
18th International Conference on Production Research

DISTRIBUTED PRODUCTION PLANNING AND CONTROL AGENT BASED SYSTEM

Rui M. Lima, Rui M. Sousa, Paulo J. Martins

Department of Production and Systems, School of Engineering of University of Minho,
Campus de Azurém, Guimarães, Portugal

Abstract
A model of an Agent based Production Planning and Control (PPC) system able to be dynamically adaptable
to local and distributed utilization of production resources and materials is presented. The PPC system is
based on the selection of resources to deal with one order of different quantities of one product each time. In
this way it is build one scheduling solution for that particular order. The production resources are selected
and scheduled using a multiagent system supported by an implementation of the Smith Contract Net, using
Java Spaces technology. The multiagent system is based on three main agents: Client, Resource and
Manager. These agents negotiate the final product, and the correspondent components, requested by the
client. An order for each product (component) triggers a process of dynamic design of a production system
to fulfill that particular order. This system exists till the end of the order.

Keywords:
Distributed Production Planning and Control, Multi-Agent System

1 INTRODUCTION
New paradigms are necessary for enterprise
representation and operation, and consequently also for
production systems, in order to deal with the progressive
reduction on time to market of new customized products
and the ever-growing need for new enterprise competition
approaches. These requirements make a further stress to
the production Planning and Control System, which must
be dynamically adaptable to both local and distributed
utilization of production resources and materials.
Slightly different approaches to networks of enterprises like
Virtual or Extended Enterprises are being referred in the
literature. Virtual Enterprises are ephemeral associations of
enterprises to give answer to a transitory opportunity,
usually highly technological dependent, and Extended
Enterprises results from a more steady association of
enterprises throughout the manufacturing chain, usually
centred on a dominant one.
Some paradigms for building the relations between
production resources have been proposed, like Holonic
Manufacturing and Fractal Factory.
Holonic Manufacturing Systems are based on production
units inside other units making sub-systems that will build
the final production system [1]. Each one of these units are
Holons, which have simultaneously the all and the one
characteristics. They have characteristics of the one
because they have part of the functionality of the system,
and on the other perspective they can be viewed as a
system (the all) because they have some kind of autonomy
(like the all system) and contain other Holons inside them.
A Holon can be defined by his functions or tasks, working
on a holarchy restricted by some imposed rules. Changes
in the environment cause reaction of Holons that
communicate their change to the holarchy. Then, the
holarchy can change their strategy (changing rules) in
order to answer to the changing environment. A Holon is a
holarchy of Holons that are controlled, in part, by the
imposed rules. In other way, the Holon is subordinated to
the rules imposed by the holarchy to which it belongs.
The Fractal Factory concept was introduced by Warnecke
[2] based on fractal geometry. This factory is composed of
similar units (fractal) that provide production services. The
definition of the fractal by [2] is: a fractal is an
independently acting corporate entity whose goals and

performance can be precisely described. The fundamental
characteristics of the fractal are: self-similar, self-
organization, goal orientation and dynamics.
Bionic Manufacturing System is a production system
concept conceived by Okino, and inspired on the biological
living being systems [1]. Living beings are composed by
entities that organise them selves and function in an
autonomous way inside a hierarchical structure. Cells
group them selves into tissues that create organs; these
build organisms, living beings, and species. The cell is the
smallest living organism entity capable of independent life,
which can, isolated or interacting with other cells, execute
all life functions. Production units of productions systems,
equivalent to the biological system cell, get and send
production objects (materials, products and information) to
surround environment. Communication will be established
by information and material flow, regulated by coordinating
units, which will allow the integration of activities of the
autonomous production units. These coordinating units will
also have the function of linking cells in different levels of
the hierarchy.

2 MULTI-AGENT PRODUCTION SYSTEMS

2.1 Software Agents
Software agents are components of software that represent
user intentions. Table 1 presents definitions of three
different authors.

Table 1 : Software Agent Definitions
Author Definition
Nwana [3] “When we really have to, we define an agent as referring

to a component of software and/or hardware which is
capable of acting exactingly in order to accomplish tasks
on behalf of its user.”

Jennings and
Wooldridge [4]

“First, an agent is a computer system situated in some
environment, and that is capable of autonomous action
in this environment in order to meet its design
objectives.”

Parunak, Sauter,
Fleischer, and Ward
[5]

“Agents add two things to (passive) objects: a local
thread of control, and local initiative (usually expressed
as local goals). Together, these enable the agent to
monitor and respond to its environment autonomously
(that is, without being externally invoked).”

These definitions have some common characteristics like
agent autonomy and project-defined objectives. In this
context, autonomy is the software component ability to
keep on executing their processes independently of
interacting software or users. If the agent is not subject to
direct interferences it can refuse task execution requests.
Technically, agents respond to task requests in the
opposite of objects that react by task invocation.
The agent autonomy must be integrated with some kind of
environment monitoring ability in such a way that the agent
actuation is compliant to the project objectives. These
objectives are directly connected with the user represented
by the agent. The action and reaction executed by agents
depends on objectives introduced during the project.
Depending on requests or environment changes, the agent
must evaluate its internal state and objectives to be able to
deliver an answer.

2.2 Multi-agent Systems
Multiagent systems are characterized by communities of
agents whose interaction allows the achievement of system
objectives. Nwana and Ndumu [6], argues that multi agent
systems are created with the intention to establish
connections between agents developed separately,
allowing the overall capacity to go beyond the sum of the
individual agents capacities.
In multiagent systems a common notion of the involved
concepts must exist, in order to reach their objectives.
These concepts can be explicitly defined in the ontology of
the system, or can be implicitly defined in the knowledge
database of each agent. Despite having a common
knowledge of concepts of the system, agents can also
have knowledge on the behaviour and reaction of the
system due to other agents and environment changes. It
can be said that software agents can have models of other
agents and systems in which they are integrated, based on
their project functionalities and behaviour.
Communication between agents depends on system
architecture and can be done by message exchange. This
exchange of messages can rely on known standard
languages or on a specifically defined message protocol.
System (environment) monitoring depends on its
objectives, architecture and agents, and can be done by
interception of requests that circulate in the system, by
sensors reading, or by direct inquiries to the agent user or
to other agents.
The connection structure of agents can be based [7, 8] on
the following three architectures:

 Hierarchy of agents
 Federation of agents
 Autonomous Agents

The hierarchy is characterized by control relations from
some agents over others. In that case, the autonomy of the
agents is restricted by some degree of control imposed by
dominant agents.
In a federation, individual agents or groups of agents
communicate through mediator agents who supply
communication services. These agents of communication
can, basically, be of three types: facilitator; broker; match
maker.
The facilitator is connected to a set of agents and
communicates with other facilitators to supply
communication services that allow system operation
(examples in [9] and [10]).
The broker is an agent who actuates in one specified
market, between supplier agents and client agents,
supplying communication services that makes transparent
the connection between them (examples in [5], [11], [12]
and [13]).

The match maker supplies services similar to those
supplied by the broker, being able, after that, to abandon
the system, because the agents start to communicate
directly between themselves (examples in [5] and [9]).
The architecture based on autonomous agents is an
architecture where the agents can communicate between
themselves without appealing to mediator agents. This type
of architecture leads to systems where agents know from
each other, or to systems where exists a common platform
to transmit information available to all agents (examples in
[7], [14], [15] and [16]).

3 DISTRIBUTED PRODUCTION SYSTEM DEFINITION
In general way, production systems are made of different
processing elements that work in heterogeneous
environments, simultaneously in different processes of
different products, communicating in several ways. The
term distributed, associated to the production system,
emerges from the identification of new organising and
management needs. These organising and management
concepts must solve problems associated with the growing
need of adaptability to change. This lead us to the following
definition [17]:
A Distributed Production System is a production system
composed by a network of autonomous processing
elements, with the capability of rapid dynamic
reconfiguration.
This definition excludes traditional production systems that
do not allow instant dynamic reconfiguration. Moreover,
new ways of management are necessary to allow this
reconfiguration, integrating, in the same model, all parts of
the system, including processing elements, inputs, outputs
and communication systems.

4 AGENT PRODUCTION SYSTEM MODEL
In this model, software agents represent every production
system element. These elements will be able to
communicate with all other elements in an autonomous
and interactive way.

4.1 System Requirements
The project of the proposed Agent Production System
Model (MSDP) is based on the following requirements:
1. Product information input.

i. Product specification.
ii. Product structure definition.
iii. Production processes specification.

2. Client information input.
i. Identification.
ii. Product orders generation.

3. Product orders input.
i. Product Definition.
ii. Quantity definition.

4. Order management agents should be able to:
i. Select production resources.
ii. Handle resource failure.
iii. Do order monitoring.

5. Resource agents should be able to:
i. Represent a production resource.
ii. Register types of production processes that can

be executed by the resource.
iii. Publish lead time and costs for order requests.
iv. Answer to agenda request.
v. Do task scheduling.
vi. Register confirmed orders.
vii. Do monitoring tasks.
viii. Process orders.
ix. Act in conformity with defined objectives.

18th International Conference on Production Research

6. Evaluation criteria
i. Order request answer time.
ii. Lead time.
iii. Negotiated due date fulfilment.
iv. Cost.

7. Some of these requirements demand:
i. Agent communication.
ii. Actuating on environment.
iii. Reacting to environment changes.

4.2 System Model
The project of a Distributed Production System model
presented in this work, that fulfils the system definition and,
partially, the requirements, is based on a multiagent
system. A multiagent system is adequate for modelling and
implementation purposes due to the following reasons:
 Distribution – Multiagent systems are adequate for the

implementation of distributed and complex systems
with resource allocation tasks.

 Autonomy – This is simultaneously an attribute of the
distributed production system and of the agent
definition, so agents can be used to represent
autonomous production processing elements.

 Reconfigurability – The reconfigurability of distributed
production systems can be implemented by proper
coordination mechanisms of the multiagent system.

In this model, all elements of the Distributed Production
System are represented by agents, which communicate
with, and in name of, each element. The production
resources, i.e. production system processors, delegate
their representation on agents. The clients, direct or
indirect users of resources, are also represented by
agents. An order management agent is responsible for
coordinating the resource allocation task based on the
Smith Contract Net protocol.
According to Rich and Knight [18], in this type of
coordination an agent decomposes the problem and
negotiates the attribution of subtasks with other agents. In
this contract net, agents may have two roles: Manager,
who decomposes the problem, looks for contractors to
execute parts of its problem, and supervises the execution;
Contractor, who executes subtasks or starts looking for
contractors to execute part of the work, becoming thus a
manager.
In this model it is assumed that resource agents know the
resource processing ability and capacity for executing
tasks of known products. So, based on the knowledge
about the transformations that the represented resource
can execute, the agent can try to obtain orders for that
resource.

4.2.1. Implementation
The system is implemented with agents distributed by
different places, communicating through a shared
repository. This form of communication is similar to a black
board. All system agents access to this repository,
monitoring thus the system activity.
JavaSpaces Technology (http://java.sun.com/javaspaces)
included in Jini Network Technology was used for
implementation purpose. This technology is described by
Halter [19] and Bishop and Warren [20] as a system that
delivers a set of services to manage distributed software
objects. The objects can be placed on a “space”, named
JavaSpace, where they can stay in a persistent way. The
JavaSpace works like a Jini service, which allows the
space clients to store and share software objects.
The software agents run on own threads, possibly in
different machines, and send messages to other agents
through a JavaSpace (Figure 1). These messages are in
conformity with a message protocol, which is defined

based on a common information model of the Distributed
Production System. In some cases, messages don’t have
to be sent to a particular client, and can be addressed to a
given type of agents. For example a request for bids on
some task for some order can be placed in the JavaSpace
and several resources can answer to that bid. Figure 1
represents two resource agents, two client agents, an order
management (OrderMgm) agent, three different messages
flowing between several agents and the JavaSpace.

Client_01

Client_nn

OrderMgm

JavaSpace

Resource_01

Resource_nn

Message_02

Message_01

Message_mm

Figure 1: General Structure of the Agent Model.

4.3 Agents Specification
Agents Client represents each client and can, after
registration in the system, send an order request for a
particular product, through messages. This message is
read by the order management (OrderMgm) agent, which
will divide this in suborders for each element of the product
structure. Each of these suborders will be recursively
published in the JavaSpace. All interested Resource
agents can make a bid for each of those suborders. Figure
2 illustrates the process of suborder message publication
and the bid messages answers from interested resources.

OrderMgm

JavaSpace

Resource_01
Resource_nn

Message_01

Message
Order_mm

Message_02

Figure 2: Elementary order task negotiation.

The Agent OrderMgm negotiates (requests) the final
product requested by the client and respective components
with Agents Resource. Each component has a detailed
structure, associated to the production type of processes in
all structure levels. The type of process is the
transformation needed to get the component. The Agent
OrderMgm is responsible for the selection of the resources
needed for the production (candidate selection followed by
particular resource(s) selection). An order for each product
(component) triggers a process of dynamic design of a
production system to fulfil that particular order. This system
exists till the end of the order and is related with a
particular set of resources selected. These resources are
allocated to execute all tasks needed to make the
production of all elements of the product structure. Figure 3
illustrates a configuration for a product P1, which structure
refers two components and one of them also has two
components.

http://java.sun.com/javaspaces

P1

P11
P12

P122
P121

P1

P11
P12

P122
P121

Figure 3: Production System example.

Each Agent Client is able to store information about the
required products; the production means to execute them,
the required processes and the orders already done. Each
order a Client Agent makes is related to a final product that
can be produced in different resources related to different
types of processes.

4.3.1. Agent Client
Each client has an Agent Client that represents him and
makes possible the orders input into the system. The
introduction of an order, sending a message to the
JavaSpace, will be the initiating event for the formation of
each production system. Thus being, the Agent Client
creates orders of a product in some required quantity.
Each Agent Client must be capable to identify the client it
represents, to store information about products, orders,
candidate and selected resources.
The ordered product results from the execution of some
transformations that can be executed by some resources, if
these have the required abilities. The Agent OrderMgm is
responsible for the selection of offers, that is, for the
attribution of some amount of work for candidate
resources. This agent is also responsible for monitoring the
execution of this order. An Agent Client creates an order
for an intended product and sends a message for an Agent
OrderMgm for the management of this order.
An order success should be reflected on the information
management carried by the client. The client should, at
least, store information for future reference about lead
time, quality, cost and resources involved.
An order failure generates an internal conflict on the client,
which the Agent should resolve, abdicating on the order or
generating a new order. The first one of these solutions
has implications on the user of this agent, who should be
responsible for this decision, by inquiry or delegation. The
decision to generate a new order leads again to the activity
execution of launching an order.
There are more business activities related to clients that
are not object of analysis in this study, because the
objectives defined for this work were mainly related with
production planning and control activities for distributed
production systems.

4.3.2. Agent OrderMgm
The Agent OrderMgm will negotiate / request the product
intended by the customer. The Agent OrderMgm will
search for resources able to execute the necessary
processes of production. This search process could be
done by Agents with the ability to search information on the
net, that is, to search information on operations and/or
processes published by different resources. In a federate
architecture, broker agents would have the responsibility to
find the appropriate resources. In this work it is used a
shared repository of information, where interest in the
attainment of one determined product is published, and in
which can be collected information on production means
that can execute the required order.
Resource selection depends on the offers made by all
resources for a particular order of a product. The interested

resources have to publish their offers for execution of the
work, indicating the execution time.
An activity of resource selection is composed, in general,
by several sub-activities, that can be resumed by: resource
selection, monitoring the order execution and
communication with the customer. In this model, the
production resources selection is made by the Agent
OrderMgm, executing the actions presented in the UML
[21] activity diagram represented in Figure 4. This activity
is initiated by publishing the order requirements, followed
by offers gathering. If exist offers from resources, then the
control will be transferred to the “resource selection” action,
else it will have to communicate that fact to the client.

Publish Order Wait for Offers

[offers]

[no offers]Select Resources

[possible]

[impracticable]
Request Resources

[resources refuse]

[resources refuse]

Register Resources

Monitoring Communicate results

Figure 4: “Resource Selection” Activity Diagram.

If the resources selection (“Select Resources” action state)
is successful, then the Agent OrderMgm executes the
activity of effective solicitation of resources (“Request
Resources” action state). The impossibility to make the
selection of resources, due to the incapacity of the
resources or to the application of the selection strategy, will
be communicated to the order manager agent. This Agent
OrderMgm will inform the Agent Client that should act in
compliance with its objectives.

4.3.3. Agent Resource
The Agents Resource represents the available production
resources, with the objective of obtaining work to be
executed by the resources that they represent. When the
Agent OrderMgm places information about an order in the
shared JavaSpace, the Agent Resource can answer
placing offers for this order in the space. Each of these
offers depends on the request analysis and a decision is
made, based on the agenda, capacity and abilities of the
resource that is represented by the agent. This offer should
have all information necessary for proper evaluation. The
necessary information depends on the strategy used in the
system for selection of resources. One of the functions of
the agent is to keep its agenda updated, considering the
selected orders and synchronized with the “real” resource.
The Agent Resource stores information about the resource
it represents, the production processes that can execute,
the orders for which it made offers and on those where
were selected.
Figure 5 represents the activity diagram illustrating the
activity of creation of offers for an order by the Agent
Resource. This activity is initiated with the reception of a
notice about publication of an order. This is followed by the
execution of two parallel actions: one to update the
resource agenda, in accordance with its internal
information and the information of the resource it

18th International Conference on Production Research

represents; other to search the order information in the
shared JavaSpace. If any one of these actions fails, the
activity finishes without creation or publication of offers.
The success of both of these actions allows to analyze the
possibility of order fulfilment by the resource, that is, to
analyze its aptitude, the availability of material and capacity
and the fulfilment of the defined objectives. If the analysis
is negative, then it refuses the order and finishes the
activity without publishing any offer. The internal
acceptance of the order leads to the creation and
publication of an offer. The offer must include the lead time
and associated cost.

Order Notice

Search Order Agenda Update

Analyse Order

Publish Offer

[success][success]

[accept]

[failure]

[failure]

[refuse]

Figure 5 : Agent Resource “Offer” Activity Diagram.

If offers published by the Agent Resource are selected by
an Agent OrderMgm, then there will be a request of a
particular amount of work to be processed by the resource.
In this case, the Agent Resource “work” activity (Figure 6)
is similar to the “offer” activity. With this activity the Agent
Resource has the objective of verifying the possibility of
acceptance of the work request made by the Agent
OrderMgm.

Work Request Notice

Search Work Request Agenda Update

Publish Acceptance

[success][success]

[failure]

[failure]

[refuse]

Analyse Work Request

[possible][accept]

Verify Agenda

[failure]

Figure 6: “Work Acceptance” Activity Diagram.

This “Work Acceptance” activity initiates with the reception
of a work request, followed by the execution, in parallel, of
two actions: one action to search the work request in the
JavaSpace; other action to update the resource agenda.
Having information about the work request and the agenda
updated makes possible to take a decision about the
acceptance of the request. This decision is based on two
parallel actions: one to analyse the work request in relation
with a previously made offer; other to verify the updated
agenda in relation with a previously made offer. The
success of these two activities allows the agent to publish
the acceptance. This acceptance implies the commitment
of the resource with the execution of the work.

4.3.4. Coordination of Agents
The definition of the Distributed Production System, the
Agent Production System requirements and model place
several orienting boundaries for the coordination of the
agents.
The production system results from the selection of
resources that are able to execute product transformations
for the order. Making the selection of resources for each
product transformation and grouping the partial solutions
for each part of the product structure, makes possible to
complete the order. This selection results, like referred on
section 4.2, from a recursive application of a Contract Net
negotiation protocol supported by message exchange
through a JavaSpace. The implementation of this
coordination mechanism is based on the exchange of
object messages represented in Figure 7. This simple
object allows the implementation of all communication
protocol. Attributes “origin” and “destination” can identify
specific agents. Attributes “type” and “param” are related
with the message content. The first can be, for instance, an
order or an offer and the “param” attribute is a vector data
type containing information about the offer or order. In this
object, only the first and the third of these attributes are
mandatory.

-origin
-destination
-type
-param

Message

Figure 7 : Message Object

In the resulting production system, the order can be
executed by one Agent Resource or several agents. This
depends on the existence of the required ability and
capacity, and the application of the selection strategy. In
the developed system the selection strategy depends only
on the lead time offer of each resource for each order.
A model for processing orders can be extremely detailed
[22], with specification of functions, objects flow, control
flow, materials flow, use and responsibility of functions,
objectives, and organizational elements. In this model it is
specified the order creation and publication activities and
the resources selection, being encapsulated, in the Agent
Resource, the order processing.

5 CONCLUSION
A definition and a model for Distributed Production
Systems are presented in this work. This model is based
on three main characteristics: Distribution, Autonomy and
Reconfigurability. These are fundamental characteristics
for new paradigms of production systems that propose to
deal with highly dynamic environments.
The Distributed Production System Model is conceptually
modelled and implemented as a multi agent system based
on JavaSpaces technology. This implementation made
possible the verification of the model validity in respect with

production planning and control concepts. This system is
able to make a production resource selection to fulfil a
particular order considering the resources agenda.
Moreover, it does this with distributed resources, which can
accept or refuse orders depending on their own strategy.
So, in this way, the production resources autonomy is
respected and it is possible to deal with their distribution.
Reconfigurability exists for each order, that is, there is one
configuration of resources for each order. If one resource
fails then it is also possible to build a new fraction of the
system to fulfil the required part of the product structure.
There are three basic agents on the system: Agent Client,
Agent OrderMgm and Agent Resource. These three agents
have a common knowledge about the system and the
environment, allowing communicating with each other. The
presented UML specification of these agents is based on
the description of the main activities they execute and that
support their interaction.
In this work it is also presented the description of the
communication protocol for sending message objects to a
shared space and the coordination mechanism based on
the application of the Smith Contract Net protocol.
Future work is planned in order to extend this model in
functionality and also in different directions. The model
functionality should be incremented in order to apply and
compare different criteria for selection of resources, like
cost or resource utilization. Moreover, it should allow
implementing different architectures: a hierarchical
architecture with optimized resource selection methods;
creation of orders for the parts by the resource agents,
which could, in some cases, ask for different types of
operation that could deliver the same result;
implementation of the model in industrial environments.

6 REFERENCES
[1] Tharumarajah, A., Wells, A. J., and Nemes, L., "Comparison

of the Bionic, Fractal and Holonic Manufacturing System
Concepts," International Journal of Computer Integrated
Manufacturing, vol. 9, 1996, pp. 217-226.

[2] Warnecke, H. J., The Fractal Company: Springer-Verlag,
1993.

[3] Nwana, H. S., "Software Agents: A Overview," The
Knowledge Engineering Review, vol. 11, 1996, pp. 205-244.

[4] Jennings, N. R. and Wooldridge, M., "Applications of
Intelligent Agents," in Agent Technology Foundations,
Applications and Markets, N. R. Jennings and M.
Wooldridge, Eds.: Springer Verlag, 1998.

[5] Parunak, H. V. D., Sauter, J., Fleischer, M., and Ward, A.,
"The RAPPID Project: Symbiosis between Industrial
Requirements and MAS Research," Autonomous Agents
and Multi-Agent Systems, vol. 2, 1999, pp. 111-140.

[6] Nwana, H. S. and Ndumu, D. T., "A Perspective on Software
Agents Research," The Knowledge Engineering Review, vol.
14, 1999, pp. 1-18.

[7] Shen, W., Norrie, D. H., and Barthès, J. P., Multi-agent
Systems for Concurrent Intelligent Design and
Manufacturing: Taylor & Francis, 2001.

[8] Shen, W., "Agent-Based Cooperative Manufacturing
Scheduling: an Overview," COVE News, 2001.

[9] Shen, W., Maturana, F., and Norrie, D. H., "MetaMorph II: an
agent-based architecture for distributed intelligent design
and manufacturing," Journal of Intelligent Manufacturing, vol.
11, 2000, pp. 237-251.

[10] Sun, J., Zhang, Y. F., and Nee, A. Y. C., "A distributed multi-
agent environment for product design and manufacturing

planning," International Journal of Production Research, vol.
39, 2001, pp. 625-645.

[11] Baker, A. D., Parunak, H. V. D., and Erol, K., "Agents and
the Internet: Infrastructure for Mass Customization," Ieee
Internet Computing, 1999, pp. 62-69.

[12] Kim, Y., Choi, Y., and Yoo, S. B., "Brokering and 3D
collaborative viewing of mechanical part models on the
Web," International Journal of Computer Integrated
Manufacturing, vol. 14, 2001, pp. 28-40.

[13] Carvalho, J. D. A., Putnik, G. D., and Cunha, M.,
"Infrastructures for Virtual Enterprises," Cadernos do
Departamento de Produção e Sistemas, Escola de
Engenharia, Universidade do Minho (disponível em
http://www.dps.uminho.pt/cad-dps), vol. DPS-03, 2003.

[14] Wiendahl, H. P. and Ahrens, V., "Agent-based control of
self-organised production systems," Annals CIRP, vol. 46,
1997, pp. 365-368.

[15] Parunak, H. V. D., Baker, A. D., and Clark, S. J., "The
AARIA Agent Architecture: An example of requirements-
driven agent-based system design," presented at
Proceedings of the First Intenational Conference on
Autonomous Agents, Maryna del Rey, CA, 1997, pp. 482-
483.

[16] Leitão, P., Restivo, F., and Putnik, G. D., "A Multi-Agent
Based Cell Controller," presented at Proceedings of the 8th
IEEE International Conference on Emerging Technologies
and Factory Automation - ETFA 2001, Antibes - Juan les
Pins, France, 2001, pp. 463-470.

[17] Lima, R. M., Silva, S. C., and Martins, P. M., "Sistemas
Distribuídos de Produção," presented at 1º Congresso Luso-
Moçambicano de Engenharia, Maputo, Moçambique, 1999,
pp. B13-B20 (in portuguese).

[18] Rich, E. and Knight, K., Artificial Intelligence, 2nd ed:
McGraw-Hill, 1991.

[19] Halter, S. L., JavaSpaces: Example by Example: Prentice
Hall, 2002.

[20] Bishop, P. and Warren, N., JavaSpaces in Practice:
Addison-Wesley, 2003.

[21] OMG, "Introduction to OMG's Unified Modeling Language™
(UML) http://www.omg.org/gettingstarted/what_is_uml.htm,"
OMG, 2005.

[22] Scheer, A.-W., ARIS - Business Process Frameworks, 3rd
ed: Springer-Verlag, 1999.

http://www.dps.uminho.pt/cad-dps)
http://www.omg.org/gettingstarted/what_is_uml.htm,

	INTRODUCTION
	MULTI-AGENT PRODUCTION SYSTEMS
	Software Agents
	Multi-agent Systems

	DISTRIBUTED PRODUCTION SYSTEM DEFINITION
	AGENT PRODUCTION SYSTEM MODEL
	System Requirements
	System Model
	Implementation

	Agents Specification
	Agent Client
	Agent OrderMgm
	Agent Resource
	Coordination of Agents

	CONCLUSION
	REFERENCES

