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Abstract 
 

This paper is in four parts. The first is related to general considerations and experimental 
analyses, and each of the others is related to different approaches to the theoretical 
analyses of the mechanical behaviour of weft-knitted fabrics and weft-knitted reinforced 
composites made of glass fibre. The objective is to find ways of improving the mechanical 
properties and simulating the mechanical behaviour of knitted fabrics and knitted 
reinforced composites so that the engineering design of such materials and structures 
may be improved. 
In Part II the first model is presented, a 3D model based on the classic elastica theory 
which is used to calculate the load-extension curves of a plain weft-knitted fabric in the 
coursewise and walewise directions. Good agreement is obtained between theoretical 
and experimental results. 
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1. INTRODUCTION 
 
Various investigations into the tensile properties of plain weft-knitted fabrics have been carried out by 
various authors [1, 2, 3, 4, 5, 6, 7, 8, 9]. Most of these investigations were based on the micro-
mechanics of knitted structures. The unit cell, often a single loop, was used for the analyses. The 
tensile properties of knitted fabrics were directly derived from the loop configuration and the yarn 
properties. However, these analyses were mostly limited to knitted fabrics subjected to biaxial 
stresses. The model proposed by Shanahan and Postle [8] related to the analyses of knitted fabrics 
under uniaxial stress conditions in the coursewise direction. It should be stressed that most of these 
models are difficult to apply in practice, due to their complexity.  
In this paper, a theoretical analysis based on the elastica theory is proposed for the prediction of both 
uniaxial and biaxial tensile properties of plain knitted fabrics made from high performance fibres. In 
order to validate the model, the theoretical results are compared with experimental data for fabrics 
subjected to extensions in both walewise and coursewise directions [10].  

 
2. ANALYSIS  
 
2.1. Basic assumptions 
 
(1) The plain knitted fabrics are made of frictionless, inextensible, incompressible and naturally straight 
filament yarns, which can be considered as a homogeneous elastic rod. This assumption is not very 
realistic, but should be accepted for two reasons. Firstly, our analysis is focused on the deformation of 
knitted fabrics at low loading conditions (compared to the load required to break the yarn). In this 
condition, the chief mechanism of deformation is the change of the loop shape within the fabric. The 
resistance to extension of the fabric depends mainly on the bending and torsional properties of the 
yarn. In this case, yarn friction, extension and compression effects are relatively small and can be 
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ignored. The second reason is that the knitted fabric to be analysed is made from high performance 
yarns. These are less compressible and extensible than the yarns conventionally used for clothing. 
(2) The knitted fabric is formed with planar loop structures. All loops within the same fabric keep an 
identical configuration. No plastic deformation of the yarn takes place when the fabric is knitted from a 
straight yarn and later subjected to extension. The load-extension properties of a knitted fabric are 
directly derived from its loop configuration change.  
(3) Two loops at adjacent courses interlock in such a way that the yarns of the two loops are fully in 
contact at the cross-regions. The distance between the interlocking points B-B´ of two neighbouring 
loops, as shown in Figure 1, is equal to the diameter of the yarn. 
(4) The reaction forces produced in the loop-interlacing region due to yarn contact are simplified as a 
concentrated force. As shown in Figure 1, the reaction forces R act at the loop-interlocking points B 
and B´ and along a line perpendicular to the yarn axis. This assumption is similar to the two-
dimensional model proposed for dry-relaxed knitted fabrics by Postle & Munden [11] and that for the 
analysis of the tensile properties parallel to the course direction by Shanahan & Postle [1]. However, in 
the present model, the point of application and the direction of the forces R are not assumed to be 
constant or parallel to the course direction; they are assumed to change with the state of the loop 
extension. The advantage of this assumption is that the yarn slippage effects are automatically 
included in the analysis. 
 

      Figure 1. Loop structure and repeating elements 
 
2.2. Theoretical Analysis  
 
Due to the symmetry of the loop configuration, only a quarter of the loop is analysed. 
 
2.2.1. Geometrical relations 
 
The global reference system XOY is set up as shown in Figure 1. By considering the geometrical 
configuration of the loop, the following equations are obtained: 

W / 4 = XB – (d / 2) cos(β - π / 2) (1) 

C / 2 = YB – (d / 2) sin(β - π / 2) (2) 

XB - XA = (d / 2) cos(β - π / 2) (3) 

L / 4 = sAB + sBC (4) 

where: 
W - wale-spacing,  
C - course-spacing,  
XA, XB and YB - coordinates of points A and B in XOY,  
d - diameter of the yarn, 
β - the angle which the tangent of yarn axis at B forms with the positive direction of the X-

axis, 
L - loop length, 
sAB and sBC - lengths of segments AB and BC. 

 
2.2.2. Force-equilibrium consideration 
 
As shown in Figure 2, the quarter-loop is divided into two segments, AB and BC, by the force R. By 
considering the symmetrical properties of the loop and the force-equilibrium state, the forces and 
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moment applied at points A and C can be derived. At point A, only force P is applied. No moment is 
applied at this point because it is an inflexion point. It should be pointed out that the force P is not 
parallel to the tangent of the axis at A; its direction relative to the X-axis changes with the loop 
configuration. The force P can be divided into two components, Px and Py, where Py corresponds to 
the stress applied in the walewise direction. At point C, besides force T, acting parallel to the X-axis, 
there is a bending moment M. The force T corresponds to the stress in the coursewise direction. 
 

  Figure 2. Forces and moment applied on a quarter of loop 
 
Based on the force-equilibrium state, the relationships between T, P and M can be obtained: 

T = - P (sinγ tanβ + cosγ)  (5) 

M = P {y´AB + yBC (sinγ tanβ + cosγ)}  (6) 

where: 
γ - the angle the force P forms with the negative direction of the X – axis, 
y´AB - the perpendicular distance from point B to the line of action of P,  
yBC - the perpendicular distance from point B to the line of action of T.  

 
2.2.3. Analysis based on the elastica theory 
 
(1) Analysis of segment AB  
The analysis of this segment is identical to the analysis of an elastica with a single force applied at its 
extremity. As shown in Figure 3, to simplify the analysis, the reference system XOY was transformed 
to x´Ay´ where the x´-axis coincides with the line of action of the force P. 
 

 Figure 3. Analysis of the segment AB 
 
By considering any point Q(x´, y´) on segment AB and taking bending moments about A, the following 
differential equation is obtained: 

B dθ´ / ds´ = P y´ (7) 

where B is the bending rigidity of the yarn. 
The integration of equation 7 from A to B gives the following results: 

x´AB = (B/ P)1/2 {f (ε1, ϕ1B) - 2 e (ε1, ϕ1B)} (8) 

y´AB = 2 (B/ P)1/2 ε1 cosϕ1B (9) 

sAB = (B/ P)1/2 f (ε1, ϕ1B) (10) 
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where: 
α - the angle the tangent to the loop at A forms with the positive direction of the X-axis, 
ε1 - cos((α - γ) / 2), 
ϕ1B - arcsin (cos((β - γ) / 2) / ε1), 
x´AB, y´AB - the coordinates of the point B in the new reference system x´Ay´, 
f (ε1, ϕ1B) - F (ε1, π / 2) - F (ε1, ϕ1B), 
e (ε1, ϕ1B) - E (ε1, π / 2) - E (ε1, ϕ1B). 

F(ε1, π / 2) and F(ε1, ϕ1B) are respectively complete and incomplete elliptical integrals of the first kind. 
E(ε1, π/2) and E(ε1, ϕ1B) are respectively those of the second kind. 
The coordinate transformation gives the following equations: 

XB - XA = x´AB cosγ - y´AB sinγ  (11) 

YB = x´AB sinγ + y´AB cosγ (12) 

(2) Analysis of segment BC 
The analysis of this segment is very similar to that of segment AB. The difference is that, besides the 
force T, there is still a bending moment M acting at its extremity. 
 

  Figure 4. Analysis of segment BC 
 
The reference system xCy used for the analysis in this case is shown in Figure 4. By considering any 
point Q(x, y) and taking moments about C, the following differential equation is obtained: 

B dθ / ds = T y + M (13) 

The integration of equation 13 from C to B and the elimination of T and M through equations 5, 6 and 
8 lead to the following results: 

XB = (B / P) 1/2 (1 / k2 ) 
1/2 [ (2 / ε2

2 ) E(ε2, ϕ2B) + {1 - (2 / ε2
2 ) } F(ε2, ϕ2B)] (14) 

sBC = (B / P) 1/2 (1 / k2)
 1/2 F(ε2, ϕ2B) (15)  

where: 
k2 = 2 ε1

2 cos2ϕ1B + k1 cosβ,k1 = sinγ tanβ + cosβ, 

ε2 = {k1 / (k2 + k1)}
1/2, 

ϕ2B = (β - π) / 2. 

F(ε2, ϕ2B) and E(ε2, ϕ2B) are elliptical integrals of the first and second kinds respectively. 

 
2.2.4. General equations for the description of any loop state 
 
By substituting XB, YB, XB - XA, sAB and sBC into equations 1 to 4 from equations 14, 12, 11, 10 and 15, 
and by eliminating P, the following general equations for the description of any loop configuration are 
obtained: 

L / W = C4 / (C1 - C3)  (16) 

L / C = C4 / (C2 + cotβ C3)  (17) 

L / d = 2 sinβ C4 / C3 (18) 

where: 
C1 = (1 / k2 )

 1/2 [ (2 / ε2
2 ) E(ε2, ϕ2B) + {1 - (2 / ε2

2 ) }F(ε2, ϕ2B) ]  

C2 = sinγ {f (ε1, ϕ1B) - 2 e (ε1, ϕ1B)} + 2 cosγ ε1 cosϕ1B 
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C3 = cosγ {f (ε1, ϕ1B) - 2 e (ε1, ϕ1B)} - 2 cosγ ε1 sinϕ1B 

C4 = f (ε1, ϕ1B) + (1 / k2)
 1/2 F(ε2, ϕ2B)   

C1, C2, C3 and C4 are functions of the angles α, β and γ.  

The equations 16 to 18 are non-linear equations, which have no analytical solution. Thus, numerical 
methods are necessary to solve them. When L, W, C and d are given, α, β, γ at any deformed state 
can be evaluated numerically. When α, β, γ and B are known, P can be calculated from the following 
equation: 

P = 16 C4 
2 L2   (19) 

 and T from equation 5. 

 
3. THEORETICAL CALCULATION AND COMPARISON WITH EXPERIMENTAL 
RESULTS 
 
3.1. Parameters used for calculations and tensile testing 
 
The parameters measured on a knitted fabric produced from glass fibre filament yarn prior to testing 
are shown in Table 1. These were used for the theoretical calculation of the tensile properties. 
 

Table 1. Parameters used for the calculations 

L [mm] C [mm] W [mm] d [mm] B [N mm2] 

7.46 1.58 1.88 0.461 0.11 

 
Tensile testing was performed on a Hounsfield Hl0KS universal tester according to ASTM D 2256-88. 
Due to the high rigidity of the glass fibre yarn, it was not possible to cut the fabric to the specified 
sample dimensions (the fabric unravels automatically after cutting). For this reason, the samples of the 
required dimensions were directly knitted to size on an electronic flat knitting machine (10 for 
coursewise testing and 10 for walewise testing). The experimental load-extension curves used for the 
comparison (see Figures 5 and 6), are the average values of 10 test results in each direction. The 
statistical coefficient of variation (CV%) was 5.6% in the walewise direction and 7.3% in the 
coursewise direction. 

 
3.2. Initial state 
 
The initial state is the reference state, which is also a zero-loading state. The results of the calculation 
for the initial state are given in Table 2. 
 

Table 2. Results of the calculation for the initial state 

α0 β0 γ0 T0 [N] P0 [N] 

63.0o 98.4o 9.0o 0.013 0.165 

Px0 [N] Py0 [N] M0 [N mm] sAB0 [mm] sBC0 [mm] 

0.163 0.026 0.121 0.869 0.996 

 
These results show that T0 and Py0 do not equal zero. This means that the initial state of the knitted 
fabric used for the calculation is not a completely relaxed state. For this reason, the load applied in the 
wale direction must be equal to Py – Py0 and that applied in the course direction must be equal to T – 
T0, where T, Py and T0, Py0 are the forces applied to the loop at the extended state and at the initial 
state respectively. 

 
3.3. Extension in the walewise direction 
 
When a knitted fabric is extended along its walewise direction, the width in the coursewise direction 
will be reduced. However, this reduction is limited by jamming of the loop structure in the coursewise 
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direction. For this reason, the conditions used for the calculation must be different before jamming and 
after jamming. 
Before the occurrence of jamming in the width direction, equation 17 cannot be used for the 
calculation, because the value of the course spacing C needed to extend the fabric until jamming 
occurs is unknown. In order to calculate α, β and γ, the condition T = T0 is assumed during the 
extension from the initial state until jamming occurs. By using this condition and equations 16 and 18, 
we can calculate α, β and γ for any given loop configuration up to jamming. At the jamming condition in 
the course direction, the wale spacing W is equal to four yarn diameters. As the yarn has been 
assumed to be incompressible, W remains constant after jamming. By using the condition W = 4 d and 
equations 17 and 18, α, β and γ for any loop configuration after jamming occurs can be calculated. 
When the loop parameters α, β and γ are known, the forces applied to the loop can be determined. 
From this, the load-extension curves can be calculated. 
Figure 5 shows the load-extension curves calculated and obtained from the experiments respectively. 
Observing these curves, it can be seen that the calculated curve is very close to the experimental one. 
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 Figure 5. Extension in the walewise direction 
 
3.4. Extension in the coursewise direction 
 
When a knitted fabric is extended along its coursewise direction, the length in the walewise direction 
will also be reduced. For a given extension in the course direction, the value of the reduction in the 
walewise direction is not determined. In this case, equation 17 cannot be used for the calculation, 
because C has not been defined. In fact, when the extension is parallel to the coursewise direction, 
the segment BC of the loop will be stretched. For this reason, sBC is assumed to be constant. By using 
this condition and equations 16 and 18, we can calculate α, β and γ for any given loop configuration in 
extension in the course direction. 
Figure 6 shows the calculated load-extension curve and the one obtained from the experimental 
results. As the present model is similar to the one given by Shanahan & Postle for the extension in the 
coursewise direction, their results are also shown in Figure 6. Their curve, calculated up to 30% 
extension, was derived from Figure 5 on paper [1] for the condition at constant yarn diameter. 
Observing these results, it can be seen that the curves calculated from the two models, are very close.  
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This means that the differences caused by changing the direction of the contact force R with the state 
of the loop extension are not significant in the coursewise direction. However, the assumption of 
changing the direction of R in the present model enabled us to use this unique model for the 
calculation of the tensile properties of the knitted fabrics both in the coursewise and walewise 
directions. The calculations of the biaxial tensile properties are also possible with the present model. It 
can also be seen from Figure 6 that even though the calculated results from the two models were 
lower than those obtained experimentally, they are quite close to each other.  

 
4. CONCLUSION 
 
A theoretical model, based on elastica theory and used for the prediction of the tensile properties of 
plain knitted fabrics produced from high performance yarns such as glass fibre, has been presented. 
Both walewise and coursewise directions of extension were considered. The load-extension curves 
parallel to the walewise and coursewise directions for a given knitted fabric were calculated 
theoretically and compared with the experimental results. Good agreement was found between 
theoretical and experimental values. This approach may lead to a reduction in the need for destructive 
testing, especially in the case of knitted fabrics produced with high modulus yarns such as glass fibre, 
and will thus be a more effective use of resources. Apart from the prediction of uniaxial tensile 
properties, the present model may also be used to calculate the biaxial tensile properties of plain 
knitted fabrics.  
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