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Abstract: An experimental study on the tensile stress–strain curves of interlayer (layer-by-layer) unidirectional 

hybrid FRP composites was conducted aiming at evaluating the corresponding hybrid effect and pseudo-ductility 

of this innovative solution. Different combinations of the following dry unidirectional fabric materials, also 

varying the number of layers, were adopted in tests: high-modulus carbon, standard carbon, E-glass, and basalt. 

The composites were produced layer-by-layer by hand lay-up method, using an epoxy-based resin as matrix.  

The results have shown a strain increase at failure of both standard carbon and high-modulus carbon fibres with 

the volume decrease of these materials in hybrid combinations. It was also concluded that combining high-modulus 

carbon with E-glass, high-modulus carbon with basalt, or high-modulus carbon with standard carbon can lead to 

very good pseudo-ductile tensile behaviour. Finally, it should be highlighted that an existing analytical model in 

the literature was satisfactorily adopted to predict the tensile response of these hybrid composites. 
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1 INTRODUCTION 

Unidirectional (UD) Fibre Reinforced Polymers (FRP) composites are brittle materials, exhibiting a linear 

elastic behaviour up to failure. Therefore, structures made of these materials, although apparently without any 

problem, may fail abruptly [1]. This characteristic does not allow to take full advantage of FRP properties, namely 

the high tensile strength due to conservative design limits [2]. For this reason, to obtain composites with 

progressive failure behaviour ensuring safe, strain hardening, and meaningful ultimate tension strain are seen as 

priority goal by different industries [2], including civil engineering. 

Hybridisation, i.e., the incorporation of two or more types of fibres within the same polymeric matrix [3], 

is an established approach to deal with the problem above mentioned, since this strategy promotes synergies 

between the adopted reinforcing materials, lessening their intrinsic disadvantages [4]. For instance, when 

submitted to uniaxial tension, Low Strain (LS) fibres fail earlier than High Strain (HS) fibres and this fracture 

behaviour can be used as a warning sign before the ultimate failure of the hybrid FRP composite [1, 4]. 

Furthermore, it has been observed that hybridisation increases the apparent strain at LS fibres failure [5]. This 

phenomenon has been described as “hybrid effect” [6]. In the case of carbon/glass hybrid composites, the values 

for this effect are typically in the range of 10 to 50% [4]. Nowadays, however, there is some controversy about the 

hybrid effect definition because, in traditional uniaxial tensile testing configuration, stress concentration at the 

grips may cause premature composite failure, leading to an underestimation of the strain at the failure of the 

baseline LS material [7]. For this reason, these results should be critically interpreted. 

Nevertheless, the most relevant advantage of hybrid composites is their gradual, and thus non-catastrophic, 

failure mode that has been registered in UD layer-by-layer configurations [2, 8], when both the configuration and 

materials combination are appropriately selected. This is due to the load transfer between LS and HS layers, 

fragmentation (a damage process where multiple fractures take place) of the formers, followed by the stable 

delamination of the LS layers from the HS layers, close to the LS layer fractures, ending with the failure of the 

latter [1]. This behaviour is known as pseudo-ductility [1, 4]. It should be stressed that the term ‘pseudo-ductility’ 

is used because it is possible to achieve a flat-topped stress-strain curve of monotonic tensile tests up to the failure 

of some unidirectional hybrid FRP composites. 

The topic of hybrid composites has become a highly active research area in the 1970’s and 1980’s [3, 5, 9-

16]. Over the time, several literature reviews on this subject were published [3, 4, 16]. The study of hybrid 

composites was essentially motivated in the scope of the aerospace and automotive industries [3, 4, 17]. It has 

been demonstrated that hybrid composites have greater advantages over traditional composites. The vast majority 
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of the works published generally reported mechanical tension test results of hybrid composites indicating: (i) a 

linear increase of elastic modulus in respect to HS material (generally glass fibres) with the addition of LS material 

(in most part of cases, carbon fibres) [3], (ii) a load drop at the LS material fracture (in non-catastrophic cases), 

and (iii) a significant hybrid effect [2]. 

Swolfs et al. [18] explained that, in non-hybrid UD composites, when a fibre fails, it locally loses its load 

transfer capability. The surrounding matrix is loaded in shear and transfers the load carried out by the broken fibre 

to the surrounding ones, increasing their probability of break. When enough neighbouring fibres are broken, a 

critical cluster size is reached and catastrophic failure occurs. The restriction caused by HS fibres adjacent to a LS 

fibre broken, has been reported as the main factor contributing for the hybrid effect, since HS fibres inhibit the 

formation of critical clusters [4, 7]. However, other reasons for the hybrid effect have been pointed out, namely: 

(i) thermal residual stresses, i.e., residual shrinkage stresses due to differences in the thermal contraction of the 

two fibre types, and (ii) the modification, relatively to non-hybrid composites, of the temporary dynamic stress 

concentrations, due to stress wave travelling along each fibre when it fails [4]. The latter has received no attention 

at all in the past two decades and remains poorly investigated today [4]. 

Recently, Swolfs and his co-authors have carried out extensive work aiming at understanding the hybrid 

effect [18-25]. In [21], the effect of fibres dispersion on the initial strain at the failure and cluster development in 

UD carbon/glass hybrid composites was numerically studied. It was concluded that the strain at the failure of 

carbon fibre composites can be dramatically increased with a large fraction of well-dispersed glass fibres. 

However, random dispersion configurations are not the best option to achieve maximum hybrid effect. Layer-by-

layer hybrids are more efficient in delaying the failure development. Furthermore, it was indicated that the hybrid 

effect gradually increases with the increase in volume fraction of HS fibres. In [24] and [25], it was demonstrated 

that the higher the scatter of LS fibres strength, the higher the hybrid effect. 

Simultaneously, an exhaustive work to achieve pseudo-ductile tensile response with UD hybrid composites 

has been carried out at both the University of Bristol and the Budapest University of Technology and Economics 

[1, 7, 8, 26-29]. It has been demonstrated that for achieving pseudo-ductility in hybrid composites two damage 

mechanisms should to take place simultaneously, namely: (i) the fragmentation of the LS material and (ii) the 

stable delamination of the LS material from the HS material layers close to the LS fractures. In carbon/glass hybrid 

composites made with prepreg plies, it was shown that, if the carbon layer is thin enough, catastrophic delamination 

propagation around the first carbon fracture is suppressed and, therefore, further fractures in the carbon layer may 

occur, introducing pseudo-ductility into the stress–strain curve [1, 27]. According to Jalalvand et al. [8], the 
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fragmentation in the low strain material becomes saturated and stops when there is no longer any part of the low 

strain material with constant stress. The different failure mechanisms in carbon/glass hybrid composites were 

found to be dependent on the ratio of carbon to glass thickness and also the absolute thickness of the carbon [26]. 

As explained in detail by Jalalvand et al. [27], the control of the two mentioned factors can lead to four possible 

tensile damage modes of UD hybrid composites, as described in Section 2.5.3. 

An important milestone achieved by Jalalvand et al. [8] was the development of an analytical model to 

predict all possible damage modes of thin-layer UD hybrids. Predictions of this model proved to be in good 

agreement with nonlinear tensile response of different UD layer-by-layer hybrid configurations. Damage mode 

maps were generated to study the effects of absolute and relative thicknesses of the carbon layers; these maps have 

proven to be a very efficient design tool for hybrid composites [27, 28].  

In civil engineering context there are already several examples of applying the hybrid composite concept, 

mainly in the research and development of three main systems: (i) reinforcing bars for reinforced concrete (RC) 

structures [30-37]; (ii) externally bonded strengthening for RC structures [17, 38-52], and (iii) pultruded profiles 

for new structures [53-55]. In a general way, experimental results have shown that a significant ductile response, 

similar or even better, than that of a steel-reinforced concrete member can be achieved with hybrid composites 

[31, 36]. In addition to gradual failure mode, hybrid composites have the benefit of eliminating the corrosion 

problems of steel materials [35, 37]. 

Cui and Tao [35] and Cheung and Tsang [36] conducted works on the development of hybrid composite 

reinforcing bars. In the design of these solutions four different reinforcing materials, namely carbon, aramid, glass, 

and steel, were simultaneously used. The resulting hybrid bars demonstrated pseudo-ductile behaviour, with a 

tensile strength of 644 MPa, a modulus of 140 GPa and an ultimate strain of circa 3%. A series of concrete beams 

reinforced with the proposed solution were tested and it was demonstrated that the beams had the ability to undergo 

large inelastic deformations. Pseudo-ductility was found to be similar to that of conventional steel-reinforced 

beams. 

Grace et al. [38] develop a UD fabric composed of two types of carbon fibres and one type of glass fibres. 

In this case, the pseudo-ductility of the composite was achieved through the combination of the different ultimate 

strain of each of the adopted types of fibres. In [39], the same authors further developed the initial concept by 

introducing fibres in the diagonal direction, thus enabling the use of the hybrid fabric for simultaneous flexural 

and shear strengthening of concrete beams. The last work resulted in one US patent [56]. 
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Wu et al. [17] developed hybrid composites made of high-strength and high-modulus carbon sheets. The 

resulting solution was applied in the upgrading of pre-cracked RC beams. It was concluded that the hybrid 

composites allowed achieving the desired flexural stiffness, ‘yielding’ strength, and pseudo-ductility. 

Several of these attempts (in the field of civil engineering) have been developed/applied without a complete 

understanding about the behaviour of hybrid composites at material level. In most works, the concept of pseudo-

ductility was defined as the successive fractures of different (more than two) reinforcing materials and not as a 

result of the previously described phenomena of fragmentation and controlled delamination of LS fibres. 

Moreover, with some exceptions [17, 44, 48, 57, 58], the hybrid effect has been ignored in this set of works and 

the factors that controlled the damage mode of the hybrid composites have not been clearly explained. 

Nowadays, it is very common to apply composites made in-situ through the hand lay-up method, i.e., 

forming the composite on the surface of the structural member to be strengthened, using flexible dry fibre fabrics 

or sheets and liquid adhesives. This has proved to be a cost effective method and, in addition, the composite can 

adopt versatile shapes and sizes using simple tools. Despite its advantages, the hand lay-up method is dependent 

on the skill of the worker, and thus quality control plays a major role to ensure that defects and voids are avoided. 

According the best practices suggested in the guidelines, e.g. [59], hand lay-up system shall be referred to the area 

of dry fibres only because, in this case, final thickness of the composite cannot be deterministically estimated [59].   

Due to the above reasons, it is important to study the performance of hybrid composites produced through 

the hand lay-up method for civil engineering applications. In the context of analytical modelling, Jalalvand et al. 

[8] have proposed a model to predict with proper accuracy the tensile response of hybrid composites made of 

prepreg systems, cured at controlled conditions of pressure and temperature. In retrofitting and strengthening, 

resins are usually impregnated by hand into dry fabrics with curing times being governed by the environmental 

conditions. In fact, this is one of the most widely used processes for manufacturing FRP composites for structural 

engineering [60]. In this way, the availability of an analytical model to predict the tensile behaviour of hybrid 

composites, produced by hand lay-up method, is seen as a very important tool for the design of UD hybrid 

composites in civil engineering context.  

The aim of this research is to investigate the tensile stress–strain responses of 16 different UD interlayer 

(layer-by-layer) hybrid composite combinations, made through the hand lay-up method, of different commercially 

available raw materials (fibres’ packages + resin). Four dry UD fabric materials were used combined with epoxy 

resin, namely (i) high-modulus carbon, (ii) standard carbon, (iii) E-glass and (iv) basalt, in order to evaluate the 

hybrid effect and to achieve pseudo-ductility, fully exploiting the benefits of hybridisation. The hybrid effects and 
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the information of the fibres used in other authors’ works, published between 1974 and 2016, were collected with 

the objective of carrying out a statistical analysis. In this way, the data collection of Manders and Bader [13] and 

Swolfs et al. [4] was updated in this work. The analysis of the obtained experimental results was complemented 

with analytical modelling based on the approach developed by Jalalvand et al. [8] for hybrid composites. 

 

2 EXPERIMENTAL PROGRAM 

2.1 Objectives 

The main objective of the present work is to contribute to the knowledge on the performance of UD hybrid 

composites produced by the hand lay-up method. The following specific goals are envisaged: 

i. To determine the influence of LS fibres relative volume (vol%) on the hybrid effect of different layer-by-

layer hybrid composite combinations made through hand lay-up method; 

ii. To understand which non-hybrid properties of the constituent materials influence most the hybrid effect, 

identifying the correlation between intrinsic mechanical properties of fibres and the obtained response (in 

the present work, according to general practice [4], failure strains of non-hybrid composite, obtained in 

tensile tests, were used as the baseline tensile failure strain to compute the hybrid effect); 

iii. To evaluate the accuracy of the rule of mixtures (ROM) and of the bilinear ROM to predict respectively 

the elastic modulus and the tensile strength of the hybrid composites; 

iv. To characterize the hybrid pseudo-ductile tensile behaviour; 

v. To extend the analytical approach developed by Jalalvand et al. [8] to the present experimental program. 

 

2.2 Materials 

In the present work, commercial dry UD fabrics with similar areal mass of 400 g/m2 were used. The 

materials used for the experiments were the UD HM carbon (S&P C-Sheet 640) [61], ST carbon (S&P C-Sheet 

240) [62], E-glass (S&P G-sheet E 90/10) [63], and basalt (Dalla Betta Group U400B-40-50-03) [64] fabrics. 

In Table 1 the density, areal mass, fibre layer thickness (areal mass density divided by the volumetric mass 

density) and the basic tensile properties of the mentioned materials are presented. The tensile properties of the 

fibres were determined according ASTM D3379-75 [65]. For each dry fabric, a large number of single fibres (see 

the details in Table 1) were randomly taken from the dry fabrics and tested in tension. The tests were carried out 

in a Hounsfield H100KS universal testing machine with a maximum load cell capacity of 2.5 N (with an accuracy 

of ± 0.2% of applied force across load cell force range). Fibres were individually assembled in the tensile jig by 
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means of a paper template with a fixed gauge length of 20 mm. Fibre ends were glued to the paper template by an 

ethyl cyanoacrylate-based adhesive. Then the tab ends were gripped in the jaws of the machine. The paper template 

was cut across, so that just the fibre was fixed as a continuous length within the jig, before starting the tensile tests. 

The measurements were performed at a rate of 1.5 mm/min, until breakage occurred. For each fibre, records of 

applied load against extension were taken, and using an average mean diameter, determined through the analysis 

of microscopy images of fibres obtained with Scanning Electronic Microscopy (SEM), the data were converted to 

stress against strain. 

An epoxy-based material (S&P Resin Epoxy 55) was used as matrix for laminating the studied composites, 

as recommend by the supplier of three dry fabrics (high-modulus carbon, standard carbon and E-glass). Relatively 

to basalt fabric, the same resin was used since the corresponding supplier does not provide a package of fibres and 

resin. According to the supplier, this epoxy has the following main properties [66]: (i) a tensile strength of 35.8 

MPa; (ii) a strain at the failure of 2.3%; and, (iii) an elastic modulus of 2.6 GPa. 

Each reinforcing material was labelled according to the information included in Table 1. In the present 

work, in case of composite materials, numbers placed after letters are used for indicating number of layers. The 

order that letters appear indicate the stacking sequence of the reinforcing materials. 

 

2.3 Specimen manufacturing and test setup 

The hybrid composite laminates were manufactured by hand lay-up method, following the best practices 

suggested in the guidelines [59]. Prior to the manufacturing, dry fabrics were cut into 250 mm  80 mm pieces. A 

Teflon film was used to avoid the adhesion of the produced composite laminate to the rigid base. The following 

protocol was used to obtain the laminates: (i) application of a layer of epoxy over the Teflon film with a brush; (ii) 

saturation of the fabric layer with epoxy resin; (iii) placement of the fabric over last layer, adjusting it manually; 

(iv) pressure application by means of a ribbed rigid roller, in order to expel both the epoxy resin excess and air in 

the composite, and also stretching the latter; and (iv) repetition of steps ii to iv for subsequent layers. The top of 

the laminate was left rough, simulating real applications. All the samples were then cured at room temperature (20 

± 0.5ºC) for 40 days. 

The four specimens of each series were obtained from the laminates produced according to the protocol 

previously described, using a diamond tipped wheel cutter. Tensile tests were performed according to ISO 527-

5:2009 standard [67]. Specimen dimensions were 250/150/15/[0.7-3.5]/[0.5-1.0] mm overall length/free 

length/width/total thickness/fibre layer thickness, respectively. 
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Aluminium tabs of 50  15 mm2 were used at each end of the specimen to try minimise gripping effects. A 

clip gauge with a gauge length of 100 mm (with a linear error, including hysteresis of 0.25%) was used. 

Tensile tests were carried out at room temperature on a universal testing machine (UTM) equipped with a 

200 kN load cell (with a linear error less than 0.05% of full scale) and hydraulic grips, as shown in Figure 1. The 

specimens were held between grips of the UTM and extended (at a rate of 1 mm/min) up to failure. 

 

2.4 Material combinations 

In the present work, it was decided to perform single-factor experiments with several levels of LS fibres 

vol%. Symmetric specimens were adopted to test the hybrid combinations, in order to minimize load eccentricity 

and differential thermal contraction during the cure of the epoxy resin, ultimately leading to bending-stretching 

coupling, and thus causing undesirable warping [3]. Furthermore, in a way to try restrict the stress concentrations 

at the grips, LS layers were whenever possible sandwiched between HS layers, according to Wisnom et al. [7] 

conclusions. 

All possible hybrid composite combinations until 5 layers were studied. In total, 16 series were considered: 

10 combinations with 3 reinforcing material layers, and 6 combinations with 5 reinforcing material layers. Since 

each series was composed of 4 specimens, a total of 64 tests were performed. The combinations of 3 symmetrical 

layers allowed to analyse the following approximate levels of LS fibres vol%: 0%, 33%, 66% and 100%. In 

addition, combinations with 5 layers allowed to analyse the following approximate levels of LS fibres vol%: 20%, 

40% and 60%. It should be noted that specimens with 5 layers were only tested on 2 hybrid combinations: HM 

carbon/glass and ST carbon/glass. As previously mentioned, the UD fabrics had slightly different nominal 

thicknesses and, for this reason, the relative volume of LS fibres (Vol% LS) was computed in the next sections, 

according to Equation (1):  

 𝑉𝑜𝑙% 𝐿𝑆 =
𝑡𝐿

𝑡𝐿+𝑡𝐻
× 100 (1) 

where tL is the half thickness of the LS layers and tH is the half thickness of the HS layers. 

In Table 2 the layer ratio and the stacking sequence of the studied hybrid composite combinations are 

summarized. In addition to hybrid series, 8 series of non-hybrid composites were produced: half with a single layer 

of reinforcing material and other half with 3 layers of reinforcing material. Each series was composed of 4 

specimens, totalling 32 specimens tested. 
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In the present work, the exact volume of resin was not directly controlled during the application and cross-

sectional area of the composite was computed considering only the thickness of the dry fabrics, according the 

recommendation suggested in the guideline [59]. In this way, mechanical proprieties of impregnated composite 

(elastic modulus and tensile stress) were computed considering the wet lay-up system similar to an equivalent 

system of only dry fabrics. However, in order to present an idea of geometric properties, all the composites were 

measured with a digital calliper (see Table 3). 

 

2.5 Analytical models for hybrid composites 

2.5.1 Elastic modulus 

The longitudinal elastic modulus of the hybrid composites has been shown to follow the linear rule of 

mixtures (ROM) [4]. According to this model, the elastic modulus of the hybrid composite, Ehybrid, can be predicted 

as the sum of the contributions of the three constituents, given by equation (2): 

 𝐸ℎ𝑦𝑏𝑟𝑖𝑑  = 𝑉𝐿𝐸𝐿 + 𝑉𝐻𝐸𝐻 + 𝑉𝑀𝐸𝑀 (2) 

where VL, VH, VM, EL, EH, and EM are the volumetric fraction and elastic modulus of the LS fibres, HS fibres and 

matrix, respectively.  

Phillips [14] and Kretsis [16] pointed that some deviations in the predictions of elastic modulus of hybrid 

composites by using ROM can only be explained by an incorrect use of this rule, namely due to an incorrect input 

of the volume fraction of reinforcing materials. 

In the present work, the linear ROM was used to predict the elastic modulus of hybrid composites in order 

to check the volume and alignment of the reinforcing materials. To achieve this, the mechanical properties 

experimentally characterized of non-hybrid composites were used as input variables. The exact volume of resin 

was not directly controlled during the application and cross-sectional area of the composite was computed 

considering only the thickness of the dry fabrics, according to the usual practice of the hand lay-up method [59]. 

In this way, EL and EH were considered the elastic modulus of LS and HS one layer composites, respectively. 

Therefore, the contribution of 𝑉𝑀𝐸𝑀was contemplated in VLEL and VHEH terms, leading to VL + VH = 1 and 𝑉𝑀𝐸𝑀 =

0.  

 

2.5.2 Tensile strength 
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The tensile strength of the hybrid composites do not follow to linear ROM, e.g. [4, 13, 16, 68, 69] because 

if the volume fraction of HS fibres is appropriate when LS fibres fail, the load can be transferred to HS fibres until 

their final failure. Otherwise, the composite would fail prematurely. For this reason, some authors [13, 16, 70] 

have proposed a bilinear ROM (see Eq. (3)) to predict the tensile strength of hybrid composites, σhybrid.  

𝜎ℎ𝑦𝑏𝑟𝑖𝑑 = {
𝑉𝐿𝑆𝐿 + 𝑉𝐻𝐸𝐻𝜀𝐿;  𝑉𝐻 < 𝑉𝑐𝑟𝑖𝑡

  𝑉𝐻𝑆𝐻;  𝑉𝐻 > 𝑉𝑐𝑟𝑖𝑡                             
 (3) 

where SL and SH are the reference strengths of the LS and HS one layer composites and εL is the strain at the failure 

of the non-hybrid LS composite. 

Based on this model, if VH is lower than the critical value, Vcrit, the hybrid composite would fail prematurely. 

On the contrary, if VH is higher than Vcrit, hybrid composites would keep their integrity up to the failure of HS 

fibres.  

In the present work, the bilinear ROM model was used to evaluate the magnitude of predictions' errors. Vcrit 

was calculated by equating the two branches of equation (3), taking into account that VL + VH = 1, i.e., VL is equal 

to 1-VH: 

 𝑉𝑐𝑟𝑖𝑡  =
𝑆𝐿

𝑆𝐿+𝑆𝐻−𝐸𝐻𝜀𝐿
 (4) 

 

2.5.3 Stress-strain curve 

In an UD hybrid composite under uniaxial tension loading conditions, the first damage mode is always the 

failure of the LS fibres; however, the other following damage modes depend on the properties and configuration 

of reinforcing materials of the composite [27]. The analytical approach proposed by Jalalvand et al. [8] considers 

that four different damage modes may occur after the LS fibres failure: (i) premature HS failure, (ii) unstable 

delamination, (iii) LS layer fragmentation and (iv) LS fragmentation and stable delamination. For each hybrid 

configuration, three stress levels could be computed [8]: (i) the stress at which the first crack in the LS material 

occurs, σ@LF, (ii) the stress level at which delamination development occurs, σ@del, and (iii) the stress when the 

high strain material fails, σ@HF, in accordance with the equations (5) to (7), respectively. 

 𝜎@𝐿𝐹 = 𝑆𝐿
𝛼𝛽+1

𝛼(𝛽+1)
 (5) 

 𝜎@𝑑𝑒𝑙 =
1

1+𝛽
√(

1+𝛼𝛽

𝛼𝛽
) (

2𝐺𝐼𝐼𝐶𝐸𝐻

𝑡𝐻
) (6) 

 𝜎@𝐻𝐹  =
1

(1+𝛽)

𝑆𝐻

𝐾𝑡 √𝑉
𝑚𝐻  (7) 
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where α and β are the modulus and thickness ratios of the LS to HS fibres, GIIC is the mode II interlaminar fracture 

toughness of the interface between LS layers and HS layers of the hybrid composite, mH is the Weibull strength 

distribution of the modulus of the HS fibres, Kt is the stress concentration factor in the high strain material and V 

is the volume of the specimen (free length × width × total fibre layer thickness). 

Knowing the magnitude of all three possible stresses allows assessing their order of occurrence and, 

consecutively, the identification of the damage modes, according to Table 4. The details of the analytical approach 

are fully discussed in [8]. 

After the determination of the damage modes, it is possible to plot the stress–strain curve using the 

characteristic points given in Table 5. In the latter, Esat is the saturated modulus of the composite (according to 

equation (8)),  εH is the strain at the failure of the HS fibres and ε@H-PS is the strain in the composite at the post-

saturation phase when the high strain material fails (according equation (9)). 

 𝐸𝑠𝑎𝑡  = 𝐸𝐻
𝛼𝛽+1

(𝛽+1)(1+
11

18
𝛼𝛽)

 (8) 

 𝜀@𝐻−𝑃𝑆 =
𝜀𝐻

𝐾𝑡 √𝑉
𝑚𝐻 −

7

18

𝑆𝐿𝛽

𝐸𝐻
 (9) 

Since the model by Jalalvand et al. [8] does not consider the hybrid effect, the strain at the failure of LS 

materials in hybrid combination was assumed to be equal to the obtained experimental values (according to the 

method developed by the author), and SL was computed according to Hooke's law. In the present work, the 

definitions of ‘yield’ stress and pseudo-ductile strain suggested by Jalalvand et al. [27] were considered: the ‘yield’ 

stress is the stress at the point that response deviates from the initial linear elastic line, i.e., equal to σ@LF and the 

pseudo-ductile strain is defined as the extra strain between the final failure strain and the strain on the extrapolated 

initial slope line at the failure stress of the stress-strain diagram (see Figure 2). 

 

3 RESULTS AND DISCUSSION 

3.1 Tensile properties of non-hybrid composites 

In Figure 3, the dispersion of the obtained results and their mean values are plotted. It can be concluded 

that, in all cases, the change from 1 to 3 layers of reinforcing material promotes a reduction of the magnitude of 

the elastic modulus, tensile strength, and tensile strain at failure. The mean values of the tensile properties and 

their coefficient of variation (CoV) are presented in Table 6, for each series. For each reinforcing material, the t 

statistical test (t-test) was used to assess whether the mean values of two groups of tensile properties are statistically 

different from each other, with a significant level of 5%. The mean values that were significantly different are 
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underlined in Table 6. The highest decreases were founded in glass and HM carbon composites: tensile strength 

and strain at the failure decreases 416.4 MPa (24.9%) and 675.5 MPa (38.6%) and 0.31% (13.4%) and 0.09% 

(33.3%), respectively. These decreases can be explained by two factors: (i) for one hand, it is well known that 

there is a size effect in tensile properties of reinforcing fibre due to the higher probability of finding a cluster of 

weaker fibre in a larger volume of material [7]; (ii) for other hand, in tensile tests, stress concentrations can be 

more predominate where the load is introduced. As expected, in the elastic modulus non-significant variations 

were registered in all cases. 

In Table 6 is even possible to observe, that tensile strength, and consequently the elastic modulus, of cured 

composites are higher than the obtained values for single fibres. This is due to the fact that, in case of composites, 

the tensile properties were evaluated considering only the dry fabric thickness which conducted to overestimation 

of these properties. For other hand, the strain at failure of composites is lower than the one obtained for single 

fibres. This was expected because in UD composites fibres break as soon as the weakest link is overloaded. Broken 

fibre sheds load to the nearby fibres, subjecting them to stress concentrations. Stress concentrations increase the 

failure probability of the nearby fibres that will lead to the development of fibre break clusters and cause final 

composite failure [71]. Furthermore, in glass and basalt series the mechanical properties of epoxy could be 

predominant in the composite failure because the strain of the resin at failure is lower than the strain of fibres at 

failure. 

In Table 6 the obtained failures modes of all specimens are also identified. Each failure mode was labelled 

according to the information included in ASTM D 3039/D 3039M standard [72]. Numbers placed after letters are 

used for indicating the number of specimens in which the same failure mode was obtained. As referred before, 

stress concentrations may be responsible for the variability observed in failure modes and lowering both the 

average strength and strain. Furthermore, layer overlap, in case of specimens with 3 layers, can lead to the 

occurrence of more emphasized size effects and different failure modes, such as delamination, that would cause 

more scatter. Therefore, an accurate way of measuring the strain at failure of non-hybrid composites should be 

further investigated. For this reason, a hypothetic increase on baseline strain of LS material would lead to a 

decrease on the values of hybrid effects obtained in the present work. Nevertheless, from Table 6 it is possible to 

observe that, for series 1C and 1CHM, 3 out of the 4 tested specimens have failed at gage length.  

 

3.2 Tensile tests of hybrid composites 

3.2.1 Elastic modulus and tensile strength 
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A summary of the tensile properties obtained for the hybrid composites is presented in Table 7. Volumes 

of reinforcing materials were computed as a function of their density and areal mass. The tensile strength was 

defined as the maximum value observed in the stress–strain curve. The results of 1 layer non-hybrid composites 

were used to serve as reference in the comparisons with the analytical predictions. 

Figure 4 shows the evolution of the elastic modulus with the LS fibre vol% of the tested specimens, as well 

as the mean and their 95% Fisher level of confidence intervals overlapped with ROM curves. As previously 

mentioned, the elastic modulus increases linearly with the increase of LS fibres vol%. As expected, the largest 

elastic modulus increases were found in the combinations of reinforcing materials in which this property differed 

the most: HM carbon/glass (Figure 4 (a)) and HM carbon/basalt (Figure 4 (c)). Relatively to the ST carbon/glass 

(Figure 4 (b)), ST carbon/basalt (Figure 4 (d)), and HM carbon/ST carbon (Figure 4 (e)) combinations, the elastic 

modulus increases were softer. 

Relatively to ROM, predictions showed a good agreement with the experimental results. The obtained 

relative errors varying between -14.5% and 9.6%. This magnitude of the error values is acceptable and it is in 

agreement with the bibliography [16]. For this reason, it is believed that in the present case there was not a 

significant deviation in fibres alignment. Therefore, it can be stated that ROM is a model that can be used as a 

quality control tool for hand lay-up hybrid composites, since it allows checking the volume and the alignment of 

the reinforcing materials used in this type of composites. 

Figure 5 presents the experimental results for the case of the tensile strength. As in the previous case, the 

scatter diagrams of tensile strength results, their mean results, and their 95% Fisher level of confidence intervals 

were overlapped with bilinear ROM curves. In general, it is possible to distinguish between two types of behaviour: 

(i) in the combinations that included HM carbon fibres, a small tensile strength variation with increasing LS fibres 

vol% was registered, and (ii) in the combinations that included ST carbon fibres, a clear tensile strength increase 

with the increase in LS fibres vol% was observed. This is understandable, since HM carbon exhibits a low tensile 

strength and, therefore, it is not expectable to observe improvements in the tensile strength by increasing the 

volume of this material. An opposite behaviour is observed when ST carbon is used. 

In the case of bilinear ROM predictions, deviations from the experimental results were also found, varying 

between -15.7% and 16.9%. In this way, the relative errors were higher than those obtained with ROM. These 

results were expected, since, as previously explained, the bilinear ROM does not consider delamination and hybrid 

effect phenomena [8, 69]. In Figure 5 it is also possible to observe that there were 5 combinations located in the 

multiple facture zone: 2G/1CHM/2G, 1G/1CHM/1G, 1G/1CHM/1G/1CHM/1G, 1B/1CHM/1B and 
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1C/1CHM/1C. All these combinations had in common the use of the HM carbon fibres as LS fibres. In these cases, 

catastrophic failures were avoided. In the remaining cases, a catastrophic failure of the HS fibres occurred at the 

moment of LS fibres failure. In this way, the bilinear ROM was capable of predicting satisfactorily the occurrence 

of multiple fractures. This topic is further discussed in Section 3.2.3. 

 

3.2.2 Hybrid effect 

The hybrid effect was computed relatively to 1 layer non-hybrid composite results, according to the 

Equation (10):  

 𝐻𝑦𝑏𝑟𝑖𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 =
 𝛥𝜀𝐿

𝜀𝐿
× 100 (10) 

where 𝛥𝜀𝐿 is absolute variation of the strain at the failure of LS material obtained in hybrid and non-hybrid 

composites. 

As previously mentioned, volumes of reinforcing materials were adjusted in accordance with their density 

and areal mass. Figure 6 shows the scatter diagrams of the obtained hybrid effects, their mean results and their 

95% Fisher level of confidence intervals. 

As expected, it was possible to observe that the reduction of the LS fibres vol% leads to a clear increase of 

the hybrid effect. In general, the hybrid effect varied between -14.1% and 44.5%. However, the hybrid effect 

increase was not linear. In all cases, it was possible to observe that above 60% of relative volume of LS fibres the 

hybrid effect was close to zero or even negative. As presented above, in non-hybrid composites the use of more 

layers of the same material caused the reduction of all the analysed tensile properties. The hybrid effect was 

negative in cases where 2 or 3 layers of LS fibres were used. It should be noted that, since failure strains of 1 layer 

non-hybrid composite were used as the baseline tensile failure strain to compute the hybrid effect, negative hybrid 

effects are possible. In fact, it was confirmed that negative hybrid effects never arise when comparisons are made 

with the results obtained with the 3-layer non-hybrid composites. 

Several t-tests at a significance level of 5% were performed to compare all pairs of hybrid effect mean 

values. Relative to HM carbon/glass case, differences between the 3 initial levels of LS fibres vol% hybrid effect 

mean values were not significant. The same could be concluded for the last 2 levels. The analysis of the 

carbon/glass series results led to the same conclusion. Since in the remaining combinations of materials only two 

levels of LS fibres vol% were analysed, the previous conclusion was not refuted for these combinations either.  
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In order to understand if there were significant variations due to the replacement of glass with basalt 

material, t-tests were performed to compare the pairs of hybrid effect mean values between the combinations of 

HM carbon/glass, HM carbon/basalt, ST carbon/glass, and ST carbon/basalt. It can be concluded that the changes 

referred to did not conduct to significant differences in hybrid effect results, as it is shown in Figure 7. However, 

with 38.2% of HM carbon fibres relative volume (1G/1CHM/1G), a significant difference was achieved. From the 

analysis of Table 7 it can be seen that for the 1G/1CHM/1G combination the worst prediction of elastic modulus 

was achieved by ROM, indicating that the mentioned difference was probably promoted by some misalignment of 

the fibres. 

The hybrid effects and the information of the fibres used in other authors’ works, published between 1974 

and 2016, were contemplated in the present work (see Table 8). Although the data collection was mainly focused 

on the interlayer configurations, the information of intralayer configurations presented by Chamis et al. [73] was 

also included, since it is one of the few works in which the hybrid effect with more than 70% of LS fibres relative 

volume was studied. 

Associations between hybrid effect and material factors (such as SL, SH, EL, EH, εL and εH) were analysed 

by a Spearman's rank test using SPSS version 23 (IBM, New York). Additionally, the hybrid effect was also 

analysed as function of SL/SH, EL/EH and εL/εH ratios, SL-SH, EL-EH and εL-εH differences and a non-dimensional 

stiffness parameter, END, defined by equation (11). The END was first introduced by Swolfs et al. [25], who 

indicated that the hybrid effect depends on this parameter. 

 𝐸𝑁𝐷  =
𝑉𝐿𝐸𝐿

𝑉𝐻𝐸𝐻
 (11) 

Spearman’s correlation coefficient, r, is a statistical measure of the “strength” of a monotonic relationship 

between paired data. In the present work, spearman's rank of data revealed that statistically significant correlations, 

at a significance level of 5% between the hybrid effect and mentioned variables, were achieved for the cases of 

SH, Vol% LS fibres and END. There was a weak negative correlation between hybrid effect and SH (r = - 0.311). 

On the other hand, moderately strong negative correlations exist between hybrid effect and Vol% LS fibres (r = - 

0.526) and END (r = - 0.515). 

The moderate relationships previously mentioned are plotted in Figure 8. The dispersion of results and the 

low Spearman’s correlation coefficients obtained do not allow the suggestion of an appropriate model to describe 

the results. However, no linear trends are clearly observable in the presented diagrams. It is possible to see in 

Figure 8 that the results obtained in the present work are in agreement with those in the literature.  
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3.2.3 Failure modes 

As mentioned before, multiple fractures were achieved in some hybrid configurations, according to bilinear 

ROM predictions (see Figure 5). Usually, multiple fractures in hybrid composites are characterized by 2 

successive failures: the LS fibres fail firstly followed by the HS fibres. However, in 4 situations in this work, 

pseudo-ductile tensile responses with multiple fractures were observed with some combinations that included HM 

carbon, as it is shown in Figure 9. Two outlier results obtained in 1G/1CHM/1G and 1B/1CHM/1B combinations 

were ignored.  

In the case of 2G/1CHM/2G, a mean ‘yield’ stress of 732.6 MPa and a mean pseudo-ductile strain of 1.4% 

were registered (see Figure 9 (a)). In 1C/1CHM/1C combination a mean ‘yield’ stress of 1504.5 MPa and a mean 

pseudo-ductile strain of 0.4% were observed (see Figure 9 (d)). The replacement of glass by basalt resulted in 

slightly different behaviours (see Figure 9 (b) and Figure 9 (c)): with basalt, higher pseudo-ductile strain and 

‘yield’ stress were obtained. The combination with basalt led to a mean ‘yield’ stress of 1120.7 MPa and a mean 

pseudo-ductile strain of 2.0%, whereas the combination with glass yielded a mean ‘yield’ stress of 768.2 MPa and 

a mean pseudo-ductile strain of 1.2%. Furthermore, two different behaviours were observed: one with (see 

Figure 9 (a) and (d)) a clear hardening branch in the end of the pseudo-ductile strain, and another without (see 

Figure 9 (b) and (c)) the latter. 

It should be noted that, since the strain of the epoxy at failure is lower than the strain of glass and basalt 

fibres at failure, if a resin with higher ultimate strain had been used, larger pseudo-ductile strains may have been 

reached in 2G/1CHM/2G, 1G/1CHM/1G and 1B/1CHM/1B combinations. Further studies to confirm these 

hypotheses are deemed necessary. 

In the HM carbon/glass combinations the fragmentation of the HM carbon and delamination could be 

observed visually during the tensile test due to the translucence of the glass. The specimens were initially black 

due to the HM carbon natural colour but, after fragmentation and delamination, light was reflected from the 

interface, and the specimens looked white. Figure 10 shows an example of the aspect of specimen in consecutive 

phases of the tensile test. The fragmentation of HM carbon is evident. Furthermore, it is possible to observe 

localised delamination around the carbon layer fractures that developed stably during test until saturation. It is 

noticed that each stress-strain curve peak, as it is identified in Figure 9 (a), corresponds to a crack of the HM 

carbon and localised delamination. 
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3.3 Prediction of stress–strain curves  

In this section, the predicted stress-strain curves of all hybrid configurations studied in the present work, 

obtained with the model proposed by Jalalvand et al. [8], are compared with the corresponding experimental 

curves. One layer non-hybrid composite results were used as input variables. Since the model of Jalalvand et al. 

[8] is not able to predict the hybrid effect, the εL of the different material combinations was assumed to be equal 

to the experimental values obtained and SL was computed according to Hooke's law, a similar procedure was used 

in [8]. As it was demonstrated, the hybrid effect can increase substantially the strain at failure of LS fibres. For 

this reason, to turn the model capable of predicting the mechanical behaviour of new configurations, a way to 

predict the hybrid effect should be incorporated. The length and width of all specimens for prediction of high strain 

material failure were assumed to be equal to L = 150 mm and W = 15 mm, respectively. The interlaminar toughness, 

GIIC, for the different hybrid interfaces and the value of the stress concentration factor, Kt, were not experimentally 

assessed. They were computed in a way that, in combinations with pseudo-ductile behaviour, the fragmentation 

and dispersed delamination damage mode, indicated in Table 4, was analytical achieved. The GIIC was assumed 

to be constant for the same material combinations. Weibull modulus was assumed to be equal to the value used by 

Jalalvand et al. [8], i.e., mH = 29.3. The value of the stress concentration factor was assumed constant for all of the 

specimens, Kt = 0.97. This value is slightly lower than the one used by Jalalvand et al. [8] but allowed the best 

predictions. All input data is shown in Table 9. 

As it can be seen in Figure 11 to Figure 15, there is a good agreement between predictions and 

experiments. Analysing the curves, three groups of behaviours can be identified: (i) pseudo-ductile behaviours (the 

same that were discussed in Section 3.2.3), (ii) failure with two peaks (Figure 11 (c), Figure 11 (d) and Figure 14 

(a)), and (iii) premature and abrupt failure of HS fibres (in the remaining cases). The chosen way to estimate the 

GIIC parameter (considering only configurations in which fragmentation and dispersed delamination damage mode 

occurred) allowed to estimate with good accuracy the remaining cases. 

It is also possible to observe that, in the combinations with pseudo-ductile behaviours, the model was not 

capable of capturing the peaks in the 'flat-topped stress strain curve', since it considers that the fragmentation and 

delamination occurred consecutively and not simultaneously. In the 1C/1CHM/1C series, the predicted stress-

strain curves was somehow conservative. This occurred because SL and SH input properties were probably 

underestimated because these properties were assumed equal to the experimental values obtained with non-hybrid 

specimens and there is always some variability in the constituents. 
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In the 1G/1CHM/1G/1CHM/1G and 1G/3CHM/1G series, the model predicted well the catastrophic 

delamination damage mode, but the prediction of the delamination branch was much higher than the one observed 

experimentally. This lack of precision is probably related to some overestimation of GIIC in these cases. 

In the case of 1B/1C/1B series, the volume proportion of the constituent materials was between premature 

failure of HS fibres and catastrophic delamination damage mode. For this reason, the model was not capable of 

predicting the complete tensile response. A 20% increase in ST carbon thickness, keeping the same volume 

proportion between the reinforcing materials, was enough to get a correct prediction from the model. 

 

4 CONCLUSIONS 

The tensile behaviour of several layer-by-layer hybrid combinations has been investigated using 

experimental testing and analytical modelling. All the composites were made through the hand lamination of four 

different commercially available dry UD fabrics: HM carbon (CHM), ST carbon (C), E-glass (G) and basalt (B). 

The following main observations and conclusions were drawn. 

It was verified that hybrid effect depends not only on the vol% of LS fibres but also on the non-dimensional 

stiffness parameter (END), and the elastic modulus of the hybrid composite (Ehybrid). According to the Spearman's 

rank test carried out, moderately strong negative correlations between hybrid effect and Vol% LS fibres (r = - 

0.526) and END (r = - 0.515) were found. The hybrid effect varied between -14.1% and 44.5%. The maximum 

hybrid effect was obtained combining HM carbon with carbon, in combination 1C/1CHM/1C, and the minimum 

was obtained combining HM carbon with glass, in combination 1G/3CHM/1G. In all analysed cases, it was 

possible to observe that above 60% of LS fibres relative volume, the hybrid effects were nearly zero or negative. 

It is believed that the latter results are due to the size effect, since in the present work hybrid effects were computed 

in respect to 1 layer non-hybrid composite results, and in the cases in which the negative hybrid effect were 

obtained 2 or 3 layers of LS fibres were used. In this way, the magnitude of the hybrid effect potentially depends 

on the ply thickness of the LS fibres and this subject should be further studied.  

Elastic modulus was well-predicted using the rule of mixtures (ROM). The obtained relative errors were 

acceptable, varying between -14.5% and 9.6%. In the case of the tensile strength, the relative errors between the 

bilinear ROM prediction and experimental results varied between -15.7% and 16.9%. In this case, larger errors 

were expected comparatively with elastic modulus predictions, since bilinear ROM does not account for the hybrid 

effect and size effect. However, the bilinear ROM was capable of predicting satisfactorily for the cases where 

multiple fractures occurred. 
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In the four tested hybrid combinations, that included HM carbon as LS material (2G/1CHM/G, 

1G/1CHM/1G, 1B/1CHM1B, and 1C/1CHM/1C), pseudo-ductile tensile responses with fragmentation and 

dispersed delamination were achieved. In these combinations, the mean ‘yield’ stress varied between 732.6 and 

1504.5 MPa and the pseudo-ductile strain between 0.4 and 2.0%. 

The analytical approach developed by Jalalvand et al. [8] allowed to predict all the failure modes 

successfully. In this way, the presented work validated the developed approach for the set of materials and 

fabrication method used. However, since the hybrid effect can increase substantially the strain at failure of LS 

fibres, it is recommend to incorporate a way of predicting the hybrid effect into the model in the future. 
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Table 1 — Properties of the dry fabrics and tensile properties of fibres. 

Material ID Properties of the dry fabric, as reporter by the 

manufacturer 

Properties of the fibres (tested according to ASTM D3379) 

 Density 

[g/m3] 

Areal mass 

[g/m2] 

Fibre layer 

thickness 

[mm/layer] 

N. of 

samples 

Fibre diameter 

[µm] (CoV 

[%]) 

Elastic modulus 

[GPa] (CoV [%]) 

Tensile strength 

[MPa] (CoV [%]) 

Strain at the failure 

[%] (CoV [%]) 

Basalt (B) 2.67 420 0.157 50 18.14 (3.56) 61.41 (31.14) 1886.70 (40.79) 3.10 (27.73) 

E-glass (G) 2.60 400 0.154 50 14.98 (16.25) 76.92 (27.97) 2662.06 (33.88) 3.72 (20.45) 

ST carbon (C) 1.79 400 0.223 36 7.88 (5.15) 213.95 (43.36) 3920.67 (39.37) 1.38 (17.37) 

HM carbon (CHM) 2.10 400 0.190 26 11.03 (6.66) 558.07 (24.67) 2934.24 (19.16) 0.53 (18.99) 
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Table 2 — Layer ratio and stacking sequence of the tested hybrid composites. 

Designation Layer ratio (LS/HS 

fibres) [%] 

Stacking 

sequence 

1LS/1HS/1LS 66/33    

1HS/3LS/1HS 60/40      

1HS/1LS/1HS/1LS/1HS 40/60      

1HS/1LS/1HS 33/66    

2HS/1LS/2HS 20/80      
 

Notes:  – HS fibres layer;  – LS fibres layer. 
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Table 3 — Geometric properties of specimens. 

Material 

combination 

Series ID Total thickness 

[mm] (CoV [%]) 

Fibre layer thickness 

[mm] 

HS layer thickness 

[mm] 

LS layer thickness 

[mm] 

Fibre volume 

fraction [%] 

Non-hybrid 1B 1.01 (18.43) 0.157 -- -- 15.57 

3B 1.90 (11.89) 0.471 -- -- 24.80 

1G 0.66 (12.74) 0.154 -- -- 23.27 

3G 1.87 (3.42) 0.462 -- -- 24.67 

1C 1.22 (11.30) 0.223 -- -- 18.27 

3C 2.46 (0.85) 0.669 -- -- 27.16 

1CHM 1.31 (7.93) 0.190 -- -- 14.49 

3CHM 2.95 (9.82) 0.570 -- -- 19.34 

C/B 1C/1B/1C 2.62 (4.82) 0.603 0.157 0.446 23.01 

1B/1C/1B 2.07 (6.02) 0.537 0.314 0.223 25.92 

CHM/B 1CHM/1B/1CHM 2.37 (7.99) 0.537 0.157 0.380 22.71 

1B/1CHM/1B 2.28 (7.96) 0.504 0.314 0.190 22.09 

CHM/C 1CHM/1C/1CHM 2.56 (5.55) 0.603 0.223 0.380 23.55 

1C/1CHM/1C 2.55 (4.36) 0.636 0.446 0.190 24.98 

C/G 1C/1G/1C 2.85 (7.61) 0.600 0.154 0.446 21.04 

1G/3C/1G 3.24 (6.27) 0.977 0.308 0.669 30.19 

1G/1C/1G/1C/1G 3.05 (3.52) 0.908 0.462 0.446 29.73 

1G/1C/1G 2.05 (4.74) 0.531 0.308 0.223 25.87 

2G/1C/2G 2.91 (3.47) 0.839 0.616 0.223 28.88 

CHM/G 1CHM/1G/1CHM 2.66 (5.94) 0.534 0.154 0.380 20.11 

1G/3CHM/1G 3.48 (3.69) 0.878 0.308 0.570 25.25 

1G/1CHM/1G/1CHM/1G 3.36 (2.59) 0.842 0.462 0.380 25.10 

1G/1CHM/1G 2.13 (3.29) 0.498 0.308 0.190 23.40 

2G/1CHM/2G 3.02 (4.00) 0.806 0.616 0.190 26.65 
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Table 4 — Summary of different damage modes in function of stress level (adapted from [27]). 

Damage mode Stress level 

Premature failure 𝜎@𝐻𝐹 ≤ 𝜎@𝐿𝐹 ≤ 𝜎@𝑑𝑒𝑙 

𝜎@𝐻𝐹 ≤ 𝜎@𝑑𝑒𝑙 ≤ 𝜎@𝐿𝐹 

Catastrophic delamination 𝜎@𝑑𝑒𝑙 ≤ 𝜎@𝐻𝐹 ≤ 𝜎@𝐿𝐹 

𝜎@𝑑𝑒𝑙 ≤ 𝜎@𝐿𝐹 ≤ 𝜎@𝐻𝐹 

Fragmentation 𝜎@𝐿𝐹 ≤ 𝜎@𝐻𝐹 ≤ 𝜎@𝑑𝑒𝑙 

Fragmentation & dispersed delamination 𝜎@𝐿𝐹 ≤ 𝜎@𝑑𝑒𝑙 ≤ 𝜎@𝐻𝐹 
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Table 5 — Characteristic points of different damage processes on stress–strain graph (adapted from [8]). 

Damage mode Point 1 Point 2 Point 3 Point 4 Point 5 

Premature failure (0,0) (𝜀𝐿, 𝜎@𝐿𝐹)    

Catastrophic 

delamination 

(0,0) (𝜀𝐿, 𝜎@𝐿𝐹) (𝜀𝐿, 𝜎@𝑑𝑒𝑙) 
(

𝜎@𝑑𝑒𝑙(1 + 𝛽)

𝐸𝐻
, 𝜎@𝑑𝑒𝑙) (

𝜀𝐻

𝐾𝑡 √𝑉
𝑚𝐻

, 𝜎@𝐻𝐹) 

Fragmentation (0,0) (𝜀𝐿, 𝜎@𝐿𝐹) 
(

𝜎@𝐿𝐹

𝐸𝑠𝑎𝑡
, 𝜎@𝐿𝐹) 

(𝜀𝐻−𝑃𝑆, 𝜎@𝐻𝐹)  

Fragmentation & 

dispersed delamination 

(0,0) (𝜀𝐿, 𝜎@𝐿𝐹) 
(

𝜎@𝐿𝐹

𝐸𝑠𝑎𝑡
, 𝜎@𝐿𝐹) (

𝜎@𝑑𝑒𝑙(1 + 𝛽)

𝐸𝐻
, 𝜎@𝑑𝑒𝑙) (

𝜀𝐻

𝐾𝑡 √𝑉
𝑚𝐻

, 𝜎@𝐻𝐹) 
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Table 6 — Tensile properties obtained with non-hybrid composites. 

Series ID Elastic modulus 

[GPa] (CoV [%]) 

Tensile strength 

[MPa] (CoV 

[%]) 

Strain at the 

failure [%] 

(CoV [%]) 

Failure modes, according to 

ASTM D3039 [72] 

1B 102.5 (15.46) 2244.2 (20.17) 2.46 (10.61) LIT(1) OGM(3) 

3B 92.6 (13.55) 1974.6 (15.76) 2.40 (8.26) OGM(4) 

1G 81.6 (7.39) 1671.2 (8.59) 2.31 (3.78) LGM(2) 

3G 80.6 (10.10) 1254.8 (15.05) 2.00 (13.95) LAT(1) LGM(2) AGM(1) 

1C 231.3 (12.50) 2565.9 (10.18) 1.09 (8.81) OGM(1) LGM(3) 

3C 227.6 (5.80) 2363.2 (7.44) 1.02 (6.02) LAB(1) LGM(1) LIT(1) LAT(1) 

1CHM 624.1 (11.13) 1749.4 (24.39) 0.27 (19.61) LGM(3) SGM(1) 

3CHM 588.2 (3.97) 1073.9 (18.27) 0.18 (15.84) LAB(3) LIT(1) 

Note: the pair mean values underlined are significantly different from each other (according to t-test); L – lateral; 

S – longitudinal splitting; O – other; I – inside grip; G – gage; A – at grip; T – top; M – middle; B – bottom; 

numbers placed after letters are used for indicating the number of specimens in which the same failure mode was 

obtained. 
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Table 7 — Tensile properties obtained with the hybrid composites and ROM and bilinear ROM predictions. 

Material 

combination 

Series ID Volume of 

LS fibres 

[%] 

Elastic modulus Tensile strength Strain at the failure 

of LS fibres 

[%] (CoV [%]) 

Hybrid 

effect 

[%] 

Failure modes, according 

ASTM D3039 [72] 
Experimental 

[GPa] (CoV [%]) 

ROM 

[GPa] 

Relative error 

[%] 

Experimental 

[MPa] (CoV [%]) 

Bilinear ROM 

[MPa] 

Relative error 

[%] 

C/B 1C/1B/1C 74.0 218.4 (2.84) 197.7 9.5 2191.4 (7.28) 2189.3 0.1 0.99 (5.76) -8.99 LAT(4) 

1B/1C/1B 41.5 152.5 (5.93) 155.9 -2.2 1950.2 (7.51) 1718.4 11.9 1.28 (3.46) 17.37 OGM(4) 

CHM/B 1CHM/1B/1CHM 70.8 474.1 (2.25) 471.6 0.5 1150.0 (14.10) 1325.4 -15.3 0.24 (11.19) -12.95 LAT(3) LGM(1) 

1B/1CHM/1B 37.7 297.4 (9.29) 299.1 -0.6 1328.0 (10.74) 1398.1 -5 0.36 (5.77) 30.19 fragmentation 

CHM/C 1CHM/1C/1CHM 63.0 489.6 (7.39) 478.8 2.2 1352.5 (5.10) 1350.3 0.2 0.27  (5.55) -1.50 LGM(1) LAB(1) LAT(2) 

1C/1CHM/1C 29.5 368.8 (6.43) 348.6 5.5 1937.5 (6.79) 1809.0 7 0.39  (3.59) 44.52 fragmentation 

C/G 1C/1G/1C 74.3 201.7 (9.63) 192.8 4.4 2176.9 (8.55) 2135.1 1.9 1.04  (1.92) -4.44 LAB(3) LAT(1) 

1G/3C/1G 68.5 202.4 (2.64) 184.0 9.6 2216.0 (8.77) 2037.8 8.0 1.08  (6.26) -0.20 LAB(2) LIT(1) LGM(1) 

1G/1C/1G/1C/1G 49.1 148.9 (11.75) 155.1 -4.1 1776.3 (10.55) 1712.6 3.6 1.19  (3.68) 9.15 LAT(1) LGM(2) LAB(1) 

1G/1C/1G 42.0 146.7 (5.92) 144.4 1.6 1856.0 (5.67) 1593.6 14.1 1.27  (2.72) 16.33 LGM(4) 

2G/1C/2G 26.6 110.8 (10.21) 121.4 -9.5 1244.4 (1.74) 1335.4 -7.3 1.18  (8.27) 7.33 LAT(2) LAB(1) LGM(1) 

CHM/G 1CHM/1G/1CHM 71.2 454.5 (11.95) 457.7 -2.9 1168.9 (19.49) 1313.7 -12.4 0.25  (11.66) -7.07 LAT(2) LAB(1) LGM(1) 

1G/3CHM/1G 64.9 439.2 (7.35) 433.8 -0.6 1053.5 (10.14) 1218.4 -15.7 0.23  (6.43) -14.09 LGM(1) LAT(2) LAB(1) 

1G/1CHM/1G/1CHM/1G 45.1 318.7 (7.33) 326.4 -2.4 1105.8 (9.18) 918.9 16.9 0.35  (5.02) 27.66 LGM(2) LAT(2) 

1G/1CHM/1G 38.2 252.0 (8.55) 288.6 -14.5 1054.7 (9.11) 1032.8 2.0 0.30  (2.39) 9.97 fragmentation 

2G/1CHM/2G 23.6 214.3 (8.45) 209.5 2.2 1164.7 (14.47) 1276.8 -10.0 0.33 (14.65) 21.94 fragmentation 

Notes: L – lateral; S – longitudinal splitting; O – other; I – inside grip; G – gage; A – at grip; T – top; M – middle; B – bottom; numbers placed after letters are used for 

indicating the number of specimens in which the same failure mode was obtained. 
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Table 8 — Resume of tensile properties of different hybrid combinations obtained by different authors. 

Year Ref. Matrix Stacking sequence Tensile 

strength 

[MPa]  

Elastic 

modulus 

[GPa]  

Strain at 

the failure 

[%]  

SL EL εL SH EH εH Vol% LS 

[%] 

Hybrid 

effect [%] 

1974 [13] Epoxy 1G/2C/1G 300 89 0.37 400.00 142.00 0.26 520.00 41.00 1.25 50.0 42.0 

1974 Epoxy 1G/1C/1G 340 72 0.48 400.00 142.00 0.26 520.00 41.00 1.25 33.0 85.0 

1976 Vinylester 4G/1C 660 56 1.18 1130.00 115.00 0.98 730.00 40.00 2.00 20.0 20.0 

1976 Vinylester 3G/1C 690 60 1.15 1130.00 115.00 0.98 730.00 40.00 2.00 25.0 17.0 

1976 Vinylester 2G/1C 720 65 1.11 1130.00 115.00 0.98 730.00 40.00 2.00 33.0 13.0 

1976 Vinylester 1G/1C 750 75 1.00 1130.00 115.00 0.98 730.00 40.00 2.00 50.0 2.0 

1977 Epoxy 1C/1G 
   

  1.80   1.04 50.0 3.8 

1978 Epoxy 1C/1G 850 61 1.39 1200.00 97.00 1.23 700.00 25.00 2.80 50.0 13.0 

1979 Epoxy 2C/2G 830 61 1.36 1200.00 97.00 1.23 700.00 25.00 2.80 50.0 11.0 

1980 Epoxy 5C/5G 800 62 1.29 1200.00 97.00 1.23 700.00 25.00 2.80 50.0 5.0 

1981 Epoxy 1G/1CHS/1G 1040 83 1.25 1520.00 135.00 1.12 1200.00 39.00 3.00 33.0 39.0 

1981 Epoxy 2G/1CHS/2G 920 65 1.42 1520.00 135.00 1.12 1200.00 39.00 3.00 20.0 57.0 

1981 Epoxy 3G/1CHS/3G 870 59 1.48 1520.00 135.00 1.12 1200.00 39.00 3.00 14.0 67.0 

1981 Epoxy 4G/1CHS/4G 900 60 1.49 1520.00 135.00 1.12 1200.00 39.00 3.00 11.0 74.0 

1981 Epoxy 6G/1CHS/6G 820 55 1.5 1520.00 135.00 1.12 1200.00 39.00 3.00 8.0 82.0 

1981 Epoxy 9G/1CHS/9G 760 49 1.55 1520.00 135.00 1.12 1200.00 39.00 3.00 5.0 88.0 

1981 Epoxy 2G/2CHS/2G 1030 76 1.35 1520.00 135.00 1.12 1200.00 39.00 3.00 33.0 40.0 

1981 Epoxy 3G/2CHS/3G 970 72 1.35 1520.00 135.00 1.12 1200.00 39.00 3.00 25.0 50.0 

1981 Epoxy 1G/3CHS/1G 1430 104 1.37 1520.00 135.00 1.12 1200.00 39.00 3.00 60.0 18.0 
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Table 8 — (Continued) 

Year Ref. Matrix Stacking sequence Tensile 

strength 

[MPa]  

Elastic 

modulus 

[GPa]  

Strain at 

the failure 

[%]  

SL EL εL SH EH εH Vol% LS 

[%] 

Hybrid 

effect [%] 

1981 [13] Epoxy 3G/3CHS/3G 1040 77 1.36 1520.00 135.00 1.12 1200.00 39.00 3.00 33.0 40.0 

1981 Epoxy 8G/3CHS/8G 820 58 1.41 1520.00 135.00 1.12 1200.00 39.00 3.00 16.0 64.0 

1981 Epoxy 3G/8CHS/3G 1380 102 1.36 1520.00 135.00 1.12 1200.00 39.00 3.00 57.0 19.0 

1981 Epoxy 1G/9CHS/1G 1400 109 1.29 1520.00 135.00 1.12 1200.00 39.00 3.00 82.0 7.0 

1981 Epoxy 8G/9CHS/8G 1030 81 1.27 1520.00 135.00 1.12 1200.00 39.00 3.00 36.0 36.0 

1981 Epoxy 1G/1CHM/1G 750 95 0.79 1330.00 192.00 0.69 1200.00 39.00 3.00 33.0 15.0 

1981 Epoxy 2G/2CHM/2G 830 99 0.84 1330.00 192.00 0.69 1200.00 39.00 3.00 33.0 22.0 

1981 Epoxy 3G/3CHM/3G 750 89 0.84 1330.00 192.00 0.69 1200.00 39.00 3.00 33.0 22.0 

1981 Epoxy 6G/7CHM/6G 820 100 0.82 1330.00 192.00 0.69 1200.00 39.00 3.00 37.0 19.0 

1981 Epoxy 8G/3CHM/8G 550 65 0.84 1330.00 192.00 0.69 1200.00 39.00 3.00 16.0 22.0 

1981 Epoxy 9G/1CHM/9G 510 50 1.01 1330.00 192.00 0.69 1200.00 39.00 3.00 5.0 46.0 

1981 [73] Epoxy Intralayer 265 20 1.30 1467.57 125.40 1.12 1322.88 47.89 2.84 90 16.1 

1981 Epoxy Intralayer 191 17.8 1.06 1467.57 125.40 1.12 1322.88 47.89 2.84 80 -5.4 

1981 Epoxy Intralayer 84.7 30.4 0.38 1051.41 185.69 0.54 1324.95 47.89 2.84 90 -29.0 

1981 Epoxy Intralayer 81.3 29.6 0.31 1051.41 185.69 0.54 1324.95 47.89 2.84 80 -42.1 

1981 Epoxy Intralayer 109 24.1 0.45 1051.41 185.69 0.54 1324.95 47.89 2.84 70 -15.9 

1981 Epoxy Intralayer 196 18.5 0.38 1472.39 125.40 1.12 1281.54 77.17 1.73 90 -66.1 

1981 Epoxy Intralayer 204 17.8 1.13 1472.39 125.40 1.12 1281.54 77.17 1.73 80 0.9 

1981 Epoxy Intralayer 205 16.8 1.01 1472.39 125.40 1.12 1281.54 77.17 1.73 70 -9.8 
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Table 8 — (Continued) 

Year Ref. Matrix Stacking sequence Tensile 

strength 

[MPa]  

Elastic 

modulus 

[GPa]  

Strain at 

the failure 

[%]  

SL EL εL SH EH εH Vol% LS 

[%] 

Hybrid 

effect [%] 

1981 [73] Epoxy Intralayer 103 26.8 0.37 1051.41 182.59 0.54 1281.54 77.17 1.73 90 -30.8 

1981 Epoxy Intralayer 105 26.9 0.38 1051.41 182.59 0.54 1281.54 77.17 1.73 80 -29.0 

1981 Epoxy Intralayer 110 25.9 0.43 1051.41 182.59 0.54 1281.54 77.17 1.73 70 -19.6 

2007 [17] Epoxy 1C/1G 3305 162.0 2.04 4214.00 242.00 1.74 2121.00 87.00 2.45 48.5 17.2 

2007 Epoxy 1C/1B 2271 166.0 1.67 4214.00 242.00 1.74 2332.00 87.00 2.56 50 -4.0 

2010 [74] Polypropylene 2SRPP/1C/2SRPP 219 15.4 1.27 644.00 50.70 1.19 149.00 2.80 21.70 17.0 7.0 

2010 Polypropylene 1C/2SRPP/1C 398 26.3 1.41 644.00 50.70 1.19 149.00 2.80 21.70 33.0 18.0 

2010 

Polypropylene 

1SRPP/1C/1SRPP

/1C/1SRPP 

347 22.8 1.31 644.00 50.70 1.19 149.00 2.80 21.70 28.0 10.0 

2011 [75] Epoxy 3G/4C/3G 436 27.0 2.59 511.00 39 1.36 322.00 12.5 4.25 47.0 90.4 

2011 Epoxy 2C/6G/2C 421 27.5 1.86 511.00 39 1.36 322.00 12.5 4.25 47.0 36.8 

2011 [76] Epoxy 1C/1B 2409 142.0 1.74 4067.00 239.80 1.74 2145.00 81.50 2.76 41.57 0.0 

2011 Epoxy 1C/2B 2186 125.0 1.84 4067.00 239.80 1.74 2145.00 81.50 2.76 26.24 5.7 

2013 [77] Phenolic 1G/8F/1G  32.3 0.99  29.04 0.85  51.22 1.41 86.0 16.5 

2013 

Phenolic 

1G/2F/1G/2F/1G/

2F/1G 

 36.4 1.12  29.04 0.85  51.22 1.41 69.0 31.8 

2013 
Phenolic 

1G/1F/1G/1F/2G/

1F/1G/1F/1G 

 40.9 1.25  29.04 0.85  51.22 1.41 50.0 47.1 

2013 Phenolic 3G/1F/2G/1F/3G  45.0 1.37  29.04 0.85  51.22 1.41 27.0 61.2 

2013 [1] Epoxy 2G/1C/2G 967 44.0 2.20 1962.00 101.70 1.50 1548.00 38.70 3.40 4.9 18.4 



Ribeiro, F.; Sena-Cruz, J.; Branco, F.G.; Júlio, E. (2018) “Hybrid effect and pseudo-ductile behaviour of unidirectional interlayer hybrid FRP composites for civil engineering applications.” 

Construction & Building Materials, 171:871–890. 

34 

Table 8 — (Continued) 

Year Ref. Matrix Stacking sequence Tensile 

strength 

[MPa]  

Elastic 

modulus 

[GPa]  

Strain at 

the failure 

[%]  

SL EL εL SH EH εH Vol% LS 

[%] 

Hybrid 

effect [%] 

2013 [1] Epoxy 2G/2C/2G 954 47.0 2.06 1962.00 101.70 1.50 1548.00 38.70 3.40 9.4 10.9 

2013 Epoxy 2G/3C/2G 965 49.0 1.92 1962.00 101.70 1.50 1548.00 38.70 3.40 13.4 3.3 

2013 Epoxy 2G/4C/2G 985 51.0 1.93 1962.00 101.70 1.50 1548.00 38.70 3.40 17.2 3.9 

2014 [78] Epoxy 1B/1C 2482 145.0 1.74 4067.00 239.80 1.74 2077.00 80.20 2.68 41.6 0.0 

2014  Epoxy 2B/1C 2213 124.0 1.84 4067.00 239.80 1.74 2077.00 80.20 2.68 26.2 5.7 

2014 [79] Epoxy 4C/1B/5C 630 60.0 1.07 687.00 65.00 1.06 402.00 18.00 2.20 92.2 0.8 

2014 Epoxy 4C/2B/4C 602 55.0 1.10 687.00 65.00 1.06 402.00 18.00 2.20 84.0 3.1 

2014 Epoxy 3C/3B/4C 558 50.0 1.10 687.00 65.00 1.06 402.00 18.00 2.20 75.4 3.6 

2014 Epoxy 3C/4B/3C 536 45.0 1.14 687.00 65.00 1.06 402.00 18.00 2.20 66.4 7.3 

2014 Epoxy 2C/5B/3C 502 40.0 1.20 687.00 65.00 1.06 402.00 18.00 2.20 56.8 13.0 

2014 Epoxy 2B/6C/2B 571 49.5 1.15 687.00 65.00 1.06 402.00 18.00 2.20 66.4 8.3 

2014 Epoxy 2C/2B/2C/2B/2C 556 47.5 1.17 687.00 65.00 1.06 402.00 18.00 2.20 66.4 10.2 

2016 [80] Epoxy 1C/1G/1C/1G 1034 57.0 2.01 4400.00 235.00 1.70 1838.00 73.10 4.51 56.0 18.2 

2016 [28] Epoxy 1G/1C/1G   2.17 1962.00 101.00 1.50 2138.00 45.70 4.51 8.6 16.6 

2016 Epoxy 1G/2C/1G   1.96 1962.00 101.00 1.50 2138.00 45.70 4.51 15.8 5.7 

2016 Epoxy 1G/3C/1G   1.84 1962.00 101.00 1.50 2138.00 45.70 4.51 21.9 -1.0 

2016 Epoxy 2G/4C/2G   1.88 1962.00 101.00 1.50 2138.00 45.70 4.51 15.8 1.0 

Notes: CHS – high-tensile carbon; SRPP – self-reinforced polypropylene; F – flax.
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Table 9 — Analytical model input data. 

Material 

combination 

Series ID GIIC 

[kN/m] 

EH [GPa] EL [GPa] SH 

[MPa] 

SL 

[MPa] 

εH [%] εL [%] Kt W [mm] L [mm] mH tH [mm] tL [mm] 

C/B 1C/1B/1C 1.90 102.5 231.3 2244.2 2289.9 2.46 0.99 0.97 15 150 29.3 0.0785 0.2230 

1B/1C/1B 1.90 102.5 231.3 2244.2 2960.6 2.46 1.28 0.97 15 150 29.3 0.1570 0.1115 

CHM/B 1CHM/1B/1CHM 1.90 102.5 624.1 2244.2 1497.8 2.46 0.24 0.97 15 150 29.3 0.0785 0.1900 

1B/1CHM/1B 1.90 102.5 624.1 2244.2 2246.8 2.46 0.36 0.97 15 150 29.3 0.1570 0.0950 

CHM/C 1CHM/1C/1CHM 1.25 231.3 624.1 2565.9 1684.8 1.09 0.27 0.97 15 150 29.3 0.1115 0.1900 

1C/1CHM/1C 1.25 231.3 624.1 2565.9 2434.0 1.09 0.39 0.97 15 150 29.3 0.223 0.0950 

C/G 1C/1G/1C 1.90 81.6 231.3 1671.2 2405.0 2.31 1.04 0.97 15 150 29.3 0.0770 0.2230 

1G/3C/1G 1.90 81.6 231.3 1671.2 2521.2 2.31 1.09 0.97 15 150 29.3 0.1540 0.3345 

1G/1C/1G/1C/1G 1.90 81.6 231.3 1671.2 2752.5 2.31 1.19 0.97 15 150 29.3 0.2310 0.2230 

1G/1C/1G 1.90 81.6 231.3 1671.2 2937.5 2.31 1.27 0.97 15 150 29.3 0.1540 0.1115 

2G/1C/2G 1.90 81.6 231.3 1671.2 2706.2 2.31 1.17 0.97 15 150 29.3 0.3080 0.1115 

CHM/G 1CHM/1G/1CHM 1.46 81.6 624.1 1671.2 1560.3 2.31 0.25 0.97 15 150 29.3 0.0770 0.1900 

1G/3CHM/1G 1.46 81.6 624.1 1671.2 1435.4 2.31 0.23 0.97 15 150 29.3 0.1540 0.2850 

1G/1CHM/1G/1CHM/1G 1.46 81.6 624.1 1671.2 2184.4 2.31 0.35 0.97 15 150 29.3 0.2310 0.1900 

1G/1CHM/1G 1.46 81.6 624.1 1671.2 1872.0 2.31 0.30 0.97 15 150 29.3 0.154 0.0950 

2G/1CHM/2G 1.46 81.6 624.1 1671.2 2059.5 2.31 0.33 0.97 15 150 29.3 0.3080 0.0950 

Notes:  tH – half thickness of the high strain material; tL – half thickness of the low strain material.
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(a) (b) 

Figure 1 — Tensile test: (a) illustration of the test and (b) geometry of specimen (dimensions in mm).
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Figure 2 — Illustration of  nonlinear pseudo-ductile behaviour and definition of ‘yield’ stress and pseudo-ductile 

strain (adapted from [2]). 
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(a) 

 

(b) 

 

(c) 

Figure 3 — Scatter diagrams and mean values of the non-hybrid composites tensile properties: (a) elastic 

modulus; (b) tensile strength and (c) strain at the failure.
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(e)  

Figure 4 — Elastic modulus as function of the LS fibres vol% of the: HM carbon/glass; (b) ST carbon/glass; (c) 

HM carbon/basalt; (d) ST carbon/basalt and (e) HM carbon/ST carbon.
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(e)  

Figure 5 — Tensile strength as function of the LS fibres vol% of the: (a) HM carbon/glass; (b) ST carbon/glass; 

(c) HM carbon/basalt; (d) ST carbon/basalt and (e) HM carbon/ST carbon composites.
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(e)  

Figure 6 — Hybrid effect in function of the LS fibres volume fraction fo the: (a) HM carbon/glass; (b) ST 

carbon/glass; (c) HM carbon/basalt; (d) ST carbon/basalt and (e) HM carbon/ST carbon composites.
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(b) 

Figure 7 — Differences in hybrid effect caused by replacing glass with basalt: (a) HM carbon series and (b) ST 

carbon series.
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(a) 

 

(b) 

Figure 8 — Scatter diagrams of hybrid effect mean results obtained in this work compared against mean results 

from other authors: (a) as function of LS fibres vol% and (b) as function of END. 
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(a) (b) 

  

(c) (d) 

Figure 9 — Pseudo-ductile tensile responses: (a) 2G/1CHM/2G; (b) 1G/1CHM/1G; (c) 1B/1CHM/1B and (d) 

1C/1CHM/1C series.
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(f) (g) (h) (i) (j) 

Figure 10 — Example of localised delamination around multiple cracked HM carbon-layer that occurred until 

the final rupture in 2G/1CHM/2G 4th specimen: (a) 1st peak; (b) 2nd peak; (c) 3rd peak; (d) 4th peak; (e) 5th peak; 

(f) 6th peak; (g) 7th peak; (h) 8th peak; (i) 9th peak and (j) final rupture.
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(e)  

Figure 11 — Stress–strain curves of CHM/G combinations: experimental versus predicted values.
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(e)  

Figure 12 — Stress–strain curves of C/G combinations: experimental versus predicted values.
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(a) (b) 

Figure 13 — Stress–strain curves of CHM/B combinations: experimental versus predicted values.
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(a) (b) 

Figure 14 — Stress–strain curves of C/B combinations: experimental versus predicted values.
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(a) (b) 

Figure 15 — Stress–strain curves of CHM/C combinations: experimental versus predicted values. 


