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Abstract. An efficient cleaning and disinfection practice plays a crucial role in preventing 

cross-contamination in food industry, domestic situations as well as nosocomial environment. 

Pre-impregnated disinfecting wipes (ready-to-use disinfectant wipes) are broadly applied in 

above-mentioned conditions. Regarding the effectiveness of the disinfectant pre-impregnated 

wipes, research still stays in case study phase and no comprehensive investigation has been 

carried out to evaluate the structure and function change of the ready-to-use disinfecting wipes 

over storage time. This work studied the ageing of the disinfecting wipe over storage time. 

Chloramine as surface disinfectant and 3 commercial wiping materials of polyester (PET), 55% 

cellulose/45%PET and pure cellulose have been selected. The FTIR (Fourier-transform 

infrared spectroscopy) and DMA (Dynamic mechanical analysis) result revealed that oxidation 

occurred on the textile substrates during the storage of the pre-impregnated disinfecting wipes 

with special emphasis to the cellulose polymer. Moreover, the occurred oxidation changed the 

mechanical properties of the cellulose-containing wipes increasing their viscous properties over 

the elastic ones. 

1.  Introduction 

Healthcare-associated infections (HAIs) caused by the transfer of nosocomial pathogens from high-

touch environmental surfaces and medical devices are responsible for significant patient morbidity, 

mortality and economic cost [1–3]. Nosocomial pathogens shed by patients can contaminate hospital 

surfaces at concentrations sufficient for transmission, surviving for extended periods and persisting 

despite attempts to remove them [4]. An effective cleaning and disinfection practice plays a key role in 

preventing cross-contamination and spread of HAIs [5–7]. Traditionally, healthcare staff has used the 

“bucket method”, which consists of towels saturated with diluted disinfectant contained in a bucket. 

This method exhibits several limitations such as improper disinfectant dilution, inadequate saturation,  

uneven moisture distribution, unknown material compatibility and possible contamination from 

reusing [8,9]. Among the most effective surface disinfection methods, the nonwoven ready-to-use 

disinfectant wipes are increasingly accepted for decontamination of high-touch surfaces because of its 

convenience and reliable performance [10,11]. 

Though some research has been investigated on the effectiveness of commercial available disinfecting 

wipes in practical use [1,12–14]. Despite, several absorption issues due to active ingredients onto 

textile materials have been previously reported in the literature, the knowledge regarding the ageing of 
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wipe materials in presence of disinfectant under storage conditions remains vague [15-17]. The 

selection of an inappropriate wipe material could interact with the adsorbed active ingredient resulting 

in lower or even abolished disinfectant efficacy. 

This project studied the ageing of the disinfecting wipe over storage time. Chloramine, as surface 

disinfectant and 3 commercial wiping materials, composed of polyester, cellulose, and their 

combinations have been selected for the investigation. The bulk disinfectant solution and the wipes 

before and after disinfectant contact were analysed by the means of FTIR (Fourier-transform infrared 

spectroscopy) and DMA (Dynamic mechanical analysis). 

2.  Material and methods 

2.1.  Sample preparation 

The tests were carried out at standard condition of 65% relative humidity (RH) and 20ºC. The surface 

disinfectant chloramine-t-trihydrate (C7H8ClNO2S.3H2O.Na) solution from Acros Organics® was 

prepared at the concentration of 10% (w/w) in distilled water. Each textile wipe sample (Table 1) was 

prepared with the weight of 1 g ± 0.5%. Every experiment includes a control raw sample, a control 

treated in water and a sample iterated with the disinfectant solution. The wipes were tested for 

immersion times at 1, 3, 7, 15, and 31 days. All the experiments were replicated 2 times. 

 

Table 1. Composition and Structure of the Used Wipes 

Substrate Composition Structure 

W1 100% PET Nonwoven hydroentangled 

W2 55% cellulose/45%PET Nonwoven hydroentangled 

W3 100% cotton 1/1 plain weave 

 

2.2.  Fourier transform infrared spectroscopy (FTIR) 

A Shimadzu FTIR spectrophotometer (IR-Affinity 1) with an attenuated total reflectance accessory 

(ATR) was used to record the FTIR spectra of the fabric samples. Spectra were collected in the region 

of 4000-700 cm−1 and at the resolution of 4 cm−1 with 45 scans at room temperature. All the treated 

wipe samples were dried in an oven at 40°C for 24h before testing. 

 

2.3.  Dynamic Mechanical Analysis (DMA)  

DMA was performed using a DMA 7100 from Hitachi® (Japan) in programmed tension mode with a 

heating rate of 3 °C min-1 scanned from 30 to 200 °C at 4 Hz of frequencies. The geometry of the 

testing sample was 20 mm length, 10 mm width and 0.002 mm thickness. Specimens were prepared in 

duplicate to conduct mechanical analyses. These analyses were carried out under nitrogen purge of 

200 ml min-1. The wipe samples were dried in an oven at 40°C for 24h before testing. 

3.  Result and discussion 

When chloramine is brought into contact with water, it slowly breaks down to generate hypochlorous 

acid and hypochlorite, which in turn releases chlorine and oxygen that are responsible for the 

bactericidal and bacteriostatic action. However, they are also strong oxidizing agents that can damage 

the textile fibres. It is reported that the hypochlorous acid and hypochlorite that supposed to work on 

the microbicidal effect diminishes when they interact with the textile substrate [15-17].  

The ATR-FTIR spectrum of untreated W1 and W2 fabrics exhibits peaks of the polyester 

component (W1) and of the polyester blend (W2) at 1710 cm−1 assigned to stretching vibration of C=O 

group in ester, 1250 cm−1 assigned to asymmetric stretching of aromatic ester, 710 cm−1 attributed to 

aromatic C-H bending vibrations and 871 cm−1 attributed to C–C out of plane bending vibrations of the 
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benzene rings (Fig. 1) [18]. The spectra of W2 and W3 displays the strong bands at 1160, 1100 and 

1020 cm-1 assigned to the vibrations of the C-O-C bond of the glycoside bridges of the cellulose 

structure. The broad and strong bands at 3340 and 3270 cm-1 observed in W3 and with minor intensity 

in W2 are attributed to the stretching vibration of the hydroxyl (OH) group of the cellulose structure 

[20]. The strong peaks in W3 at 1150, 1100 and 1020 cm-1 are from the vibrations of the C-O-C bond 

of the glycoside bridges of the cellulose structure [19]. 

 

Figure 1. ATR-FTIR spectrum of W1, W2 and W3 samples in the range between 700 and 4000 cm-1. 

FTIR analysis was performed to understand the change of the wipe samples after different treatment 

time with disinfectant solution. The measures were taken at different immersion times at 1, 3, 7, 15 

and 31 days. All the samples treated with disinfectant solution showed the formation of a new band at 

3587 cm-1 that was attributed to the oxidation action of chloramine on the textile material [21,22]. No 

change in the FTIR spectra was noted in control wipes treated with distilled water in the same 

conditions. The new band can be assigned to the hydroxyl band -OH due to the oxidation of the 

polyester and cellulose surface and gradually increase with the immersion time [23]. Fig. 2-a and 2-b 

below exhibit the FTIR result from W1 and W2 immersed in the chloramine solution at different 

times. The observed oxidation peak displays an increasing behaviour up to 7 days. After this period 

the band intensity starts to decrease. This phenomenon can be explained by a removal of polyester 

molecules on the surface. When an entire layer of the oxidized polymer chain is removed from the 

surface the bulk unreacted PET is exposed to the surface reducing the oxidation peak. However, since 

W1 is composed of pure polyester and the W2 by a mixture of cellulose and polyester, the higher 

oxidation of W2 can be explained by the higher local chloramine concentration due to cellulose 

adsorption. 

Cellulose is also oxidized by chloramine and W3 sample showed more changes in the FTIR spectra 

(Fig. 2-c) compare to the others. Different from PET, the oxidation increases over time showing the 

higher peak at 31 days (data not shown). However, the cellulose sample shows other changes in its 

chemical structure especially between 700 and 1500 cm-1 (Fig. 2-c). New peaks at 1250, 1140, 1090, 

940 and 810 cm-1 appear with the simultaneous disappearing of the intense peaks of the glycoside 

bonds of the cellulose structure. These changes indicate a radical change in the cellulose structure with 

the formation of carbon moieties and the chemical substitution of the hydroxyl groups due to the 
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formation of methylated derivative [24].  

  

 

Figure 2. FTIR spectrum of W1 (A), W2 (B) and 

W3 (C) ageing in chloramine over storage time in 

the range between 3550 and 3650 cm-1 for W1 

and W2 and between 700 and 1500 cm-1 for W3. 

 

The dynamic mechanical analysis (DMA) was applied to study the effect of temperature on the 

mechanical properties of the wiping materials. The DMA parameters including tan delta, loss and 

storage moduli provide important information about the stiffness of the polymer, molecular motion, 

relaxation process, structural hetero groups, and morphology of the polymer blend systems [25]. Fig. 3 

shows that in the cellulose-containing samples (W2 and W3) after chloramine treatment showed 

significant differences. In W1 (Fig. 3-a) the water and chloramine treated samples do not show 

significant differences. W1 sample is made of pure PET and despite the disinfectant is able to 

chemically interact with the PET structure (see FTIR discussion) this do not change the mechanical 

properties of the wipe. These samples showed a decrease in their moduli from 100 ºC up to 160 ºC. In 

the W2 sample (Fig. 3-b), the storage modulus at 30 °C compared with the 65 GPa of the samples 

treated in pure water have decreased to 1 GPa, which is a decrease of 98%. Similar behaviour was 

observed for the loss modulus decreasing from the 6.5 GPa in water to 0.1 GPa in chloramine. These 

measures maintained stable up to 100 ºC. After this temperature, the storage and loss moduli of the 

water treated sample start to decrease due to the increased mobility of the polymer chains.  However, 

the chloramine treated samples after 100 °C, showed a slight increase of the storage and loss moduli 

attributed to the chloramine-altered intermolecular bonding that limits the mobility of the polymer 

chains in the wipes [26]. The pure cellulose sample (Fig. 3-c) shows similar storage and loss moduli at 

30 ºC. However, this sample is clearly temperature dependent showing divergent behaviour in the 

water and chloramine samples. The storage and loss moduli of the water treated sample increased with 

the temperature reaching values of one order of magnitude higher. Contrarily the storage and loss 

moduli of chloramine treated samples showed a decrease in moduli from 120ºC to 160ºC. The storage 

modulus decreased from 20 GPa to 4 GPa and the loss modulus from 1.5 GPa to 0.45 GPa. 
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The damping factor or tan delta is the ratio between the loss and storage modulus in a viscoelastic 

material. A high tan delta value is indicative of a material that has a high, non-elastic strain 

component, while a low value indicates one that is more elastic. As expected the W1 sample did not 

show a significant difference in tan delta between water and disinfectant treated samples (Fig. 4). An 

increase in the viscous properties is noted until 120 ºC then the system became more elastic reaching a 

plateau at 180ºC. The tan delta of the sample W2 also showed similar results however the presence of 

disinfectant seems to reduce the temperature of the viscous peak increase probably due to the presence 

of disinfectant-oxidized surface modifications that increase the stiffness of the material at lower 

temperatures. 

 

  

 

Figure 3. Temperature dependence at 4 Hz of 

storage (E') and loss (E'') modulus of W1 (A), W2 

(B) and W3 (C) after 7 days of immersion in 

water and chloramine 

 

 

Despite the shift in temperature, the values of the Tan δ remained very similar suggesting that in the 

blend the thermoplastic PET network is not perturbed by the non-thermoplastic cellulose polymer 

network in terms of its viscoelastic properties [27]. Sample W3 is clearly the most affected in its 

mechanical properties by the chloramine action. The water control did not show significant events in 

tan delta analysis while the disinfectant-treated sample significantly increased its viscous component 

between 100 and 160 ºC. This seems to occur in response to molecular interactions, mainly hydrogen 

bonding, between the PET oxidized molecules and the cellulose or between the cellulose structure 

itself promoting conformational changes that alter the mechanical behaviour of the wipes [28]. 
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Figure 4. Temperature dependence of tan delta of W1, W2 and W3 after 7 days of immersion in water 

and chloramine. 

4.  Conclusion 

The results of this study fill in the gap of the absorption issue between active ingredients and wiping 

materials over storage time. The chloramine is able to oxidize both the wipe materials with a higher 

action on cellulose structure than on PET. A significant change in mechanical properties was observed 

for cellulose-containing wipes while the PET viscoelastic properties did not show significant changes. 

The next step of the work will be to measure the effectiveness of the disinfectant antimicrobial action 

after adsorption on the wipes at different times of exposure. In addition, the generated outcome 

knowledge will provide a reference of the guideline for the hospital cleaning and disinfection in 

practice as well as ensure hospitals daily workflow from unnecessary risk of infection outbreak and 

complement the products’ user manual of disinfectant and wipes in the market.  
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