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Dipolar vibrational modes in spherical semiconductor quantum dots

M. I. Vasilevskiy
Departamento de Fı´sica, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal

~Received 6 May 2002; published 27 November 2002!

Spatially quantized dipolar phonon modes in a spherical quantum dot~QD! made of a polar isotropic
material are considered in the framework of a continnum model. Different mechanical boundary conditions are
analyzed, which are shown to strongly influence the spectrum of the dipole-active modes. The phonon-related
polarizability of a single QD and an average dielectric function of a composite containing QDs are calculated.
Numerical results are presented for CdSe and InP dots. A strongly dipole-active gap mode is predicted for InP
QDs embedded in a matrix with a defined range of dielectric constant. The effect of increasing QD concen-
tration in ensembles is discussed in terms of the dipole–dipole interaction between the dots, which can result
in their bulk-like FIR absorption spectra with a peak at the transverse optical~TO! phonon frequency instead
of the Fröhlich frequency. It is suggested that similar effects might occur in individual microcrystals, which can
explain their absorbtion of FIR radiation at the TO phonon frequency, despite having a size much smaller than
the radiation wavelength.

DOI: 10.1103/PhysRevB.66.195326 PACS number~s!: 78.30.2j, 63.22.1m
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I. INTRODUCTION

The effects of reduced space dimensions on the vib
tional modes in quantum dots~QDs! are the subject of much
current interest.1–10 Optical phonons confined in semicon
ductor QDs are important since they affect the electro
properties and are responsible for Raman scattering, whic
one of the standard tools for the characterization of semic
ductor structures. Most of the experimental studies of opt
phonons in QDs have been performed by means of Ra
spectroscopy.2,4–7,9,11,12 From the theoretical viewpoint
along with numerical lattice dynamics calculations f
nanocrystals of some materials,13–15 a continuum model of
Raman-active modes was developed for spherical QDs,16,17

which takes into account both mechanical and electrost
confinement. It has been shown to give a good descriptio
the experimentally observed spectra unless some furthe
fects ~such as disorder! are involved.2,9,18 However, to the
best of my knowledge, nobody has succeeded to obs
unambigously different quantized optical phonon modes
solved in Raman spectra. The reason is that, usually the h
est frequency mode~with l 50 andn51 in a spherical QD,
wheren and l are the spherical quantum numbers! is much
more intense than the others, which, owing to the inevita
QD size dispersion, produce just an asymmetric broaden
of the fundamental mode. Even if, under resonant conditio
two or three quantized modes have a comparable Ra
scattering intensity,18 they are hard to resolve because of t
small dispersion of the bulk optical phonon curves of t
most of polar semiconductor materials.

Quantum-size effects on optical phonons can be be
seen by far-infrared~FIR! absorption rather than Rama
spectroscopy. As will be shown below, dipolar vibration
modes generally fill the whole range between the bulk tra
verse (vTO) and longitudinal (vLO) optical phonon frequen
cies. Although the absorption of, say, a micrometer-s
sphere contains a single peak at the Fro¨hlich frequency,19

vF5@(es
`vLO

2 12ehvTO
2 )/(es

`12eh)#1/2 ~where es
` and eh

are the high-frequency dielectric constants of the sphere
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surrounding medium!, the situation changes when the m
chanical confinement becomes important. As numerical
tice dynamics calculations show,20 several of the confined
modes can produce significant FIR absorption in the limit
sufficiently small QDs. Even though there are relatively fe
FIR spectroscopy studies of phonons in QDs,1,8,10,20–22the
quantum-size effects indeed have been reported in som
them, including the observation of a well-resolved mul
mode structure in the transmittance spectra of thin films c
taining highly monodisperse CdSe QDs.8

Macroscopic approaches for optical phonons in semic
ductor nanostructures are attractive because they give
lytical results, which facilitates calculations of phono
related observable properties. In the simplest approxima
known as the dielectric continuum~DC! model, one solves
the electrostatic equations for a~confined! polar medium
with a frequency-dependent dielectric function describing
bulk phonon response. When applied to a spherical part
this model predicts one surface~or interface! phonon mode
for each numberl>1. ~The l 51 one, with the frequency
vF , is usually called the Fro¨hlich mode.19! For a semicon-
ductor heterostructure, the DC model yields interface a
confined phonon modes, both of which were observ
experimentally.23 However, further experiments on shor
period superlattices showed that the confined and inter
modes intermix. Moreover, microscopic calculations24 dem-
onstrated that the relative ionic displacement field is conti
ous across the interface, contrary to the results obtained f
the DC model. A number of alternative macroscopic a
proaches were proposed, such as the hydrodynamics25 and
modified DC26,27 models. The former generalized the clas
cal Born and Huang theory28 of long-wavelength optical
phonons in polar media by adding new terms in the equa
of motion, which describe the effects of spatial dispersi
Unfortunately, owing to the mechanical boundary conditio
~b.c.’s! chosen in Ref. 25, this model neglected the mixing
LO and TO phonon modes and produced results inconsis
with the experimental and numerical calculations. In t
modified DC model, the confined phonons obey both el
©2002 The American Physical Society26-1
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trostatic and mechanical b.c.’s, that is, the relative ionic d
placement is continuous across interfaces. The complete
of orthogonalized phonon modes in a heterostructure
first derived in Ref. 27, with the ionic displacement fields
good agreement with those obtained from the microsco
calculations.24 However, the confined phonons in this a
proach are dispersionless, i.e., all have the same frequ
(vLO), therefore, the~modified! DC model is unsuitable for
describing the fine structure of Raman or FIR spectra form
by several confined phonon modes with slightly different f
quencies. The phonon dispersion has been incorporate
the model proposed in Refs. 29 and 30, which used the e
tions of motion of the hydrodynamic model25 but with dif-
ferent mechanical b.c.’s allowing the intermixing of confin
LO, TO and interface modes. This approach, consisting
solving the coupled continuous equation of motion and P
son equation with b.c.’s specified in the next section, gi
spectra of eigenmodes for semiconductor hetrostructu
which are very close to those of microscopic models,31 and
has been succesfully applied for the calculation of Ram
active modes in spherical QDs.16,17

In this work, a theory of dipole-active phonon modes
spherical QDs made of a polar material is presented, whic
based on the approach proposed in Refs. 29 and 30.
theory presented below has allowed for a good descriptio
the experimental results of Refs. 8 and 20. Apart from p
viding the details of the calculations~not published before!,
the following issues will be addressed:~i! a comparison of
different mechanical boundary conditions;~ii ! collective ef-
fects in QD ensembles and~iii ! how the Fro¨hlich-type ab-
sorption is replaced by the bulk-like one when the crystal
size increases. The paper is organized as follows. In Sec
the principal equations are presented and quantized m
are obtained. In Sec. III, the observable quantities, such
effective dielectric function of a QD ensemble, are calc
lated. Section IV is devoted to a discussion and conclusio

II. QUANTIZED DIPOLAR MODES

The phenomenological equation of motion has the follo
ing form:25,29,30

~v22vTO
2 !uW 5bL¹W ~¹W uW !2bT¹W 3~¹W 3uW !1

eT

m
¹f, ~1!

whereuW is the relative displacement of the positive and ne
tive ions,bL andbT are the curvature parameters of the bu
LO and TO phonon dispersion curves, eT

TABLE I. Material parameters used in the calculations.

Parameter CdSe InP

BZ centervTO , cm21 169 307
BZ centervLO , cm21 211 347
BZ edgevTO , cm21 175 315
BZ edgevLO , cm21 152 330
Damping, cm21 8 7.5
es

` 6.2 5.7
19532
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5Aes
`mv(vTO

2 2vTO
2 )/(4p) is the transverse charge,v the

volume per cation–anion pair andm is the reduced mass
The second equation, which relates the electrostatic po
tial, w, to the mechanical displacement, reads as

¹W S es
`¹W w2

4peT

v
uW D50. ~2!

When applied to an infinite crystal, Eqs.~1! and~2! provide
a reasonable~isotropic! approximation for its optical phonon
dispersion curves. Contrary to Refs. 16 and 17, wherebL and
bT were taken constants measured in the Brillouin zone c
ter, I considered them as frequency-dependent parame
defined in such a way that theTO and LO branches deter-
mined by Eqs.~1! and ~2! coincide with the phonon disper
sion curve of a diatomic linear chain,

v2~K !5v1
21v2

21A~v1
21v2

2!224v1
2v2

2sin2~K/2!, ~3!

whereK varies between 0 andp, v1
25vmin

2 /2, v2
25(vmax

2

22v1
2)/2 andvmin andvmax are the minimum~Brillouin zone

edge! and maximum (G point! LO phonon frequencies~see
Table I!. This allows us to reproduce the zero group veloc
and high density of states near the edges of the pho
bands, which is impossible with parabolic dispersion re
tions used in Refs. 16 and 17. For theTO branch with up-
ward dispersion, I used the expression~3! with the opposite
sign of the second term in the square root. Outside the
lowed frequency band,K was considered imaginary. Th
frequency-dependent bending parametersbL and bT were
calculated as the corresponding derivatives,2dv2/dK2.

The spherically symmetric solution of Eqs.~1! and~2! is:

ur5FAl

d

dr
j l~qr !1Bl l ~ l 11!

gl~kr !

r
1Cllr

l 21GYlm~u,f!,

uu5H Al j l~qr !1Bl

d

dr
@gl~kr !r #1Clr

l J 1

r

]

]u
Ylm~u,f!,

~4!

uw5$•••%
1

r sinu

]

]f
Ylm~u,f!,

whereq5A(vLO
2 2v2)/bL, k5Au(vTO

2 2v2)/bTu, j l is the
spherical Bessel function,Ylm the spherical harmonic an
gl(x) is either j l(x) or i 2 l j l( ix) depending on the sign o
@(vTO

2 2v2)/bT#. @Note that the solution~4! does not in-
clude the torsional displacement component,32 which is de-
coupled from the other components and has no associ
electric field!. The constantsA, B andC, which determine the
longitudinal, transverse and surface components of the c
fined vibration of a given frequency, are defined by b.c
The complete set of b.c.’s includes29,30,32~i! the continuity of
the electrostatic potential and the normal component of
electric displacement, and~ii ! the continuity of all compo-
nents ofuW and componentss ir ( i 5r ,u,f) of the stress ten-
sor at the surface. The electrostatic b.c.~i! requires matching
to the potential, C̄l r

2 l 21, and electric field, 2C̄leh( l
6-2
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DIPOLAR VIBRATIONAL MODES IN SPHERICAL . . . PHYSICAL REVIEW B 66, 195326 ~2002!
11)r2l22, outside the sphere. As to the mechanical b.c
shall consider two limiting cases of~ii !: ~1! a rigid sphere
(uW 50 at the surface! and ~2! a free-standing sphere (s ir

50 at the surface!.

A. Rigid b.c.

The equation for the frequencies of the spheroidal mo
of angular momentuml is

qR jl8~qR!$geh@kRg18~kR!2 lg1~kR!#1d l@kRgl8~kR!

1gl~kR!#%2 l ~ l 11! j l~qR!$geh@kRgl8~kR!2gl~kR!#

1d lgl~kR!%50, ~5!

where g5(vLO
2 2vTO

2 )/(v22vTO
2 ), d l5@ l es

`1( l 11)eh#
andR is the QD radius. The dipolar (l 51) mode frequencies
calculated using Eq.~5! for CdSe QDs of different radii are
plotted in Fig. 1. Note that none of them coincide with t
Fröhlich frequency. The electrostatic Fro¨hlich mode corre-
sponding to a uniform polarization of the sphere19 is not an
eigenmode of the considered problem with rigid b.c. One
notice some bending in the dispersion curves of Fig. 1 n
vF . The bending results in a small peak in the density ol
51 states, defined asr(v)5(1/R)(nd(v22vn

2), shown
calculated for a larger CdSe sphere in Fig. 2. The peak,
parently situated at the Fro¨hlich frequency, is formed by the
modes whose frequencies are slighly lower or higher t
vF .

The dependence of the mode frequencies on the QD
dius calculated for most of the otherII-VI andIII-V materials
~whose bulk phonon dispersion curves are considered iso
pic! is simlar to that shown in Fig. 1. However, InP is a
interesting exception. TheLO andTO phonon branches do
not overlap in bulk InP,33 so, there is a gap inside the optic

FIG. 1. The radial dependence of thel 51 phonon frequencies
calculated for CdSe QDs embedded in a matrix witheh53 ~rigid
b.c.!. The Fröhlich frequency is 192 cm21.
19532
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phonon band. Wheneh is such thatvF falls inside theLO or
TO band, the situation is not much different from that
CdSe~see Fig. 3, left!. However, whenvF occurs in the gap,
a new feature appears, which is a gap mode of predomina
surface nature. The gap mode frequency is close tovF and
nearly independent of the QD size~see Fig. 3, right!. As we
will show, this mode, when it exists, should be dominating
the FIR absorption spectra.

B. Free b.c.

As it is shown in the Appendix, there are two kinds ofl
51 modes in this case:~i! the pure surface mode withv
5vF , and

~ii ! mixed longitudinal–transverse-surface modes, wh
frequencies obey the following equation:

4bT@qR j18~qR!2 j 1~qR!#~kR!2g1~kR!1bL~qR!2 j 1~qR!

3@~~kR!212!g1~kR!22~kR!g18~kR!#50. ~6!

The modes determined by Eq.~6! do not produce any
electric field outside the QD, therefore, they are not dipo
active ~although they can be Raman-active under cert
conditions16!. Therefore, the only dipole-active phonon mo
in this case is the Fro¨hlich mode, which is characterized b
the uniform displacement and polarization in the QD.

III. FIR ABSORPTION

A. Polarizability of a single QD

Let us consider a spherical QD subjected to an exte
electromagnetic field,EW ext, of frequencyv. The induced di-
pole moment of the sphere consists of two parts,PW 5PW 0

1PW 1, where

FIG. 2. Density of thel 51 phonon states calculated for a CdS
QD @R5125 nm embedded in a matrix witheh53 ~rigid b.c.!#.
6-3
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FIG. 3. The radial dependence of thel 51 phonon frequencies calculated for InP QDs embedded in a matrix witheh51.5 ~left! and
eh54.5 ~right!, assuming rigid b.c. The Fro¨hlich frequency is 336 and 326 cm21, respectively.
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PW 05eh

es
`2eh

es
`12eh

R3EW ext ~7!

is a background polarization. The frequency-dependent p
PW 1, is due to the forced dipolar vibrations (uW f) induced in
the sphere by the field,

PW 152
]

]EW ext
S 2E ~pW •EW int!drW D , ~8!

where pW 5(eT /v)uW f is the polarization vector andEW int

53eh /(es
`12eh)EW ext is the field inside the sphere. The di

placementuW f can be found through the Green’s function
Eqs.~1! and ~2!,

uW f52
veT

m
ĜEW int ,

Ĝ5 (
n,l ,m

uW nlm* ^ uW nlm

v22vnlm
2 1 id

, ~9!

where uW nlm are the eigenmodes discussed in the previ
section, normalized by the condition* uuW nlmu2drW51.

The QD polarizability is defined asa5P/(ehEext))[a0
1a1. Combining Eqs.~8! and ~9! and choosing thez axis
along EW ext, we arrive to the following expression for it
frequency-dependent part:

a15
3es

`eh

~es
`12eh!2

~vLO
2 2vTO

2 !(
n

Dn
2

vn
22v22 id

, ~10!

where
19532
rt,

s

Dn5~3/4p!1/2E ~uW n•eW z!drW

5E
0

R

~un
r 12un

u!r 2 dr. ~11!

In ~10! and~11!, the indicesl 51 andm50 have been omit-
ted andun

r and un
u mean the radial dependence of the d

placement components. The expression for the ‘‘ba
ground’’ polarizabilitya0 is obvious from Eq.~7!.

The imaginary part of the polarizability obeys a certa
sum rule. Since the coefficientsD are equal to zero forl
Þ1 and ~for the chosen field polarization! mÞ0, we can
write

(
n

uDnu25~3/4p!E ~eW z!
2 drW5R3.

Consequently,

E Im adv25pR3
3es

`eh

~es
`12eh!2

~vLO
2 2vTO

2 !. ~12!

The integral~12! is equal to the area under the Lorentzi
contour centred at the Fro¨hlich frequency, which correspond
to the only dipole-active mode allowed in a free-standi
sphere. This latter case is perfectly described by the pola
abilty obtained by using the bulk dielectric function,

es5es
`S 11

vLO
2 2vTO

2

vTO2v22 id
D , ~13!

for the QD,19

a5
es2eh

es12eh
R3. ~14!
6-4
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FIG. 4. Effective dielectric
function ~imaginary part—left;
real part—right! of composites
containing f 50.05 of CdSe QDs
of different radii embedded in a
matrix with eh53. A Gaussian
distribution of sphere’s radii was
assumed, with a mean value as i
dicated in the figure and a relativ
standard deviation of 5%.e* was
calculated using the modified
Maxwell-Garnett formalism and
the single QD polarizability given
by Eqs.~8!, ~10!, ~11!.
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Thus, there is no quantum size effect in the phonon-rela
dielectric response of a free-standing QD, which is perfec
described by the DC~electrostatic! model.19

On the contrary, several confined modes contribute to
polarizabilty of a QD embedded in a rigid matrix. This ma
result in a multimodal structure of the absorption of a syst
containing sufficiently small QDs.8,20 However, as we will
see below, when the QD size increases, the net effect o
increasing number of allowed dipolar modes converges
that of the Fro¨hlich mode. Note that InP QDs, where the g
mode occurs, are an exception to this scenario. The calc
tions show that over 95% of the oscillator strength~11! is
concentrated in the gap mode independently of the QD s

B. Dielectric function of a QD ensemble

It is hardly possible to study a single QD by means of F
spectroscopy. Since both the QD size and distance betw
them are much smaller than the FIR radiation wavelengthl,
the dielectric properties of a QD ensemble can be descr
by an effective~average! dielectric function,e* . The FIR
absorption of the ensemble can be calculated
(2p/l)Im e* /(Ree* )1/2. Usually the QD filling fraction,f,
of the experimentally studied materials does not excee
few percent~except for so called close-packed QD films!.
Under these circumstances, the effective medium appro
originally due to Maxwell-Garnett34 can be used with confi
dence to describe the average dielectric function. A vers
of this approach, which includes, to a certain extent,
dipole–dipole interaction between the polarized QDs a
takes account of their size dispersion,35 was used in this
work. The real and imaginary parts ofe* calculated for com-
posites containing anf 50.05 volume fraction of CdSe QD
of different sizes are shown in Fig. 4. One can see that
quantum confinement effect vanishes as the QD size
creases.
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If one wishes to describe the dielectric properties o
higherf composite, the~modified! Maxwell-Garnett approxi-
mation is insufficient, because the dipole–dipole and hig
multipole interactions between the dots become increasin
important. This problem was studied by many authors,
cluding various approximate schemes~see Ref. 36 for a re-
view! and an exact solution of the Maxwell equations f
more than one sphere.37 It turns out that the classical mean
field equation,

f
es2e*

e* 1
1

3
~es2e* !

1~12 f !
eh2e*

e* 1
1

3
~eh2e* !

50, ~15!

known as the Bruggeman approximation,38 is the most popu-
lar, partly owing to its simplicity. Like the coherent potenti
approximation in the theory of electronic properties
alloys,39 it gives a good interpolation of the dielectric prop
erties of a composite material between those of its end m
bers although it may fail in reproducing details like spect
tails or fine structure. It is also known39 that, for a strong
perturbation~of the dielectric function!, such a mean-field
approximation works well if the concentration of inclusion
is not too small. Unfortunately, the inclusion of quantum-s
effects in this formalism is not straightforward. As any a
proach designed to be valid for a wide filling fraction ran
including f '0.5, the Bruggeman approximation treats bo
composite constituents on equal grounds. Therefore,
needs to define the dielectric function of the QD phase
phenomenological way of doing this was suggested in Re
If we equalize the polarizability given by the classical e
pression~14! to that given by formula~10! ~with a0 added!,
we obtain
6-5
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es5es
`

11
8p

3 S eh

es
`D x

12
4p

3
x

, ~16!

where

x5
~es

`12eh!

3eh

a1

~4pR3/3!

If a1 contains a single resonance at the Fro¨hlich frequency,
es defined by Eq.~16! is just the bulk dielectric function

FIG. 5. Imaginary part of the effective dielectric function
composites containingR51 nm CdSe QDs embedded in a matr
with eh53, calculated using Eqs.~15!, ~16!. The filling fraction is
indicated in the figure.
19532
~13!. The imaginary part of the effective dielectric functio
calculated using Eq.~15! for composites containing CdS
and InP QDs in high concentration is presented in Figs. 5
Note that there is no quantum size effect in the case of
QDs, which therefore were described by the bulk dielec
function ~13!.

IV. DISCUSSION AND CONCLUSIONS

Results obtained in the previous section demonstrate t
for sufficiently small QDs embedded in a rigid matrix, th
phonon-related FIR absorption can have a multimodal sp
trum with several resonances corresponding to the few d
lar modes allowed in such a small sphere. When the QD
increases~above approximately 3 nm for CdSe and CdS!, the
multimodal structure disappears and the absorption spec
becomes ‘‘classical,’’ with the only resonance at the Fro¨hlich
mode. I would like to emphasize that, in fact, this is
apparent effect of many vibrational modes with the frequ
cies close tovF . Although the density ofl 51 states has only
a small peak at the Fro¨hlich frequency~Fig. 2!, the modes
closest to it have the largest oscillator strength. For exam
in the case of InP QDs embedded in a matrix with an app
priate dielectric constant, the gap~surface! mode is by far the
strongest in the FIR absorption. This effectively removes
quantum size effect for such dots. No quantum size eff
should be expected also for free-standing QDs, where
size-independent Fro¨hlich mode is allowed.

There are few experimental observations of quantized
polar phonon modes in QDs.1,8,20 One needs very smal
nanoparticles with a quite narrow size distribution. Neverth
less, using modern colloidal chemistry techniques,40–42 it is
possible to obey these conditions. The experimentally
served multimodal structure in the absorption spectra
CdSe QDs8 was successfully described by the present theo
This means that the continuous model works well for dots
small as 2 nm in diameter and the lattice dynamics of s
small crystallites has much in common with bulk crysta
The multimodal structure of the absorption also implies t
a

FIG. 6. Imaginary part of the
effective dielectric function~left!
and the dielectric loss function
~right! of composites containing
R51 nm InP QDs embedded in
matrix with eh54.5, calculated
using Eqs.~15!, ~16!. The filling
fraction is indicated in the figure.
6-6
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rigid mechanical b.c. is a reasonable approximation to
reality. However, this may depend on the details of the na
crystal fabrication technique. Chemically produced QDs
ways have a stabilizing organic shell, which prevents th
from agglomeration in the colloidal solution.40–42 The CdSe
QDs studied in Ref. 8 were capped with 1-thioglycerol a
embedded in a polymethylmetacrilate~PMMA! matrix.41

Neither 1-thioglycerol no PMMA have detectable optic
phonon modes in the reststrahlen band of CdSe,43 which
makes the rigid mechanical b.c. plausible in this case. C
trary to this result, just a single absorption peak between
bulk TO and LO phonon frequencies was observed in t
spectra of CdS QDs capped with thiophenolate even for
QD size as small as 1 nm,21 which can be manifest becaus
the free mechanical b.c. appears more relevant for this
tem. An interesting experiment was performed in Ref.
where the FIR spectra of embedded in a matrix and fr
standing~i.e., obtained by chemically removing the matri!
CdS QDs were compared. While the spectrum of the fr
standing QDs presented in Ref. 22 contains a single fea
at the Fro¨hlich frequency, that of~exactly the same! QDs
embedded in the matrix shows a weak structure. Proba
the size uniformity of these QDs synthetized in a Langmu
Blogett film was insufficient to better resolve the phono
related spectral structure.

Let us turn to the collective effects in the FIR absorpti
by QD ensembles. As any kind of interaction does,
dipole–dipole interaction between polarized QDs sho
split the resonant dipolar mode of a single QD. This eff
was calculated explicitly for two touching spheres and fo
linear chain of spheres,37 although in both cases the shift o
the transverse dipolar mode with respect to the Fro¨hlich fre-
quency did not exceed 5%. If the single QD polarizabil
contains more than one resonance, increasing the QD fi
fraction results not only in the mode’s frequency shift b
also in the increase of the relative intensity of the low
frequency mode~see Fig. 5!. This concentration–depende
redistribution of the oscillator strength is also predicted
the modified Maxwell-Garnett theory.44 If the QD polariz-
ability is given by the classical expression~14!, the Brugge-
man model predicts a gradual shift of the absorption p
from vF to vTO when the QD concentration increases~Fig.
6, left!. At the same time, the loss peak shifts fromvF to
vLO ~Fig. 6, right!. These peaks correspond to transverse
longitudinal collective excitations in the ensemble. Such
strong collective effect, which was not found for the line
chain of polarizable spheres,37 is probably due to their three
dimensional arrangement. The principal shortcoming of
Bruggeman model is the assumption of the topologi
equivalence of two ingredients of the composite mediu
Nevertheless, I obtained similar concentration dependenc
the absorption and loss peaks applying a different mo
namely, a coherent potential approximation scheme de
oped for an ensemble of polarizable spheres randomly o
pying the sites of a 3D lattice.45 It is beyond the scope of thi
paper to compare different models for calculation of the
electric properties of composites. However, I agree with
authors of Ref. 46 that only experiments may decide wh
of the effective medium theories provides the best interpo
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tion between the properties of diluted composites and clo
packed arrangements of polarizable spheres.

Experimentally, it is not easy to precisely control the Q
filling fraction in composite films, partially because of th
presence of the organic shell. The mean filling fraction of
called ‘‘close-packed QD films’’ studied in Refs. 8,20 an
41, in fact, did not exceed 30–35%. Thus, it is hardly po
sible to study the concentration effect in QD ensemb
quantitatively at this stage. However, it is noticeable that,
many cases, experimental FIR spectra of QD systems sho
strong absorption peak approximately at the bulkTO phonon
frequency, instead ofvF ,21 or a broad bulk-like reflection
band extending fromvTO to vLO .47 An example of such a
spectrum is shown in Fig. 7. In my opinion, the only way
explain these and other similar results is to admit that
samples contained regions with elevated local QD concen
tion, which produced the absorption atvTO as predicted by
the mean-field calculations~Fig. 6!.

The last issue that I would like to discuss here conce
the transition from the Fro¨hlich mode to bulk polaritons
when the crystal size increases. The electrostatic theory~see
Refs. 19 and 48! predicts that this transition is governed b
the value of k0R, where k05eh

1/2v/c ~typically
;0.1 mm21). If k0R is small compared to unity, there ar
only small corrections tovF . Only whenk0R@1, the bulk
value of the TO–LO splitting is achieved. Nevertheless,
periments show an absorption peak atvTO and a longitudinal
loss peak atvLO even for submicron polycrystalline Cd
films.48 Moreover, a strong and sharp absorption peak atvTO
~together with that atvF) was observed for 0.1mm crystal-
lites of MgO,49 which were much larger than QDs consi
ered in the present paper but still much smaller than the
wavelength. These particles should be perfectly described

FIG. 7. Experimental transmittance spectrum of a thin matr
free film of CdS QDs~Ref. 43!. The Fröhlich (eh51.5) and bulk
TO phonon frequencies are indicated.
6-7
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the electrostatic theory because of their size and due to
fact that their concentration was just 3–4%. So, the natur
the observedTO-like peak remained unexplained. I thin
this was also a dipole–dipole interaction effect similar to o
discussed for QD ensembles. Owing to disorder, phonon
laritons are confined in small coherence regions within a
crocrystal. Each coherence region~CR! is embedded in the
matrix of the same material and closely surrounded by si
lar CRs. The electrostaic interaction between various C
within a microcrystal produces the collective polariton mo
at vTO . This may happen even in relatively small micro
rystals wherek0R,1, because there is no coherence b
tween the displacements in different CRs implied in t
consideration19 of the polariton modes in a sphere.

In conclusion, quantized dipolar phonon modes in sph
cal QDs made of a polar semiconductor material were c
sidered in the framework of a macroscopic model. Th
modes are presented calculated for CdSe and InP QDs
jected to rigid mechanical boundary conditions. A gap mo
is predicted in the latter case for a certain range of value
the surrounding matrix dirlectric constant. Given the eige
modes and eigenvectors, the phonon-related polarizabilit
a single QD can be calculated as explained in Sec. II
There is a sum rule for the total oscillator strength of
quantized dipolar modes, which is equal to that of the Fr¨h-
lich mode, the only allowed dipole-active one for a fre
standing QD. Moreover, the lineshape produced by all
allowed modes in a rigid-boundary QD is practically ind
tinguishable from the Fro¨hlich mode forR.2 nm for typical
II-VI and III-V materials. Increasing the concentration
QDs also leads to the smearing of the multimodal structu
if it exists for a single QD. However, the most importa
concentration effect is the increase of the apparentLO-TO
splitting ~i.e., the distance between the loss and absorp
peaks!. I suggest that this effect, owing to the dipole–dipo
interaction between the polarized particles, is responsible
the unexpected experimentally observed absorption atvTO
by small crystallites, including quantum dots.
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APPENDIX

I consider here thel 51 spheroidal modes in a free
standing sphere. The necessary stress tensor componen

s rr 522rbTH A1Fd2 j l~qr !

dr2
2Lq2 j l~qr !G

12B1

d

dr Fgl~kr !

r G J Ylm~u,f!,

s ru52rbTH 2A1

d

dr
@ j l~qr !/r #

1B1

d2gl~kr !

dr2 J ]

]u
Ylm~u,f!, ~A1!

where L5bL /(2bT)21. The s rf component vanishes
identically ~it is nonzero only for the torsional modes n
considered here!. Puttings rr 5s ru50 at the sphere surfac
yelds Eq.~6!.

The electrostatic b.c.’s result in the following equation

4peT

ves
` F2

B1

R
g1~kR!6

q2bL

k2bT

A1

R
j 1~qR!G

5
C̄1

R3

~es
`12eh!

eh
S vF

22v2

vTO2v2D , ~A2!

where6 corresponds to the sign of@(vTO
2 2v2)/bT# andC̄1

is the constant appearing in the expression for the poten
outside the sphere~Sec. II!. With the help of Eqs.~A1! for
r 5R, one can show that

@2bLq2 j 1~qR!#A16@2bTk2g1~kR!#B150

Then Eq.~A2! can be reduced to

C̄1~vF
22v2!50. ~A3!

There are two possibilities to satisfy Eq.~A3!, namely,~i!
v25vF

2 , C̄1Þ0, A15B150, and ~ii ! C̄150, A1 ,B1Þ0.
The former is, of course, the electrostatic Fro¨hlich mode. The
frequencies of the modes~ii ! are given by Eq.~6!.
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1

ERRATUM TO PAPER

”Dipolar vibrational modes in spherical semiconductor quantum dots”
by M I Vasilevskiy,

Phys. Rev. B 66, 195326 (2002)

Eq.(5) of the above paper contains some errors. The correct equation for the frequencies of the spheroidal modes
of angular momentum l is:

qRj′l(qR){γε∞s [−kRg′l(kR) + lgl(kR)] + δl[kRg′l(kR) + gl(kR)]}

−l(l + 1)jl(qR){γεh[kRg′l(kR)− lgl(kR)] + δlgl(kR)} = 0

The calculated results presented in the paper are correct.




