 467 

30%. This indicates that it is most likely not only through reduction of lipid peroxidation 468 

that PhC protect HepG2 cells against death. In agreement with this, previous reports 469 

indicated that t-BHP-induced toxicity was not mediated by lipid peroxidation (Rush et al., 470 

1985; Jewell et al., 1986; Buc-Calderon et al., 1991; Martin et al., 2001). Moreover, our 471 

own observations (data not shown) and a previous work (Rush et al., 1985) reported that 472 

incubations of liver cells with the oxidant pair ascorbate/iron induced massive cell lipid 473 

peroxidation without significantly affecting cell viability. Preservation of cell viability 474 

seems therefore to depend also on effects at other levels. 475 

All tested PhC also significantly attenuate the decrease of GSH levels induced by t-BHP at 476 

their IC80 concentrations. GSH plays an important role in hepatocyte defence against ROS, 477 

free radicals and electrophilic metabolites (Kedderis, 1996; Castell et al., 1997). A severe 478 

GSH depletion leaves cells more vulnerable to oxidative damage by radicals and increases 479 

protein thiolation or oxidation of SH groups that may lead to alterations in cellular calcium 480 

homeostasis (Castell et al., 1997). A sustained increase  in cytosolic calcium levels results 481 

in activation of enzymes (phospholipases, non-lysomal proteases, endonucleases) and 482 

cytoskeletal damage which ultimately causes cell death (Castell et al., 1997). The decrease 483 

of GSH levels has indeed been suggested as one of the primary mechanisms of t-BHP-484 

induced toxicity in liver cells (Jewell et al., 1986; Buc-Calderon et al., 1991; Martin et al., 485 
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2001) that is generally followed by an increase in the intracellular levels of calcium 486 

(Bellomo et al., 1982; Nicotera et al., 1988; Buc-Calderon et al., 1991; Kass et al., 1992). 487 

Thus, the potential of PhC to maintain GSH at reasonably high levels could be of great 488 

importance against t-BHP-induced toxicity. Therefore, the ability of the tested PhC in 489 

preventing against t-BHP-induced GSH depletion by about 40% was probably a major 490 

contribution to their cytoprotective effects. In the case of luteolin-7-glucoside, there was a 491 

higher protection (~80%) of GSH levels that did not reflect higher cytoprotection (all 492 

compounds were tested at their IC 80 concentration). This may have been due to the 493 

observed inhibitory effect of luteolin-7-glucoside on GST having a sparing effect on GSH. 494 

Because protection by PhC against increases of GSSG levels induced by t-BHP was weak, 495 

it seems that PhC protect against the decrease of GSH levels mainly by preventing the 496 

formation of GSH conjugates rather than oxidation to GSSG. 497 

In spite of this general protection of GSH, when incubated alone, PhC decreased GSH 498 

levels by 5% in the case of rosmarinic acid and between 10% and 14% for the tested 499 

flavonoids. Although not statistically significant, this effect seems to indicate some pro-500 

oxidant activity of these compounds. Previous studies also found a decrease in GSH 501 

induced by flavonoids (Duthie et al., 1997; Galati et al., 2002). For flavonoids with a 3’,4’-502 

dihydroxyl group on the B ring (catechol B ring), as is the case here, the decrease of GSH 503 

levels was found to be through formation of GSH conjugates instead of oxidation to GSSG 504 

(Galati et al., 2002). 505 

Incubations of HepG2 cells with t-BHP induced DNA damage in a concentration-506 

dependent manner, as visualized by the comet assay. Exposure to 200 µM t-BHP induced 507 

significant DNA damage without inducing cell mortality (data not shown). This seems to 508 

indicate that t-BHP-induced DNA damage was not implicated in the cell death induced by 509 

this organic peroxide in HepG2 cells. In fact, caffeic acid, at IC80 concentration, 510 
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significantly decreased t-BHP- induced cell death without protecting DNA from damage. 511 

Also, previous reports showed a dissociation between the oxidative DNA damage induced 512 

by t-BHP from the killing of hepatocytes (Coleman et al., 1989; Latour et al., 1995). 513 

Latour and collaborators (1995) ruled out both the formation of oxidized DNA bases and 514 

the activation of a calcium-dependent endonuclease as mechanisms by which t-BHP 515 

induces DNA single strand breaks. They showed that t-BHP causes DNA single strand 516 

breaks most likely by covalent binding of free radicals to DNA by mechanisms dependent 517 

on iron ions (Latour et al., 1995). Iron-dependent reactions have been proposed as the key 518 

factor to the DNA damage induced by t-BHP since it can be prevented by iron chelators 519 

but not by free radical scavengers, such as butylated hydroxytoluene and trolox (Coleman 520 

et al., 1989; Latour et al., 1995; Guidarelli et al., 1997; Sestili et al., 1998, 2002). Recently, 521 

another study using a different model showed the importance of iron chelation on DNA 522 

protection over free radical scavenger activity (Melidou et al., 2005). In our study, where 523 

the compounds were tested at their IC80 concentration (concentration that protected 80% 524 

against cell death), only luteolin and quercetin conferred a very clear protection against 525 

DNA damage. An ortho dihydroxy phenolic structure is one of the requirements for PhC 526 

ability to chelate transition metal ions such as copper and iron (Rice-Evans et al., 1996; 527 

Williams et al., 2004). All the compounds used in this study possess this element, but only 528 

luteolin and quercetin conferred noticeable protection against DNA damage. It seems 529 

therefore, that even more than in the case of preserved cell viability, the degree of 530 

hydrophobicity of the compound is an important factor for protecting from DNA damage, 531 

since this could explain the higher effects obtained for luteolin and quercetin. Also in 532 

accordance with this are the results obtained from the comparison between quercetin and 533 

luteolin themselves. Metal ion chelation ability of flavonoids appears to be not only 534 

dependent on the presence of the catechol B ring but also an oxo group at position 4 in C 535 
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ring in combination with hydroxyl group either at position 5 or 3 (Mira et al., 2002; 536 

Williams et al., 2004). Therefore, quercetin probably has higher metal ion chelation ability 537 

than luteolin, which lacks the OH group at position 3. In fact, previous results showed 538 

higher capacity of quercetin to chelate iron and copper than luteolin (Mira et al., 2002). 539 

Our results show that luteolin, although at a concentration 4 times lower, protected DNA 540 

against damage better than quercetin, which emphasizes the importance of the compounds’ 541 

lipophilicity. Also others have already drawn attention to the fact that the biological effects 542 

of a compound would be a direct function of its lipophilicity, which is expected to increase 543 

the cellular uptake of these agents, as well as their subcellular localization in lipid 544 

compartments (Sestili et al., 2002; Spencer et al., 2004). Studies using other models and/or 545 

different cell types showed that luteolin had higher potential to decrease DNA damage than 546 

quercetin (Noroozi et al., 1998; Romanova et al., 2001; Horvathova et al., 2004, 2005), or 547 

the opposite—quercetin having higher ability to reduce DNA damage than luteolin 548 

(Horvathova et al., 2003; Melidou et al., 2005). As well, higher cytoprotective effects of 549 

luteolin over quercetin were found by some authors (Kaneko and Baba, 1999; Sasaki et al., 550 

2003), although others reported the opposite (Ishige et al., 2001). It seems, therefore, that 551 

the protective potential of luteolin and quercetin is cell type specific and/or dependent on 552 

the agent used to induce DNA damage. Nevertheless, although DNA damage induced by t-553 

BHP in HepG2 cells seems not to be a crucial event for cell death, this experimental model 554 

can be of use to extensively study the protective potential of PhC against DNA damage. It 555 

would be, for example, a good model for structure-activity relationships between several 556 

classes of flavonoids. 557 

In conclusion, the PhC studied here showed protective effects against oxidative damages 558 

induced in HepG2 cells that could be of use against liver diseases where it is known that 559 

oxidative stress plays a crucial role. Moreover, their protective potential seems to be 560 
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dependent on the compound’s lipophilicity in conjunction with its antioxidant activity. 561 

Their effects on protection against t-BHP-induced GSH depletion seem to be an important 562 

factor for preserving cell viability. 563 
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Results (tables) 

Table 1 – Potential hepatoprotective effects of the tested PhC against t-BHP-induced 

toxicity in HepG2 cells. 

TABLE 

Hepatoprotective effects of PhC were tested in co-incubations with 2 mM of t-BHP (5 

h) in HepG2 cells. IC50 and the Hill slope were taken from the plotted dose–response 

curve (Fig. 3). IC80 concentration was estimated from the same dose–response curve. 

Values are mean ± SEM of at least 4 independent experiments. 

 

Table 2 –  Effects of t-BHP and PhC at IC80 concentration on lipid peroxidation and 

oxidized glutathione levels in HepG2 cells. 

TABLE 

HepG2 cells were incubated with t-BHP 2 mM (5 h) and/or with individual PhC at IC80 

concentration and lipid peroxidation (as estimated by TBARS assay) and GSSG levels 

measured. Values are mean ± SEM, n = 5 (TBARS), n = 4 (GSSG). *** P=0.001 when 

compared with the negative control. # P=0.05 and ### P=0.001 when compared with the 

t-BHP control. 

 

Table 3 – Effects of t-BHP and PhC at IC80 concentration on glutathione-related enzyme 

activities in HepG2 cells. 

TABLE 

HepG2 cells were incubated with t-BHP 2 mM (5 h) and/or with individual PhC at IC80 

concentration and the activities of GST, GR and GPox measured. Values are mean ± 

SEM, n = 5. * P=0.05, ** P=0.01 and *** P=0.001 when compared with the negative 

control. # P=0.05 when compared with the t-BHP control. 
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Table 4 –  DPPH scavenging activity of the tested PhC. 

TABLE 

Different concentrations of each PhC were added to the ethanolic solution of DPPH and 

the discoloration measured spectrophotometrically at 515 nm. From the results 

expressed as the percentage of the remaining DPPH obtained for each PhC 

concentration (Fig. 8), the IC50 and Hill slope were taken. From the results, the AE was 

also calculated for each PhC. Values represent mean ± SD of 5 replicates. 

 

Table 5 –  Superoxide radical scavenging activity of the tested PhC. 

TABLE 

Using the phenazine methosulphate-NADH nonenzymatic assay, superoxide radicals 

were produced continuously and measured spectrophotometrically at 560 nm. In co-

incubations with individual PhC at several concentrations, the scavenging of superoxide 

radical was measured and from the plotted results the IC50 and the Hill slope were 

taken. 

Values represent mean ± SD of 3 independent experiments with 3 replicates each. 

 

Table 6 –  Experimental partition coefficients values obtained for each tested PhC. 

TABLE 

Partition coefficient values in logarithm (Kow) were measured in an n-octanol/HEPES 

(20 mM, pH 7.4) system. Values are mean ± SD of 3 independent experiments. 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

40 

 

Results (figures) 

 

 

Figure 1 – Chemical structures of the phenolic compounds used in this study. 

 

 

Figure 2 – t-BHP-induced toxicity in HepG2 cells. HepG2 cells were incubated with t-

BHP 1 mM and 2 mM for different time periods and cell viability measured by LDH 

leakage (% of LDH in the extracelular medium) (A) and MTT assay (B). Time scale 

was logarithmized in order to obtain sigmoidal response curves. Values represent mean 

± SEM, n = 4. In A: * P=0.05 and *** P=0.001 when compared to the same time point 

in the control situation. 

 

 

Figure 3 – Dose–response effect of the tested PhC against t-BHP-induced toxicity in 

HepG2 cells. After incubating HepG2 cells with 2 mM of t-BHP and individual PhC for 

5 h, protection against cell death (as measured by LDH leakage) versus PhC 

concentration (in logarithm) were plotted in order to take the IC50 and Hill slope of each 

compound (Table 1). Values are mean ± SEM of at least 4 independent experiments. 

 

 

Figure 4 – Effects of t-BHP and PhC at the IC 80 concentration on reduced glutathione 

levels in HepG2 cells. HepG2 cells were incubated with t-BHP 2 mM (5 h) and/or with 

individual PhC (CA – caffeic acid; RA – rosmarinic acid; L-7-G – luteolin-7-glucoside; 
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L – luteolin; Q – quercetin) at IC80 concentration and GSH levels measured. Values are 

mean ± SEM, n = 5. *** P=0.001 when compared with the negative control. # P=0.05, ## 

P=0.01 and ### P=0.001 when compared with the t-BHP control.  

 

 

Figure 5 – t-BHP-induced DNA damage in HepG2 cells. HepG2 cells were incubated 

with different concentrations t-BHP for 1 h and DNA damage assessed by the comet 

assay. Comet images were examined by computer assisted image analysis system (A  –  

tail length; B  –  tail moment; C – % DNA in the tail) and by a semiquantitative method 

of visual scoring (D). The correlation coefficients between the semiquantitative method 

and the computer assisted parameters are given in graph E. Values are mean ± SEM, 

n=4. * P=0.05, ** P=0.01 and *** P=0.001 when compared with the control. 

 

 

Figure 6 – Effects of t-BHP and PhC at IC80 concentration on DNA damage in HepG2 

cells. HepG2 cells were incubated with t-BHP 200 µM (1 h) and/or with individual PhC 

at IC80 concentration and DNA damage evaluated by the comet assay. DNA damage 

was assessed by the semiquantitative method of visual scoring. Values are mean ± 

SEM, n = 4. *** P=0.001 when compared with the negative control. ### P=0.001 when 

compared with the t-BHP control. 

 

 

Figure 7 – Dose-dependent protection of t-BHP-induced DNA damage in HepG2 cells 

by quercetin (A). HepG2 cells were incubated with t-BHP 200 µM (1 h) and/or with 

quercetin at different concentrations and DNA damage evaluated by the comet assay. 
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DNA damage was assessed by the semiquantitative method of visual scoring. Values 

are mean ± SEM, n = 4. *** P=0.001 when compared with the negative control. ### 

P=0.001 when compared with the t-BHP control. B – Representative pictures of the 

comet assay results. 

 

 

Figure 8 – Dose-dependent DPPH scavenging activity of caffeic acid. Different 

concentrations of caffeic acid were added to the ethanolic solution of DPPH and the 

discoloration measured spectrophotometrically at 515 nm. At the time point where all 

tested concentrations had reached the steady state  (9 min), the percentages of the 

remaining DPPH were plotted against the corresponding caffeic acid concentrations (in 

logarithm). From this graph, the IC50 and Hill slope were taken (Table 4). Values 

represent mean ± SD of 5 replicates. 
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Compound IC50 (µM) Hill slope IC80 (µM) 

Caffeic acid 114.1 ± 11.5 1.17 ± 0.16 370 

Rosmarinic acid 69.2 ± 5.3  1.48 ± 0.16 180 

Luteolin-7-O-glucoside 78.0 ± 7.6  1.47 ± 0.22 200 

Luteolin 5.9 ± 0.5 2.46 ± 0.44 11 

Quercetin 23.5 ± 1.4  2.12 ± 0.27 45 
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Parameter 
Phenolic compound  

t-BHP 
2 mM, ~5 h TBARS (nmol/mg) GSSG 

 (nmol GSH equiv/mg) 
– 0.20 ± 0.05 1.2 ± 0.3         – + 2.25 ± 0.13 *** 5.0 ± 0.4 *** 

    

– 0.19 ± 0.10 1.2 ± 0.4 
Caffeic acid + 1.54 ± 0.10 ### 4.2 ± 0.1 
    

– 0.15 ± 0.05 1.2 ± 0.3 Rosmarinic acid 
+ 1.71 ± 0.08 ### 3.5 ± 0.3 # 

    

– 0.15 ± 0.02 1.3 ± 0.2 
Luteolin-7-glucoside + 1.74 ± 0.08 ### 3.8 ± 0.5 
    

– 0.20 ± 0.07 1.6 ± 0.4 
Luteolin + 1.66 ± 0.12 ### 4.4 ± 0.4 
    

– 0.15 ± 0.06 1.5 ± 0.3 Quercetin + 1.64 ± 0.12 ### 4.6 ± 0.2 
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Enzyme activity (mU/mg) 
Phenolic compound t-BHP 

2 mM, ~5 h GST GR GPox 
– 24.7 ± 1.0  25.9 ± 0.8  18.2 ± 0.5  

        – + 23.5 ± 0.5  21.8 ± 0.9 *   6.3 ± 0.6 *** 
     

– 24.4 ± 0.8  25.6 ± 1.3  17.8 ± 0.3  
Caffeic acid + 23.1 ± 0.9  23.2 ± 0.8    7.5 ± 0.8 
     

– 23.1 ± 0.4  23.6 ± 0.4  16.1 ± 0.5  Rosmarinic acid + 24.5 ± 0.3  21.3 ± 0.9    5.5 ± 0.5 
     

– 20.6 ± 0.6 ** 23.6 ± 0.3  16.0 ± 0.5  Luteolin-7-glucoside + 23.7 ± 0.6  22.7 ± 0.8    5.7 ± 0.5 
     

– 22.6 ± 0.6  24.6 ± 0.3  16.1 ± 0.7  
Luteolin + 26.1 ± 0.8  23.2 ± 0.8    5.6 ± 0.7 
     

– 24.0 ± 1.0  25.9 ± 1.0  17.2 ± 0.4  Quercetin 
+ 22.6 ± 0.8  22.9 ± 0.6    8.6 ± 1.1 # 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

46 

 

 

Compound IC50 (mmol/mol DPPH) Hill slope AE (×10-3) 

Caffeic acid 179.6 ± 4.1 2.03 ± 0.06 0.81 

Rosmarinic acid 102.6 ± 2.2 2.07 ± 0.09 0.53 

Luteolin-7-O-glucoside   277.3 ± 14.9 1.48 ± 0.06 1.21 

Luteolin   263.9 ± 11.0 1.66 ± 0.03 0.70 

Quercetin 126.0 ± 2.4 1.66 ± 0.05 0.36 
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Compound IC50 (µM) Hill slope 

Caffeic acid 99.1 ± 5.3 1.02 ± 0.06 

Rosmarinic acid 21.0 ± 0.9 0.95 ± 0.04 

Luteolin-7-O-glucoside 50.4 ± 2.4 0.93 ± 0.05 

Luteolin 45.3 ± 3.0 1.70 ± 0.19 

Quercetin 35.1 ± 3.3 1.69 ± 0.25 
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Phenolic compound Kow 

Caffeic acid -0.89 ± 0.10 

Rosmarinic acid -0.44 ± 0.13 

Luteolin-7-glucoside  1.22 ± 0.01 

Luteolin 2.68 ± 0.05 

Quercetin 2.60 ± 0.09 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

53 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

54 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

56 

 

 

 


