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Dipolar vibrational modes in spherical semiconductor quantum dots
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Spatially quantized dipolar phonon modes in a spherical quantun{Q@Bj made of a polar isotropic
material are considered in the framework of a continnum model. Different mechanical boundary conditions are
analyzed, which are shown to strongly influence the spectrum of the dipole-active modes. The phonon-related
polarizability of a single QD and an average dielectric function of a composite containing QDs are calculated.
Numerical results are presented for CdSe and InP dots. A strongly dipole-active gap mode is predicted for InP
QDs embedded in a matrix with a defined range of dielectric constant. The effect of increasing QD concen-
tration in ensembles is discussed in terms of the dipole—dipole interaction between the dots, which can result
in their bulk-like FIR absorption spectra with a peak at the transverse offi€alphonon frequency instead
of the Frdnlich frequency. It is suggested that similar effects might occur in individual microcrystals, which can
explain their absorbtion of FIR radiation at the TO phonon frequency, despite having a size much smaller than
the radiation wavelength.
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I. INTRODUCTION surrounding medium the situation changes when the me-
chanical confinement becomes important. As numerical lat-
The effects of reduced space dimensions on the vibratice dynamics calculations shdW,several of the confined
tional modes in quantum dof®Ds) are the subject of much modes can produce significant FIR absorption in the limit of
current interest=*° Optical phonons confined in semicon- sufficiently small QDs. Even though there are relatively few
ductor QDs are important since they affect the electronicFIR spectroscopy studies of phonons in G$%20-?’the
properties and are responsible for Raman scattering, which iguantum-size effects indeed have been reported in some of
one of the standard tools for the characterization of semiconthem, including the observation of a well-resolved multi-
ductor structures. Most of the experimental studies of opticainode structure in the transmittance spectra of thin films con-
phonons in QDs have been performed by means of Ramatining highly monodisperse CdSe Qbs.
spectroscopy’~"%™12 From the theoretical viewpoint,  Macroscopic approaches for optical phonons in semicon-
along with numerical lattice dynamics calculations for ductor nanostructures are attractive because they give ana-
nanocrystals of some materidfs;"> a continuum model of Iytical results, which facilitates calculations of phonon-
Raman-active modes was developed for spherical 885, related observable properties. In the simplest approximation
which takes into account both mechanical and electrostatiknown as the dielectric continuuidC) model, one solves
confinement. It has been shown to give a good description ahe electrostatic equations for @onfined polar medium
the experimentally observed spectra unless some further efvith a frequency-dependent dielectric function describing its
fects (such as disordgrare involved®®*® However, to the  bulk phonon response. When applied to a spherical particle,
best of my knowledge, nobody has succeeded to obserwis model predicts one surfacer interfaceé phonon mode
unambigously different quantized optical phonon modes refor each numbet=1. (The |=1 one, with the frequency
solved in Raman spectra. The reason is that, usually the highs, is usually called the Fidich mode'® For a semicon-
est frequency modewith |=0 andn=1 in a spherical QD, ductor heterostructure, the DC model yields interface and
wheren and| are the spherical quantum numbeis much  confined phonon modes, both of which were observed
more intense than the others, which, owing to the inevitablexperimentall?® However, further experiments on short-
QD size dispersion, produce just an asymmetric broadeningeriod superlattices showed that the confined and interface
of the fundamental mode. Even if, under resonant conditionsmodes intermix. Moreover, microscopic calculatitthdem-
two or three quantized modes have a comparable Ramasnhstrated that the relative ionic displacement field is continu-
scattering intensity? they are hard to resolve because of theous across the interface, contrary to the results obtained from
small dispersion of the bulk optical phonon curves of thethe DC model. A number of alternative macroscopic ap-
most of polar semiconductor materials. proaches were proposed, such as the hydrodynatrécsl
Quantum-size effects on optical phonons can be bettamodified DG®2” models. The former generalized the classi-
seen by far-infraredFIR) absorption rather than Raman cal Born and Huang theofy of long-wavelength optical
spectroscopy. As will be shown below, dipolar vibrational phonons in polar media by adding new terms in the equation
modes generally fill the whole range between the bulk transef motion, which describe the effects of spatial dispersion.
verse ro) and longitudinal | o) optical phonon frequen-  Unfortunately, owing to the mechanical boundary conditions
cies. Although the absorption of, say, a micrometer-sizgb.c.’s chosen in Ref. 25, this model neglected the mixing of
sphere contains a single peak at théHioh frequency’  LO and TO phonon modes and produced results inconsistent
wr=[(eZw? o+ 2enwro)/ (s +2€p)]Y? (where €2 and e,  with the experimental and numerical calculations. In the
are the high-frequency dielectric constants of the sphere antiodified DC model, the confined phonons obey both elec-
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TABLE I. Material parameters used in the calculations. =\/6§,uv(w$o— w%o)/(‘“T) is the transverse charge,the
volume per cation—anion pair and is the reduced mass.

Parameter CdSe InP The second equation, which relates the electrostatic poten-
BZ centerwrg, cm L 169 307 tial, ¢, to the mechanical displacement, reads as
BZ centerw, o, cm ! 211 347 Ao

1 > o meT >

BZ edgewro, CM 175 315 V| eV Tu) —0. )
BZ edgew o, cm ! 152 330

i A1
Dwampmg, cm 682 ;‘;’ When applied to an infinite crystal, Eq4) and(2) provide
€ . .

a reasonablésotropig approximation for its optical phonon
dispersion curves. Contrary to Refs. 16 and 17, wiggrand
B+t were taken constants measured in the Brillouin zone cen-

trostatic and mechanical b.c.’s, that is, the relative ionic dis! | considered them as frequency-dependent parameters
placement is continuous across interfaces. The complete sgg’ q y-dep P

: : fined in such a way that theO andLO branches deter-
of orthogonalized phonon modes in a heterostructure wa e S . .
first derived in Ref. 27, with the ionic displacement fields in mined by Egs(1) and(2) coincide with the phonon disper-

good agreement with those obtained from the microscopiéIon curve of a diatomic linear chain,
calculations* However, the confined phonons in this ap- ) 5 5 3 5
proach are dispersionless, i.e., all have the same frequency @ (K)=wit+wy+ V(i +03)? - 4wiwssirt(K2), (3)

(w o), therefore, thémodified DC model is unsuitable for : 2_ 2 2_( 2
describing the fine structure of Raman or FIR spectra forme(\ﬁ_vgerze/g vages betv(\j/een 0 antt:l]-, @1 'wmrl?(/é"ITZ . (©max

by several confined phonon modes with slightly different fre- 2“1 dan @in an wmax_areL(;e rr;:nlmu p rifiouin zone
guencies. The phonon dispersion has been incorporated ge an maximum [ poiny phonon frequenciesee .
the model proposed in Refs. 29 and 30, which used the equ able D This all_ows us to reproduce the zero group velocity
tions of motion of the hydrodynamic modelbut with dif- and high Qenglt){ of sta_tes hear the edges_of th? phonon
ferent mechanical b.c.'s allowing the intermixing of confined Pands, which is impossible with parabolic dispersion rela-

LO, TO and interface modes. This approach, consisting Ofiong g_sed in_ Ref;s. 16dar;]d 17. For F"‘@ brﬁnﬁh with up-
solving the coupled continuous equation of motion and Poisivard dispersion, | used the expressi@h with the opposite
gn of the second term in the square root. Outside the al-

. . , - . . . |
son equation with b.c.’s specified in the next section, glveiowed frequency bandK was considered imaginary. The

spectra of eigenmodes for semiconductor hetrostructures, q d bendi d
which are very close to those of microscopic modéland ~ "eduency-dependent bending parametgrsand Sy were
calculated as the corresponding derivativeslw“/dK=.

has been succesfully applied for the calculation of Raman i . ; .
active modes in spherical QB&7 The spherically symmetric solution of Eq4) and(2) is:
gi(kr)

In this work, a theory of dipole-active phonon modes in
r

spherical QDs made of a polar material is presented, which is r —
based on the approach proposed in Refs. 29 and 30. The
theory presented below has allowed for a good description of

the experimental results of Refs. 8 and 20. Apart from pro- , | . d |19

viding the details of the calculatior{sot published befoe u=1 Adi@an +By g laitknr]+Cirt - =2 Yin(6,¢),

the following issues will be addresse@) a comparison of (4)
different mechanical boundary conditior(g; collective ef-

fects in QD ensembles an@i) how the Frdlich-type ab- 9

sorption is replaced by the bulk-like one when the crystallite ue={rang %Ylm(aa(ﬁ):

size increases. The paper is organized as follows. In Sec. I,

the princ_ipal equations are presented and quqntized modethereq=\/(w’o— w?)/BL, k=\[(0Fo— 0?)/B4l, j| is the
are obtained. In Sec. Ill, the observable quantities, such agpnerical Bessel functiony,,, the spherical harmonic and
effective dielectric function of a QD ensemble, are calcu-g (x) s eitherj,(x) or i ~'j,(ix) depending on the sign of
lated. Section IV is devoted to a discussion and conclusionT(w%_ »?)/81]. [Note that the solutior(4) does not in-

clude the torsional displacement compon&nihich is de-

A|£j|(qr)+B|l(l+l) +C||r|1}Y|m(9,¢),

Il. QUANTIZED DIPOLAR MODES coupled from the other components and has no associated
The phenomenological equation of motion has the foIIow-eIeCt.rIC f.'eld' The constants, B andC, which determine the
ing form25:29:30 longitudinal, transverse and surface components of the con-

fined vibration of a given frequency, are defined by b.c.’s.

) o e The complete set of b.c.’s includ@s®32(i) the continuity of

(wz—w%o)u=,8LV(Vu)—,8TV><(V><u)+ —V¢, (1) the electrostatic potential and the normal component of the
M electric displacement, angi) the continuity of all compo-

wherel is the relative displacement of the positive and neganents ofu and components™" (i=r,0,¢) of the stress ten-
tive ions, 3, and By are the curvature parameters of the bulk Sor at the surface. The electrostatic kigrequires matching
LO and TO phonon dispersion curves, e; to the potential, C;r~'"%, and electric field, —C,ex(l
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FIG. 1. The radial dependence of the 1 phonon frequencies
calculated for CdSe QDs embedded in a matrix w3 (rigid FIG. 2. Density of thd =1 phonon states calculated for a CdSe
b.c). The Franlich frequency is 192 cmt. QD [R=125 nm embedded in a matrix wity=3 (rigid b.c)].

+1)r "2 outside the sphere. As to the mechanical b.c., phonon band. Wheg, is such thatw falls inside theLO or
shall consider two limiting cases @fi): (1) a rigid sphere  TO band, the situation is not much different from that of
(u=0 at the surfaceand (2) a free-standing spheres{ CdSe(see Fig. 3, left However, whenwg occurs in the gap,
=0 at the surface a new feature appears, which is a gap mode of predominantly
surface nature. The gap mode frequency is closeg@nd
A. Rigid b.c. nearly independent of the QD sizsee Fig. 3, right As we

The equation for the frequencies of the spheroidal modegéI i?gvggzgrgi%ieép\:\éﬁpan exists, should be dominating in

of angular momenturhis

qRj (qR){yen [kRg (kR)—1g1(kR) ]+ §[kRg (kR) B. Free b.c.
i / As it is shown in the Appendix, there are two kindslof
ORI =10+ Dji(aR){yen kR (KR =gi(kRI]  _ 1 " 11odes in this case(i)pt%e pure surface mode with
+691(kR)}=0, (55 =og, and

5 5 , . (i) mixed longitudinal-transverse-surface modes, whose
where y=(wlo— 070)/(0°~wTg), §=[les+(I+1)en]  frequencies obey the following equation:
andRis the QD radius. The dipolat € 1) mode frequencies
calculated using Eq5) for CdSe QDs of different radii are  48[qRj1(qR) —j1(qR)](kR)?g1(kR) + BL(AR)?j1(R)
plotted in Fig. 1. Note that none of them coincide with the 5 ,
Frohlich frequency. The electrostatic Ti@ch mode corre- X[L((kR)*+2)g1(kR) — 2(kR)g1(kR) ]=0. (®)
sponding to a uniform polarization of the sphris not an
eigenmode of the considered problem with rigid b.c. One car,
notice some bending in the dispersion curves of Fig. 1 neaj
wg. The bending results in a small peak in the density of
=1 states, defined ap(w)=(1/R)2,6(w’— »?), shown
calculated for a larger CdSe sphere in Fig. 2. The peak, a
parently situated at the Hntich frequency, is formed by the
modes whose frequencies are slighly lower or higher than
wg

The modes determined by E¢) do not produce any
ectric field outside the QD, therefore, they are not dipole-
ctive (although they can be Raman-active under certain
conditions®). Therefore, the only dipole-active phonon mode
in this case is the Fidich mode, which is characterized by
Rhe uniform displacement and polarization in the QD.

Ill. FIR ABSORPTION

The dependence of the mode frequencies on the QD ra- A. Polarizability of a single QD
dius calculated for most of the othi+VI andlll-V materials

- . . . Let us consider a spherical QD subjected to an external
(whose bulk phonon dispersion curves are considered isotro- o P Q ) , i
pic) is simlar to that shown in Fig. 1. However, InP is an €lectromagnetic fieldze,, of frequencyw. The induced di-

interesting exception. TheO and TO phonon branches do Ppole moment of the sphere consists of two paRs; P,
not overlap in bulk InB? so, there is a gap inside the optical + P,, where
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FIG. 3. The radial dependence of the 1 phonon frequencies calculated for INnP QDs embedded in a matrixegitti.5 (left) and
€,=4.5 (right), assuming rigid b.c. The Fitich frequency is 336 and 326 crh, respectively.

Bo= e R @ D, (3t [ (3, &)l
€, 2¢
R
is a background polarization. The frequency-dependent part, =f (ul+2uf)r2dr. 11
P,, is due to the forced dipolar vibrationsi{) induced in 0
the sphere by the field, In (10) and(11), the indiced =1 andm=0 have been omit-
ted andu, and u’ mean the radial dependence of the dis-
. J .. . placement components. The expression for the “back-
Pi=——= (‘f (D'Eim)df), (8)  ground” polarizability a is obvious from Eq(7).
IEext The imaginary part of the polarizability obeys a certain

> - L > sum rule. Since the coefficienf3 are equal to zero fot
where p:(eT/U)Pf is the polarization vector an®iy #1 and (for the chosen field polarizatiorm+0, we can
=3ep/(€; +2€)Eey is the field inside the sphere. The dis- yrite

placementﬁf can be found through the Green’s function of

EqS(l) and(Z), E |Dn|2:(3/4/77)f (52)2 dF: R3.
n
- 1. -
i=— UM_TGEinta Consequently,
3e €
=% - Im adw?= 7R3 ——— (024 — w2 ). (12
G= S Unlm‘funlm ) J (E§+26h)2( Lo~ @70

. ]
nem 02— i, tid

The integral(12) is equal to the area under the Lorentzian
where Uy, are the eigenmodes discussed in the previou§ontour centred at the Hnbich frequency, which corresponds
to the only dipole-active mode allowed in a free-standing
sphere. This latter case is perfectly described by the polariz-
abilty obtained by using the bulk dielectric function,

section, normalized by the conditighu,,|dr=1.
The QD polarizability is defined as=P/(enEqy)) =g
+ a4. Combining Eqgs(8) and (9) and choosing the axis

along E.,;, we arrive to the following expression for its wfo—wio
frequency-dependent part: €s= €5 1+ ————| (13
WTo— W —16
3elen L, D; for the QD
= (0o~ 0T 2 5 = 10
et2e)2 0 O 2 wi—w2—is e

a=— " R3 (14)

where et 2ey
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FIG. 4. Effective dielectric
function (imaginary part—left;
real part—right of composites
containingf=0.05 of CdSe QDs
of different radii embedded in a
matrix with €,=3. A Gaussian
distribution of sphere’s radii was
assumed, with a mean value as in-
dicated in the figure and a relative
standard deviation of 5%* was
calculated using the modified
Maxwell-Garnett formalism and
the single QD polarizability given
120 160 200 240 120 160 200 240 by Eas.(8), (10) (11).
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Thus, there is no quantum size effect in the phonon-related If one wishes to describe the dielectric properties of a
dielectric response of a free-standing QD, which is perfectlyhigherf composite, thémodified Maxwell-Garnett approxi-
described by the DCelectrostatit model* mation is insufficient, because the dipole—dipole and higher
On the contrary, several confined modes contribute to thenultipole interactions between the dots become increasingly
polarizabilty of a QD embedded in a rigid matrix. This may important. This problem was studied by many authors, in-
result in a multimodal structure of the absorption ofa SyStel’Tuuding various approximate Scherr(we Ref. 36 for a re-
containing sufficiently small QD¥° However, as we wil view) and an exact solution of the Maxwell equations for

see below, when the QD size increases, the net effect of theigre than one sphef&.t turns out that the classical mean-
increasing number of allowed dipolar modes converges tgg|q equation

that of the Frblich mode. Note that InP QDs, where the gap

mode occurs, are an exception to this scenario. The calcula-

tions show that over 95% of the oscillator strengt) is o o

concentrated in the gap mode independently of the QD size. "€, ¢ "€ 4 (45

_ _ . e*+%(es—e*) 6*+§(6h—6*)
B. Dielectric function of a QD ensemble

It is hardly possible to study a single QD by means of FIR
spectroscopy. Since both the QD size and distance betwe&mown as the Bruggeman approximatitiis the most popu-
them are much smaller than the FIR radiation wavelength, lar, partly owing to its simplicity. Like the coherent potential
the dielectric properties of a QD ensemble can be describedpproximation in the theory of electronic properties of
by an effective(averagg dielectric function,e*. The FIR  alloys2° it gives a good interpolation of the dielectric prop-
absorption of the ensemble can be calculated asrties of a composite material between those of its end mem-
(2m/\)Im €*/(Ree*)Y2. Usually the QD filling fractionf,  bers although it may fail in reproducing details like spectral
of the experimentally studied materials does not exceed tils or fine structure. It is also knowhthat, for a strong
few percent(except for so called close-packed QD films perturbation(of the dielectric function such a mean-field
Under these circumstances, the effective medium approadpproximation works well if the concentration of inclusions
originally due to Maxwell-Garnett can be used with confi- is not too small. Unfortunately, the inclusion of quantum-size
dence to describe the average dielectric function. A versiowffects in this formalism is not straightforward. As any ap-
of this approach, which includes, to a certain extent, thgroach designed to be valid for a wide filling fraction range
dipole—dipole interaction between the polarized QDs andncluding f~0.5, the Bruggeman approximation treats both
takes account of their size dispersibnwas used in this composite constituents on equal grounds. Therefore, one
work. The real and imaginary parts &f calculated for com- needs to define the dielectric function of the QD phase. A
posites containing ah=0.05 volume fraction of CdSe QDs phenomenological way of doing this was suggested in Ref. 8.
of different sizes are shown in Fig. 4. One can see that th& we equalize the polarizability given by the classical ex-
guantum confinement effect vanishes as the QD size inpression(14) to that given by formuld10) (with «y added,
creases. we obtain
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FIG. 5. Imaginary part of the effective dielectric function of
composites containin@=1 nm CdSe QDs embedded in a matrix
with €,=3, calculated using Eq$15), (16). The filling fraction is

indicated in the figure.
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€= €

where

B (€2 +2€p) ay

X" 3en  (4nR3)

If a; contains a single resonance at thelffiah frequency,

(16)
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(13). The imaginary part of the effective dielectric function
calculated using Eq(15) for composites containing CdSe
and InP QDs in high concentration is presented in Figs. 5, 6.
Note that there is no quantum size effect in the case of InP
QDs, which therefore were described by the bulk dielectric
function (13).

IV. DISCUSSION AND CONCLUSIONS

Results obtained in the previous section demonstrate that,
for sufficiently small QDs embedded in a rigid matrix, the
phonon-related FIR absorption can have a multimodal spec-
trum with several resonances corresponding to the few dipo-
lar modes allowed in such a small sphere. When the QD size
increasesabove approximately 3 nm for CdSe and ¢d8e
multimodal structure disappears and the absorption spectrum
becomes “classical,” with the only resonance at theHfiah
mode. | would like to emphasize that, in fact, this is an
apparent effect of many vibrational modes with the frequen-
cies close tavg. Although the density of=1 states has only
a small peak at the Fntich frequency(Fig. 2), the modes
closest to it have the largest oscillator strength. For example,
in the case of InP QDs embedded in a matrix with an appro-
priate dielectric constant, the gégurface mode is by far the
strongest in the FIR absorption. This effectively removes the
quantum size effect for such dots. No quantum size effect
should be expected also for free-standing QDs, where the
size-independent Fhtich mode is allowed.

There are few experimental observations of quantized di-
polar phonon modes in QB$% One needs very small
nanoparticles with a quite narrow size distribution. Neverthe-
less, using modern colloidal chemistry techniqtfe4?it is
possible to obey these conditions. The experimentally ob-
served multimodal structure in the absorption spectra of
CdSe QD8 was successfully described by the present theory.
This means that the continuous model works well for dots as
small as 2 nm in diameter and the lattice dynamics of such
small crystallites has much in common with bulk crystals.

€, defined by Eq.(16) is just the bulk dielectric function The multimodal structure of the absorption also implies that

FREQUENCY [cm]

Im 1/e*

FIG. 6. Imaginary part of the
effective dielectric function(left)
and the dielectric loss function
(right) of composites containing
R=1 nm InP QDs embedded in a
matrix with e,=4.5, calculated
using Eqgs.(15), (16). The filling
fraction is indicated in the figure.
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rigid mechanical b.c. is a reasonable approximation to the
reality. However, this may depend on the details of the nano- [ Close-packed CdS
crystal fabrication technique. Chemically produced QDs al- . QDs (R=2.5nm)
ways have a stabilizing organic shell, which prevents them r
from agglomeration in the colloidal solutidfiz*>The CdSe
QDs studied in Ref. 8 were capped with 1-thioglycerol and
embedded in a polymethylmetacrilat®MMA) matrix
Neither 1-thioglycerol no PMMA have detectable optical
phonon modes in the reststrahlen band of CtfSehich
makes the rigid mechanical b.c. plausible in this case. Con-
trary to this result, just a single absorption peak between the
bulk TO and LO phonon frequencies was observed in the
spectra of CdS QDs capped with thiophenolate even for the
QD size as small as 1 nfd,which can be manifest because
the free mechanical b.c. appears more relevant for this sys-
tem. An interesting experiment was performed in Ref. 22,
where the FIR spectra of embedded in a matrix and free-
standing(i.e., obtained by chemically removing the matrix I
CdS QDs were compared. While the spectrum of the free- N T L L
standing QDs presented in Ref. 22 contains a single feature 200 250 300
at the Fralich frequency, that ofexactly the sameQDs FREQUENCY [cm™]
embedded in the matrix shows a weak structure. Probably ) . ) .
the size uniformity of these QDs synthetized in a Langmuir- FIG. 7. Experimental transmittance spectrum of a thin matrix-
Blogett film was insufficient to better resolve the phonon-free film of CdS QDs(Ref. 43. The Frdulich (e,=1.5) and bulk
related spectral structure. TO phonon frequencies are indicated.

Let us turn to the collective effects in the FIR absorption
by QD ensembles. As any kind of interaction does, thetiOn between the properties of diluted Composites and close-
dipole—dipole interaction between polarized QDs shouldPacked arrangements of polarizable spheres.
split the resonant dipolar mode of a single QD. This effect Experimentally, it is not easy to precisely control the QD
was calculated explicitly for two touching spheres and for &filling fraction in composite films, partially because of the
linear chain of sphere¥,although in both cases the shift of presence of the organic shell. The mean filling fraction of so
the transverse dipolar mode with respect to thénkich fre-  called “close-packed QD films” studied in Refs. 8,20 and
quency did not exceed 5%. If the single QD polarizability 41, in fact, did not exceed 30—-35%. Thus, it is hardly pos-
contains more than one resonance, increasing the QD fillingible to study the concentration effect in QD ensembles
fraction results not only in the mode’s frequency shift butquantitatively at this stage. However, it is noticeable that, in
also in the increase of the relative intensity of the lowermany cases, experimental FIR spectra of QD systems show a
frequency moddsee Fig. 5. This concentration—dependent Strong absorption peak approxmately at the bk phonon
redistribution of the oscillator strength is also predicted byfrequency, instead ofor,** or a broad bulk-like reflection
the modified Maxwell-Garnett theof. If the QD polariz- band extending fromwro to @ o.* An example of such a
ability is given by the classical expressi@i¥), the Brugge- spectrum is shown in Fig. 7. In my opinion, the only way to
man model predicts a gradual shift of the absorption peaEXp|ain these and other similar results is to admit that the
from wg to wro when the QD concentration increag@$y.  Samples contained regions with elevated local QD concentra-
6, left). At the same time, the loss peak shifts frasg to  tion, which produced the absorption @fo as predicted by
o, o (Fig. 6, righd. These peaks correspond to transverse anthe mean-field calculationgig. 6).
longitudinal collective excitations in the ensemble. Such a The last issue that | would like to discuss here concerns
strong collective effect, which was not found for the linearthe transition from the Fidich mode to bulk polaritons
chain of polarizable spheréé;s probably due to their three- When the crystal size increases. The electrostatic thesesy
dimensional arrangement. The principal shortcoming of théRefs. 19 and 4Bpredicts that this transition is governed by
Bruggeman model is the assumption of the topologicathe value of koR, where ko=¢ w/c (typically
equivalence of two ingredients of the composite medium~0.1 um™1). If koR is small compared to unity, there are
Nevertheless, | obtained similar concentration dependence oinly small corrections tag. Only whenkoR>1, the bulk
the absorption and loss peaks applying a different modelalue of the TO—LO splitting is achieved. Nevertheless, ex-
namely, a coherent potential approximation scheme deveperiments show an absorption peakvat, and a longitudinal
oped for an ensemble of polarizable spheres randomly occuless peak atw o even for submicron polycrystalline CdS
pying the sites of a 3D lattic®. It is beyond the scope of this films.*® Moreover, a strong and sharp absorption peala
paper to compare different models for calculation of the di-(together with that ator) was observed for 0.Lm crystal-
electric properties of composites. However, | agree with thdites of MgO?“® which were much larger than QDs consid-
authors of Ref. 46 that only experiments may decide whictered in the present paper but still much smaller than the FIR
of the effective medium theories provides the best interpolawavelength. These particles should be perfectly described by
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the electrostatic theory because of their size and due to the APPENDIX
i i i 40
fact that their concentration was just 3—4%. So, the nature of | consider here thd=1 spheroidal modes in a free-

the observedr O-like peak remained unexplained. | think standing sphere. The necessary stress tensor components are
this was also a dipole—dipole interaction effect similar to one gsp ' y P

discussed for QD ensembles. Owing to disorder, phonon po- 4%j,(qr)

laritons are confined in small coherence regions within a mi- o""=—2pB A; '—2 —AQ?j l(qr)l
crocrystal. Each coherence regi@@R) is embedded in the

matrix of the same material and closely surrounded by simi-

lar CRs. The electrostaic interaction between various CRs 2B i gi(kr) Y, (6, )
within a microcrystal produces the collective polariton mode Ydr| r A 7 550

at wto. This may happen even in relatively small microc-
rystals wherekoR<1, because there is no coherence be-
tween the displacements in different CRs implied in the a''=—ppBr

d_
2A - Lii(an/r]
consideratiof? of the polariton modes in a sphere.

In conclusion, quantized dipolar phonon modes in spheri- 2
g . d<g,(kr)| a
cal QDs made of a polar semiconductor material were con- B ———{—Y,n(6, ), (A1)
sidered in the framework of a macroscopic model. These dr? a6

modes are presented calculated for CdSe and InP QDs su\lRI—h
jected to rigid mechanical boundary conditions. A gap modq
is predicted in the latter case for a certain range of values o
the surrounding matrix dirlectric constant. Given the eigen-
modes and eigenvectors, the phonon-related polarizability of
a single QD can be calculated as explained in Sec. Il A.
There is a sum rule for the total oscillator strength of all
guantized dipolar modes, which is equal to that of thenFro

ere A=p8,/(2B7)—1. The ¢'¢ component vanishes

entically (it is nonzero only for the torsional modes not
onsidered heje Puttingo'" = o"?=0 at the sphere surface
elds Eq.(6).

The electrostatic b.c.’s result in the following equation:

B, CIZ,BL Aq,

Aot g (kR R
R 9l )—kZBTEM(q)

lich mode, the only allowed dipole-active one for a free- VEg
standing QD. Moreover, the lineshape produced by all the —
; i i i i C, (2+2€) [ 02— w?
allowed modes in a rigid-boundary QD is practically indis- _ =115 h F (A2)
tinguishable from the Fidich mode forR>2 nm for typical R3 €n wro— w?]’

[I-VI and IlI-V materials. Increasing the concentration of _
QDs also leads to the smearing of the multimodal structurevhere+ corresponds to the sign pfw?o— )/ 8] andC,
if it exists for a single QD. However, the most important is the constant appearing in the expression for the potential
concentration effect is the increase of the appatgddTO  outside the sphereSec. 1). With the help of Eqs(Al) for
splitting (i.e., the distance between the loss and absorptiohi=R, one can show that
peaks. | suggest that this effect, owing to the dipole—dipole . .
interaction between the polarized particles, is responsible for [ BLA?i1(aRJA, = [2B7k?g;(kR)]B; =0
the unexpected experimentally observed absorptiomgt  Then Eq.(A2) can be reduced to
by small crystallites, including quantum dots. _

Ci(wi—w?)=0. (A3)
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ERRATUM TO PAPER

”Dipolar vibrational modes in spherical semiconductor quantum dots”
by M I Vasilevskiy,
Phys. Rev. B 66, 195326 (2002)

Eq.(5) of the above paper contains some errors. The correct equation for the frequencies of the spheroidal modes
of angular momentum [ is:

qRji(qR){veX[~kRg;(kR) + lgi(kR)] + 6;[kRg;(kR) + gi(kR)]}

=1+ Dji(gR){ven[kRg)(kR) — lgi(kR)] + 01g9/(kR)} = 0

The calculated results presented in the paper are correct.





