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The localization of the hybrid modes of phonons and photons in polar matter is investigated in the presence
of random scatterers theoretically. We employ the self-consistent generalized Born-Huang approach to derive
effective equations describing the phonon-polariton fields. Based on these equations, the density of states and
various localization properties are exploited in two-dimensional systems both analytically and numerically
within the framework of the Anderson model with a non-Hermitian effective Hamiltonian. Consequently, it is
shown that the disorder effect brings some intriguing features which include the appearance of the localized
states in the polariton bottleneck in the energy spectrum and the collapse of the energy gap. In addition, an
analysis is given of the polariton level-spacing distribution.
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I. INTRODUCTION

The optical properties of a solid material are mainly de-
termined by the interaction of photons with certain elemen-
tary excitations. The optical response owing to electron and
phonon excitations in media with intrinsic structure �such as
low-dimensional systems and photonic crystals� possesses
features that are attractive for optoelectronic applications be-
cause the control over the optical properties can be achieved
by adjusting the geometrical parameters of the system �1�.
The recently realized idea of random lasers demonstrates that
the intrinsic structure can be just disorder �2�. Since the
wavelengths of an incident photon and of an optical phonon
eventually coupling to it are large compared to the lattice
constant, it is supposed that the light and optical phonon
waves can be described in a continuous approximation. It is
well-known that the interaction between an electromagnetic
radiation and optical phonon modes in ionic crystals �like
alkali halides� and polar semiconductors �we shall use the
term polar media as a more general one for both classes of
materials� may be considered by using a phenomenological
theory, for instance, the Born-Huang approach �3�. In this
approach, an ion in a certain unit cell moves in a self-
consistent field of all other ions. The coupling between a
photon and a phonon is strong near the optical phonon-
photon resonance and gives rise to a new quasiparticle, a
polariton �4–6�. The polaritons are always formed in a di-
electric medium when the light dispersion curve crosses that

of a transverse excitation to which it is coupled.
The linear version of the Born-Huang theory and its

modifications have been extensively developed and recently
applied to study the properties of optical phonons and their
coupling to the electromagnetic radiation in bulk and low-
dimensional structures �7–12�. The energy transport by po-
laritons in realistic �disordered� dielectric media can be lim-
ited by scattering processes. The scattering of polaritons on
local defects has been investigated by Hopfield �13� and
Maddox and Mills �7�. The concept of local polaritons �with
the phonon part coupled to an impurity�, introduced in Ref.
�14�, allowed for the explanation of weak features in the
far-infrared spectra of so-called one-mode mixed crystals.
However, the problem of polariton scattering on ensembles
of scatterers and their localization has not been addressed
yet. The Anderson localization, which stands for the phe-
nomenon consisting in the change of the electron wave func-
tion from extended to a localized one as the magnitude of
disorder is increased, has been one of the main subjects in
the mesoscopic physics, intensively studied both experimen-
tally and theoretically. Now it is well-understood that the
Anderson localization is a fundamental property of waves in
a disordered medium. The recent development of photonic
crystals provoked increasing research activity exploring the
concepts of the physics of electronic phenomena with appli-
cation to classical waves �15,16�. Accordingly, there has
been a growing interest in studies of localization of bosonic
fields, such as electromagnetic waves �17�, sound �acoustical
phonons�, system of coupled scalar fields �18�, plasmons
�19�, and optical phonons �20� in strongly scattering nonelec-
tronic materials �21�. In particular, the Anderson localization
of phonons and photons in disordered matters has been con-
sidered in Refs. �17,22,23,25,26�. As far as noninteracting
phonon-photon systems are concerned, the physics of local-
ization is well-understood. The common belief based on the
scaling theory arguments �16� is that, in one and two dimen-
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sions all states are localized for any magnitude of disorder,
while for three-dimensional systems there exists a nonzero
strength of disorder, leading to the Anderson transition. In
practice, there is a major task to investigate the localization
of light because the energy of photons is always higher than
the effective scattering potential in disordered media. The
interaction of light with phonons gives a new tool for the
realization in the regime of strong localization of light.

In this work we investigate the localization of the phonon-
polaritons in disordered polar matter. To this end we first use
the generalized Born-Huang approach to derive the effective
field equations for polariton propagation. In this scheme the
transverse optical excitation, i.e., the hybridization of pho-
tons and transverse optical phonons, is described by intro-
ducing the coupled vector-potential and mechanical displace-
ment fields. An analytical dispersion relation for the phonon-
polaritons in a homogeneous medium, following from these
equations, manifests an energy gap that appears as a conse-
quence of the fields’ coupling. For an inhomogeneous sys-
tem, the dielectric function and phonon-photon coupling pa-
rameter are considered as local characteristics of the medium
�i.e., as random functions�. It is shown that the problem of
polariton localization can be formulated in terms of the
Anderson model with a nonsymmetric matrix in the space of
doubled dimension, which describes the coupled phonon-
photon modes. We have performed an exact diagonalization
of the nonsymmetric matrix for a model two-dimensional
system in order to find the eigenfunctions and eigenvalues
near the polariton energy gap. The density of states �DS� and
some characteristics of localization have been calculated.
The investigation of DS near the polariton “bottleneck” has
shown that disorder results in localized modes appearing at
both sides inside the polaritonic gap, which form DS tails
extending far into the gap. As the magnitude of disorder
increases, the tails overlap and the gap collapses. To examine
the localization of the coupled phonon-photon fields, we in-
vestigated the behavior of the so-called generalized partici-
pation ratio, calculated from the eigenstates obtained numeri-
cally. In addition, the nearest-neighbor level statistics have
been studied. Although generally the polariton localization is
enhanced over broad energy ranges as the magnitude of dis-
order increases, we found a different behavior for the level
statistics of the upper and lower polariton branches. While
the level distribution for the upper branch is a typical Wigner
function, the level distribution for the lower one has a long
tail for large energy intervals between subsequent polariton
levels. A correlation between this behavior and the DS peak
near the edge of the lower polariton band has been found.

The paper is organized as follows. The coupled field equa-
tions are derived and solved for the case of homogeneous
medium in Sec. II. In Sec. III, the model of disorder is ex-
plained, the matrix form of the equations is introduced, and
some analytical results are presented. In Sec. IV, we perform
the exact diagonalization for two-dimensional systems, find
the eigenfunctions and eigenvalues near the polaritonic gap,
and calculate and discuss DS and some characteristics of
localization. Section V is devoted to conclusions.

II. GENERAL THEORY OF PHONON POLARITONS

A. Model and basic equations

Let us consider a polar medium, i.e., an ionic crystal or a
polar semiconductor with two ions per unit cell. These ions
possess a certain effective charge �known as transverse
charge�. The medium has a background dielectric constant
��. We suppose for simplicity that the medium is isotropic.
In the spirit of Born and Huang’s ideas �3�, we shall assume
that �i� the wavelength of light ��� is much larger than the
lattice constant �a�, �ii� each ion moves in a self-consistent
electromagnetic field created by all other ions, and �iii� the
coupling of the electromagnetic field to the mechanical dis-
placement can be considered in the dipole approximation, so
that it is sufficient to consider only the relative displacements
of two ions in the same unit cell. The coupled mechanical
and electromagnetic equations of motion can be derived us-
ing a Lagrangian of the system, which can be constructed
from independent quadratic invariants of two vector fields,
the relative displacement between two ions u�r , t� and the
electromagnetic field E�r , t� �and their time and spaces de-
rivatives� �13,27�. The generalized Born-Huang field equa-
tions are obtained in a straightforward way using the varia-
tional principle,

�� dtdVL = 0, �1�

where L is the Lagrangian density. One of the advantages of
this method is that any loss mechanisms may be included
into consideration by using the Rayleigh dissipative function
�28,30�.

It is convenient to decompose the displacement and elec-
tric field into transverse and longitudinal components. We
choose the Coulomb gauge �� ·A=0�, so that

E = −
1

c

�A

�t
, H = � � A , �2�

where H is the magnetic field. Note that in the Coulomb
gauge the vector potential is a purely transverse field. In this
work we shall neglect the mixing of transverse �TO� and
longitudinal �LO� optical phonon modes.

The Lagrangian density for transverse fields can be writ-
ten as �29�

L =
1

2
��� �u

�t
�2

+ 	��u�2 − 
u2	 +
1

8�
� �

c2� �A

�t
�2

− ��

� A�2	 −


c
u ·

�A

�t
. �3�

The three terms in the Lagrangian �3� represent the mechani-
cal part, the electromagnetic field, and the interaction be-
tween fields �in the dipole approximation�, respectively. The
mechanical properties of the medium are characterized es-
sentially by two parameters, the reduced mass density �, and
an effective elastic constant 
=�TO

2 �. As it is usual for mac-
roscopic models �8,11,12�, we take into account the spatial
dispersion of phonons by using a phenomenological param-
eter 	, which characterizes the curvature of the TO phonon
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branch in the long wavelength limit. Since we are going to
consider only nonmagnetic systems, the electromagnetic
properties of the medium are characterized only by a local
high-frequency dielectric constant � �for a homogeneous me-
dium �=���. The coupling between the mechanical and elec-
tromagnetic field is characterized by a parameter  �in the
absence of disorder� given by

2 =
��0 − ���


4�
,

where �0 is the low-frequency dielectric constant. We would
like to emphasize that this restricted model is reasonable for
light frequencies close to �TO, which is the region of primary
concern in many experimental situations. In general, the op-
tical excitations can interact with acoustical phonons giving
rise to decay of the excitations and, consequently, to dissipa-
tion of the electromagnetic field energy. If this interaction is
important, the resonant optical system is coupled to a non-
resonant dissipative system. As it has been mentioned above,
this effect can be incorporated by introducing the Rayleigh
dissipative function �30�:

R =
��u

2
u̇2 +

��A

2c
Ȧ2, �4�

where �u and �A are decay parameters for optical phonons
and electromagnetic field, respectively.

Using Eqs. �1�, �3�, and �4�, we obtain the coupled equa-
tions of motion for two harmonic fields with damping:

�
�2u

�t2 + ��u
�u

�t
+ 	�2u + 
u = −



c

�A

�t
, �5�

�

c2

�2A

�t2 +
��A

c

�A

�t
− �2A =

4�

c

�u

�t
. �6�

B. Polariton excitations in homogeneous media

In an isotropic medium without losses ��u=�A=0� and
disorder, Eqs. �5� and �6� yield usual harmonic waves,

u�r,t� = u0ei�k·r−�t�,

A�r,t� = A0ei�k·r−�t�,

where u0 and A0 are the amplitudes. Substituting these ex-
pressions into Eqs. �5� and �6� and neglecting for simplicity
the phonon dispersion we can easily find the dispersion rela-
tion for polaritons in the form

�±
2�k� =

1

2
��LO

2

+ ��
−1c2k2 ± 
��LO

2 + ��
−1c2k2�2 − 4��

−1�TO
2 c2k2� ,

�7�

where the Lyddane-Sachs-Teller relation �3�
�LO=
�0 /���TO has been used, �+�k� and �−�k� are the up-
per and lower branches of polariton excitations.

We would like to recall that phonon polaritons are admix-
ture of electromagnetic and mechanical fields. A simple

physical picture for these excitations may be obtained from
the analogy with the classical coupling of two harmonic os-
cillators of frequencies �1 and �2. Without coupling, the
oscillators vibrate at these independent frequencies. How-
ever, if the oscillators are connected by a spring, they no
longer vibrate with the frequencies �1 and �2. Instead, two
different coupled vibrational modes arise, corresponding to
two polariton modes in the present case.

The linear interaction of two harmonic fields in Eqs. �5�
and �6� can be described by a dimensionless parameter

̄ = 
 4�


��

=
�0 − ��

��

.

Two regimes can be pointed out, according to the value of
this parameter with respect to unity, which can be designated
as strong and weak coupling. Anticipating the consideration
of disorder, we can expect that for �

� /4�, the system
of photons and phonons is essentially noninteracting and all
the well-known results �21� can be applied to the localization
of two independent boson fields. In the opposite case
of �

� /4�, one can expect that the formation of a
strongly coupled polariton can result in significantly new
physics.

III. DISORDERED MEDIA

A. Model of disorder

When a polariton wave propagates through a real crystal,
it is deflected from its initial direction by any static defect
that may be present. So, the motion of a polariton in a dis-
ordered region of the crystal is such that the polariton is
strongly scattered. In fact, the variation of any of the param-
eters that enter Eqs. �5� and �6� can affect the polariton
propagation. Scattering of the polariton on fluctuations of
these parameters may give rise to localized modes. One can
expect that disorder can reduce the width of the polariton gap
and even lead to its collapse when the amplitude of the fluc-
tuations is increased. At this point, we shall specify the
model of the scatterers. Following the work of Maddox and
Mills �7�, we assume that defects in the polar medium can be
modeled by a local deviation of the mechanical and dielectric
constants and the coupling parameter . We shall consider
three fluctuating parameters, �i� �TO �or, equivalently, 
 since
� will be considered constant�, which should lead to the lo-
calization of phonons, �ii� � varying around ��, which
should affect the photons, and �iii� , which defines the
phonon-photon interaction and therefore influences both of
them. In a disordered medium, these parameters will be
taken as random functions of the spatial coordinates. So, we
shall consider


�r� = �
� + �
�r� ,

��r� = ��� + ���r� ,

�r� = �̄� + ��r� ,

where ��¯�� denotes the corresponding mean values
����=�� and �
�=��TO

2 �. Generally speaking, these param-
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eters are not totally independent. There are rather complex
relations between them, which cannot be adequately estab-
lished at the phenomenological level. At this stage, we shall
neglect any correlation between the fluctuating parameters.
The role of such correlations will be considered in a future
work.

We have extended the Lagrange approach to inhomoge-
neous media where the random functions introduced above
vary at a scale much smaller than the photon and phonon
wavelengths. Consequently, we have obtained equations co-
inciding in form with Eqs. �5� and �6�. Neglecting the dissi-
pation, we seek their solutions in the form:

u�r,t� = u�r�e−i�t, A�r,t� = A�r�e−i�t,

where u�r� and A�r� are the spatially dependent amplitudes
of the fields, which can be found from the following equa-
tions:

− 	�2u + ���2 − 
�u = − i


c
�A , �8�

�2A +
��2

c2 A =
4�i�

c
u . �9�

B. Matrix form of the equations of motion

In order to symmetrize Eqs. �8� and �9�, we make a trans-
formation,

u →
1

�

u, A → c
4�

��
A .

Then, the resulting equations for the coupled fields can be
written as follows:

	


�
�2 1


�
u�r� +




�
u�r� = �2u + i�
4�

��
A�r� , �10�

−
c2


�
�2 1


�
A�r� = �2A�r� − i�
4�

��
u�r� . �11�

Next, we find it more convenient to rewrite the above equa-
tions in the form

Huu�r� = �2u�r� + i�VuAA�r� , �12�

HAA�r� = �2A�r� − i�VAuu�r� , �13�

where definitions have been made for the operators,

Hu 
	


�
�2 1


�
+




�
, VuA  
4�

��
, �14�

HA  −
c2


�
�2 1


�
, VAu = VuA. �15�

We can eliminate one of the variables from Eqs. �12� and
�13�, for instance, A. Then we arrive at a quadratic algebraic
eigenvalue problem,

�Pu − �Qu + �2I�u = 0 , �16�

where Pu and Qu are operators which are defined by

Pu = VuAHAVuA
−1Hu, �17�

Qu = Hu + VuAHAVuA
−1 + VuAVAu, �18�

where I is the identity operator and a new spectral variable
�=�2 has been introduced. If, instead, we eliminate u from
Eqs. �12� and �13�, we get

�PA − �QA + �2I�A = 0 , �19�

where PA and QA are defined as

PA = VAuHuVAu
−1HA, �20�

QA = HA + VAuHuVAu
−1 + VuAVAu. �21�

Thus we have constructed a nonlinear eigenvalue problem
�31� which occurs for systems of coupled differential equa-
tions when the coupling between them depends on the de-
rivatives. For example, the nonlinear eigenvalue problem is
encountered for coupled circuits of capacitors, coils, and re-
sistors. It is worth mentioning that a similar problem arises
also in the scattering theory �32,33�. From the theory of ma-
trices it is known that, when P and Q are symmetric, Eqs.
�16� and �19� have positive eigenvalues �31�, corresponding
to nondecaying harmonic modes.

Further, we find that it is possible to linearize the eigen-
value problem by doubling the dimension of the system. For
instance, we can rewrite Eq. �16� in the form

Iv = �u , �22�

− Puu + Quv = �v , �23�

where v=�u. Now we can rewrite Eq. �22� in the matrix
form,

Mu�u

v
� = ��u

v
� , �24�

where

Mu = � 0 I

− Pu Qu
� . �25�

After we find the eigenvectors Mu, we obtain u as an upper
part of the eigenvector column. The eigenvectors A can be
extracted from the relation

A =
1

i
�
VAu

−1�HA − ��u . �26�

Thus we solve the eigenvalue problem for a nonsymmetric
matrix Eq. �25�, as an alternative way of solving Eq. �16�.

C. Perturbation theory analysis

Let us recall first that, if =0, i.e., when there are two
independent �bosonic� fields, the localization of both
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phonons and photons is similar to that of electrons in a ran-
dom potential. It is generally accepted that all the photon and
phonon states are localized in one- and two-dimensional sys-
tems. Hence it is possible to check whether there is Anderson
localization of photons or phonons in the systems by consid-
ering random and real symmetric matrices Hu and HA �with
=0�.

There are two types of localized states, commonly re-
ferred to as strongly and weakly localized ones �16�. The
localization of light and phonons may be characterized by
the mean free path llight and lph, respectively. For instance,
the mean free path of light in a three-dimensional dielectric
medium with an array of embedded short range scatterers
�whose radii r is r��� can be estimated in terms of the
difference of dielectric function �� and the density ns:
llight��c /��4 /ns����2r6. The localization occurs when the
characteristic spatial scale of coherent multiple scattering
�mean free path� becomes of the order of the wavelength,
llight��. For almost dispersionless optical phonons the
localization length may be of the order of lattice constant,
lph�a. More details concerning the localization of optical
phonons and photons in disordered media can be found in
Refs. �23,24� and Refs. �17,34�, respectively.

Here, we consider the situation that the photon-phonon
coupling is weak ��

� /4�� for a perturbative analysis.
In order to understand qualitatively what happens to the po-
laritons of the lower �“phonon”� branch, we rewrite Eqs. �12�
and �13� in the following form:

Huu�r� − �u�r� = �VuA
1

HA − �
VAuu�r� . �27�

Suppose that we know �localized� eigenfunctions of the
operator Hu,

Huu j�r� = � ju j�r� . �28�

Then, the matrix elements of the perturbation operator
�right-hand side of Eq. �27�� between these eigenstates can
be easily calculated �although it is necessary to take into
account the singular character of the perturbation operator�.
Extracting the imaginary part, we find the decay rate � j of a
state u j�r� as

� j = �� j�j�VuA��HA − � j�VAu�j�

= �� j�
a

��j�VuA�a��2��EA
a − � j� , �29�

where EA
a and �a� are the eigenvalues and eigenvectors of

HA. Thus the phonon eigenmodes decay as a consequence of
the interaction with the photon bath. In turn, photons also
decay via interaction with phonons. If, for instance, photons
are not localized in the disordered medium under consider-
ation, they can transport energy from one localized phonon
mode to another facilitating their delocalization.

Thus in disordered polar media there are weakly localized
photons and strongly localized phonons for the frequencies
far from gap. Near the polaritonic gap where the coupling is
strong the perturbative approach cannot be used to describe
the localization of polariton.

IV. SPECTRAL CHARACTERISTICS OF THE
DISORDERED SYSTEM

We investigate here some characteristics of the phonon-
polaritons in a two-dimensional system numerically, which
are the density of states, the participation ratio, and the dis-
tribution function of the levels. The continuous, partial dif-
ferential equations are discretized into algebraic ones and
then are solved by the standard techniques. In a disordered
system, the phonon and photon momenta are not conserved
and Bloch theorem cannot be used. Accordingly, one has to
invoke a sufficiently large supercell with appropriate bound-
ary conditions. One frequently used scheme is to impose the
quasiperiodical boundary condition, i.e., to study a superlat-
tice of identical disordered supercells, which has been used
in our calculations.

A. Numerical method for discrete model of inhomogeneous
medium

We consider a two-dimensional system where the param-
eters depend on the coordinates �x ,y�. The continuum space
is divided into a mesh. We choose a mesh with sites �xn ,ym�,
xn=n� and ym=m� �n ,m=1,2 , . . . ,N�, where � is the
minimal distance. The relative displacement and the vector
potential at various mesh points are denoted by
un,m=u�xn ,ym� and An,m=A�xn ,ym�. We may interpret them
as generalized coordinates of the system in a phase space of
dimension 2N�2N. The Hamiltonian operators Hu and HA
should be considered now in the discrete space as

�Huu�n,m =
	


�n,m
�

n�,m�

��2�n,m;n�,m�
1


�n�,m�

un�,m�, �30�

�HAA�n,m = −
c2


�n,m
�

n�,m�

��2�n,m;n�,m�
1


�n�,m�

An�,m�,

�31�

where

��2�n,m;n�,m� =
1

�2 ���n,n�+1 + �n,n�−1 − 2�n,n���m,m� + ��m,m�+1

+ �m,m�−1 − 2�m,m���n,n�� . �32�

Note that the symmetric interaction operator has only diago-
nal elements

�VuA�n,m;n�,m� = n,m
 4�

�n,m�n,m
�n,m;n�,m�. �33�

The operators Pu and Qu may be found from Eqs. �17� and
�18� using a simple matrix algebra. After that, we obtain
the matrix Mu. Now we can solve numerically the eigen-
value problem which is defined by Eq. �24� using a standard
routine.

First, we consider the case when there is no disorder in
the system. In this case, we can seek for the solutions of
discretized Eq. �24� in the form
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un,m = u0ei�kxn+kym��, vn,m = v0ei�kxn+kym��.

After simple manipulations, we obtain the dispersion rela-
tion,

��ph
2 �k� − ����l

2�k� − �� − ��TO
2 ̄2 = 0. �34�

Here, the dispersions for phonons

�ph
2 �k� = �TO

2 + 2
	

��2 �2 − cos kx� − cos ky�� , �35�

and for photons

�l
2�k� = 2

c2

��2 �2 − cos kx� − cos ky�� �36�

have been introduced, respectively. If ̄=0 and � tends to
zero, we recover the standard dispersion relations for both
waves. It is clear that when � is small compared to the wave-
length �����, the field modes of the discrete model can be
exactly described by the excitations of the continuous sys-
tem. The generalization of the above equations for a three-
dimensional system is straightforward.

When the disorder is taken into account, one has to seek
for the full numerical treatment. For the numerical simula-
tion we will further simplify our model by assuming that
only waves with one particular polarization are excited in the
system, i.e., we will consider just scalar waves. We then
set up the non-Hermitian matrix Eq. �25� and solve the ei-
genvalue problem. The eigenvectors Uj�i� and eigenvalues � j

for such a generalized Anderson model can be obtained by a
numerical diagonalization using one of the standard
algorithms.

B. Density of states

Once the eigenvalue problem of Eq. �24� is solved, the
polariton DS can be calculated as

g��� = �
j

��� − � j� . �37�

The density of states is a self-averaging quantity, so, taking
the average of Eq. �37� over different disorder realizations is
meaningful and represents the properties of the system in the
thermodynamical limit.

Before presenting the numerical results, we shall obtain
an approximate expression for the density of states, valid for
the energy region near the gap, for a nearly homogeneous
system. It will help us to identify the effects introduced by
disorder. For the sake of simplicity, we will neglect the op-
tical phonon dispersion and consider the limit of �→0. In
this case, instead of Eq. �34�, we obtain:

�v2k2 − ����TO − �� − ��TO
2 ̄2 = 0, �38�

where �TO=�TO
2 and v=c /
�. This expression can be used

near the bottleneck, for a narrow spectral interval near the
edge, ��=2�2�TO /v2�2��TO, corresponding to the photon
wave vectors k�� /�. Using Eq. �38�, we find the number of
states for the two-dimensional system as

N��� =
S

4�v2k2��� , �39�

where S is the area. A simple calculation gives

N��� =
S�

4�v2�
�LO − �

�TO − �
, � � �TO − ��

0, �TO � � � �LO

� − �LO

� − �TO
, � � �LO. � �40�

Then, the density of states is given as

g��� =
�N���

��

=
S

4�v2�
�2 − 2��TO + �TO�LO

��LO − ��2 , � � �TO; � � �LO

0, �TO � � � �LO,
�

�41�

where �LO=�TO+ ̄2.
We adopted the material parameters of the polar semicon-

ductor GaP in our calculations, taking �0=10.20, ��=8.50,
�T0=11.1 THz, and �LO=12.1 THz. We used 1 �THz�2 as a
unit of the spectral parameter. The dimensionless interaction
parameter is ̄=4.96. A square net with the dimensions
N�N=40�40 was used, so, the size of the matrix M was
N�N=3200�3200, where N=2N2. In order to test our
program, we compared the numerical and analytical results
for the density states for the homogeneous system. The result
is shown in Fig. 1. As it can be seen from Fig. 1�b�, Eq. �41�
fits quite well the numerical data near the gap �the interval
121.0���145.2�. It is worth noting that DS shows a peak
near the center of the upper band �close to �=600�. This
reflects the well-known van-Hove DS singularity in 2D sys-
tems. The peak of the density of states at the lower edge of
the gap is another example of such singularity. Contrary to
the former, which appears only in the discrete model, the
latter is characteristic of the 2D polariton system.

Now we shall focus on the spectral region near the gap
and consider the effect of disorder. The uncorrelated �dimen-
sionless� random parameters were distributed with equal
probabilities within the intervals,

0 � ��n,m� � � ,

0 � ���n,m� � �� ,

where � and �� are parameters that specify the magnitude
of disorder. The intervals of variation of the fluctuating pa-
rameters are restricted by their values for the constituents of
the disordered medium. For instance, when a two-component
composite medium is considered, the magnitude of fluctua-
tions can be estimated as the difference between the values
of these parameters between the host material and the inclu-
sions. The phonon frequency �TO is kept constant for a
while. Two random parameters play different roles in the
localization. It is clear that the fluctuations of  should
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modulate the gap, while � determines mostly DS in the up-
per band. Let us investigate their effect on the density of
states near the polariton “bottleneck.”

Numerical results for DS, averaged over 16 realizations,
are presented in Fig. 2 for different magnitudes of the dimen-
sionless coupling constant fluctuations, �=0.25, 0.5, 0.75,
and 1.0, while fixing the dielectric constant. One can see
that, when the magnitude of disorder increases, the polariton
modes appear inside the gap forming tails of the density of
states at both sides of the gap. If the fluctuations of the di-
electric constant are also taken into account �Fig. 3�, the tails
overlap and the gap collapses, meaning that the states be-
come available in the gap. The collapse of the gap can be
seen better in Fig. 4, where the eigenvalues are depicted in
ascending order for a typical realization of the random pa-
rameters. One can observe clearly that the energy levels ap-

pear in the interval 121.0���145.2. It should be pointed
out that the DS peak at the edge of the lower polariton band
is decreased with disorder but remains large. It will be shown
in the next section that this is important for the level distri-
butions.

C. Participation ratio

Let us now examine the localization of the polariton
modes near the gap. It can be tested by calculating the par-
ticipation ratio �PR� of each mode p�� j�, defined as

p�� j� = ��
i

Uj
4�i��−1

, �42�

where the eigenvector Uj�i� corresponds to an eigenvalue � j

of the matrix Mu. Alternatively, we could introduce PR for
A-type eigenmodes in the same manner. The sum in Eq. �42�
runs over all sites of the generalized �doubled� lattice. The
participation ratio is usually considered as a measure of lo-
calization in numerical studies of disordered systems. In our
case, p�N for a completely extended state, p�1 for a state
confined to a single site, and, approximately, p�M for a
state which is extended over �M sites in the supercell. Since
we are considering a nonlinear eigenvalue problem �equiva-
lent to the original problem of two coupled fields�, each ei-
genvector has the structure,

Uj�i� = � uj�i�
� juj�i�

� . �43�

Using Eq. �43�, we can recast Eq. �42� into a simpler form,

FIG. 1. �a� Polariton DS calculated for a perfect 2D system
showing a gap between �=121.0 and 145.2. �b� A fragment of the
histogram of �a� and approximate analytical function �solid line� for
the density of states near the gap.

FIG. 2. DS calculated for different values of the dimensionless
magnitude of disorder, �= �a� 0.25, �b� 0.5, �c� 0.75, and �d� 1.0.

FIG. 3. DS for a strongly disordered system with �=1.0 and
��=1.0.

FIG. 4. Eigenvalues in ascending order for one typical disorder
realization with �=1.0 and ��=1.0.
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p�� j� =
1

1 + � j
4��

i

uj
4�i��−1

, �44�

where uj�i� is a u-type eigenvector of Eq. �24�.
Figure 5 demonstrates the behavior of PR with the in-

crease of disorder. The fluctuations of  give rise to the
localized states in the gap. Moreover, they also result in the
localization of practically all the polariton modes distributed
over a very broad energy range. Adding disorder of the di-
electric constant strongly enhances the localization of the
short-wavelength excitations in the upper polariton band, as
it can be seen in Fig. 6.

D. Statistics of spectral intervals

An alternative way to examine the localization, based on
the random matrix theory �35�, is to study the statistics of the

intervals between neighboring modes in the spectrum, which
are commonly referred to as level-spacing distributions
�LSDs�. The statistical properties of spectra of complex sys-
tems can be modeled by universal LSDs corresponding to
certain ensembles of random matrices �35�. For example, a
Poissonian spectrum of normalized level spacings,

sj = �� j+1 − � j�/�� j+1 − � j� ,

is characteristic of uncorrelated ensembles of random matri-
ces. If there is a correlation as for the Gaussian orthogonal
ensemble �GOE�, the corresponding LSD is of the form
closely approximated by the Wigner expression �35�,

P1�s� =
�

2
se−��/4�s2

. �45�

As far as disordered systems are concerned, it has been
shown that the localization transition in the three-
dimensional Anderson model is accompanied by a change of
the LSD �36,37�. On the metallic side, it follows Eq. �45�,
while on the insulating side it is described by the Poisson law
P0�s�=e−s. Multifractal eigenstates—neither extended nor
exponentially localized—have been found in 2D and 1D dis-
ordered electronic systems �38�, with the LSD different from
both P0�s� and P1�s�.

Our effective Hamiltonian matrix M in Eq. �25� with
random elements belongs to a general nonorthogonal en-
semble of random matrices. The mathematical treatment of
random matrices with no symmetry conditions goes back to
the pioneering work by Ginibre �39�. For instance, the non-
Hermitian random matrices have been used to describe the
generic statistical properties of resonances in open quantum
chaotic systems and to characterize the typical features of
dissipative chaotic quantum maps �35,40�. The correspond-
ing LSD is given by �39�

P2�s� =
34�2

27 s3 exp�−
32�

24 s2	 . �46�

Like Eq. �45�, it is also of the form suggested by Wigner
�41�,

PW�s� � s�e−c�s2
, �47�

where the parameter � and the constant c� depend on the
restrictions imposed on the matrices. An important difference

FIG. 5. Participation ratio of polariton modes for different mag-
nitudes of coupling constant disorder, �= �a� 0.25, �b� 0.5, �c�
0.75, and �d� 1.0 with ��=0.

FIG. 6. Participation ratio for a strongly disordered system with
�=1.0 and ��=1.0.
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between the Wigner-type distributions and the Poisson distri-
bution is their behavior for s→0. For the former, the prob-
ability of very small level spacings tends to zero indicating
the repulsion of the levels. Let us also note that purely pho-
tonic or phononic excitations belong to the GOE universality
class �34,35�. We have investigated LSD for the polariton
system with disorder numerically. We considered three spec-
tral regions of the eigenvalues including �i� those above the
upper polariton band edge of the perfect system �� j ��LO,
their distribution function is called Pu�s��, �ii� eigenvalues
lying below the gap in the lower branch edge �0�� j ��TO,
with their LSD denoted by Pd�s��, and �iii� the whole polar-
iton spectrum, with the LSD P�s�. The calculated distribution
functions are depicted in Fig. 7 for different magnitudes of
disorder, �=0.25, 0.5, 0.75, and 1.0 with ��=0. As can be
seen from Fig. 7, the distribution of the nearest-neighbor
spacings for the spectral regions �i� and �ii� are reasonably
well-described by a Wigner function Eq. �47� with � slightly
smaller than unity. As � increases, the distribution for the
lower band �Pd�s�� noticeably shifts to the region of the
smaller s. The results calculated for the strong disorder case
with dielectric constant fluctuations included ����0�, pre-
sented in Fig. 8. One can see the quite different level statis-
tics between the upper and lower polariton branches. Pu�s� is
still reasonably described by the Wigner function PW�s�,
while the distribution for the lower branch implies a signifi-
cantly reduced level repulsion �although it does not seem to
tend to P0�s��. We think that the explanation is related to the
singular behavior of the density of states near the edge of the
lower polariton band. The phonon-like excitations have a
very heavy ”effective mass” �and, consequently, large DS�
near the band edge. This results in a smaller overlap of their
localized eigenfunctions and, consequently, a smaller level

repulsion. Another feature of LSDs of Figs. 7 and 8 is the
long tail observed for the large nearest-neighbor energy in-
tervals. This behavior may be understood as a consequence
of the interaction between the upper and lower bands, which
results in an additional repulsion of the levels. As for the
localized/delocalized nature of these states, the different LSD
may be the manifestation of their multifractal nature, which
is characteristic of various 2D systems and also of the 3D
Anderson model exactly at the metal-insulator transition
�37,38�. The distribution for the whole polariton spectrum
retains its Wigner’s shape even for strong disorder because
the portion of levels near the gap edges is not very large.
Finally, let us point out that the Ginibre’s distribution Eq.
�46� occurs when the fluctuations of the different parameters
in the effective Hamiltonian have the same magnitude, so it
can hardly be reached for the system under consideration.

V. CONCLUDING REMARKS

In summary, we have studied the density of states and
localization of phonon-polaritons in disordered polar media
with fluctuating phonon-photon coupling constant and light
velocity. The generalized Born-Huang equations of motion
for the coupled fields were derived, which have been used to
show that the problem of polariton localization can be for-
mulated in terms of the generalized Anderson model with a
non-Hermitian effective Hamiltonian.

We have performed an exact numerical diagonalization of
such a Hamiltonian for a two-dimensional system and stud-
ied the disorder effects on the localization of polaritons in the
regime where the energy scale of disorder and phonon-
photon interaction strength are of the same order of magni-
tude. The investigation of the behavior of the density of

FIG. 7. Distributions of inter-
level spacings �histograms� for
three different spectral intervals
explained in the text, for different
magnitude of disorder of the
coupling constant, �=0.25, 0.5,
0.75, and 1.0, while keeping
��=0. The curve is the Wigner
function P1.
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states and the participation ratio near the polariton gap have
shown that, when the magnitude of disorder is increased,
localized modes appear forming tails inside the gap. At a
certain magnitude of fluctuations of the coupling parameter,
the tails in the gap overlap and the collapse of the gap is
observed. This is facilitated by the fluctuations of the dielec-
tric constant, although this type of disorder alone does not
eliminate the gap. It has also been observed that the fre-
quency range where the localization is enhanced by the fluc-

tuations in the phonon-photon interaction includes practi-
cally the whole polariton spectrum. In addition, the
fluctuating dielectric constant enhances the localization of
the higher-energy polaritons because of their stronger Ray-
leigh scattering �compared to the lower-energy excitations�.

We have also investigated the distribution of the spectral
intervals between the nearest-neighbor polariton energy lev-
els. The statistics of the whole spectrum and of the levels
belonging to the upper polariton branch do not show quali-
tative changes in a broad range of the magnitude of disorder
and are reasonably described by the Wigner distribution with
��1. At the same time, we found substantial changes in the
distribution for the lower �phonon� polariton branch, which
correlates with the higher DS in this spectral region. The
interpretation of this observation in terms of the localization
of these states is not, however, completely clear and needs
further investigation. Other targets of the future work should
include the consideration of the finite lifetime of optical
phonons �leading to a complex matrix M=M�+ iM�� and
of the disorder-induced coupling between LO and TO
phonons �which is known to be important in nanostructures
�8,12��. The developed approach, after an extension to aniso-
tropic media, can be used for studying polariton excitations
in polar crystals. In this case an interesting effect of polariton
mode’s interaction may arise as a consequence of mixing of
transverse and longitudinal components of the electromag-
netic field.
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