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Abstract
We study the production of a Higgs boson in association to a top-antitop pair at the Large Hadron Collider. We show

how precise predictions for the differential distributions with respect to the transverse momentum of the Higgs boson, to the
invariant mass of the top-antitop-Higgs system and to the invariant mass of the top-antitop pair can provide useful information
on the possible presence of a pseudoscalar component in the coupling of the top quark with the Higgs boson. We evaluate the
production of a top-antitop pair and a Higgs boson to next-to-leading order in fixed order perturbation theory and we carry
out the resummation of soft emission corrections to next-to-leading-logarithmic accuracy for the LHC operating at a center of
mass energy of 13 TeV. We discuss how the shape of these distributions can be employed experimentally, making a physics case
for the kinematic reconstruction of dilepton channels.

I. INTRODUCTION

At the Large Hadron Collider (LHC), the study of the
associated production of a top-quark pair and a Higgs
boson offers the unique opportunity of obtaining direct
information on the Yukawa coupling of the top quark.
Since in the Standard Model (SM) of particle physics the
top quark is the particle which is predicted to have the
strongest coupling with the Higgs boson, the study of
this Yukawa coupling can prove important in the under-
standing of the electroweak symmetry breaking mecha-
nism. In order to fully exploit the potential of the LHC
in the study of this process, precise measurements, in-
volving ideally the full kinematic reconstruction of the
top pair and Higgs boson momenta, should be matched
by (at least) equally precise theoretical predictions for
measured observable quantities. For this reason, within
the SM, higher order corrections to this process have
been a subject of investigation for several years. Next-to-
leading-order (NLO) QCD corrections were at first eval-
uated in [1–6]. Subsequently, these corrections were eval-
uated again in the process of developing and testing new
tools for automated calculation of NLO corrections [7, 8].
The electroweak corrections to this process were studied
in [9–12]. The associated production of a top pair and
a Higgs boson, including the decay of the top quark and
off-shell effects was evaluated to NLO in [13, 14].

The resummation of potentially large effects due to the
emission of soft gluons in the final state was studied in
[15–19]. In [16] a parton level Monte Carlo code was
developed in order to evaluate the soft emission correc-
tions to tt̄H production to next-to-next-to-leading loga-
rithmic (NNLL) accuracy. The NNLL corrections were
then matched to NLO calculations obtained by employ-
ing MadGraph5_aMC@NLO [20] (which we will indicate with
MG5_aMC in the rest of this paper). In this way, within the
SM, it was possible to obtain the NLO+NNLL prediction
for the tt̄H total cross section as well as for several differ-

ential distributions which depend on the four momenta of
the final state top quark, top antiquark and Higgs boson.

The cross section of the associated production of the
Higgs boson with a top-quark pair at the LHC is of a
few hundred femtobarn. Since this process has a huge
background contamination stemming from pp→ tt̄+ jets
and other processes, it is easy to see that the associated
tt̄H productions is extremely difficult to measure at the
LHC. The ATLAS and CMS analysis teams have already
obtained a combined best-fit value for the signal strength
of µ = σ/σSM = 2.3+0.7

−0.6 [21–23]. The expected increase
of integrated luminosity at the LHC, and further progress
in the experimental techniques might make the the ob-
servation possible at run II.

It is of course also crucial to try to understand which
kind of information about possible non-SM couplings of
the top quark to the Higgs boson can become accessible
when this process will be detected at the LHC. In par-
ticular, it is interesting to see if the Higgs boson couples
to the top quark not only with a scalar coupling, but
also through a pseudoscalar one. A comprehensive study
of this aspect can be found in [24], where the CP prop-
erties of the top-quark Yukawa interaction are studied
in the context of Higgs production in gluon fusion or in
association with top quarks. In that work, NLO QCD
preditions for tt̄H production within an Effective Field
Theory approach of [25] are presented.

This works investigates the possible presence of a pseu-
doscalar component in the top-quark Yukawa coupling
from a different perspective; in particular the purpose of
this paper is twofold:

a) We reconsider the role that the shape of some differ-
ential distributions can have in the study of a pos-
sible pseudoscalar component in the coupling of the
Higgs boson to the top-quark, taking into account
the possibility of a full experimental reconstruction
of the top, antitop and Higgs boson momenta.
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b) We show that it is relatively straightforward to
obtain precise, beyond NLO predictions for differ-
ential distributions which are sensitive to a pseu-
doscalar component in the top quark Yukawa cou-
pling.

For this purpose, we consider the benchmark scenario
described in Table 3 of [24], in which the coupling of the
top-quark current to a “Higgs Boson” X0 is described by
the effective Lagrangian

Lt0 = −mt

v
ψ (cosα+ i sinαγ5)ψX0 , (1)

where the angle α parameterizes the relative weight of
the scalar and pseudoscalar couplings. In Eq. (1), mt in-
dicates the mass of the the top quark and v the vacuum
expectation value. In the following we will identify X0

with the SM Higgs boson H when we consider a purely
scalar coupling (α = 0) while we will use the notation
X0 → A when we consider a purely pseudoscalar cou-
pling (α = π/2). The part of the Lagrangian in Eq. (1)
which is proportional to γ5 is odd under a CP transfor-
mation. While Eq. (1) is not the most generic effective
Lagrangian for this sector of the SM, it allows us to study
in particular the effect of mixed scalar-pseudoscalr cou-
pling on the shape of several differential distributions.

Experimentally, a full reconstruction of the momenta
of the tt̄X0 final state is possible, and this allows one
to measure distributions which are differential with re-
spect to the momenta of the final state massive particles.
Four of these distributions play an important role in this
work: the differential distribution with respect i) to the
invariant mass of the three massive particles in the fi-
nal state, ii) to the transverse momentum of the X0 bo-
son, iii) to the invariant mass of the top pair, and iv) to
the transverse momentum of the top quark. The shapes
of these distributions, with the exception of the trans-
verse momentum of the top quark, show significant dif-
ferences between the pure scalar and pseudoscalar cases
at generator level. Consequently they can be used to ex-
perimentally probe the pseudoscalar component. Even
though parton showering, detector acceptance, event se-
lection and reconstruction are expected to considerably
degrade these specific distributions and their discrimi-
nant power [24], several studies strongly suggest that sim-
ilar distributions involving full kinematic reconstruction
can be measured [26, 27]. In addition, these same studies
indicate that new interesting angular distributions and
asymmetries can be defined from the reconstructed top
quarks and Higgs boson in order to discriminate the sig-
nal from the main irreducible backgrounds in dileptonic
decays in an extremely efficient way, even after event re-
construction. Besides the fact that the full kinematic
reconstruction of tt̄X0 events is extremely challenging,
due to the presence of two undetected neutrinos in the
dilepton channel, results show that angular distributions
involving the reconstructed top quarks and Higgs boson
and/or their decaying products are significantly different
for the signal and the main irreducible backgrounds. A

similar strategy can be implemented to probe the pseu-
doscalar component of the top quark Yukawa coupling,
by exploring new distributions, highly sensitive to the
mixing angle.

In order to obtain precise predictions for the associ-
ated production of a top pair and a X0 boson we write
a parton level Monte Carlo which includes the resumma-
tion of soft emission corrections in the partonic threshold
limit defined by z = M2/ŝ → 1, where M is the invari-
ant mass of the tt̄X0 final state and ŝ is the partonic
center of mass energy. The resummation of these correc-
tions is carried to next-to-leading logarithmic (NLL) ac-
curacy. Predictions to NLO+NLL accuracy for the total
cross section and the four differential distributions listed
above are obtained by matching the output of the parton
level Monte Carlo with the NLO calculations obtained by
using MG5_aMC.

The paper is structured as follows. In Section II we
present predictions for the total cross section and differ-
ential distributions for tt̄X0 production considering the
cases in which X0 couples to the top quark as a scalar
(x0 → H), pseudoscalar (X0 → A) and as a mixture of
the two. In Section III we discuss how the measurement
of these quantities can be employed to extract informa-
tion about the coupling of X0 with the top. Section IV
contains our conclusions.

II. CALCULATION AND RESULTS

The process of interest in this work is the associated
production of a top pair and a boson X0 which cou-
ples to the top quark according to the Lagrangian in
Eq. (1). From the calculational point of view, this pro-
cess is equivalent to the associated production of a top
pair and a Higgs boson in the SM. The resummation
of the latter process in the partonic threshold limit was
studied in detail in [15, 16]. In particular, in [16] predic-
tions for tt̄H production were obtained to NLO+NNLL
accuracy. That calculation was carried out by means of
an in-house parton level Monte Carlo code that was em-
ployed for the numerical evaluation of the resummation
formula to NNLL accuracy. The NNLL calculations were
then matched to NLO results obtained by using MG5_aMC.
Our goal in this paper is to calculate to NLL accuracy
the tt̄X0 production process of an arbitrary mixture of
scalar and pseudoscalar coupling of X0. We then match
the results obtained to NLO calculations carried out by
using the the model package for MG5_aMC developed for
the work published in [24].

The resummation formula which we employ is derived
along the lines of the one discussed in [16] for the SM case
and of the ones obtained in [28, 29] for tt̄W and tt̄Z pro-
duction, respectively. For this reason, we do not repeat
a detailed description of the resummation formula and
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of the resummation technique here1. We simply point
out that in order to carry out the resummation to NLL
accuracy one needs to evaluate the anomalous dimen-
sions, soft functions and hard functions to LO only. The
anomalous dimensions and the soft functions are identical
to the ones employed in the SM calculation. The LO hard
function for the quark-annihilation and gluon fusion par-
tonic production channels can be readily obtained with a
simple analytic calculation. The numerical evaluation of
the resummed cross section is carried out in Mellin mo-
ment space, as it was done in [16, 28, 29]. Physical results
are then obtained with a numerical inverse Mellin trans-
form carried out by employing the Minimal Prescription
to avoid problems related to the presence of the Landau
pole [31].

When combining resummed calculations to fixed order
calculations, it is important to avoid the double counting
of terms included in both approaches. This is achieved
through the procedure of “matching”. In the case consid-
ered in this work, the matching procedure can be sum-
marized in a schematic equation, which we write down
here for the case of the total cross section:

σNLO+NLL = σNLO +
[
σNLL − σNLL expanded to NLO]

(2)

In Eq. (2) the terms within square brackets give contri-
butions starting at NNLO.

Resummed calculations to a given logarithmic accu-
racy have a residual dependence on three non-physical
scales: the factorization scale µf , which appears also in
fixed order calculations, the soft scale µs which charac-
terizes the soft gluon emission, and the hard scale µh
which is the scale that characterizes the hard scattering.
The hard and soft scales appear only in the resummed
partonic cross section. The soft function evaluated at the
scale µs and the hard function evaluated at the scale µh
are free from large logarithms. By solving the Renormal-
ization Group Equations satisfied by the soft and hard
functions the partonic cross section is evolved to the fac-
torization scale µf and then convoluted with the par-
tonic luminosity. In fixed order calculations, the resid-
ual perturbative uncertainty associated to corrections at
perturbative orders which are higher than the one con-
sidered in the calculation is estimated by varying the de-
fault choice for the factorization scale by a factor of two.
To be specific, if one indicates the default choice for the
factorization scale with µf,0, the scale is then varied in
the interval µf ∈ [µf,0/2, 2µf,0]; subsequently, the scale
uncertainty affecting the fixed order result is taken to
be the interval included between the largest and small-
est values of the observable obtained while varying the
factorization scale. In resummed calculations, also the

1 For an introduction to the soft-collinear effective theory methods
employed in this approach to partonic threshold resummation see
for example [30].

hard and soft scales are varied by a factor of two around
their default value, indicated by µs,0 and µh,0 respec-
tively: µs ∈ [µs,0/2, 2µs,0] and µh ∈ [µh,0/2, 2µh,0]. The
perturbative scale uncertainty affecting resummed calcu-
lations is estimated by varying separately the hard, soft,
and factorization scales and by subsequently combining
the uncertainties in quadrature. In particular, for any
observable O (which can be the total cross section or the
value of the differential cross section in a particular bin),
one evaluates the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}
−O (κi = 1) ,

∆O−
i = min{O (κi = 1/2) , O (κi = 1) , O (κi = 2)}
−O (κi = 1) . (3)

In Eqs. (3) we introduced the quantities κi = µi/µi,0
where the index i ∈ {s, h, f}. The three quantities ∆O+

i
(∆O−

i ) are then combined in quadrature in order to ob-
tain the scale uncertainty above (below) the central value.

The dependence of the physical predictions on the fac-
torization, hard and soft scales is expected to become
progressively smaller as more perturbative orders are
added to fixed order calculations and a higher logarithmic
accuracy is reached in resummed calculations. Since we
obtain predictions at NLO+NLL accuracy, it is impor-
tant to choose carefully the default values for the hard,
soft and factorization scales. For all of the scales we
choose dynamic default values depending on tt̄X0 invari-
ant mass. With the method chosen for the resumma-
tion of the soft emission corrections the choice of the
hard and soft scales is straightforward and is dictated
by the kind of scale dependent logarithms found in the
hard and soft function respectively. This leads to the
choice µh,0 = M and µs,0 = M/N̄ , where N̄ = NeγE

and N is the Mellin moment parameter while γE indi-
cates the Euler-Mascheroni constant. For the SM case,
the choice of a suitable central value for the factorization
scale was discussed in [16]. The total tt̄H total cross sec-
tion calculated as a function of µf at NLO, NLO+NLL
and NLO+NNLL shows that these three curves intersect
each other at µf/M ∼ 0.5 (see Fig. 1 in [16]) while the
curves differ significantly for much smaller or much larger
values of µf . This fact motivated the choice µf,0 = M/2
in [16]. The process considered in this work differs from
the SM tt̄H production simply because of the presence
of the pseudoscalar coupling in Eq. (1). Since the pseu-
doscalar coupling is not expected to change the scale be-
havior of the cross section, we set µf,0 = M/2 also in this
work.

Finally, the calculations of the total cross section and
differential distributions presented in the rest of this pa-
per were obtained by employing the input parameters
listed in Table I. The input parameters chosen are the
same ones employed in [27]. Throughout the paper we
employ MMHT 2014 PDFs [32]; in particular, we employ
LO PDFs in LO calculations and NLO PDFs in NLO and
NLO+NLL calculations.
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MW 80.419 GeV mt 173 GeV

MZ 91.188 GeV mH 125 GeV

1/α 137.036 αs (MZ) from MMHT 2014 PDFs

TABLE I: Input parameters employed throughout the calcu-
lation.

order PDF order α σ [fb]

LO LO 0 378.7
+120.6 (32%)

−85.2 (22%)

LO LO π/2 142.4
+50.1 (35%)

−34.6 (24%)

NLO NLO 0 475.0
+47.3 (10%)

−51.9 (11%)

NLO NLO π/2 192.4
+23.3 (12%)

−24.3 (13%)

NLO+NLL NLO 0 480.3
+57.8 (12%)

−15.6(3.2%)

NLO+NLL NLO π/2 199.6
+17.7(8.9%)

−8.4(4.2%)

TABLE II: Total cross section for tt̄X0 production at the LHC
with

√
s = 13 TeV and MMHT 2014 PDFs. The default value

of the factorization scale is µf,0 = M/2, and the uncertainties
are estimated through variations of this scale (and of the hard
and soft scales µs and µh in resummed calculations).

A. Total Cross Section

We start by discussing results for the total cross sec-
tion. Table II lists values for the total cross section for
the purely scalar coupling case (α = 0) and for the purely
pseudoscalar case (α = π/2). The table reports numbers
for LO, NLO and NLO+NLL calculations. The residual
perturbative uncertainty is estimated by varying the fac-
torization scale (in all calculations) and the hard and soft
scales (in NLO+NLL calculations) as explained in the
previous section. Table II shows that the NLO correc-
tions increase significantly the central value of the total
cross section for the two values of α considered. Further-
more, as expected, the NLO scale uncertainty is signif-
icantly smaller than the LO one. The resummation of
soft emission corrections to NLL accuracy results into a
small increase of the central value of the cross section, of
the order of a few percent. The scale uncertainty inter-
val obtained by varying the three scales in the resummed
cross section is smaller than the scale uncertainty inter-
val affecting the NLO calculation for both values of α.
We notice that the resummation effect is larger for the
purely pseudoscalar case than for the purely scalar one.
This might be due to the fact that in the purely pseu-
doscalar case the large invariant mass region contributes,
in proportion, to a larger fraction of the total cross sec-
tion with respect to the purely scalar case. This fact
can be noticed by looking at the invariant mass distri-
bution shown in the upper-left plot of Figure 2. In the
invariant mass tail the soft emission corrections dominate
the cross section, hence resummation has larger effects in
that region. The PDF uncertainty on the NLO results

order PDF order α σ [fb]

NLO NLO 0 475.0
+47.3 (10%)

−51.9 (11%)

NLO NLO π/6 404.4
+41.3 (10%)

−45.0 (11%)

NLO NLO π/4 333.7
+35.3 (11%)

−38.1 (11%)

NLO NLO π/3 263.1
+29.3 (11%)

−31.2 (12%)

NLO NLO π/2 192.4
+23.3 (12%)

−24.3 (13%)

NLO+NLL NLO 0 480.3
+57.8 (12%)

−15.6(3.2%)

NLO+NLL NLO π/6 410.1
+47.4 (12%)

−12.4(3.0%)

NLO+NLL NLO π/4 339.9
+37.0 (11%)

−9.8(2.9%)

NLO+NLL NLO π/3 269.8
+27.0 (10%)

−8.4(3.1%)

NLO+NLL NLO π/2 199.6
+17.7(8.9%)

−8.4(4.2%)

TABLE III: Total cross section for tt̄X0 production at the
LHC with

√
s = 13 TeV as a function of the angle α.

was evaluated separately by means of MG5_aMC by consid-
ering the MMHT2014nlo68cl PDF set. It is of the order or
∼ ±3%. The PDF uncertanty affecting the NLO+NLL
result is expected to be of the same magnitude.

The result for other values of the mixing angle α can
be obtained by employing the relation

σ(α) = σH cos2 α+ σA sin2 α . (4)

In Eq. (4), σH indicates the total cross section for a pure
SM like coupling, while σA indicates the cross section for
a pure pseudoscalar coupling. At NLO, the scale uncer-
tainty at an arbitrary angle can be obtained in a similar
way by exploiting the fact that the upper edge of the scale
uncertainty band corresponds to the NLO calculation in
which the factorization scale is set equal to µf,0/2, while
the lower edge corresponds to the calculation in which
one sets µf = 2µf,0. Eq. (4) can also be employed to
obtain the central value of the NLO+NLL cross section
at an arbitrary angle. However, since the estimate of the
scale uncertainty at NLO+NLL accuracy involves the in-
dependent variation of three scales, it cannot be obtained
directly from the results of Table II and it must be eva-
luted separately. Table III lists the values of the NLO
and NLO+NLL cross section and of their scale uncer-
tianty for a few values of the angle α. Figure 1 shows the
dependence of the total cross-section on the mixing an-
gle. For all values of α the NLO+NLL cross section is a
few femtobarn higher than the NLO one, while the scale
uncertainty intervals at NLO+NLL are slightly smaller
than the corresponding NLO intervals.

B. Differential Distributions

In this section we consider four differential distribu-
tions for the tt̄X0 production process:
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i) Distribution differential with respect to the tt̄X0

invariant mass M ,

ii) distribution differential with respect to the trans-
verse momentum of the X0 scalar pXT ,

iii) distribution differential with respect to the top-pair
invariant mass Mtt̄, and, finally,

iv) distribution differential with respect to the trans-
verse momentum of the top quark, ptT .

Our goal is to see if these distributions, and in particu-
lar their shapes, are sensitive to the scalar and/or pseu-
doscalar nature of the X0 coupling. As for the total cross
section, we consider here the case α = 0 (SM-like Higgs
boson) and α = π/2 (pure pseudoscalar coupling). The
value of the differential distributions for arbitrary α can
be obtained by combining the distribution at α = 0 and
α = π/2 as shown in Eq. (4) for the case of the to-
tal cross section. In addition, we want to check if the
shape of these distributions is stable with respect to the
inclusion of soft gluon emission corrections through the
resummation process.

These differential distributions evaluated to NLO with
MG5_aMC are shown in Figure 2. The bands represent the
residual perturbative uncertainty evaluated through the
variation of the factorization scale as explained above.
At this stage, we made no attempt to account for the
PDFs uncertainty. The bottom part of each panel shows
the width of each bin divided by its central value, and
allows one to assess the relative scale uncertainty of the
bands for the scalar and pseudoscalar cases. We see that
the relative scale uncertainties for the cases α = 0 and
α = π/2 are very similar.

The distributions presented in Figure 3 are the same
distributions shown in Figures 2 but this time they are
evaluated to NLO+NLL accuracy. The scale uncertainty
bands in Figure 3 are slightly narrower than the ones at
NLO (shown in Figure 2) as a consequence of the inclu-
sion of resummed soft gluon emission corrections. Fig-
ure 4 shows the distributions at NLO+NLL normalized
to their total cross section, i.e. the height of each bin
is divided by the total cross section. Consequently, the
sum of the height of all bins in each distribution (in-
cluding the ones outside the range shown in the figure)
is equal to 1. The scale uncertainty bands become ex-
tremely thin. For this reason we decided to show only
the central value (µf = M/2, µh = M, µs = M/N̄) for
both the scalar and the pseudoscalar case. By examin-
ing Figure 4 one sees that, with the exception of the ptT
differential distribution, the shape of the normalized dis-
tributions in the scalar and pseudo-scalar cases is quite
different. In the M,Mtt̄ and pXT distributions, the peak
of the scalar coupling distribution is more pronounced
and shifted to the left with respect to the peak of the
pseudoscalar coupling distribution. As mentioned in the
Introduction, the shape difference between distributions
with scalar and pesudoscalar couplings can be experi-

mentally used to probe the pseudoscalar component of
the Yukawa coupling.

One might wonder if there is a difference in shape be-
tween the fixed order and the matched distributions. It
turns out that the NLO normalized distributions are ex-
tremely similar to the ones in Figure 4 because the re-
summed soft emission corrections have a very small im-
pact on the shape of the distributions. This can be seen in
Figure 5, which shows the ratio of the normalized distri-
butions at NLO+NLL over the normalized distributions
evaluated to NLO. The relative difference between these
distributions is consistently smaller than a few percent.

Figures 6 and 7 show the comparison between the
distribution evaluated to NLO (orange band) and to
NLO+NLL (green band). Figure 6 corresponds to the
pure SM Higgs scenario while Figure 7 refers to the pure
pseudoscalar case. The NLO+NLL bands are consis-
tently overlapped with the upper part of the correspond-
ing NLO bands. This behavior is similar to the one ob-
served for the associated production of a top quark pair
with a W boson [28] and the associated production of a
top quark pair with a Z boson [29].

III. EXPERIMENTAL MOTIVATION

The cross-section for the tt̄X0 production channel has
a very simple dependence on the mixing angle. This im-
plies that the calculation of the cross section in the pure
scalar case, σH , and in the pure pseudoscalar case, σA,
allows us to fully reconstruct the dependence for any ar-
bitrary α. Therefore, the measurement of the total cross
section by itself allows one to probe the pseudoscalar
component of the top quark Yukawa coupling. This de-
pendence on the mixing angle is also true for the afore-
mentioned differential cross section distributions in any
particular bin. As a result, the expected uncertainty on
| cosα| can be easily calculated as a function of the cross
section. In the SM scenario, assuming an hypothetical
cross section measurement of σ = σH ±∆σ, one finds

∆| cosα| =
∂| cosα|
∂σ

∆σ

=
1

2

1

σH − σA
∆σ

≈ 0.86+0.09
−0.03

( σH
∆σ

)−1

, (5)

according to Table II, at NLO+NLL. The uncertainty on
| cosα| is inversely proportional to the statistical signifi-
cance of the production channel. The graphical represen-
tation of the lower limit on cosα at 68.3% CL with the
statistical significance of the SM Higgs boson associated
production with a top quark pair is presented in Figure 9.
An eventual five sigma observation of this channel, in the
SM hypothesis, would set a limit of | cosα| > 0.83+0.01

−0.02

at 68.3% CL, growing asymptotically to one with the in-
crease of significance. The error on this limit, represented
by the blue shaded band in Figure 9, emerges from the
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uncertainty on the cross-sections in Table II due to scales
variations.

The theoretical uncertainty on the tt̄X signal cross
section, in particular the scale dependence, comprises
one of the components of the full systematic error taken
into account in experimental measurements at the LHC.
The observed improvement on the scale uncertainty at
NLO+NLL is expected to significantly decrease the im-
pact of the scale dependences on the Monte Carlo signal
estimation, and therefore, on the overall systematic er-
ror [33]. Moreover, the k-factors associated with the ratio
of the NLO+NLL cross section with respect to the NLO
calculation,

k = σNLO+NLL/σNLO , (6)

range from 1.010 to 1.012 (1.048 to 1.025) for the trans-
verse momentum of the top quark in the pure scalar
(pseudoscalar) scenario, as can be seen in Figure 8. This
information is useful to reweight the simulated transverse
momenta of the top quark and X0 boson in the exper-
imental measurement analyses, for any specific mixture
of the two components.

While the cross section measurement does not require
an experimental full event kinematic reconstruction, the
implementation of the differential distributions evaluated
in Section II, and eventual new angular asymmetries, nat-
urally demands complete kinematic information about
the top quarks and the X0 boson. The different behav-
ior of these observables for the scalar and pseudoscalar
cases are expected to significantly improve the sensitiv-
ity to the mixing angle α, when combined with the cross
section result. In particular, the two dimensional distri-
bution between the top-X0 and the anti-top-X0 angles in
the tt̄X0 rest frame, recently presented in [27], is a po-
tential candidate to provide an angular asymmetry which
would allow to probe the top quark Yukawa coupling with
further precision.

The theoretical understanding of the shapes of the
transverse momentum and invariant mass distributions
is also extremely important for the full kinematic recon-
struction of tt̄X0 dilepton events. The event reconstruc-
tion is based on six kinematic equations with quadratic
dependences, and therefore, gives rise to more than one
possible solution [26, 34]. As such, these variables can be
used as inputs to calculate the likelihood of a given so-
lution to be consistent with the event. For example, the
reconstruction of the tt̄X0 system performed in [27], with
two opposite charged leptons in the final state, makes
use of a likelihood function calculated as the product
of one-dimensional probability density functions (p.d.f.).
These p.d.f.s are built from pT distributions of the neu-
trino, anti-neutrino, top quark, anti-top quark, and tt̄
system, respectively P (pT ν), P (pT ν̄), P (pT t), P (pT t̄)
and P (pT tt̄), at parton level:

Ltt̄X0
∼ 1

pT νpT ν̄
P (pT ν)P (pT ν̄)P (pT t)P (pT t̄)

× P (pT tt̄)P (mt,mt̄)P (mX0
) . (7)

The two-dimensional p.d.f. of the top quark masses,
P (mt,mt̄), and the one-dimensional p.d.f. of the X0 can-
didate mass, P (mX0

), are also included. In addition, the
kinematic distributions presented in this paper might also
be used as input variables in similar multivariate meth-
ods to determine the right pairing of jets in the recon-
struction process. These distributions can also be used
to repair the distortion caused by the detector response,
kinematic cuts applied in the trigger and in the offline
event reconstruction and selection.

IV. CONCLUSIONS

In this work we studied the associated production of a
top-antitop pair and a scalar X0 which is allowed to cou-
ple to the top quark current with a mixture of scalar and
pseudoscalar couplings. The scalar coupling is the SM
Yukawa coupling modulated by a factor cosα, where α
is the angle which parameterizes the relative strength of
the scalar and pseudoscalar components of the coupling.
We evaluated the total cross section for this process for
the special cases α = 0 (SM Higgs) and α = π/2 (pure
pseudoscalar coupling) to NLO+NLL accuracy, where
the NLL resummation was carried out in the soft gluon
emission limit. We showed that it is straightforward to
use this information in order to evaluate the total cross
section for arbitrary values of α.

Recent studies point to the possibility of a reliable
kinematic reconstruction of the top, antitop and X0 mo-
menta. For this reason, we studied differential distribu-
tions with respect to the final state invariant mass, X0

transverse momentum, top-pair invariant mass and top-
quark transverse momentum to NLO+NLL accuracy. By
comparing the α = 0 and α = π/2 cases, we showed that
the shapes of the first three distributions listed above de-
pend quite strongly on the scalar or pseudoscalar nature
of the coupling between the top quark and the Higgs bo-
son. In addition, these shapes are stable with respect
to the inclusion of higher-order soft emission corrections.
Results for the distributions at arbitrary values of α can
be easily obtained by considering an appropriate bin-by-
bin combination of the results at α = 0 and α = π/2.

It is shown that a possible future observation of the
associated production of a top quark pair with a Higgs
boson in the SM hypothesis could immediately estab-
lish a limit on the pseudoscalar component of the top
quark Yukawa coupling of | cosα| > 0.83+0.01

−0.02, at 68.3%
CL. Moreover, a full kinematic reconstruction of the fi-
nal state momenta for this process could provide valu-
able information by means of angular distributions and
asymmetries, which can be combined with the cross sec-
tion result. The theoretical understanding of the afore-
mentioned differential kinematic distributions is also ex-
tremely useful for the experimental measurement itself,
as they can provide k-factors for transverse momentum
reweighting, and probability density functions for neu-
trino reconstruction in dilepton events.
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FIG. 9: Dependence of the lower limit on | cos(α)| at 68.3% CL with the statistical significance of the SM Higgs boson
associated production with a top quark pair, at NLO+NLL. The blue error band around the central limit line represents the
scale uncertainty.
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