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Abstract: (1) Background: Due to a high rate of antifungal resistance, Candida glabrata is one of
the most prevalent Candida spp. linked to systemic candidiasis, which is particularly critical in
catheterized patients. The goal of this work was to simulate a systemic infection exclusively
derived from C. glabrata biofilm cells and to evaluate the effectiveness of the treatment of two
echinocandins—caspofungin (Csf) and micafungin (Mcf). (2) Methods: CD1 mice were infected
with 48 h-biofilm cells of C. glabrata and then treated with Csf or Mcf. After 72 h, the efficacy of
each drug was evaluated to assess the organ fungal burden through colony forming units (CFU)
counting. The immune cell recruitment into target organs was evaluated by flow cytometry or
histopathology analysis. (3) Results: Fungal burden was found to be higher in the liver than in the
kidneys. However, none of the drugs was effective in completely eradicating C. glabrata biofilm cells.
At the evaluated time point, flow cytometry analysis showed a predominant mononuclear response
in the spleen, which was also evident in the liver and kidneys of the infected mice, as observed by
histopathology analysis. (4) Conclusions: Echinocandins do not have a significant impact on liver
and kidney fungal burden, or recruited inflammatory infiltrate, when mice are intravenously (i.v.)
infected with C. glabrata biofilm-grown cells.

Keywords: Candida glabrata; candidemia; echinocandins; resistance; biofilms; infection; micafungin;
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1. Introduction

Candida glabrata is one of the most common causes of systemic fungal infection (candidemia),
surpassed only by Candida albicans [1–3]. It is the second most common isolated yeast in the
United States of America and the third in Europe, after Candida parapsilosis, accounting for 20%
of candidemia [2,4]. As a commensal yeast, C. glabrata colonizes and adapts to many different niches
in the human body and can be isolated from the mucosae of healthy individuals [2,5]. Yet, as an
opportunistic pathogen, this fungus can also be the point of origin for mucosal infections and severe
candidemia. Its biofilm-forming ability and the ability to rapidly acquire resistance to antifungals
(especially to azoles) [2,5,6], which in many cases can be further increased by genetic and genomic
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mutations (e.g., polymorphisms, the formation of new chromosomes, karyotype variations) [7–9], may
contribute to increased virulence.

Risk factors for the development of invasive C. glabrata infections in human patients comprise
immunosuppression (e.g., cancer chemotherapy, human immunodeficiency virus (HIV) infection,
diabetes mellitus, neutropenia), mucosal colonization by Candida spp., the use of indwelling medical
devices (e.g., vascular catheters), and gastrointestinal surgery [10–12].

During infection, C. glabrata virtually colonizes all sites and organs, which reveals a high capacity
to adapt to the many different niches inside the human host [1]. Oral and systemic C. glabrata infections
have high associated morbidity and mortality [13–15] and the rise in incidence infections caused by this
yeast is to some extent attributable to its ability to tolerate or resist many antifungals commonly used in
clinical practice [2,16,17]. The occurrence of oral candidiasis related to C. glabrata is increasing [15,18].
Although C. glabrata colonization does not always lead to infection, it is a foreword to infection when
the risk of systemic infection is elevated, or the host immunity is compromised. C. glabrata infections
are a major challenge [15,19,20]. The good biofilm-forming ability and raised enzymatic activity of
C. glabrata are two of the most important features favoring oral and systemic candidiasis. In fact,
biofilms can be formed on both biotic (e.g., gastrointestinal or mouth mucosae) and abiotic surfaces
(e.g., indwelling medical devices) [21,22] and biofilm cells are recognized to be more resistant to
antifungal treatment than planktonic cells, as well as responsible for more severe infections [2,23–25].
Systemic candidiases are the most prevalent invasive mycoses worldwide with mortality rates close
to 40% and C. glabrata is frequently recognized as a causative agent [26]. In nearly all these cases,
the infections are related to the use of a medical device and biofilm formation on its surface [20].
The contamination of medical devices (mostly catheters) or infusion fluids can occur from the skin
of the patient, the hands of health professionals [27], or by migration into medical devices from a
previous lesion. Less commonly, Candida spp. that commensally colonize the gastrointestinal tract
switch to having a pathogenic behavior, being able to infiltrate the intestinal mucosa, disseminate
through the bloodstream, and colonize medical devices endogenously (this is more common in cancer
patients, since chemotherapy harms the mucosa) [28]. Depending on the clinical situation, the removal
of medical devices can be recommended in patients with disseminated Candida spp. infection to enable
pathogen eradication and to improve the prognosis [29,30]. In contrast, experimental intravenous
infection of laboratory animals with C. glabrata does not usually cause mortality, since it appears that
this species has successfully developed immune evasion strategies enabling it to survive, disseminate,
and persist within mammalian hosts [1,31].

Because of the high probability of innate resistance to azoles, echinocandins are recommended as
first-line therapy against C. glabrata candidemia [32]. Nonetheless, and worryingly, C. glabrata is the first
Candida spp. for which resistance to echinocandins has been identified and described [33,34]. Recently,
case reports of echinocandin-resistant C. glabrata subsequent to different echinocandin therapies are
becoming more common [35–41]. Indeed, one third of those isolates may be multidrug resistant [42] and
have specific mutations in one of two “hot spot” regions of the FKS1 or FKS2 (1,3-β-glucan synthase)
genes, which encode a subunit of the β-1,3-D glucan synthase protein, a target of echinocandins [35,43–45].

Therefore, in this work, a simulation of a hematogenously disseminated C. glabrata infection
derived exclusively from biofilm cells (as occurs in catheter infections) was performed. CD1 mice were
infected with 48 h-biofilm cells of the wild type C. glabrata strain ATCC2001, and then treated with the
echinocandins caspofungin (Csf) and micafungin (Mcf) in order to evaluate organ fungal burdens after
72 h, the efficacy of each drug after two administrations, and the associated inflammatory response.

2. Experimental Section

2.1. Ethics Statement

This study was performed in strict accordance with the recommendations of the European
Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific
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Purposes (ETS 123), the 86/609/EEC directive, and Portuguese rules (DL 129/92). All experimental
protocols were approved by the competent national authority (Direcção-Geral de Veterinária),
document 0420/000/000/2010. Female CD1 mice, 8–12 weeks old, were purchased from Charles
River (Barcelona, Spain) and kept under specific pathogen-free conditions at the Animal Facility of the
Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal. Mice were maintained in individually
ventilated cages (five animals per cage) with corncob bedding, and under controlled conditions of
temperature (21 ± 1 ◦C), relative humidity (between 45 and 65%), and light (12 h light/dark cycle).
Mice had ad libitum access to food and water. Hiding and nesting materials were provided for
enrichment. All procedures such as cage changing, water and food supply, as well as intravenous and
intraperitoneal injections were always performed during the day cycle (between 7 a.m. and 7 p.m.).

2.2. Organisms and Growth Conditions

One strain of the American Type Culture Collection (ATCC), C. glabrata ATCC2001, was
subcultured on Sabouraud dextrose agar (SDA) (Merck, Darmstadt, Germany) for 24 h at 37 ◦C.
Cells were then inoculated in Sabouraud dextrose broth (SDB) (Merck, Darmstadt, Germany) and
incubated for 18 h at 37 ◦C under agitation at 120 rpm. Biofilms were formed in 24-well polystyrene
microtiter plates (Orange Scientific, Braine-l’Alleud, Belgium) [46]. For this, 1000 µL of the yeast cell
suspension (1 × 105 cells/mL) was added to each well and incubated for 24 h. After 24 h, 500 µL of
RPMI 1640 was removed and an equal volume of fresh medium was carefully added. Biofilms allowed
to grow, under the same temperature and agitation conditions, for an additional 24 h. After this
time (total 48 h), all media were removed and the biofilms carefully washed to remove non-adhered
cells. Biofilms were scraped from the 24-well plates, resuspended in ultra-pure water, sonicated
(Ultrasonic Processor, Cole-Parmer, IL, USA) for 30 s at 30 W, and then suspension vortexed for
2 min. The suspension was centrifuged at 5000 g for 5 min at 4 ◦C, as previously optimized [46,47].
The pellets of the biofilm cells were then suspended in RPMI 1640 and the cellular density was adjusted
to 5 × 108 cells/mL using a Neubauer counting chamber.

2.3. Antifungal Drugs

Csf and Mcf were kindly provided by MSD® and Astellas®, respectively. Aliquots of 5000 mg/L
were prepared using dimethyl-sulfoxide (DMSO). The final concentrations used were prepared with
pyrogen-free phosphate buffer saline (PBS) for both drugs.

2.4. Murine Model of Hematogenously Disseminated Infection

Candida glabrata inoculum was prepared following previously described procedures [47,48].
The number of cultivable cells was assessed by colony forming units (CFU) counting and were injected
intravenously in the lateral tail vein, with the support of a restrainer. Sample size was determined
based on the results of preliminary experiments. On day 0, adult CD1 mice, randomly allocated to each
experimental group, received 200 µL of C. glabrata biofilm cell suspensions containing 5 × 108 CFU
i.v. via the tail vein. Control mice were injected intravenously with 200 µL of pyrogen-free PBS.
Treatment with the echinocandins started 24 h post-inoculation and was administered intraperitoneally
(i.p.) with a volume of 0.5 mL at 24 and 48 h post-inoculation. Doses were as follows: caspofungin
6 mg/kg and micafungin 12 mg/kg. This experimental scheme (days and dosages) were chosen on
the basis of previous pharmacodynamic studies of echinocandins against C. glabrata and a need
to reach drug exposures in mice that were comparable to those in humans receiving currently
licensed echinocandin regimens [32,49,50]. Liver and kidneys were aseptically removed, weighed,
homogenized, and quantitatively cultured on Sabouraud dextrose agar (Difco) at 37 ◦C. Values are
expressed as log CFU per gram of liver. Two independent experiments were performed, with at least
five animals per infected group.
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2.5. Flow Cytometry

For flow cytometry analysis, spleens from infected mice and controls were aseptically removed
72 h post-infection, homogenized in Hanks’ Balanced Salt Solution (Sigma Aldrich, Roswell-Park,
St. Louis, MO, USA) and, when necessary, red blood cells were lysed. The following monoclonal
antibodies (mAb) were used (at previously determined optimal dilutions) for surface antigen staining
after pre-incubation with anti-mouse CD16/CD32 for FcγR blocking. For dead cell exclusion,
all samples except single-stained controls were first incubated with allophycocyanin (APC) eFluor
780 Fixable Viability Dye (eBioscience, San Diego, CA, USA) diluted 1:1000 in PBS for 30 min at 4 ◦C.
For surface staining, cells were incubated with the following monoclonal antibodies: anti-mouse
GR1 Fluorescein isothiocyanate (FITC)-conjugate, anti-mouse CD80 Phycoerythrin (PE)-conjugate,
anti-mouse F4/80 Peridinin-chlorophyll protein Cyanin 5.5 (PerCp Cy5.5)-conjugate, anti-mouse CD86
PE-cychrome 7 (PE-Cy7)-conjugate, anti-mouse CD11c BV421-conjugate (all from BD Biosciences,
San Jose, CA, USA), anti-mouse CD11b BV510-conjugate, and anti-mouse major histocompatibility
complex (MHC) class II APC conjugate (eBiosciences, San Diego, CA, USA). Data acquisition was
performed in a FACSCantoTM II system (BD Biosciences, San Jose, CA, USA) using the FACSDIVATM

software (BD) and compensated and analyzed in FLOWJO version 9.7.5. (Tree Star Inc., Ashland,
OR, USA). A biexponential transformation was applied to improve data visualization; 106 cells were
stained per sample.

2.6. Histopathologic Examination and Immunohistochemistry

Livers were fixed in buffered formalin and embedded in paraffin for hematoxylin-eosin (HE) and
periodic acid–Schiff (PAS) histopathologic analysis, as previously described [51,52].

2.7. Statistical Analysis

Statistical analysis was carried out with PrismTM 7 (GraphPadTM, San Diego, CA, USA).
The normality of the data obtained was evaluated using the Kolmogorov–Smirnov test. Accordingly,
Kruskal–Wallis and Sidak’s multiple comparison tests were applied and data were depicted as means
of all independent experiments. Differences among groups were considered significant when P < 0.05.

3. Results and Discussion

Candidemia has been increasing in the last decades, especially among individuals under
chemotherapy programs, as well as in those who are HIV-positive, hospitalized, or catheterized [2,53].
C. albicans is still the most frequent isolated yeast, but C. glabrata has become one of the most threatening
non-Candida albicans Candida (NCAC) spp., mostly due to its high antifungal resistance [2,54]. Though
human clinical data demonstrate that immunosuppression is a risk factor for C. glabrata infections,
it is not an absolute prerequisite for C. glabrata candidiasis [55]. Hence, increasing the data on the
host immune response to C. glabrata and revising the efficacy of chemotherapeutic approaches to treat
infections caused by this fungus are of major value. The murine model is a suitable one to address
both issues, alone or combined [56].

3.1. Fungal Burden Progression Differs Substantially between Liver and Kidneys

The fungal burden of CD1 mice infected intravenously with C. glabrata biofilm cell suspensions
and subsequently treated with echinocandins was assessed in the liver and kidneys 72 h post-infection.
No differences were observed among the different infected groups.

In contrast to C. albicans, which can heavily infect the kidneys [57], a tropism of C. glabrata to
the liver was clearly noticed. High CFU counts were detected on this organ (Figure 1), in contrast to
the low or non-detected CFU counts in the kidneys (≤3 × 104 CFU/g kidney). The low colonization
of this organ, as compared to the liver or brain in immunocompetent mice systemically infected
with C. glabrata, was also reported by other authors [1,31,58–60]. Nevertheless, Kaur et al. [59],
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Srikantha et al. [60], and Brieland et al. [58] stated that C. glabrata could be recovered after several
days in the kidneys, liver, spleen, hearts, lungs, brains, and lungs. Moreover, Atkinson et al. [61]
described that fungal burdens were 104 to 108 in immunocompromised mice in the spleen and kidneys.
Nonetheless, it is important to stress that the differences in mouse strains and immunocompetence
status, C. glabrata strains, animal age and gender, or even the concentration of the inoculum used do
not allow a direct comparison of published data [31]. In addition, past in vitro reports have shown that
susceptible C. glabrata strains can become resistant in less than four days of continuous culture with
low doses of drugs, such as fluconazole [1,16] and echinocandins [62–65]. Thus, it is plausible that
a fast increase of resistance could have been observed in vivo. Moreover, the inoculum exclusively
contained biofilm cells, known to be more resistant than their planktonic counterparts [66–72].

J. Clin. Med. 2018, 7, x FOR PEER REVIEW  5 of 15 

 

it is important to stress that the differences in mouse strains and immunocompetence status, C. 
glabrata strains, animal age and gender, or even the concentration of the inoculum used do not allow 
a direct comparison of published data [31]. In addition, past in vitro reports have shown that 
susceptible C. glabrata strains can become resistant in less than four days of continuous culture with 
low doses of drugs, such as fluconazole [1,16] and echinocandins [62–65]. Thus, it is plausible that a 
fast increase of resistance could have been observed in vivo. Moreover, the inoculum exclusively 
contained biofilm cells, known to be more resistant than their planktonic counterparts [66–72]. 

 
Figure 1. Liver fungal burden of CD1 mice 72 h after intravenously challenged with 1 × 108 biofilm 
cells plus two cycles of treatment with PBS, caspofungin (Csf), or micafungin (Mcf). Data are 
representative of two independent experiments. Each symbol represents an individual mouse, and 
horizontal bars are means of colony forming unit (CFU) numbers for each group. The obtained results 
are displayed as CFU/liver. Controls (naïve; PBS + Csf; PBS + Mcf), n = 2; Cg + Csf, n = 8; Cg + Mcf, n 
= 8. No statistical differences were observed among infected groups (evaluated by Kruskal–Wallis 
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ATCC2001. 
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Figure 1. Liver fungal burden of CD1 mice 72 h after intravenously challenged with 1× 108 biofilm cells
plus two cycles of treatment with PBS, caspofungin (Csf), or micafungin (Mcf). Data are representative
of two independent experiments. Each symbol represents an individual mouse, and horizontal bars are
means of colony forming unit (CFU) numbers for each group. The obtained results are displayed as
CFU/liver. Controls (naïve; PBS + Csf; PBS + Mcf), n = 2; Cg + Csf, n = 8; Cg + Mcf, n = 8. No statistical
differences were observed among infected groups (evaluated by Kruskal–Wallis (Overall ANOVA
P < 0.05) and post hoc Sidak’s multiple comparison tests). Cg—Candida glabrata ATCC2001.

3.2. Host Immune Response to Hematogenously Disseminated Candidiasis

In contrast to the considerable work that has been described on the host immune response to
C. albicans, the immune mechanisms elicited in the course of C. glabrata infections are far less explored.

Neutrophils and macrophages are in the first line of host immune defence against Candida spp.
cells infecting the bloodstream or the endothelia [73–75]. Clinical observations and experimental
studies have demonstrated the main role of polymorphonuclear leukocytes in mediating host
protection against systemic C. albicans infections [76–78]. In mice, neutrophils have a Gr-1high surface
phenotype and macrophages typically express the F4/80 cell surface marker. Previous reports have
shown that, in C. albicans infections, Gr-1+ splenocytes may have immunosuppressive function
and F4/80+ cells may play a pro-inflammatory role [79,80]. The expression of these two surface
markers was analyzed using flow cytometry in the spleen of CD1 mice 72 h after i.v. infection
with 1 × 108 C. glabrata biofilm cells. Myeloid cells (CD11b+) displaying the phenotypes F4/80high

Gr-1neg, F4/80high Gr-1high, and F4/80neg/low Gr-1high were respectively considered macrophages,
inflammatory monocytes, and neutrophils [81]. The gating strategies employed in this study are shown
in Figure 2. As shown in Figure 3A, a significant increase in the numbers of inflammatory monocytes
was observed in the spleen of infected mice, while those of neutrophils and macrophages remained
within control values. No significant differences, however, were observed among treated groups.
These results are in accordance with previous reports [31,82,83]. Unlike C. albicans infections, for which
high neutrophil infiltration is a commonly observed feature, C. glabrata infections are not associated
with massive neutrophil infiltration. Indeed, C. glabrata infection has mainly been associated with
mononuclear cell infiltration and is far less inflammatory. One of the reasons given to explain this
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disparate outcome is that C. albicans hyphae cause significant host cell damage, which results in the
extensive recruitment of myeloid cells and the production of pro-inflammatory cytokines [31,82,83].J. Clin. Med. 2018, 7, x FOR PEER REVIEW  6 of 15 
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Figure 2. Gating strategy applied for the flow cytometry data analysis. Following leukocyte selection
based on Forward Scatter Area (FSA) and Side Scatter Area (SSA), doublets were excluded based on
FSA and Forward Scatter Height (FSH) parameters, and dead cells were further excluded by fixable
viability dye (FVD) incorporation. Dendritic cells were gated as CD11chigh MHC class II+ cells. Myeloid
cells were defined as CD11b+ cells that were further divided into macrophages (CD11b+ F4/80high

MHC class IIlow) and Gr-1+ cells. Within the latter, neutrophils were defined as CD11b+ Gr-1+MHC
class II− and inflammatory monocytes were gated as CD11b+ Gr-1+MHC class II+ cells.

Additionally, other reports have shown that C. glabrata is recognized and phagocytized by
macrophages at a much higher rate than C. albicans [84]. After recognizing pathogens, macrophages
release cytokines that help coordinate the immune response. However, when C. glabrata is internalized
by macrophages, it interferes with the phagosome maturation process [85], surviving through
autophagy and replicating inside the phagosome until the eventual bursting of the phagocyte [59,85,86].
Here, no elevated numbers of macrophages were detected in the spleen of infected mice as compared
to noninfected controls (Figure 3C), which indicates that the recruitment or local proliferation of these
cells does not occur in response to C. glabrata.
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Figure 3. CD1 mice were challenged intravenously with 1 × 108 biofilm cells and then treated with
PBS, caspofungin (Csf), or micafungin (Mcf). The obtained results are displayed as the total number of
cells of indicated populations: (A) inflammatory monocytes, (B) neutrophils, and (C) macrophages.
The numbers of animals used were as follows: controls (naïve; PBS + Csf; PBS + Mcf), n = 2; Cg + Csf,
n = 8; Cg + Mcf, n = 8. Statistical differences were evaluated using Kruskal–Wallis and post hoc Sidak’s
multiple comparison tests (Overall ANOVA P < 0.05). Cg—Candida glabrata ATCC2001. * P < 0.05;
** P < 0.001.

In addition to macrophages, dendritic cells (DC) play a major role in the induction of the T
cell-mediated immune response to Candida spp. infections [86,87] and may determine the infection
outcome [88,89]. DC are able to modulate adaptive responses, depending on the Candida spp.
morphotype encountered [73,74,90]. DC can initiate and shape the antimicrobial immunity and,
since candidiasis appears frequently in immunocompromised patients, these cells may hold the key
to new antifungal strategies [91]. Accordingly, the numbers of splenic conventional DC, defined as
CD11chigh cells, and surface maturation markers were evaluated upon C. glabrata systemic infection
(Figure 4). A slight increase in splenic DC as compared to noninfected controls was observed in
the infected mice, indicating that C. glabrata promoted the mobilization of these cells to the spleen
or promoted their local proliferation. DC surface expression of the costimulatory molecule CD86,
as evaluated by the mean fluorescence intensities (MFIs) due to antibody staining (Figure 4A,B),
was elevated in infected mice, showing that C. glabrata induced the maturation of these cells. However,
the stimulatory effect was not different among the treated and nontreated groups.

In contrast, the expression of MHC class II molecules on the surface of splenic DC of mice infected
with this yeast was found to be below control levels, an effect that reached statistical difference in
mice treated with caspofungin. As CD86 expression in infected mice was found to be elevated, it is
unlikely that this could represent a suppressive mechanism and could just be subsequent to a previous
stimulatory effect. A kinetic study would be necessary to elucidate this point.
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Figure 4. CD1 mice were challenged intravenously with 1 × 108 biofilm cells and then treated with
PBS, caspofungin (Csf), or micafungin (Mcf). The obtained results are displayed as (A) total number
of dendritic cells or mean fluorescence intensities (MFI) due to antibody staining against (B) CD80,
(C) CD86, and (D) MHC class II on the surface of dendritic cells. The numbers of animals used were:
controls (naïve; PBS + Csf; PBS + Mcf), n = 2; Cg + Csf, n = 8; Cg + Mcf, n = 8. Statistical differences
among infected groups were evaluated using Kruskal–Wallis (overall ANOVA P < 0.05), post hoc
Sidak’s, and Dunn’s multiple comparisons tests (* P > 0.05). Cg—Candida glabrata ATCC2001. * P < 0.05.

The expression of CD80, CD86, and MHC class II molecules on the surface of inflammatory
monocytes was observed to be similar or slightly lower in the infected groups as compared
to noninfected controls (Figure 5A–C). Likewise, and as observed on DC, no differences were
observed among infected mouse groups, indicating that the treatment did not affect the expression
of these activation markers on these innate immune cell populations. Finally, liver and kidney
histopathologies were analyzed in infected mice, as these organs are preferred targets in i.v. Candida
spp. infections [31,92]. As could be expected, no yeasts were found in the non-challenged control
groups, and their organs presented no significant histological alterations.

Challenged mice showed inflammatory infiltrates in the liver. They were also shown, albeit less
markedly, in the kidneys (nontreated and treated groups). The presence of polymorphonuclear cells
was observed, but in general the infiltration remained mostly mononuclear. Yeasts were found in the
liver, but not in the kidneys of treated and nontreated challenged groups. This fact corroborated the
low CFU counts found in the kidneys.
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glabrata biofilm-grown cells. These results confirm the biofilm in vitro outcome our group previously 
reported [93,94]. 

Finally, liver and kidney histopathologies were analyzed in infected mice, as these organs are 
preferred targets in i.v. Candida spp. infections [45,86]. As could be expected, no yeasts were found 
in the non-challenged control groups, and their organs presented no significant histological 
alterations (Figure 6). Challenged mice showed inflammatory infiltrates in the liver, and less 
markedly in the kidneys (nontreated and treated groups, data not shown). The presence of 
polymorphonuclear cells was observed, but in general the infiltration remained mostly mononuclear. 
Yeasts were found in the liver (Figure 6), but not in the kidneys (data not shown) of treated and 
nontreated challenged groups. This fact corroborated the low CFU counts found in the kidneys. 

Figure 5. CD1 mice were challenged intravenously with 1 × 108 biofilm cells and then treated with
PBS, caspofungin (Csf), or micafungin (Mcf). The obtained results are displayed as mean fluorescence
intensities (MFI) due to antibody staining against (A) CD80, (B) CD86, and (C) MHC II on inflammatory
monocytes. The numbers of animals per group were: controls (naïve; PBS + Csf; PBS + Mcf), n = 2;
Cg + Csf, n = 8; Cg + Mcf, n = 8. Statistical differences among infected groups were evaluated using
Kruskal–Wallis (Overall ANOVA P < 0.05) and post hoc Sidak’s multiple comparison tests. Cg—Candida
glabrata ATCC2001.

Together, these observations confirmed C. glabrata as a low inflammatory species and indicated
that two-dose treatment with caspofungin and micafungin does not have a significant impact on
liver and kidney fungal burden or recruited inflammatory infiltrate when mice are i.v. infected with
C. glabrata biofilm-grown cells. These results confirm the biofilm in vitro outcome our group previously
reported [93,94].

Finally, liver and kidney histopathologies were analyzed in infected mice, as these organs are
preferred targets in i.v. Candida spp. infections [45,86]. As could be expected, no yeasts were found in
the non-challenged control groups, and their organs presented no significant histological alterations
(Figure 6). Challenged mice showed inflammatory infiltrates in the liver, and less markedly in the
kidneys (nontreated and treated groups, data not shown). The presence of polymorphonuclear cells
was observed, but in general the infiltration remained mostly mononuclear. Yeasts were found in the
liver (Figure 6), but not in the kidneys (data not shown) of treated and nontreated challenged groups.
This fact corroborated the low CFU counts found in the kidneys.
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Figure 6. Analysis of liver histology in CD1 mice. (A) Representative hematoxylin-eosin and (B)
periodic acid–Schiff (PAS)-stained examples of liver tissue from the indicated mouse groups. Black
arrows denote inflammatory infiltrates that were mostly of the mononuclear type. Insets correspond to
higher magnification micrographs. White arrows indicate PAS-stained Candida glabrata ATCC2001 cells.
Scale bars are shown and apply to similar sized micrographs (100 µm) or insets (20 µm), as indicated.
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4. Conclusions

In this work, a systemic infection exclusively originated from C. glabrata biofilm cells was
simulated and a treatment evaluated. The observations here reported confirmed C. glabrata as a
low inflammatory species and indicated that two-dose treatment with Csf and Mcf does not have a
significant impact on liver and kidney fungal burden or recruited inflammatory infiltrate when mice
are i.v. infected with C. glabrata biofilm-grown cells.
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