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Abstract 
Zinc triflate (Zn(CF3SO3)2)-doped sol-gel derived di-urea cross-linked POE/siloxane 

ormolytes (designated as di-ureasils) with ∞ > n ≥ 1 (where the salt content is expressed as n, 

the molar ratio of oxyethylene moieties to Zn2+ ions) were investigated. The hybrids with n ≥ 

5 are entirely amorphous; those with n > 10 are thermally stable up to approximately 305 ºC. 

The siliceous network of representative samples (n = 200 and 10) is essentially composed of 

(SiO)3Si(CH2)- environments and is thus highly branched. The distance between the structural 

units in samples with 200 ≥ n ≥ 10 and n ≤ 7 is 4.2 and 4.3 Å, respectively. The estimated 

interdomain distance is 11 and 13 Å for xerogels with 200 ≥ n ≥ 20 and n ≤ 10, respectively. 

At n = 1 a crystalline POE/Zn(CF3SO3)2 complex of unknown stoichiometry is formed. The 

conductivity maxima are located at n = 60 (3x10-6 S cm-1) and n = 20 (7x10-5 S cm-1) at 30 

and 100 ºC, respectively. 
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1. Introduction 

In the field of solid polymer electrolytes (SPEs) the hybrid concept [1], which is 

intimately associated with the sol-gel process [2-5], is one of the most attractive strategies that 

may be adopted to modify the architecture of poly(oxyethylene) (henceforth abbreviated as 

POE). In this domain the synthesis of POE/siloxane hybrid structures is achieved through the 

sol-gel strategy, with the objective of reducing the drawbacks of poor processability, a 

marked tendency to form crystalline regions and the occurrence of “salting out” at high guest 

salt concentrations [6]. These are some of the most important disadvantages of the classical 

POE/salt electrolytes that have severely hindered their practical application in solid-state 

electrochemical devices. 

The sol-gel method is  a versatile chemical synthetic route that permits the production, 

under mild reaction conditions, of ormolytes (organically modified silicate electrolytes). 

Relevant properties of novel electrolytes which may be “tailored” include specific density, 

thermal stability and mechanical properties. Ormolytes based on these materials are readily 

shaped into thin films and have an essentially amorphous character. Owing to their potential 

application in primary and secondary advanced batteries, the Li+-doped POE/siloxane 

ormolytes have been very extensively investigated [7-16]. Alkaline [17-18], alkaline-earth 

[19-21] and lanthanide [22-26] metal ions have also been introduced into this class of sol-gel 

derived host matrices. 

In spite of its low electrode potential (-0.76 V versus NHE), zinc is considered to be a 

good candidate for the fabrication of rechargeable solid-state batteries. This element is 

abundant in nature, non-toxic, very stable and can be handled safely in oxygen and humid 

atmospheres and thus hazards in open air are minimized. Zinc-based devices have also 

relatively high specific and volumetric energy densities. Over the last few years, the 

technology of rechargeable alkaline manganese oxide/zinc batteries has progressed rapidly 

[27, 28]. The number of reports referring to electrolytes formed with POE and zinc salts is, 
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however, relatively low [29-33]. Although zinc perchlorate has been incorporated into POE 

[29], the most widely studied POE-based systems include those formed by the dissolution of 

halogen zinc salts (ZnX2, where X= Cl [30-32], Br [31,32], I [30,31]) in the polymer host. Gel 

polymer electrolytes (GPEs) composed of poly(vinylidenefluoride) (PVDF) [34] or 

poly(methylmethacrylate) (PMMA) [35], plasticized with propylene carbonate and ethylene 

carbonate and doped with Zn(CF3SO3)2 have also been characterized. 

In the present study we have examined a new family of sol-gel derived di-urea cross-

linked POE/siloxane ormolytes (designated as di-ureasils [36,37]) incorporating Zn(CF3SO3)2. 

To the best of our knowledge this is the first time that Zn2+-doped hybrid electrolytes have 

been synthesized and their structure, morphology, thermal properties and ionic conductivity 

have been reported. In the di-ureasil host matrix employed, designated as d-U(2000) (where d 

stands for di, U denotes the urea group and 2000 is the average molecular weight of the 

starting organic precursor, which corresponds to about 40.5 oxyethylene repeat units), the 

extraordinary ability of the POE segments to dissolve guest salt species is combined with the 

chemical, mechanical and thermal stability of the siliceous network. In addition, the d-

U(2000) framework is only slightly hygroscopic and remains amorphous even at extremely 

high salt contents [16,20]. Since Berthier et al. [38] demonstrated that ion conduction 

occurred exclusively in the amorphous regions of electrolytes, research in this domain has 

been directed almost exclusively towards SPE systems devoid of crystalline domains. 

Although very recent data obtained by Gadjourova et al. [39] suggest that ionic conductivity 

in the crystalline fraction of the polymer phase can be significantly higher than in the 

amorphous regions, most of the research currently performed in this field continues to be 

directed toward the characterization of entirely amorphous materials. 
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2. Experimental  

2.1. Synthesis  

Zn(CF3SO3)2 (Aldrich) and O,O'-Bis(2-aminopropyl) polypropylene glycol-block-

polyethylene glycol-block-polypropylene glycol (commercially designated as Jeffamine ED-

2001®, Fluka, average molecular weight 2001 g/mol) were dried under vacuum at 25 ºC for 

several days prior to being used. 3-isocyanatepropyltriethoxysilane (ICPTES, Fluka) was used 

as received. Ethanol (CH3CH2OH, Merck) and tetrahydrofuran (THF, Merck) were stored 

over molecular sieves. High purity distilled water was used in all experiments.  

The Zn(CF3SO3)2-based di-ureasils were prepared according to the method described in 

detail elsewhere for the Li+ - based analogues [16]. In agreement with the terminology 

adopted previously [16,20,21,23], the xerogels have been identified by the notation d-

U(2000)nZn(CF3SO3)2. The Zn(CF3SO3)2 content of samples and other relevant information 

are collected in Table 1. 

 

2.2. Characterization  

29Si magic-angle spinning (MAS) and 13C cross-polarization (CP) MAS NMR spectra were 

recorded on a Bruker Avance 400 (9.4 T) spectrometer at 79.49 and 100.62 MHz, 

respectively. 29Si MAS NMR spectra were recorded with 2 µs (θ ≈30 º) rf pulses, and recycle 

delay of 60 s and at a 5.0 kHz spinning rate. 13C CP/MAS NMR spectra were recorded with 4 

µs 1H 90º pulse, 2 ms contact time, a recycle delay of 4 s and at a spinning rate of 8 kHz. 

Chemical shifts (δ) are quoted in ppm from tetramethylsilane (TMS). To analyse 

quantitatively the peaks observed in the 29Si MAS NMR spectra, the iterative least-squares 

curve-fitting procedure in the PeakFit software (Jandel Corporation, 2591 Rerner Boulevard, 

San Rafael, CA 94901, USA) was used. The best fit of the experimental data was sought by 

varying the frequency, bandwidth and intensity of the peaks and by employing Voigt band 
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shapes (a mixture of Lorentzian and Gaussian contributions). The standard errors of the 

curve-fitting procedure were less than 0.01. 

Differential Scanning Calorimetric (DSC) measurements were obtained in a DSC131 

Setaram DSC. Disk sections with masses of approximately 20 mg were removed from the 

ormolyte, placed in 40 µl aluminium cans and stored in a dessicator over phosphorous 

pentoxide (P2O5) for one week at room temperature under vacuum. After this drying treatment 

the cans were hermetically sealed and the thermograms were recorded. Each sample was 

heated from 25 to 300 ºC at 10 C min-1. The purge gas used in all experiments was high purity 

nitrogen (N2) supplied at a constant 35 cm3 min-1 flow rate.  

The X-ray diffraction (XRD) patterns were recorded at room temperature with a Rigaku 

Geigerflex D/max-c diffractometer system using monochromated CuKα radiation (λ = 1.541 

Å) over the 2θ range of between 10 and 80 º and at a resolution of 0.05 º. The samples were 

analyzed as powders and were not submitted to any thermal pre-treatment.  

Samples for thermogravimetric studies (materials with n = 200, 60, 40, 20, 10, 5 and 1) 

were transferred to open platinum crucibles and analyzed using a Rheometric Scientific TG 

1000 thermobalance at a heating rate of 10ºC min-1 using dry N2 as purging gas (20 cm3min-1). 

Prior to measurement, the xerogels were vacuum-dried at 80 ºC for about 48 h and stored in 

an argon-filled glove box.  

The total ionic conductivity of materials was determined by locating an ormolyte disk 

between two 10 mm diameter ion-blocking gold electrodes (Goodfellow, > 99.9%). Prior to 

characterization, the di-ureasil ormolytes were vacuum-dried at 80 ºC for about 48 h and 

stored in an argon-filled glove box. The electrode/ormolyte/electrode assembly was secured in 

a suitable constant-volume support [40] which was installed in a Buchi TO 51 tube oven. A 

calibrated type K thermocouple, placed close to the ormolyte disk, was used to measure the 

sample temperature with a precision of about 0.2 ºC and samples were characterized over a 

temperature range of between 25 and 100 ºC. Bulk conductivities of the samples were 
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obtained during heating cycles using the complex plane impedance technique (Schlumberger 

Solartron 1250 frequency response analyser and 1286 electrochemical interface) over a 

frequency range of 65 kHz to 0.5 Hz. The electrolyte behaviour was found to be almost ideal 

and bulk conductivities were extracted in the conventional manner from impedance data. 

Reproducibility of measurements was better than 5%. 

 

 

3. Results and Discussion 

3.1. Structure and Morphology  

The 29Si MAS NMR spectra of Zn2+-based di-ureasils with n = 200 and 10 exhibit three 

signals at -52, -58 and -66 ppm (Fig. 1). On the basis of the conventional Tm
 silicon (Si) 

notation (where m* = 1, 2 and 3 represents the number of Si atoms bonded to O-Si units) 

these resonances are ascribed to T1
, T2 and T3 sites, respectively (Table 2). The relative 

population of the three Si environments demonstrates that in both samples the dominating 

environment is T3
 (Table 2), meaning that under the experimental conditions applied the 

condensation reactions favoured the growth of branched structures. The degrees of 

polycondensation c reported in Table 2 are significantly higher than those observed in the 

non-doped framework (75%) [41]. On the basis of the empirical formula deduced for the two 

xerogels (Table 2), which suggest that a few terminal OCH2CH3 or OH groups persist bonded 

to the Si atoms, we propose that these composites have the idealized structure (Scheme 1). 

The diffractograms of the Zn(CF3SO3)2-based di-ureasils with 200 ≥ n ≥ 5 illustrated in Fig. 

2 lead us to conclude that these samples are entirely amorphous. The characteristic amorphous 

broad peak, Gaussian in shape and centered at approximately 21.61º in these patterns, is 

attributed to the coherent diffracting regions of the siliceous network [42]. The second-order 

                                                             
* The conventional notation Tn has been changed to Tm, to avoid any confusion with the notation n used for salt 
composition throughout the text. 
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of this peak is observed as a broad, low-intensity hump located around 40º in the XRD 

patterns of the samples with 20 ≥ n ≥ 10 (Fig. 2). A structural unit distance of 4.2 and 4.3 Å 

was obtained for the hybrids with 200 ≥ n ≥ 10 and n ≤ 7, respectively, using the Bragg law. 

The coherent length L over which the structural unit survives in the Zn2+-doped di-ureasils 

was estimated using the modified Scherrer equation L = I λ / (A cosθ), where A, in radians, is 

the integrated area of the peaks and I their intensity. Coherent lengths of 11 and 13 Å were 

derived for hybrids with 200 ≥ n ≥ 20 and n ≤ 10, respectively. These values of L are similar 

to those reported for the non-doped di-ureasils [43]. In the XRD pattern of the hybrid with n = 

1, a series of intense and sharp Bragg reflections are evident (Fig. 2). As these peaks do not 

coincide with those of the pure salt, they have been attributed to a crystalline 

POE/Zn(CF3SO3)2 complex of unknown stoichiometry [6].  

 

3.2. Thermal properties  

The DSC curves of the d-U(2000)nZn(CF3SO3)2 ormolytes with 200 > n > 5 (Fig. 3) 

demonstrate that these materials are amorphous, a result that corroborates the XRD data. The 

weak, broad endotherms centered around 150 ºC (with onset temperatures of about 75ºC) seen 

in the thermograms of the concentrated samples with n = 7 and 5 (Fig. 3) are ascribed to the 

evaporation of occluded solvents (water, ethanol or THF). As the d-U(2000) matrix is only 

slightly hygroscopic, the presence of minor traces of water must be associated with the zinc 

salt. Water from the salt-containing xerogels could be readily removed by drying the samples 

under vacuum at room temperature in the presence of a P2O5. The efficiency of the drying 

procedure was monitored by means of infrared spectroscopy. The profile of the OH stretching 

envelope in the high-frequency region of the FT-IR spectra of the d-U(2000)nZn(CF3SO3)2 

composites confirms that the amount of residual water in the samples is negligible (see Fig. 1 

of Ref. 44). The origin of the set of endotherms centred around 84, 106, 160 and 177 ºC in the 

DSC curve of the salt-rich xerogel with n = 1 (Fig. 3) is not clear.  
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The TGA curves of representative Zn(CF3SO3)2-doped ormolytes with 200 ≥ n ≥ 20 and 

n ≤ 10 are reproduced in Figs.4(a) and 4(b), respectively . The d-U(2000)nZn(CF3SO3)2 di-

ureasils with n ≥ 20 are thermally stable up to about 300 ºC (Fig. 4(a)), a value very close to 

that reported for the non-doped matrix [16]. At about 420 ºC a mass loss was observed that 

decreased with increasing salt concentration (Fig. 4(a)). In the case of the di-ureasils with n = 

40 and 20 a slight mass loss was observed at around 32 ºC, probably due to solvent and water 

loss. Thermal degradation in the samples with n = 10 and 5 takes places in three stages: a 

slight gradual mass loss takes place around 50 ºC, followed by two abrupt changes, one at 280 

and the other at 410 ºC (Fig. 4(b)). In contrast, the most concentrated compound analyzed (n = 

1) suffers a marked weight loss at only 32 ºC, followed by a further event at about 300 ºC and 

by an abrupt decomposition that is initiated at 500 ºC (Fig. 4(b)). The major degradation of 

this d-U(2000)1Zn(CF3SO3)2 di-ureasil sample occurs in the latter stage (Fig. 4(b)). These 

data allow us to assign the endotherms evident in the DSC thermograms of the salt-rich di-

ureasil (n = 1) to the coupled effect of fusion of the crystalline POE/Zn(CF3SO3)2 complex 

identified by XRD (Fig. 2) and degradation reactions. 

 

3.3 Ionic conductivity  

The Arrhenius conductivity plots and the graph of the conductivity isotherms of the d-

U(2000)nZn(CF3SO3)2 ormolytes with !  > n ≥ 1 are depicted in Figs. 5 and 6, respectively. 

The Zn2+-doped di-ureasils with n ≥ 20 display moderate levels of ionic conductivity over the 

whole range of temperatures considered (Fig. 5(a)). At 30 and 100 ºC the ormolytes with the 

highest conductivity are d-U(2000)60Zn(CF3SO3)2 (2.7x10-6 S cm-1) and d-

U(2000)20Zn(CF3SO3)2 (7x10-5 S cm-1), respectively (Figs. 5(a) and 6). At higher salt 

concentration (n ≤ 10) the ionic conductivity suffers a marked decrease ((Figs. 5(b) and 6). 

The surprisingly low ionic conductivity exhibited by the salt-rich hybrid with n = 1 (below 60 

ºC it is even lower than that of the non-doped hybrid (Fig. 5(b)), which was attributed to 
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proton hopping between the urea groups [36,37]) correlates well with the existence of a 

crystalline POE/Zn(CF3SO3)2 complex, which globally reduces the proportion of amorphous 

material in the sample and consequently restricts polymer segment mobility and ion transport 

[6]. 

At ambient temperature electrolytes produced by the sol-gel process show an 

improvement over the poor conductivity typically exhibited by POE-based electrolytes. This 

is a consequence of the high proportion of crystalline material present in the latter material. In 

the Zn(CF3SO3)2-based di-ureasil compounds with 100 ≥ n ≥ 10 the ionic conductivity varies 

from 10-6 to 10-5 S cm-1 at room temperature, whereas the conventional PEO-based solid 

electrolytes yield conductivities of the order of 10-8 S cm-1 [45].  

The ionic conductivity displayed by the d-U(2000)nZn(CF3SO3)2 xerogels is significantly 

lower than the conductivity maxima exhibited by the Zn(CF3SO3)2-doped SPE reported by 

Ikeda et al [33] (2.1x10-4 S cm-1 at room temperature for a sample containing 4 mol% 

Zn(CF3SO3)2) and by the PVDF- and PMMA-based GPEs of Kumar et al. (3.94x10-3 S cm-1 at 

25 ºC [34] and 1.3x10-3 S cm-1 at 27 ºC [35], respectively). GPEs are however expected to 

have a greater propensity for interfacial problems than ormolytes [46]. Thus, in this sense, 

sol-gel derived materials such as the ones proposed here may be a viable alternative.  

 

4. Conclusions 

Novel Zn(CF3SO3)2-doped di-ureasil ormolytes with ∞ > n ≥ 1 were synthesized by the 

sol-gel process. Materials with n ≥ 5 were obtained as completely amorphous, transparent and 

flexible thin monolithic films. In the compound with n = 1, produced as a white powder, a 

crystalline POE/Zn(CF3SO3)2 complex of unknown stoichiometry is formed. The xerogels 

with 200 > n ≥ 20 are thermally stable up to 305 ºC. At 30 and 100 ºC, the most conducting 

di-ureasils are d-U(2000)60Zn(CF3SO3)2 (3x10-6 S cm-1) and d-U(2000)20Zn(CF3SO3)2 (7x10-5 

S cm-1), respectively. 
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The encouraging results obtained in the present work suggest that further studies on the 

zinc-doped d-U(2000)-based di-ureasil ormolytes are worth pursuing. In particular, the 

replacement of the triflate ion by a more suitable anion is expected to result in a significant 

increase of the ionic conductivity values. 
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List of figure captions 

 

Fig. 1. 29Si MAS NMR spectra of selected d-U(2000)nZn(CF3SO3)2 di-ureasils (a) and 

curve-fitting results (b) 

 

Fig. 2. XRD curves of selected d-U(2000)nZn(CF3SO3)2 di-ureasils. 

 

Fig. 3. DSC patterns of the d-U(2000)nZn(CF3SO3)2 di-ureasils. 

 

Fig. 4. TGA curves of selected d-U(2000)nZn(CF3SO3)2 di-ureasils: (a) 200 ≥ n ≥ 20; 

(b) n = 10, 5 and 1 

 

Fig. 5. Arrhenius conductivity plot of the d-U(2000)nZn(CF3SO3)2 di-ureasils: (a) 200 ≥ 

n ≥ 20; (b) n = ∞. 10, 7, 5 and 1 

 

Fig. 6. Composition dependence of the ionic conductivity of the d-

U(2000)nZn(CF3SO3)2 di-ureasils. 

 

Tables 

 

Table 1 Details of the synthetic procedure of the d-U(2000)nZn(CF3SO3)2 di-ureasils. 

. 

Table 2 29Si MAS/NMR data of selected d-U(2000)nZn(CF3SO3)2 di-ureasils. 

 

Scheme 

Scheme 1 - Structure of d-U(2000)nZn(CF3SO3)2 di-ureasils. 
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Fig. 1. S. C. Nunes et al., Solid State Sciences 
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Fig. 3. S. C. Nunes et al., Solid State Sciences 
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Table 1. S. C. Nunes et al., Solid State Sciences 

 n = O/Zn2+ m(Zn(CF3SO3)2) Si/Zn2+ Si/Zn2+ physical 

 (molmol-1) (g) (molmol-1) (gg-1) appearance 

   ∞     -    -     - transparent film 

     yellowish hue 

 200 0.0920 9.8765 6.7206 idem 

 100 0.1840 4.9383  3.3603 idem 

   80 0.2300 3.9506  2.6883 idem 

   60 0.3067 2.9630  2.0162 idem 

   40 0.4601 1.9753  1.3441 idem 

   20 0.9202 0.9876  0.6721 idem 

   10 1.8404 0.4938  0.3360 idem 

     7 2.6291 0.3457  0.2352 idem 

     5 3.6807 0.2469  0.1680 idem 

     1 18.4037 0.0494  0.0336 white powder 
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Table 2. S. C. Nunes et al., Solid State Sciences 

  Tm
 (population in %) 

 n T1 T2 T3 c (%) Empirical 

formula  

 200 -52 (1) -58 (27) -67 (72) 90 R’0.5Si 

(OR)0.30(O)1.4 

   10 -52 (1) -58 (33) -66 (66)  88 R’0.5Si 

(OR)0.36(O)1.3 

 

Notes:
 

c = 1/3 (%T1 + 2%T2 + 3%T3) 

T1 = CH2Si(OSi)(OR)2; T2
 = CH2Si(OSi)2(OR), T3 = CH2Si(OSi)3 

R = H or CH2CH3 

 

 
Scheme 1. S. C. Nunes et al., Solid State Sciences 
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