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In this study, a lactoferrin (LF) nanohydrogel was developed to 

encapsulate curcumin as a nutraceutical model aiming at its behavior 

evaluation. The release kinetics of curcumin from LF nanohydrogels 

were also performed when added to food simulants (hydrophilic 

medium_ethanol 10 % and lipophilic medium_ethanol 50 %) 

(According to the COMMISSION REGULATION EU No 10/2011). 

For this purpose, the protein nanohydrogel isolated and loaded with 

curcumin was comprehensively characterized resorting to several 

techniques such as dynamic light scattering (DLS), fluorescence 

measurements, circular dichroism (CD), Fourier-transform infrared 

spectroscopy (FTIR) and transmission electron microscopy (TEM). 

This system was able to associate curcumin at 80 µg/mL with a 

remarkable efficiency of ~90 % and loading capacity of ~3 %. LF 

nanohydrogel showed higher release rates of curcumin in a lipophilic 

food simulant (after ~10 hours) in comparison with a hydrophilic one 

(after ~25 hours). 

 

Introduction 

LF is a globular single-chain glycoprotein of the transferrin 

family folded into two globular lobules, which is present in 

several fluids such as milk, saliva, tears and nasal secretion. As 

one of the components of the immune system of the body, LF 

has great biological properties such as antibacterial, antiviral, 

immunomodulatory and iron binding capacity [1]. 

Curcumin, a yellowish polyphenol from Turmeric spice 

(Curcuma Longa), has shown to have multiple health benefits 

due to its anti-inflammatory and antioxidant potential. However, 

this nutraceutical is sparingly soluble in aqueous solutions and 

also presents low bioavailability [2]. 

Protein nanohydrogels are characterized by their three-

dimensional and hydrophilic nano-sized networks coupled with 

their large surface area, and an interior network for incorporation 

of nutraceuticals, enabling: (i) their encapsulation and controlled 

release; (ii) their improved solubility and bioavailability; (iii) 

their target deliver in the associated tissues  and/or protecting 

them against degradation and undesirable chemical reactions; 

and (iv) their stability in the GI tract [3]. 

This study is focused on the bovine LF nanohydrogel behavior 

as an encapsulating agent of curcumin, as well as on the release 

profiles of the chosen nutraceutical model when incorporated 

into food simulant models. 

 

Materials and methods 

Nanohydrogels preparation was based on a methodology 

described by other authors, with some modifications [4]. Briefly, 

a weighted amount of LF was dissolved in distilled water at       

25 °C and stirred at 500 rpm for 1 h until reach a 0.2 % (w/v) 

concentration.  The solution pH was adjusted to 7.0, with  

0.1 mol L-1 of sodium hydroxide. LF aqueous solution was 

submitted to a thermal treatment in which it was heated at 75°C 

for 0, 5, 10, 15 and 20 min in a water bath (closed system), to 

promote the formation of a monodisperse nanohydrogel 

solution. All the samples were made in triplicate and kept at 

room temperature (25 °C) for at least 30 min until further 

characterization.  

Initially, it was prepared a range of concentrations between 5 

and 80 µg/mL from a curcumin stock solution, previously 

dissolved in pure ethanol. A given volume from each of these 

solutions was added to the LF solution and, after 20 min of 

gentle stirring, LF-curcumin mixtures were finally heated at      

75 °C in a water bath (closed system) for 10 min. The unbound 

curcumin was removed from the nanohydrogel solutions by 

centrifuging at 12 000g for 20 min. The pellet composed by 

undissolved curcumin was thoroughly dissolved in pure ethanol 

and further quantified spectroscopically at 425 nm [5]. In order 

to determine the highest association efficiency (AE) for this 

system, the amount of free curcumin was estimated using a 

calibration curve previously made with the same conditions of 

the free curcumin solutions. Finally, the obtained values were 

used as the main variables in a standard AE equation.  

The physicochemical characterization was carried out starting 

with DLS to access hydrodynamic diameter, polydispersity 

index (PdI) and ζ-potential of the LF-curcumin nanoparticles. 

Therefore, to analyze protein-nutraceutical interactions, 

fluorescence measurements such as ANS (1-anilinonaphthalene-

8-sulfonic acid) probe and FRET occurrence analysis were 

performed. To evaluate the effect of curcumin association on LF 

secondary structure, a CD measurement was accomplished. In 

order to perceive the system binding types as well as to confirm 

LF-curcumin association, FTIR measurements were realized. 

TEM was also used to evaluate the morphology of 

nanohydrogels and to confirm the nanoparticles formation.  

A release kinetics assay was performed with 2 different food 

simulants at room temperature (25 °C). Nanohydrogels solutions 

were placed in dialysis membranes with 10 kDa cut-off, which 

in turn those emerged into glass release reactors. Firstly, it was 

traced the curcumin release profile from nanohydrogels in a 

lipophilic food simulant (ethanol at 50%), followed by the 

hydrophilic food simulant (ethanol at 10%) one.  

In order to evaluate Lf-curcumin nanohydrogel, the storage 

stability over time was performed at 4 °C and 25 °C during 35 

days, separately. The stability of nanohydrogels was accessed by 

measuring its size, PdI and ζ -potential.  

 

Results 

LF nanohydrogel system can associate curcumin with an 

efficiency of 90 ± 1.09 % and loading capacity of 2.6 ± 0.02 %, 

for curcumin at 80 µg/mL (as shown in Table 1). Above this 

concentration, the system can also associate curcumin but, it 
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proved to be unstable, revealing a curcumin precipitate after 3 

days of storage at 4 °C.  

Nanohydrogels have sizes around 89.4 ± 2.2 nm with 0.197 ± 

0.019 PdI and a ζ-potential of 23.4 ± 2.05 mV.  

To evaluate potential hydrophobic interactions between LF and 

curcumin, an ANS probe extrinsic fluorescence measurement 

(with excitation wavelength at 370 nm) was carried out with a 

range of curcumin concentrations between 10 and 80 µg/mL. 

The results reveal that there is a curcumin-ANS competition for 

LF hydrophobic sites. While at the lower concentration ANS 

still fluoresces, at the following concentrations, the fluorescence 

intensity signal presents an abrupt loss, suggesting that curcumin 

is occupying the majority of LF hydrophobic sites. Regarding 

FRET analysis, results have shown that, in this system, there is 

energy transfer from LF tryptophan and tyrosine residues (donor 

fluorophores in the excited state) to curcumin chromophores 

(acceptor ligands in the ground state), since it can be visualized 

by the spectral overlap between LF fluorescence and curcumin 

absorbance spectra. This confirms the occurrence of FRET 

phenomenon, which can provide accurate structural information 

leading to determine protein-ligand binding distances [6]. 

Concerning protein secondary structure, the CD spectra shows 

no significant differences between native LF, LF nanohydrogels 

and LF-curcumin nanohydrogels. These results suggest that 

curcumin association does not affect LF secondary structure at a 

significant level.  

As shown in Figure 1, the release rates of curcumin from LF 

nanohydrogels proved to be higher in the lipophilic food 

simulant rather than the hydrophilic one. It was also observed 

that, in the case of the hydrophilic food simulant, LF 

nanohydrogels nets can retain curcumin for more than over  

9 days, since only ~1.6 µg of curcumin was released during this 

period, reaching stabilization after ~10 hours of release. On the 

other hand, ~16 µg of curcumin were released from LF 

nanohydrogels to the ethanol 50 % medium. 

During 35 days, nanohydrogels showed a constant stability in 

terms of size, PdI and ζ-potential, at 4 °C. Solutions kept their 

orange-ish aspect, showing no signs of precipitate and possible 

contaminations. On the opposite way, after 14 days, solutions 

stored at 25 °C presented loss in color and it was also observed 

the presence of curcumin precipitates. DLS measurements 

showed significant changes in terms of size and PdI values, 

evidencing the nanohydrogels instability under such conditions. 

 

 
Figure 1. Release kinetics profile of curcumin from LF 

nanohydrogels in hydrophilic medium_ethanol 10 % ( ) and 

lipophilic medium_ ethanol 50 % (  ). 

 

Conclusions 

LF nanohydrogel has the ability to associate lipophilic 

nutraceuticals, such as curcumin, with remarkable association 

efficiency and loading capacity values. This system can also be 

stable over time when submitted to storage conditions (4 °C 

during 35 days), making it a valuable candidate to serve as 

vehicle for nutraceuticals controlled release.  

FRET occurrence brings out the possibility to obtain valuable 

structural information in what LF-curcumin binding concerns.  

Curcumin release rates indicate that its retention in LF 

nanohydrogel nets can be higher when in contact with a 

hydrophilic food matrix. This information suggests which 

matrix character would be more appropriate to incorporate        

LF-curcumin nanohydrogel.

 

Table 2. Effect of curcumin concentration on association efficiency and loading capacity of LF nanohydrogels, where data are presented 

as mean ± 95 % confidence interval. Different letters indicate statistically significant differences between values (p < 0.05). 

 10 µg/mL 20 µg/mL 40 µg/mL 60 µg/mL 80 µg/mL 

Association efficiency (%) 78.9 ± 2.0 % a 80.8 ± 4.6% a 84.4 ± 2.1% ab 85.2 ± 1.7% ab 90.0 ± 1.1% b 

Loading capacity (%) 0.3 ± 0.01% a 0.6 ± 0.04% b 1.2 ± 0.06% c 2.1 ± 0.05% d 2.6 ± 0.02% e 
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