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Abstract. A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered.
Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made
with the purpose to reduce the network traffic. The feedback control input is applied in a compensated model of the plant
that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global
exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information
moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.
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INTRODUCTION

With the increasing of the use of networks in the industrial control systems, many works about networked control
systems have been developed and different approaches for stability and stabilization have been presented in the last
years. The increasing of the use of networks on industry to transfer information is due to its flexibility and easy
maintenance of a system. In systems using network is very easy to modify the control strategy by rerouting signals,
and the control strategies can be activated automatically when component failure occurs. The use of a network on a
control system is desirable when there is a large number of distributed sensors and actuators.

One of the problems of the use of networks in a control system is the limitation of bandwidth that is necessary to the
communication network in a networked control system. Two different methods to solve this problem can be used. One
of them is to minimize the transfer of information between the sensor and the controller/actuator. The second method
is to compress or reduce the size of the data transferred at each transaction. As the data compression by reducing the
size of the data transmitted has negligible effects on the system performance, reduce the number of transmitted packets
brings better benefits than data compression. Also any delay in an information transaction is usually due to network
access contention. That is, the sensor with a fast sampling rate can send through the network the latest data available
resulting in an insignificant information transfer delay. But there will be contention in the network so that, even if the
delay is small, the sensor data will not be available at all times for the controller/actuator. This brings us back to the
idea of reducing the data transfer rate as much as possible, that is, increasing as much as possible the time between
the information moments sent by the sensor to controller/actuator. Thus more bandwidth will be available to allocate
more resources without sacrificing stability and overall system performance.

Many works about this subject were published, for example, [1]–[5]. Other important works about necessary and
sufficient conditions for stability have been presented and optimal control problems to obtain an optimal control have
been developed (see [6]–[17]). The work presented here complements the results obtained in the literature. First,
we analyse if for a given Model-Based Networked Control System (MB-NCS) with a fixed feedback gain there
is always a constant time between the information moments sent by the sensor to controller/actuator in order that
there exists stabilization. Secondly, for a fixed constant time between the information moments sent by the sensor
to controller/actuator, we obtain sufficient conditions for global exponential stabilizability. This second purpose is
preceded by a simple example, where we simulate the stabilization of the control system for different fixed constant
times between the information moments sent by the sensor to controller/actuator using correct feedback controls. These
results help us to find the smallest frequency with that the network must update the state in the controller. Finally, we
present an optimal control problem to maximize the transmission intervals and to optimize the performance of the
system, but considering the required control effort.

We will consider the linear time-invariant (LTI) continuous-time systems case and the problem of having a sensor
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that is connected to the controller/actuator by a network. A plant model is used to recreate the plant behavior so that
the sensor can delay sending data once the model can provide an approximation of the plant dynamics. The idea is to
perform a feedback (a linear state feedback control law) by updating the model’s state using the actual state of the plant
that is provided by the sensor. In the rest of the time, the control action is based on a plant model that is incorporated
in the controller/actuator and is running open loop for a period of h seconds. We will also assume that the plant and
the model are controllable, the transportation delay is insignificant that is justifiable in most of the popular network
standards like CAN bus or Ethernet, and the frequency with that the network must update the state in the controller is
constant, h. The plant may be unstable.

CHARACTERIZATION OF THE CONTROL SYSTEM

In the control system described in the Introduction section, the plant, the model and the feedback control input are
given by

Plant: ẋ = Ax+Bu,
Model: ˙̂x = Âx̂+ B̂u,
Feedback control input: u = Kx̂,

where x, x̂ ∈ R
n, A, Â ∈ R

n×n, B, B̂ ∈ R
n×m, and K ∈ R

m×n. The state error is defined as e = x− x̂, and represents
the difference between the plant state and the model state. The modeling error matrices that represent the difference
between the plant and the model are Ā = A− Â and B̄ = B− B̂. Once the sensor has the full state vector available,
the sensor can send the state information through the network every h seconds. Then, the update time instants are tk,
where tk+1 − tk = h, k = 0,1,2, . . ., and h is a constant. Since the model state is updated every tk seconds, e(tk) = 0,
k = 0,1,2, . . .. This condition for the state error is the crucial key in the characterization of the control system.
Therefore, for t ∈ [tk, tk+1) and u = Kx̂(t), we have the overall system described by(

ẋ(t)
˙̂x(t)

)
=

(
A BK
0 Â+ B̂K

)(
x(t)
x̂(t)

)

with initial conditions x̂(tk) = x(tk), k = 0,1,2, . . .. Introducing the error e(t) = x(t)− x̂(t), we see that the dynamics
of the overall system can be described by(

ẋ(t)
ė(t)

)
=

(
A+BK −BK
Ā+ B̄K Â− B̄K

)
︸ ︷︷ ︸

Θ

(
x(t)
e(t)

)
,

(
x(tk)
e(tk)

)
=

(
x(t−k )

0

)
, t ∈ [tk, tk+1), with tk+1 − tk = h. (1)

Define by MT the transpose of a matrix M. In work [9], as well as in other works cited here, system (1) with initial
condition

(
xT (t0) eT (t0)

)T
=
(

xT (t0) 0T
)T

=
(

xT
0 0T

)T has the solution

(
x(t)
e(t)

)
= eΘ(t−tk)

⎛
⎜⎜⎜⎝
(

I 0
0 0

)
eΘh

(
I 0
0 0

)
︸ ︷︷ ︸

Ψ

⎞
⎟⎟⎟⎠

k(
x0
0

)
, t ∈ [tk, tk+1), with tk+1 − tk = h,

where I is the identity matrix. In the same works (e.g., [9]) is presented the following result:

Theorem 1 ([9]) System (1) is globally exponentially stable around the solution
(

xT eT
)T

=
(

0T 0T
)T

if and
only if the eigenvalues of Ψ are strictly inside the unit circle.

Applying the transformation P =

(
I 0
I −I

)
with inverse P−1 =

(
I 0
I −I

)
over Θ we easily obtain

Ψ =

(
I 0
0 0

)
eΘ̃h

(
I 0
I 0

)
=

(
Ψ11 0

0 0

)
=

⎛
⎜⎝ ∞

∑
j=0

A j+
j−1
∑

l=0
A j−l−1BK(Â+B̂K)l

j! h j 0

0 0

⎞
⎟⎠ ,

where Θ̃ = PΘP−1 =

(
A BK
0 Â+ B̂K

)
. Therefore, in Theorem 1 we can change Ψ by Ψ11.
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STABILIZATION OF THE CONTROL SYSTEM

First, consider a first-order plant ẋ = ax+ bu, a,b ∈ R, where the model is ˙̂x = âx̂+ b̂u, â, b̂ ∈ R, and the feedback
control input is u = kx̂, for a fixed k ∈ R. For the first-order case we have

|Ψ11|=

∣∣∣∣∣eah +
bk(eah − e(â+b̂k)h)

a− â− b̂k

∣∣∣∣∣≤ 2αeβ h,

where α =max{|1+bk/(a− â− b̂k)|, |bk/(a− â− b̂k)|}> 0 and β =max{a, â+ b̂k}. Consider that β = 0. If α < 1/2,
from Theorem 1, we have global exponential stability around the zero solution. The first impression is that is necessary
to restrict α to obtain global exponential stability, but this is a sufficient condition and not a necessary condition.
Therefore, it is necessary to study this case in more detail. Suppose that α = |1+ bk/(a− â − b̂k)|. So we have
bk/(a− â− b̂k) = −(α + 1) or bk/(a− â− b̂k) = α − 1. The first equality contradicts the definition of α , because
|bk/(a− â− b̂k)|= α +1 > α . Then we have that bk/(a− â− b̂k) = α −1. Suppose that a = 0 and â+ b̂k < 0 (these
considerations respect the condition β = 0). Therefore we only have global exponential stability if and only if there
exists h > 0 such that |α − (α − 1)e(â+b̂k)h| < 1. This happens if and only if 0 < bk/(â+ b̂k) < 1. So, for the general
case (n-order plant), fixed a feedback gain K, the existence of a period h > 0 in order that system (1) is globally
exponentially stable around the zero solution depends of the matrices A, Â, B and B̂.

Now, in the following example, we will present simulations of stabilization of an MB-NCS using different feedback
gains for different fixed periods h. The main purpose is to verify in that conditions we can increase the period h.

Consider the plant and the model with

A =

(
0 1
0 0

)
, Â =

(
−0.5 0.5
−0.5 −0.5

)
, B = B̂ =

(
0
1

)
, and x0 = x̂0 =

(
1
1

)
.

Simulations of stabilization of the plant for different periods and different feedback gains are shown in Fig. 1.
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FIGURE 1. Plant States. (a) Feedback gain K = (−1.5 −2) and period h = 2 seconds. (b) Feedback gain K = (−1.7 −1.5)
and period h = 20 seconds. (c) Feedback gain K = (−2 −2) and period h = 200 seconds. (d) Feedback gain K = (−15 −15)
and period h = 200 seconds.

From Fig. 1, we can see that for this example we increased the period h until 200 seconds and we always obtained
stabilization of the plant. For this purpose, we just chose the correct feedback gains. In Fig. 1 (a), for a period of
2 seconds, we have chosen the feedback gain K =

(
−1.5 −2

)
. The matrix Ψ11 has the maximum of eigenvalue

magnitude less than 0.4 < 1, so it verifies the condition of Theorem 1 and system (1) is globally exponentially stable.
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In Fig. 1 (b), we have chosen the feedback gain K =
(
−1.7 −1.5

)
for a period of 20 seconds. The matrix Ψ11

has the maximum of eigenvalue magnitude less than 0.3 < 1. So, system (1) is also globally exponentially stable. In
Fig. 1 (c), for a period of 200 seconds, we used the feedback gain K =

(
−2 −2

)
. In this case, the maximum of

eigenvalue magnitude of the matrix Ψ11 is approximately equal to 0.2< 1, so we also have global exponential stability.
Inspired in the previous example, we will investigate what is the relation that there must be between the period h

and the feedback gain K for we have stabilization. From Gerschgorin circle theorem (see [18], [19]), we know that
a complex n× n matrix C, with entries cik, i,k = 1,2, . . . ,n, has its eigenvalues inside the union of the closed discs
D(cii,Ri) centered at cii with radius Ri = ∑n

k=1,k �=i |cik| for all i ∈ {1,2, . . . ,n}. Thus, for system (1) to be globally
exponentially stable, it is sufficient that D(ψii,Ri)⊂ D(0,1) for all i ∈ {1,2, . . . ,2n}, where ψii are the diagonal entries
of the matrix Ψ, Ri = ∑2n

k=1,k �=i |ψik| for ψik, i,k = 1,2, . . . ,2n, the entries of Ψ, and D(0,1) is the unit circle (centered
at 0 with radius 1). That is, the absolute values of the entries of Ψ11 must be sufficiently small. As ∑∞

j=0 ε/ j! = εe for

a positive constant ε , we just make |(A j +∑
j−1
l=0 A j−l−1BK(Â+ B̂K)l)ik|h j ≤ ε , for i,k = 1,2, . . . ,n and ε sufficiently

small. This is the same to make ‖A j +∑
j−1
l=0 A j−l−1BK(Â+ B̂K)l‖ = 1/(δ ( j)h j), for δ ( j) sufficiently large for all j,

where ‖ · ‖ is a matrix norm. Therefore we have the result that follows.

Theorem 2 Fixed a period h > 0, system (1) is globally exponentially stable around the solution
(

xT eT
)T

=(
0T 0T

)T
if there exists a feedback gain K such that ‖A j +∑

j−1
l=0 A j−l−1BK(Â+ B̂K)l‖ = 1/(δ ( j)h j), for δ ( j)

sufficiently large for all j.

The above study helps us to increase the time between the information moments sent by the sensor to con-
troller/actuator, that is, helps us to reduce the network traffic. But we can see in Fig. 1 that this increasing also in-
creases the time of stabilization. So, the performance of the system decreases. A solution to reduce this problem is to
use a better feedback gain. We can see an example to reduce this problem in Fig. 1 (d). Using a new feedback gain
K =

(
−15 −15

)
we also obtain global exponential stability for system (1) with a period of 200 seconds, but with a

much more fast stabilization. The matrix Ψ11 has the maximum of eigenvalue magnitude less than 0.04 < 1. However,
this solution can be an obstacle to the required control effort. Therefore, we should also consider this parameter in
our stabilization process. To obtain an optimal period h and an optimal feedback gain K we must solve an optimal
control problem. For this purpose, we will present an optimal control problem when the model is nominal. Once the
complete nominal error dynamics can be represented by ė = (1− γ(h))Âe, with γ(h) = 1 for t = tk, and γ(h) = 0 for
t ∈ (tk, tk + h), k = 0,1,2, . . ., we present an optimal control problem as follows:

max
K∈ηBm×n

h,

subject to

∥∥∥∥∥Â j +
j−1

∑
l=0

Â j−l−1B̂K(Â+ B̂K)l

∥∥∥∥∥=
1

δ ( j)h j ,

e → 0, ė = (1− γ(h))Âe, γ(h) ∈ {0,1},

x̂(t0) = x̂0, x̂(T ) = 0, T > t0,

for δ ( j) sufficiently large for all j, and where η is a positive constant and Bm×n = {X ∈ R
m×n : ‖X‖ ≤ 1}.

CONCLUSION

The main purpose of this work was to reduce the network traffic in the stabilization of MB-NCSs because of the
limitation of bandwidth that is necessary to the communication network. Then, we presented sufficient conditions to
find the smallest frequency with that the network must update the state in the controller, that is, sufficient conditions
that help us to find a feedback control input that increases the time between the information moments sent by the sensor
to controller/actuator. However, we have seen that for large times between the information moments, the performance
of the system decreases. So, we presented an optimal control problem to maximize the transmission intervals and to
optimize the performance of the system, but considering the required control effort. Therefore, we conclude that we can
consider large times between the information moments sent by the sensor to controller/actuator since the conditions
presented are satisfied. No less important was the proof that, for a fixed feedback gain, the existence of a time between
the information moments in order to have stabilization depends of the matrices of the plant and the model. Equivalent
considerations can be derived for LTI discrete-time systems, output feedback plants, and for network delay cases.
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