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ABSTRACT

Sarcopenia, the age-associated loss of skeletal muscle mass, has been postulated to
be a major factor in the strength decline with ageing. Considering the increase in
the number of people with muscle weakness, the monitoring of a person’s muscular
activity becomes a necessity. This need is also present in the sports area, since the
muscles monitoring allows an improvement in the athlete’s technique and may also
help preventing possible injuries.

The standard method for muscle monitoring is the electromyography signal
acquisition, although it presents various problems, like their lack of ergonomics,
requiring hairless skin and gel inserted in it, and the need of complex electronics,
demanding several hardware filters, since the EMG raw data is full of noise.

This dissertation consists in developing a wearable prototype to monitor the user’s
muscular activity, through force sensing resistors sensors, and recognize the toe-off
gait event. The sensors data are processed by a microcontroller and are sent to a
desktop application through wireless connection, or saved in a memory card for a
later analysis. This project was also integrated in the robotic system SmartOs.

The force sensors output signals were validated by comparing them to the EMG
signals. These trials were divided in two groups: static trials, in which the subjects
performs specific gestures several times, and dynamic trials, where the subject walks in
different paces (slow, medium and fast). Both signals showed some similarity between
them, although their similarities were more obvious in the static trials because of their
more simple and linear signals. Several regression methods were validated in order
to convert the FSR in EMG signals, but the results showed poor results, discarding
this possible implementation. The gait event toe-off recognition algorithm was also
validated in the dynamic trials performed. The results were satisfactory, showing a
high accuracy percentage and low delay times.

This dissertation project should provide an easier way to monitor muscles,
discarding the needs of complex electronics and hairless skin and providing a clean
signal with few noise.

Keywords: Muscle weakness; Monitoring, Muscular activity; Human motion; Detection;
Recognition; Force Sensors;
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RESUMO

< .

Sarcopenia, a perda de massa muscular esquelética associada a idade, tem sido
postulada como um fator importante no declinio de forga com o envelhecimento.
Com o aumento do ndmero de pessoas com fraqueza muscular, uma monitorizagdo
da atividade muscular de uma pessoa torna-se uma necessidade. Esta necessidade
também esta presente na drea do desporto, em que a monitorizacdo muscular permite
uma melhoria na técnica do atleta ou prevenir possiveis lesoes.

O método padrdo para a monitorizagdo muscular é a aquisi¢do do sinal EMG,
embora apresente vdrios problemas, como a sua falta de ergonomia, exigindo pele
depilada e inser¢do dum gel especifico, e a necessidade de eletrénica complexa,
composta por vérios filtros, uma vez que os sinais EMG contém muito ruido.

Esta dissertagdo consiste em desenvolver um protétipo vestivel para monitorizar
a atividade muscular do utilizador através de sensores piezoresistivos e reconhecer
o evento da marcha toe-off. Os dados dos sensores sdo processados por um
microcontrolador que envia os dados para uma aplicacdo gréfica por comunicagdo
wireless ou entdo sdo guardados num cartdo de memoria para uma futura andlise. Este
sistema também foi integrado no sistema robético SmartOs.

Os sinais provenientes dos sensores de forca foram validados, comparando-os com
os sinais EMG. Estes testes foram divididos em dois grupos: testes estaticos, onde
a pessoa realiza movimentos especificos repetidamente, e testes dindmicos, onde
a pessoa caminha em diferentes velocidades (lenta, média e rdpida). Os testes
mostraram alguma semelhanga entre os dois sinais, embora estas semelhangas foram
mais visiveis nos testes estdticos devido ao facto dos seus sinais serem mais simples
e lineares que nos testes dindmicos. O algoritmo de reconhecimento do evento toe-off
foi validado nos testes dindmicos realizados, mostrando resultados satisfatérios tais
como altas percentagens de precisdo e curtos atrasos temporais.

Este projeto deverd fornecer uma maneira mais fécil de monitorizar os musculos,
ndo necessitando de eletrénica complexa ou de ter a pele depilada e a insergdo de gel,

fornecendo assim um sinal livre de muito ruido.

Keywords: Fraqueza muscular; Monitorizagio; Atividade muscular; Movimentos humanos;
Detegdo; Reconhecimento; Sensores de forga;
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1

INTRODUCTION

This dissertation was developed in the Mestrado Integrado em Engenharia Eletrénica
Industrial e Computadores (MIEEIC) in the Departamento de Eletrénica Industrial
(DEI) of the Universidade do Minho (UM), more specifically in the branch Control,
Automation and Robotics (CAR), in the area of medical rehabilitation in the Center for
Microelectromechanical Systems (CMEMS) laboratory. This dissertation is also integrated
in the SmartOS project.

In this chapter it will be presented the motivation behind this dissertation, as well
as a problem statement, explaining the existing problems in this society and solutions
available for trying to answer the existing needs, and finally the possible contributions
of this project. Later, it will be presented a list of this dissertation goals and research

questions, as well as the structure of this document.

1.1 MOTIVATION

Muscle weakness is consistently reported as an independent risk factor for high
mortality in older adults. Since muscle strength also appears to be a critical component
in maintaining physical function, mobility, and vitality in old age, it is paramount to
identify factors that contribute to the loss of strength in elderly persons. Sarcopenia,
the age-associated loss of skeletal muscle mass, has been postulated to be a major
factor in the strength decline with ageing. Moreover, sarcopenia is related to functional
impairment, disability, falls, and loss of independence in older adults (Goodpaster
et al,, 2006). Using the estimate providing the lowest prevalence estimates, the
number of individuals with sarcopenia would rise in Europe from 10,869,527 in 2016
to 18,735,173 in 2045 (a 72.4% increase). This corresponds to an overall prevalence
of sarcopenia in the elderly rising from 11.1% in 2016 to 12.9% in 2045. With the
definition providing the highest prevalence estimates, the number of individuals with

sarcopenia would rise from 19,740,527 in 2016 to 32,338,990 in 2045 (a 63.8% increase),
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corresponding to overall prevalence rates in the elderly of 20.2% and 22.3% for 2016
and 2045, respectively. This showed that the number of sarcopenic patients will
dramatically increase in the next 30 years, making consequences of muscle wasting
a major public health issue (Ethgen et al., 2017).

1.2 PROBLEM STATEMENT

Considering this increase in the number of people with muscle weakness, the
monitoring of a person’s muscular activity becomes a necessity in these days.
Monitoring muscle activity is widely practiced in medicine and sports, for the
evaluation of an athlete muscular status, as well as the improvement of his
motion technique. The scientific standard technique for this monitoring is called
Electromyography (EMG). It relies on a pair of electrodes placed at specific locations
on the surface of the muscle belly. EMG is a rich and reliable source of information
about muscle activity by detecting the electromechanical properties of muscle fibres.
However, since the electrical potentials that it measures are very faint, it requires
careful electrode placement and excellent contact with the skin, demanding a better
study of the muscle anatomy. In general, EMG electrodes require a specific glue in
order to attach to the skin, which must be hairless. In some cases even small needles
are used. In addition, complex signal processing is needed to make sense of the signals,
which contain lots of noise, so the EMG devices are bulky and expensive. In summary

they are not suitable for typical pervasive applications.

The second tool for monitoring muscle activity is the Mechanomyogram (MMG)
technique. While EMG comprises the sum of the electrical contributions, the MMG
signals (using vibration transducer, such as accelerometer or piezoelectric crystal
contact sensors) present the mechanical oscillation that is detectable over a contracting
muscle by attaching electrodes on the skin overlying the target muscle (Lukowicz et al.,
2009). To solve these problems, a new method more practical is needed to monitor the
muscular activity.

Wearable systems have the potential to lead to significant improvements in
monitoring technology. A great benefit is the possibility of seamlessly integrating
sensors and complex electronics in accessories and clothing. Wearable integration
techniques such as advanced electronic packaging, embedded microsystems and
functional textiles make sure that a monitoring system is not perceived as a burden
and does not interfere with everyday activities (Lukowicz et al., 2004).



1.3. Goals and Research Questions

Concerning to the necessities of these days, a new approach for monitoring the
muscle activity is needed. This dissertation will try to answer to the disadvantages of
the EMG and MMG signal acquisition, discarding the need of electrodes, allowing
to monitor the muscle activity without applying a specific glue to the skin, and
discarding also the need of implementing a robust and expensive electronics to
integrate the sensors. The solution will also be a wearable system, allowing it to

be practical and ergonomic by its accessibility to wear it on and off.

1.3 GOALS AND RESEARCH QUESTIONS

This dissertation main focus is to study and develop a wearable system for
monitoring a person’s muscular activity. Several objectives were also proposed, as

the following ones:

* Goal 1: To develop an ergonomic and adaptive prototype that can monitor the

muscular activity of each person.

* Goal 2: To monitor the subject’s muscular activity by saving the data in
a memory card and develop a Graphical User Interface (GUI) for a desktop
application in order to allow the monitoring in real-time.

¢ Goal 3: To detect and recognize specific gait events.

* Goal 4: To validate the system signals and recognition algorithm through several

experiments, with the subject doing specific motions and walking.

* Goal 5: To function as a stand-alone product and to be integrated in another

robotic system (SmartOs).

Among these goals, this dissertation will try to answer for the following research
questions:

* RQ 1: Can the force sensors provide valid information to monitor muscle
activity?

* RQ 2: Is it possible to detect and recognize gait events through muscle activity
provided from the force sensors?

In order to achieve the proposed goals, several stages must be achieved in order to

successfully fulfil those goals. The stages proposed are the following ones:
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* Stage 1: Study previous works regarding which sensors and muscles were used

to monitor muscular activity and motion recognition algorithms.
¢ Stage 2: From the works studied Stage 1 choose the sensors to be used.

¢ Stage 3: Study the system architecture and its requirements, such as hardware

components.

* Stage 4: Design and develop the hardware interface to integrate the sensor in
the system and connect it to the Microcontroller Unit (MCU).

* Stage 5: Program the microcontroller in order to receive data from the sensors

and save it in a memory card or print it to a desktop application.
* Stage 6: Develop a software signal calibration method in the MCU.

* Stage 7: Choose the target limbs to be monitored by studying their influence

during a person’s gait.
* Stage 8: Design and develop Printed Circuit Board (PCB)s.
¢ Stage 9: Develop a specific gait event algorithm and implement it in the MCU.

¢ Stage 10: Develop a GUI for a desktop application that allows the monitoring of
the subject’s muscular activity in real-time. The application will be developed in
Qt, in C++ language.

* Stage 11: Validate the system muscle monitoring signals through a customized
validation protocol. First validate it in static trials, where the subject performs
specific motions and analyse the muscles responsible for those actions. Then
validate the system while the subject is walking.

¢ Stage 12: Validate the gait event recognition algorithm through the dynamic
trials performed in Stage 11.

e Stage 13: Elaborate the conclusions from this work, according to the final

validation results.

1.4 REPORT STRUCTURE

This dissertation is divided in several chapters. In Chapter 2 a state of the art

is presented, showing related projects and conclusions taken from those works. In



1.4. Report Structure

Chapter 3 is presented a problem analysis, explaining some theoretical concepts and
there is also available a brief explanation about the SmartOs and MuscLab systems,
including its system overview. Chapter 4 and Chapter 5 explain the hardware and
software design and development phases. Chapter 6 presents the system validation
protocols and their respective results. This documents ends with Chapter 7, where
several conclusions are discussed from this dissertation and the answers to the research
questions, and possible future work that can be developed in order to improve this

project.






2

STATE OF THE ART

To better understand the work that has already been done in the area of muscular
monitoring, several projects which tried to respond to the existing needs were studied.
With these studies, it can be studied which sensors can be used and their performance,
and algorithms to detect and recognize human motions performed. This chapter
describes the projects studied, which are divided in two categories, such as the sensory
system used for the muscle monitoring and existing methods of recognizing human
motion. In the end, a conclusion from this state of art is made, comparing the different
sensors studied and different motions recognition algorithms.

2.1 SENSORY SYSTEM FOR MUSCLE MONITORING

By investigating projects regarding the muscle monitoring, several sensors and their
attachment techniques can be used. The most common one used are the Force Sensing
Resistor (FSR) sensors. This section is divided by the different types of sensors used,

such as the FSR sensors, the capacitive sensors and others.

2.1.1  Force Sensing Resistor

The FSR can be defined as a special type of resistor, which resistance can be varied
by varying the force or pressure applied to it. The FSR sensors are made of conductive
polymer which has a property of changing its resistance based on the force applied to
its surface.

Even though there are various types of force sensors, the FSR have several
advantages, such as thin size (less than o.5smm), very low cost and also good shock
resistance. The only disadvantage of FSR sensors is low precision, as there will be
approximately 10% or more difference in measurement results.
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Force sensing resistors are called as Polymer Thick Film (PTF) devices. The resistance
of FSR sensors decreases with increase in pressure applied to its surface (ELPROCUS,
2017).

Kim et al. (2013) used methods of a feedback control using the muscular stiffness
force signal to aid an exoskeleton, which is also pretended in this dissertation. These
methods are represented in a block diagram of Figure 1.

Compressor

lRegulawr |
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Artificial pnenmatic
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fitting ' |
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exhaust A (our) V- s

active and electric control valve

—
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Switching sensot |
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Computer || DAQ9472 | Amp. J
(Labview 8.0) Board(NICo.) Filtering

Figure 1: Block diagram of feedback control using muscular stiffness force signal (Kim et al.,
2013).

According to this, two artificial pneumatic actuators which were implanted in a
knee orthosis are controlled by a solenoid valve. The air pressure generated by a
compressor is controlled by a regulator and it is transferred to an artificial pneumatic
actuator with an action of solenoid valve. The assistance of the movement by a
knee orthosis measures the Muscular Stiffness Force (MSF) signal, through piezoelectric
resistive pressure sensors that can detect the stiffness of a muscle mainly related to
the knee extension motion, which is mainly generated in the lower extremities and
thereby controls the voltage of a solenoid valve with it.

The signals indicating the magnitude of muscular strength whose status can easily
be detected were used. During the extension of knee joint, the contraction pressure due
to the muscular activity is measured. At this time, a piezoelectric resistive pressure
sensor is attached to a calf band and then closely adhered to the surface of muscles
which are measured. The muscles studied and monitored were the Vastus Lateralis

(VL) muscle and Vastus Intermedius (VI) muscle. A comparison was made for signals
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indicating the magnitude of MSF of VI muscle and its surface Electromyography (sSEMG)
signals which were measured on an MSF sensor during the extension of knee joint.
Figure 2 is a graph which was plotted following the comparative measurement of
sEMG of VI muscle and the magnitude of its muscular strength during the flexion and
extension of knee joint.

Accordingly, with the use of a sensor measuring the magnitude of MSF which was
prepared for the current study, it was confirmed that a knee orthosis could receive
a feedback control. This dissertation project will also study the contraction of other
muscles, and their influence while the subject is walking.
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Figure 2: Synchronization of surface electromyography and muscular stiffness force signal
(Kim et al., 2013).

Beil et al. (2015) developed a force sensor system for capturing interaction forces
between the new lower limb exoskeleton with series elastic actuators and the human
body. To measure interaction forces between exoskeleton and user as well as to
determine muscular contraction, which is one of this dissertation mains goals, FSR are
used. These sensors have a flat surface and small size which allow their integration in
narrow spaces. As recommended by the sensor manufacturer (IEE S.A., Luxembourg)

an interface was developed providing a flat and rigid mounting surface made by a
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rapid prototyping technique. For a reliable coupling of forces onto the active sensing
area of the FSR, a thin elastomeric layer is used. This layer fits on the active area of
the sensor and avoids inhomogeneities by distributing and smoothing the pressure
to the overall surface though ensuring a correct force measurement. To achieve a
fast response of the exoskeleton to the user’s movement, the muscular contraction
of specific thigh muscles is observed. By measuring the level of muscular activity
it is possible to implement a force augmentation. A value of muscular contraction
(of thigh muscles) can be obtained by measuring a force signal perpendicular to the
muscle. This signal is produced 0.3 s prior the movement referred to the muscular
activity.

The sensor setup is illustrated in Figure 3. Placing the FSRs on top of the muscle
bellies of the rectus femoris (S1) and biceps femoris (S2) provide enough information to
identify the user’s movement. During free swing motions the muscle activation is
low.Therefore FSRs are mounted on the top end of the exoskeleton frame (S3) and
at the achilles tendon (S4). The signals represent mainly the interaction force and
facilitates free movements of the user in cooperation with the exoskeleton. Last two
sensors (S5 and S6) at the bottom of the shoe underneath the heel detect contact events
with the ground.

Figure 3: Setup of the sensor system; S1-56: FSR Sensors measuring the interaction forces
between user and exoskeleton Adapted. (Beil et al., 2015).

To avoid shear movements to the sensors and to amplify the force acting on the
sensor, appropriate interfaces were developed. These interfaces transmit only forces
perpendicular to the active area of the sensors by guiding this movement. The
interfaces used for the sensors at the thigh muscles provide additional lugs to attach

2

them easily to the Velcro straps as shown in Figure 4. The 40x40 mm~ sized contact
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surface is reduced on the rear side to get only in contact with the active area of the FSR.

Since this dissertation aims also to monitor the subject’s muscular activity without the
aid of an exoskeleton, the FSR sensors must capture the muscles contractions and not
their interactions with the exoskeleton.

Velcro

Measured
fDrCE \\\\\\ -

FSR

Figure 4: Design of the muscle sensor interface providing lugs for attachment to the Velcro
straps Adapted (Beil et al., 2015).

Lukowicz et al. (2009) presented a system for assessing muscle activity by using
wearable force sensors placed on the muscle surface.

They proposed to detect the shape changes by attaching force sensors integrated
in tight fitting garments or elastic bands to the surface of the relevant muscles. The

employed setup is demonstrated in Figure 5.

(a) The force sensor and the elastic (b) One of the subjects with the band
band used in the experiments. on the leg doing squats.

Figure 5: Lukowicz et al. (2009) FSR System (Lukowicz et al., 2009).

11



12

Chapter 2. state of the art

The FSR used was the FSR-153NS device from Conrad Electronics. It is 0.09 mm
thick and has an area of 13 x 13mm 2.

The band was wrapped around the upper-leg in such a way that it exerts no
perceivable pressure, then was tightened in increments of two centimeters. After
each increment the user bended his knees about go degree in a partial squat and
the maximum of the signal was noted. This point was repeated after the signal with
bent knees reached between 15% and 20% of the maximum (as given by sensor range).

The placement of the sensor on the muscle is performed according to international
standards for EMG. The effect of the sensor displacement was also studied, resulting
in the graphic of Figure 6.
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Figure 6: The effect of sensor displacement on signal quality (Lukowicz et al., 2009).

These measurements revealed that the optimal EMG placement spot does not
correspond with the best placement for FSR sensors, although it does produce good
signals, and that depending on the direction of sensor displacement even a 1 cm move
from the original position can lead to a loss of signal. However, within a 4 cm x 4 cm
square around the optimal position there are many points with good signal quality.

In the development of the project, they showed that under realistic assumptions it is
possible to acquire good muscle activity signal with their approach, and information
relevant for a range of pervasive applications can be extracted from this signal. In
spite of these results, the muscles were not monitored while the subject was walking.
In this dissertation this validation will occur also with the subject walking and the FSR
signals will be compared with the EMG signals.

The group of Kreil et al. (2008) described the use of upper leg mounted FSR to

analyse muscle activity during bicycling and demonstrated that FSRs can provide
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information that is not accessible to motion sensors, like the gear in which a person
is cycling or rather the amount of force applied to the pedals. Together with a
sports clothing manufacturer (FALKE AG) they have developed special shorts for the
integration of FSRs. A software calibration for the FSR sensors was made to linearise
the data, by calculating the maxima and minima of the first peaks.

To measure the pressure changes of the leg muscles, four force sensors were
integrated into running trousers, of size 46 mm x 46 mm. They were connected over
an ADG708 multiplexer board and a current/voltage converter. The sensors were
sampled at 25 Hz.

Figure 7 represents the sensor and clothes used, as well as the experiment setup.

(a) Trousers with integrated FSR
Sensors. (b) Experiment Setup.

Figure 7: Kreil et al. (2008) Sensory System (Kreil et al., 2008).

Amtft et al. (2006) compared the FSR sensors performance with fabric stretch sensors.
Both of these sensors can be easily integrated into clothing. They used the above
sensors to detect the contractions of arm muscles, and then compared the signals of
each one. Figure 8 presents the experiments setup, where the larger white disks are
the EMG electrodes, and Figure 9 shows the sensors hardware interfaces, consisting
in a simple voltage divider for the FSR and a wheatstone bridge for the fabric stretch
sensor. For this last sensor, the bandage is slightly stretched when the lower arm is
relaxed and fixed using velcro.

13
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(a) Placement of FSRs on the lower
arm. (b) Placement of fabric stretch sensor.

Figure 8: FSR and Fabric Stretch Sensor Setup Adapted (Amft et al., 2006).

WCC
WCC
FSR : - ¢
100k Stretch_Sensor
" Cutput
Cutput .
100k
100k R1
(a) FSR interface. (b) Stretch Sensor interface.

Figure 9: FSR and Fabric Stretch Sensor Hardware Interface Adapted (Amft et al., 2006).

Figure 10 shows the results of the trials performed by these two sensors. The subjects
performed four different actions, where Action 1 consisted in the upward movement
of lower arm against resistance, Action 2 the outward bending of hand, Action 3
opening and closing hand (grasping motion) and Action 4 lifting of heavy object with
right arm. The horizontal lines in the graphics highlight signal sections where the
corresponding EMG amplitude exceeds a specific threshold value, indicating muscle
activity and serving as a ground truth.

The results indicated that the proposed mechanical sensors provide alternative
methods to detect muscle activities, and that such activities can be acquired from the
various independent muscles at the lower arm. Furthermore, the results indicated that

the FSR sensing concept is more applicable to the monitoring of individual muscles,
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similar to EMG sensing, while the fabric stretch sensor cannot be used for monitoring
individual muscles. In addition, the use of the fabric stretch sensor is limited due to

the fact that the sensor exhibits a strong hysteresis.

Action 1 (Pull up arm)
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(a) Signals of the FSRs sensors. (b) Signals of the fabric stretch sensor.

Figure 10: FSR and Fabric Stretch Sensor Signals Adapted (Amft et al., 2006).

Ogris et al. (2007) presented an experiment that investigates the usefulness of muscle
monitoring information from arm mounted FSR for activity recognition. Figure 11
illustrates the wearable system developed, with the FSR sensors integrated in an elastic
sleeve on the forearm, considering the fact that palm and finger motions are driven by

muscles in the forearm.

bicycle sleeve
with 8 FSRs

Figure 11: Contestant wearing the FSR sensor system, a MTx glove, and a mobile computer,
that serves as a power source Adapted (Ogris et al., 2007).
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Both the lower part of the forearm (right behind the wrist) and the upper part of the
forearm (right under the elbow) are covered with a ring of four 46 x 46 mm FSRs. The
sensors are integrated in a current/voltage converter, resulting in a linear relationship
between resistance and output voltage with a much better dynamic range. Figure 12
demonstrates the signals of the upper four FSR channels. It was concluded that FSR
based muscle monitoring is indeed useful for the recognition of activities involving
hand actions and perform well for many individual gestures. This dissertation will
study if it is possible to detect specific gait events by studying the signals acquired by
the FSR.

1 E
cime [s]

Figure 12: Signal samples for the upper 4 FSR channels, left column: 2 samples from class
drink,middle: open notebook, right: close notebook (Ogris et al., 2007).

Another existing project, developed by Xiao and Menon (2014), consisted in
proposing a novel system to detect different upper-extremities (forearm) postures in
real-time, through the use of a lightweight and wearable forearm FSR strap. The FSR
strap was designed to be placed on the proximal portion of the forearm and capture
the activities of the main muscle groups with eight force input channels, as Figure 13
shows.
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> 30cm

Velcro

Figure 13: Interior view of FSR strap (Xiao and Menon, 2014).

Eight circular FSRs made by Interlink Electronics were inserted onto a strap made
with FloTex foam; the FSR sensors were placed 3 cm apart from each other. The total
length of the FSR strap was 30 cm. Velcro tapes were attached on both the interior
and exterior end of the FSR strap to secure the strap onto user’s forearm. The FSR
strap was designed to be a simple device which can be worn without or with little
assistance. The user does not require having muscle physiological knowledge in order
to identify the location for the strap placement. He/she can simply wrap the FSR strap
around the proximal portion of the forearm, and tight it up with Velcro. The amount
of pressure needed to be applied to record Force Myographic (FMG) is mild, and with
the flexibility of the FloTex foam, the FSR strap does not block blood circulation or

constrain motion.

Voltage dividers were used for extracting the signals from the force sensor, as shown
in Figure 14. The voltage divider circuit was powered by a 5 V voltage source of a Data
Acquisition (DAQ) device made by National Instrument (NI USB 6210).

The obtained results confirmed that the FMG data captured from the FSR strap
produced distinct patterns for the selected upper-extremities postures of the drinking
task, but the muscles behaviour are not analysed individually, which is crucial for this
dissertation.

17
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Figure 14: Xiao and Menon (2014) System diagram (Xiao and Menon, 2014).

2.1.2  Capacitive Sensor

Capacitive sensing is a useful technology for the measurement of multiple types of
signals. The capacitance of the simplest capacitor, which consists of two non-contact
metal plates, depends on the size of the metal plates and the distance between them.
The relationship between capacitance and its relevant parameters can be used to
measure distance, conductivity, pressure, etc., with various applications to pressure
sensors, artificial skin and object detecting. This characteristic has another important
application: sensing human movements (Zheng et al., 2013).

Meyer et al. (2006) developed a a pure textile, capacitive pressure sensor designed for
integration into clothing to measure pressure on human body. Several textile sensors
were developed with spatial resolution of 2x2 cm and an average error below 4 percent
within the measurement range o to 10 N/cm?. Applied on the upper arm the textile
pressure sensor determines the deflection of the forearm between o and 135 degrees
due to the muscle bending. The textile pressure sensor consists of a basic three-layer
structure forming a capacitance with a pressure-sensing non-conducting dielectric as
shown in Figure 15a. To achieve a spatial resolution an array of individually connected

electrodes have been embroidered using silver coated yarn, as seen in Figure 15b.

To measure the capacitance of the textile electrodes, the capacitance to digital
converter AD7745 from Analog Devices is used. All the measurement electronics are
connected outside the textile.
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(a) Scheme of sensor with an array (b) Textile Pressure Sensor with 16
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Figure 15: Meyer et al. (2006) Textile Pressure Sensor (Meyer et al., 2006).

The sensor has been used to detect the activity of the muscles of the upper arm. The
sensor was fixed once on the biceps and triceps with an elastic band.

The capacitance-pressure has a hysteresis caused by the spacer. For that reason, to
calculate the pressure at a given capacitance value, a model of the hysteresis is needed.
For this purpose, the Preisach Model (Preisach, 1937) was applied. Figure 16 shows
the results of the muscle activity monitoring.
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Figure 16: Muscle activity of biceps and triceps for periodically lifting a weight of 2 kg (Meyer
et al., 2006).
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These results showed that the textile pressure sensor can be used to measure
pressure on human body, and that it was possible to detect muscle activity on the
upper arm.

Zheng et al. (2013) presented an approach to sense human body capacitance and
apply it to recognize lower limb locomotion modes. The proposed capacitive sensing
system is made up of four parts: two sensing bands, a signal processing circuit, a gait
event detection module and a computer to receive data streams. Figure 17 represents
the developed system. A Velcro tie with circuits and batteries is fastened to the waist
and shielding lines were used to reduce the noise.

Battery

| Power circuit

Sensing circuit

| Sensing band
of the thigh

. Sensing band
of the shank

Foot switches

Figure 17: System Developed by Zheng et al. (2013) (Zheng et al., 2013).

Figure 18 shows the system architecture. The system consisted of the sensing circuit,
the power circuit and the communication circuit. The sensing circuit was designed
to process the capacitance signals from the sensing bands, including the oscillation
module, the Root Mean Square (RMS)-converting circuit to convert the Alternating
Current (AC) in Direct Current (DC) signal, and the control module. The circuit can
process ten channels of signals at most.
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Sensing bands

Sensing circuit

Power
circuit

Transmitter
electrodes

Oscillation
circuit

Foot
switches

RMS
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circuit

Computer

Figure 18: Zheng et al. (2013) System Architecture (Zheng et al., 2013).

Through this project development, it was concluded that as an alternative to EMG
sensors and Inertial Measurement Unit (IMU) sensors, the capacitance sensing method
can be further improved through hardware design and more thorough experiments.

Rekimoto (2001) introduced the GestureWrist, which is a wristwatch-type input
device that recognizes human hand gestures by capacitively measuring wrist-shape
changes and also measuring forearm movements. Figure 19a shows a schematic of the
GestureWrist prototype.

Capacitive sensing is used for measuring the arm shape by placing both the
transmitter and the receiver electrodes on a wristband, and for measuring finger
positions by attaching electrodes on the inside of clothes. This principle is
demonstrated in Figure 19b.

Tilt sensor

(ADXL202) Original wristwatch dial

Piezo-actuator

Transmitter
electrode

Receiver electrodes

(a) Gesturewrist:
input device.

A Wristband-type (b) Sensing arm-shape change based
on capacitive sensing.

Figure 19: GestureWrist (Rekimoto, 2001).
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2.1.3 Other Sensors

Jung et al. (2015) proposed a method to recognize the muscular activities. In order
to detect the swelling of muscles in a reliable and convenient way, pressure-based MMG
(PMMG) is introduced, based on air-pressure sensors and air-bladders. The muscular
activity was detected by measuring the change of the air pressure in an air-bladder
contacting the interested muscle(s). Since the change of the air pressure can be more
robustly measured compared with the change of electric signals appeared on the skin,
the proposed sensing method is useful for mobile devices due to its great Signal to
Noise Ratio (SNR) and fast response time. Figure 20 shows an example of a schematic

plot of an unit of an air-pressure sensor and an air-bladder.

Air pressurc sensor

Air-bladder

Figure 20: Unit of an air-pressure sensor and an air-bladder (Jung et al., 2015).

An air-bladder is made of Polyvinyl Chloride (PVC) films, the size of which is 35 mm
x 40 mm. In the middle of the rectangular, a tube plug with the inner diameter of
3 mm was installed for connecting an air-pressure sensor. The outer diameter of a
nipple of the air-pressure sensor is slightly larger than 3 mm, so that a sensor unit is
completely closed and sealed. For durability, a rigid cover was installed in the sensory
band.

A data acquisition board, NI-9205 and WLS-9163 of National Instruments Co., was
used to measure the air pressure signals and the sampling frequency was set to 1
kHz. Six sensor units were enclosed in the sensory band. Figure 21 demonstrates the

sensory band and its schematic.
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Figure 21: Jung et al. (2015) Sensory band (Jung et al., 2015).

The pMMG signals were compared to the EMG signal, by measuring the magnitude
of the Maximum Voluntary Contraction (MVC), and with the IMU signal, measuring
the relative angle of the wrist joint. The proposed system was able to measure
the muscular force in advance to the change of the wrist angle, because the muscle
contraction (which can be measured by the pMMG sensor) happens in prior to the
motion of the wrist (which is measured by the IMU sensor). The pMMG signal also
showed a better performance than the EMG signal, since the raw EMG signal showed
a strong presence of noise and in order to filter it, the processed signal became slightly
delayed compared to the proposed pMMG.

It can be concluded that the proposed pMMG system could detect the muscle
activities, by measuring the pressure change in the air-bladder, which was induced

by the swelling of muscles during voluntary contractions.

Kyoungchul Kong and Doyoung Jeon (2005) proposed a tendon-driven exoskeletal
power assistive device to reduce some problems of the existing exoskeletal power
assistive equipment. A Muscle Fiber Expansion (MFE) signal was used to control
this device in order to compensate for the delay time of motors and perform an
easy assistance by sensing the user’s action in advance. The MFE signal has the

characteristics that the signal is ahead of action and in proportion to joint torque.

Figure 22 represents the tendon-driven exoskeletal power assistive device and caster
walker.
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Figure 22: Tendon-driven exoskeletal power assistive device and caster walker (Kyoungchul
Kong and Doyoung Jeon, 2005).

The MFE sensor uses an air pressure plate and low priced pneumatic sensor. The
MFE sensor was attached inside of thigh braces and is easy and simple to use
compared to EMG sensors, which are directly attached at the exact points of muscle
before the use of an Exoskeletal Power Assistive Device (EPAD). In addition, this sensor
is practical due to the use of a cheap pneumatic sensor when compared to a muscle
hardness sensor which uses a load cell. Figure 23 demonstrates the principle of
measuring of this sensor.

Figure 23: Principle of measuring the MFE signal (Kyoungchul Kong and Doyoung Jeon, 2005).



2.1. Sensory System for Muscle Monitoring 25

A comparison was made between the MFE and EMG signals. The MFE sensor
presented very uniform value and less noise, though both signals are in proportion to
the joint torque, as Figure 24 shows.

Scaled EMG Signal
—— Scaled Muscle Fiber Expansion Signal
weeene Applied Torque I

Torque (Nm)

5 10 15 20 25
Time (sec.)

Figure 24: Comparison of the EMG signal and MFE signal (Kyoungchul Kong and Doyoung
Jeon, 2005).

Wang et al. (2014) explored Graphene Woven Fabrics (GWFs) for highly sensitive
sensing. A flexible and wearable strain sensor was assembled by adhering the GWFs
on polymer and medical tape composite film. The signals of any weak motions,
including breathing, phonation, expression changes, blink, and pulse, can be detected.
In order to mould around human skin well to ensure the response of real signals, a
good adhesive medical tape with polydimethylsiloxane (PDMS) glue, which is a flexible,
bio-compatible, shape controllable material, upside as the substrate was used. As a
new kind of electronic skin, it was made up with graphene woven fabrics, PDMS, and

medical tape. Figure 25 shows the different positions where the tape was attached.

Figure 25: Photo images of GWFs- PDMS-tape at various positions (Wang et al., 2014).
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After testing the sensor in several trials, it exhibited the following features:
ultra-light, relatively good sensitivity, high reversibility, superior physical robustness,
easy fabrication, ease to follow human skin deformation, without irritation, and so on.
As a consequence of the piezoresistive effect of graphene woven fabrics, the sensors
were used as electronic skin covering human body to detect body motions. The signals
of GWFs resistance change depend on deformation strain which is formed by the
motions. The stronger the motion is, the larger the strain is, and the easier the motion

signals can be recorded.

2.1.4 Sensors Comparison

From these previous works presented, several conclusions can be drawn. There are
many types of sensors able to detect muscle activity, as Table 1 demonstrates, although
the FSR sensors have the advantage of being easily acquired in the market, can monitor
individual muscles and can be easily integrated in clothes due to their flexibility, and
also don’t require complex electronics in order to integrate them and read their output
signal. It is advised for their sensing area to be as bigger as possible to avoid errors
due to their possible displacements. The FSR must also be covered in elastic tissue, so
that they can detect the pressure made by the muscle stiffness, and require a simple
hardware interface such as a voltage divider.

Table 1: Sensors Features

Sensors Expensive Flexible Ease to find in Market Must be Manufactured Can Monitor Individual Muscles
FSR No Yes Yes No Yes
Capacitive Yes Yes No No Yes
Stretch Sensor No Yes Yes No No
Air pressure / No No Yes Yes
Graphene Woven Fabrics / Yes No Yes Yes
Muscle Fiber Expansion  / No No Yes No

This dissertation will provide a way to monitor several muscles at the same time
and calibrate the sensors signals through software methods, in order to make the
system adaptable for every different individual. The output data will also be validated
by comparing them with the EMG signals, by comparing them through their signal
plots and through the calculus of several metrics. The system will be able to monitor
any muscle, not being restricted to any of them. It will also be studied if the FSR
sensors provide enough information to detect and recognize specific gait events, and
the influence of several muscles in the human gait.
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2.2 HUMAN MOTION RECOGNITION

This section main focus is to study existing methods of recognizing human motion.

Jung et al. (2015) used air pressure sensors and recognized six hand gestures, as
shown in Figure 26, though fuzzy logic: the flexion and extension of the wrist [(a) and
(b) in the figure]; the flexion and extension of the fingers [(c) and (d)]; and the radial
and ulnar deviation of the wrist [(e) and (f)]. These hand gestures are anatomically
related to different muscle groups, as in Table 2, and thus theoretically they should be
able to be observed by the proposed sensor units located on the characteristic muscle
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Figure 26: Activities to be recognized. (a) and (b) Flexion and extension of the wrist. (c) and
(d) Flexion and extension of the fingers. (e) and (f) Radial and ulnar deviation of
the wrist (Jung et al., 2015).

The normalized peak values during the six hand motions were studied, in order to
understand the importance of each muscle activation in each gesture.

Table 2: Location of Muscles and Roles.

Location Muscle Role

(1) Flexor carpi ulnaris Flexion and ulnar deviation of the wrist
(2 Flexor digitorum Flexion of the fingers

(3) Flexor carpi radials Flexion and radial deviation of the wrist
(4) Extensor carpi radialis  Extension and radial deviation of the wrist
(5) Extensor digitorum Extension of the fingers

(6) Extensor carpi ulnaris  Extension and ulnar deviation of the wrist

The membership functions of the proposed fuzzy recognition algorithm are the
functions of the pressures measured by the air pressure sensors.
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The location of the muscles and the change of the cross- sectional area are all
different for each person. For this reason, an auto-calibration process is necessary.
In the experiments of this project, every subject was asked to squeeze as much as
possible, so that the muscles were maximally contracted. During the execution, the
level of MVC was measured for each muscle for normalizing sensor signals. The
auto-calibration process greatly reduced uncertainty in the scaling factors for each
trial and improved the success rate of the gesture recognition.

When the sum of the air pressure measurements is larger than a threshold, all the
measurement values from six air pressure sensors are normalized by the largest value
output among them. Otherwise, all the measurement values are set to o. By this
normalization, the measurement of the sensor unit is converted to the ratio of the air
pressure, which is ranged from o to 1.

Each air bladder has three membership functions: 1) a low phase membership
function; 2) a middle phase membership function; and 3) a high phase membership
function. The output of each function represents the likelihood of the air pressure
measurement, i.e., pPMMG, to be in each phase, i.e., low, middle, and high.

The rule base of the fuzzy logic is designed as in Table 3, based on the membership
functions. The rule base was mainly determined by the role of muscles for each gesture

and the air bladders corresponding to the muscles.

Table 3: Rule Base Of Fuzzy Logic.

Gesture H @ 6 @ 6 ©

Wrist flexion Mid High High Low Mid Mid
Wrist extension Mid Low Low Mid High Low
Finger flexion Mid High Mid Low N/A Low
Finger extension Low Low Low Low High None
Radial deviation Mid Low Low High N/A Mid
Ulnar deviation Low High Low Low Mid Low

The performance of the proposed gesture recognition system was verified with
multiple subjects by checking the success rate of gesture recognition.

Beil et al. (2015) presented a force-based control approach, which allows the
generation of motion pattern based on interaction force pattern between the
exoskeleton and the human body. Instead of using movement information as a control
scheme, the interaction forces acting between exoskeleton and user’s body are used
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as input of the controller to make predictions of the user’s motion. In general the
prediction of the users knee motion is performed by measuring the summed forces
contributing to the knee joints with the FSR sensors and control the position of the

linear actuator in a way which result in reducing the interaction forces.

The force signals processed by an Arduino are smoothed, multiplied with gains
taking account the size of the sensor interface as well as the position of the sensor and

summed up to define a criterion for the effective interaction force.

Figure 27 illustrates the functioning of the control approach. The filtered and
computed control variable is derivated once and filtered again to sustain a smoothed
input for the derivative term of a Proportional-Integral-Derivative (PID) controller. The
Finite Impulse Response (FIR)-filter used for the smoothing of the derivative values is a
weighted moving average filter of 9" order. Beneath the derivative term the control
variable is also integrated to receive the integral term of the PID controller. The

proportional term is provided by the weighted interaction force itself.
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Figure 27: Block diagram of the proposed control approach (Beil et al., 2015).
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Figure 28: Finite state machine to select the predicted user movement Equation (Beil et al,,
2015).

Before reaching the controller a finite state machine (Figure 28) compares the control
signal to trigger intervals to select the mode of operation. If no predefined motion is
detected the PID controller is used and the exoskeleton shadows the leg movement
of the user without exerting forces on it. Force signals corresponding to predefined
motions will result in a switch in the state machine to a mode where the motor
controller is commanded by predefined trajectories. In this mode the exoskeleton
guides the user’s leg.

This study concluded that it is possible to recognize specific human motions though
the pressure applied is between the user and the exoskeleton.

Kreil et al. (2008) recognized the gear in which a person is cycling. To recognize
the amount of used strength while cycling, which corresponds to the different gears,
the raw sensor data was calibrated, using the 5 cycles in the highest gear. Then
the data is segmented into steps with the segmentation algorithm. On these steps
2 features on the 2 sensors on the back of the thigh were calculated. Feature 1 is the
difference between maximum peak and minimum peak (peak amplitude), the second
is the absolute value of the average slope between two minimum peaks. Both results
are median filtered over the last 5 cycles. To recognize the different gears, these two
features were presented to a tree based C4.5 classifier and the k-Nearest-Neighbor (kNN)
classifier, implemented in the YALE library. Because of the small number of data
sets,a cross validation scheme was used, training the classifiers with 5 data sets and

testing the classification model on the remaining data set. The results showed that
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when using the two classifiers to detect every single gear, the overall detection rate
is between 20 and 50 per cent. Also, by comparing the classification results of the
grouped classes between calibrated and non calibrated data it can be concluded that
linear calibration can return a benefit in the data evaluation. In terms of recognition
rates that can be achieved on the specific example, there is clearly still considerable
room for improvement.

Ogris et al. (2007) focused on recognizing 16 different hand gestures. For
comparison, three classifiers have been tested. The tree based C4.5 classifier and the
in- stance based kNN were used in a sliding window approach: In a time window of
fixed size, a set of features was computed using the raw sensor data. Then the sliding
window is moved by an offset which determines the overlap with the last window.
Mean and variance were used as features, with window size 30 and step size 15. After
that, a majority decision was applied to the raw classification results. This yields a
filtered decision for the particular gesture and constitutes the final result of the frame
based classification. The YALE implementation of these classifiers was used.

In addition to this frame based approach a Hidden Markov Models (HMM) based
classifier was tested as well. For each manipulative gesture in the experiment a
separate HMM was trained. During testing a single gesture was aligned with the
most likely model. The HMM implementation was used in the Bayes Net Toolbox
for Matlab for the experiments. The classification results for the three classifiers are

summarized in Table 4.

Table 4: Ogris et al. (2007) Classification results in % (Ogris et al., 2007).

Classifier Acc Gyr Fsr Acc+Gyr Fsr+Acc Fsr+Gyr

HMM 83 72 73 01 84 81
Cs.5 76 57 62 82 79 68
kNN 81 65 76 90 86 84

The recognition was far from perfect for all combinations of sensors and all
classifiers. This was to be expected, as the gesture set was chosen to test the limits
of the recognition rather than to be fully recognizable.

Zheng et al. (2013) proposed a human gait recognition method. Gait events of Foot
Contact (FC) and Foot Off (FO) could be detected. According to these two gait events,
four phases were defined: prior to FC, after FC, prior to FO and after FO (they are
marked as Pre-FC, Post-FC, Pre-FO and Post-FO, respectively).
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The Linear Discriminant Analysis (LDA) classifier was employed for locomotion mode
recognition, and five Time-Domain (TD) features were chosen for candidate features,
according to the following expressions: f1 = avg(X), f2 = max(X), f3 = min(X), f4 = rms(X),
f5 =std(X), where X is the data matrix of the analysis window, avg(X) is the mean value
of X, std(X) is the standard deviation of X and rms(X) is the root mean square of X, As

a result, a 50-dimension feature value set was used for classifier training and testing.

As mentioned above, five basic TD features were chosen as the candidates to form
the feature set. All the combinations of the features(31 combinations in total) were
calculated and the results are shown in Figure 29.
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Figure 29: Classification errors of different combinations and numbers of features (Zheng et al.,
2013).

For the single features, avg(X) and rms(X) performed much better than the others
with the average error rate being 6.0% and 5.7% respectively. While std(X) performed
the worst with the error rate of 30.2%. The red dots represent the average classification
errors of all the subjects in a specific number of features. The lowest error rate among
the combinations is denoted as the black line. The error bar is the standard deviations

of the subjects. The results are obtained by the LDA classifier with a 200-ms window
size.

The classification performance was compared with signals from the thigh, the shank
and both (Figure 30). For all the four events, classification using signals from both the
shank and the thigh achieved the best performance.
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Figure 30: Classification errors of different combinations of signal channels (Zheng et al., 2013).

Xiao and Menon (2014) developed a non-kernel based Extreme Learning Machine
(ELM) classifier with sigmoid based function that was implemented for real-time
classification due to its fast learning characteristics, in order to distinguish different
upper-extremities postures. The input data was the FSR data positioned in a strap.
The non-kernel based ELM has an output function, as Equation 1 shows.

f(x) =h(x)p (1)

h(x) is the hidden-layer output corresponding to the input samples from the sensors
(x eR?), and B is the output weight vector between the hidden layer and the output
layer. For multiclass classification, the predicted class label is the index number of the
output node that has the highest value.

A total of six classes were included, and each class corresponding to one distinct
posture for the drinking task as shown in Figure 31.

The postures were associated with the movement, such as rising the forearm (elbow
flexion), grasping or releasing the cup (fingers flexion/extension), and repositioning
the cup to mouth (wrist pronation). The average real-time testing accuracy was 92.33%
with a standard deviation of 3.19%. From the results, it was concluded that the ELM
was able to accurately extract the pattern in real-time for the drinking task.
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Figure 31: Classes definition for drinking task postures (Xiao and Menon, 2014).

From these studies it can be concluded that there are many existing methods for
recognizing human motion, from fuzzy-logic control, to a state machine, or a machine
learning algorithm could be implemented, due to its high rate of success.

This dissertation will recognize specific gait events. Since there is an order to them,
the algorithm used will be a finite state machine, which input is the FSR data.



PROBLEM ANALYSIS

This chapter targets the definition of this dissertation the main theoretical concepts,

and present the MuscLab system and its influence in the SmartOs system.

3.1 THEORETICAL CONCEPTS

Before the system development, certain areas needed to be addressed and studied,

such as the muscles dynamics and the human gait analysis.

3.1.1  Muscle Contraction

In muscle contraction, there are three different types: 1) isometric; 2) concentric;
and 3) eccentric contractions. The characteristic of the isometric contraction is that
there is no change in the muscle length. An example of the isometric contraction is
maintaining a posture or holding an object. Although the muscles generate forces
to maintain the posture or to hold the object against the gravity, the lengths of the
muscles do not change because the joint motion is stationary.

On the other hand, in the concentric contraction, the muscular force is generated
while the length of the muscle is shortened. For example, when a human lifts
up an object, the associated muscles generate muscular forces and their lengths are
shortened.

In the eccentric contraction, the length of the muscle lengthens while generating
muscular forces. The simplest example of an eccentric contraction is lowering a heavy
object in a biceps curl.

Gestures or motions occur if the lengths of the muscles change. Therefore, the
eccentric and concentric contractions of muscles result in or are resulted from motions.

(Jung et al., 2015).
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Some motions also required contractions of both antagonist muscles at the same
time. While one muscle contracts in a concentric way the other one has an eccentric

contraction.

3.1.2 Human Gait

The human gait analysis addresses the systematic study of the human walking,
which involves the monitoring of spatiotemporal, kinematic and kinetic gait data.
This analysis has potential to be applied as an assessment tool of the gait
pathologies and the locomotion performance of the athletes, as well as a strategy to
contribute to real-time information for the assisted-as-needed control, demanded on

neurorehabilitation.

A gait cycle can be defined as a time period between the foot initial contact with the
floor until the moment that the same event occurs with the same foot. This cycle can
be divided in two phases: stance and swing. The stance phase corresponds to the time
period in which the foot is pressed on the floor, and the swing phase corresponds to
the time period in which the foot is in the air, as Figure 32 shows (Figueiredo et al.,

2017).

Stance Phase Swing Phase
o L] [
Loading Mad- Terminal Pre S
Response stance Stance Swing wing

Heel Strike  Foot Flat  Heel off  Toe-ofl

Figure 32: Gait Cycle (Figueiredo et al., 2017).

As represented in Figure 32, the stance phase contains several events, beginning
with the heel strike, which marks the beginning of the stance phase when the heel is

pressed against the floor, followed by the foot flat event, when the foot is all pressed
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against the floor, heel off is when the heel is lifted, and finally the toe-off event, when
the foot is in the air, starting the swing phase.

3.2 MUSCLAB

MuscLab is the proposed wearable system that is integrated in the SmartOs project,
with the purpose of achieving the goals presented in Chapter 1. This system consists
in a device attached to the user and contains FSR positioned in several specific muscles.
These sensors allow the user’s muscular activity monitoring and recognizes the toe-off
gait event. This data can be analysed in real-time or in offline mode. This device allows
the monitoring of 7 different muscles at the same time, with a frequency sample of 100
Hz.

Figure 33 represents the MuscLab system overview. This system consists in a device
that collects data from the FSR sensors positioned in the muscles. The sensors data is
acquired through a voltage divider and a low-pass filter before being processed in the
MCU, which calibrates the signals and recognizes the gait event. The final data is then
sent to a GUI, or saved in a memory card, or sent to the SmartOs MCU.
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Figure 33: System Overview.

The device is supplied by a battery, which supplies the MCU. The microcontroller
chosen was the STM32F303K8 due to its plenty available resources. This MCU
is responsible for acquiring and processing data from the sensors which are
connected to the microcontroller Analog-to-Digital Converter (ADC), and supplying and

communicating with the remaining hardware components. The bluetooth module
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allows the wireless connection between the device and the desktop application, and is
connected by serial port. The MCU is also connected through Serial Peripheral Interface
(SPI) with a memory card SD shield to allow data storage in a memory card. The
force sensor used is the FSR because of its easy integration in clothes and its easy

acquittance in the market. Figure 34 summarizes how the main components used are

related.
Battery.
{ Serial
SPI MCU Communication
|ADC
Mgﬂm_u Card sensor Interface Bluetooth
Shield Module
|
Sensor

Figure 34: Modules Overview.

Despite the MCU led, which turns on when the device is powered on, the device
contains 3 more leds (red, green and yellow), allowing the system to alert the user of

its respective status. Table 5 represents the led code for each status.

Table 5: System Status.

Leds Activated
Status

Red | Yellow | Green
Low Battery X
Trial Running X
Calibration Running X X
SD Card Error X
Idle

Low BATTERY:  Battery charge is low. The user must turn off the device and recharge
its battery as soon as possible. If battery charge is less than 5 %, the system will enter
in a shut down mode, in which the red led will blink and the system will save the data
in the memory card if a trial in offline mode is running before blocking every function,
"freezing” the MCU.
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TRIAL RUNNING: A trial is running at the moment.

CALIBRATION RUNNING:  In the beginning of each trial, the first 5 seconds are used to

calibrate the system.

sp cArD ERROR:  This error can happen when there is a problem initializing or writing

in the memory card.

ioe:  No trial is running.

3.2.1  SmartOs

SmartOs includes a smart, stand-alone active lower limb orthosis -AAFO -
synergistically interconnected with a wearable motion lab to treat the spastic gait
via a smart rehabilitation upon a pharmacotherapy (injection of botulinum toxin).
To achieve this goal, SmartOs incorporates a smart hierarchical control architecture
bioinspired on the principles and organization of the human motion-control system
(three-level architecture). This architecture generates assistive commands according to
the user’s motion state and disability level (monitored by the wearable motion lab)
both de-codified by adaptive learning technologies. These technologies were designed
to timely recognize and predict the intended motion, to detect incipient falls and the
user’s impaired level, to segment gait cycle, and to automatically tailor the dynamic
behaviour of the human-orthosis interface.

Wearable motion lab aims the real-time monitoring of the patient’s motor
status (i.e., the user’s motor ability, and spasticity level) and the human-orthosis
interaction. This wearable motion lab includes ergonomic, stand-alone, wearable
sensory systems, such as: (i) GaitShoe to measure force-ground contacts for the gait
segmentation; (ii) InertialLAB, formed by different miniaturized sensors to monitor the
biomechanical motion of limbs and joints; (iii) MuscLAB to objectively monitor muscle
activation/ weakness instead the use EMG-signals prone to the user’s sweating and
electrodes shift; (iv) VibrotactileLab, a non-invasive technique to monitor the spasticity.
Additionally, SmartOs explores wearable biofeedback mechanisms (e.g., time-discrete
teedback provided for a vibrotactile systems - Waistband) to encourage the user’s
active participation and to seamless the bidirectional interaction between the user and
AAFO.






HARDWARE INTERFACES

To ensure the system ergonomics are still reliable, its hardware must be as simple
and reduced as possible.

4.1 MAIN COMPONENTS

In this section, the several components used are presented, as well as their main
features. Table 6 sums the main components used and their prices per unit available in
the market. These components were chosen in order to ensure the system ergonomics

by making its dimensions as small as possible.

Table 6: Main Components.

Component Quantity Price (unit)
STM32F303K8 1 10.12%
Hacker LiPoBattery 7.4 V/9oo mAh 1 11.95 euros
FSR 7 11.95 $
Memory Card Shield SD 1 4.80 euros
HC-06 Bluetooth Module 1 6.90 euros

4.1.1 MCU

The development board used, presented in Figure 35, is a STM32 Nucleo-32
development board, with a STM32F303K8 MCU.

41



42 Chapter 4. hardware interfaces

Figure 35: STM32 Nucleo-32 (STMicroelectronics, 2018a).

This development board provides an affordable and flexible way for users to try
out new concepts and build prototypes with the STM32 microcontroller, choosing
from various combinations of performance, power consumption and features.The
Arduino Nano connectivity makes it easy to expand the functionality of the
STM32 Nucleo open development platform with a choice of specialized shields.The
STM32 Nucleo-32 board does not require any separate probe as it integrates the
ST-LINK/V2-1 debugger/programmer and it comes with the STM32 comprehensive
software HAL library, together with various packaged software examples, as well as
direct access to the Advanced RISC Machine (ARM) embed Enabled on-line resources

(STMicroelectronics, 2018a). Table 7 sums this board main features.

Table 7: STM32 Nucleo-32 Characteristics (STMicroelectronics, 2018a).

Parameter Value
Micro controller STM32F303K8
Architecture ARM
Voltage Supply (USB) 5V
Voltage Supply (External) 3,3V;5V;7-12V
Memory flash 32 KB
Data Memory 32 bit
SRAM 16 KB
Clock Speed 48 MHz
Timers 11
Analog Pins 9
Pins 32
PCB size 18,54 X 50,29 mm

This board stands out due to its small dimensions and its resources, such as its high
clock speed and available peripherals. Although it can be supplied by a 3,3V, 5V or
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7 to 12V, in order to gain access to the MCU debugger, it can only be supplied from 7
to12 V.

4.1.2  Battery

In order to run the system, a voltage supply is needed to power up the MCU. The
battery chosen was the Hacker LiPoBattery 7.4 V / goo mAh, demonstrated in Figure
36.

Figure 36: Hacker LiPoBattery 7.4 V / 9oo mAh (BotnRoll, 2018).

This battery was selected mainly because of its small dimensions, voltage output
and current capacity, as shown in Table 8, fulfilling the MCU needs.

Table 8: Hacker LiPoBattery 7.4 V / goomAh Features. (BotnRoll, 2018).

Parameter Value
Voltage 7.4V
Balancer plug-in TP
Technology LiPo
Connector system EC3
Dimensions 30 X 68 X 13 mm
Weight 55 ¢
Number of cells 2
Capacity 900 mAh
Electrical load 25 C

4.1.3 Sensor

The sensor to be used will be the FSR, available in Figure 37. As already explained
in Chapter 2, this sensor was chosen due to its flexibility and it is easy to integrate in
clothes, allowing the system to become wearable. This sensor changes its resistance
value as the force applied in the sensing area changes. To minimize interferences due
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to possible displacements of the sensor the sensing area must be as big as possible.
Table g list the FSR main features.

Figure 37: Force Sensing Resistor (MakerBright, 2018).

Table 9: FSR Main Features (MakerBright, 2018).

Parameter Value
Dimensions 1.72”
Sensing Area 1.56” x 1.56”
Force Sensitivity Range  0.2-20N
Stand-Off Resistance >1 MQ)
Weight 128

4.1.4 Memory Card Shield SD

A memory card shield, represented in Figure 38, was used in order to allow to save
data in a memory card by a microcontroller. Table 10 sums the module main features.
The communication protocol used is SPI instead of Secure Digital Input Output (SDIO),
since the SPI protocol can be interrupted while the software code is running and the

SDIO can not.

Figure 38: Memory Card Shield SD. (good, 2018).
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Table 10: Memory Card Shield SD (good, 2018).

Parameter Value

Voltage Supply 33V
Dimensions 3.5 ¢m X 2.2 cm
Interface SPI and SDIO

4.1.5 Bluetooth Module

The bluetooth module was the "HC-06 Bluetooth Serial Module”. This module
communicates with the MCU through serial communication, capable of baudrates
of 115200 bps maximum and a wireless range of 10 m (Botnroll, 2018). This module
establishes the communication between the device and the desktop application. Figure

39 shows the bluetooth module used and Table 11 its characteristics.

Figure 39: HC-06 Bluetooth Serial Module. (GearBest, 2018).

Table 11: HC-06 Main Features (Botnroll, 2018).

Parameter Value
Voltage Supply 5V
Logic Voltage 33V
Interface Serial Communication (RX TX pins)
Maximum Baudrate 115200 bps

4.2 BATTERY INTERFACE

Figure 40 shows the voltage supply interface. Right after the battery there is a
switch that allows the user to turn on and off the voltage supply. Then a schottky
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diode is inserted right after the switch to protect the microcontroller against negative
voltages, in case the user switches the battery terminals. It was chosen a schottky
diode instead of a regular one due to its reduced commutation time and low forward
voltage drop, to dissipate the minimum energy possible from the battery. In parallel
there is a ceramic capacitor, functioning as a decoupling capacitor, with the purpose
of helping stabilizing the battery output voltage. In parallel there are two resistors in
which the voltage divider will provide the battery voltage status with the MCU ADC

reference.
BATTERY
|
o MCU Voltage Supply
[ =
Battery Voltage Status
Figure 40: Voltage Supply Interface.

4.3 SENSORS INTERFACE

In order to obtain a voltage drop from the FSR sensor value into the MCU, a
hardware interface is needed to connect these two. Figure 41 shows a simple voltage
divider. RFSR represents the FSR resistance value and RG the hardware gain, which
impedance is 160 (). This resistance value is low to avoid signal offset and high gains

that may turn the signals non linear. This interface is powered by the MCU.
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WCC

RFSR
Output

RG

Figure 41: Voltage Divider.

The output obtained is the voltage drop in RG. Equation 2 represents the output of

this configuration.

RG )
RFSR + RG

Beside the voltage divider, a low-pass filter (Figure 42) was implemented to ensure

Output = VCC x ( (2)

that the signal acquired from the FSR does not contain aliasing.
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Figure 42: Low-pass Filter.

The time constant and cutoff frequency (Hz) can be calculated by Equation 3 and 4

respectively.
T=RC (3)

1 1

fe= 24t = anRC “)

The resistor R used was 150 k() and the capacitor C 100 nF, which leads to a time

constant of 15 ms and a cutoff frequency of 10.6 Hz. These values were chosen in order
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to not cause delays in the signal and to ensure lower frequencies are not filtered. The
Discrete Fourier Transformation (DFT) of a FSR signal acquired when the subject was
walking was measured, concluding that the signal frequency is around o.5 Hz, so the
filter time constant and cutoff frequency fit.

By combining these two circuits, it is obtained the final sensor interface,
demonstrated in Figure 43. This interface proves that the FSR sensors require very
simple electronics, which can be designed in reduced dimensions and containing few

cheap components, instead of the hardware required by the EMG signal acquisition.

——0o Vout
gm
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Figure 43: Sensor Interface.

In this interface it was also analysed that it should contain a buffer between the
voltage divider and the low-pass filter to isolate these two configurations. This process

guarantees that the cutoff frequency calculated is not influenced by the voltage divider.

4.4 PCB DESIGN AND DEVELOPMENT

The device PCB was designed in the PADS software. In Figure 44 it can be found
the PCB schematic and board file. To ensure the device ergonomics, the hardware was
designed so that the PCB would have reduced dimensions.
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o RISINAS

(a) PCB Schematic. (b) PCB Board.

Figure 44: PCB Design.

The board dimensions are 63.5 x 58.42 mm, which are acceptable to be integrated in
a wearable system. Figure 45 shows the final prototype.

Figure 45: MuscLab Development Board.

4.5 DEVICE CASE

To ensure the user’s comfort, a case to store the device and attach it to the user’s
limb by the aid of a strap was developed. This process required first the case design
in the tool SolidWorks, which is a Computer Aided Design (CAD) 3D software, and then
printed in a 3D printer. Figure 46 shows the SolidWorks case design.
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~

(a) Opened Case. (b) Closed Case.

Figure 46: SolidWorks Case Design.

The case cover contains several holes in top of the PCB leds to make them visible
to the user so that he can understand the system status, in top of the memory card
module pins, to allow the user to insert and withdraw the memory card at will, and
also in top of the FSR pins, to insert/withdraw them also at ease without needing to
open the case. This aspect improves the device ergonomics.



SOFTWARE INTERFACES

The software design and development was divided in two stages, such as
programming the MCU (low level) and the GUI (high level).

5.1 MICROCONTROLLER (LOW-LEVEL)

The MCU was programmed in the Keil uVisions Integrated Development Environment
(IDE), with the aid of the STM32CubeMX firmware. This firmware is part of
STMicroelectronics STMCube original initiative to make developers’ lives easier by
reducing development effort, time and cost. By selecting and configuring the MCU
peripherals, it generates the code in C, using the HAL library, and create a Keil project
with the code generated (STMicroelectronics, 2018c). The code is organized in several
modules, as Figure 47 shows. Each module is responsible for a specific task, in order
to allow the code to be more robust and practical.

main

|

Musclab

|
| ! ! l

MuscLabMotion MuscLabCalibration MuscLabPeripherals MuscLabSDCard

Figure 47: Microcontroller Code Modules.

The main module contains the program main state machine, which calls the
functions implemented in the MuscLab module. This module is also responsible

for connecting the remaining modules, such as the MuscLab Motion, in which the
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gait event recognition functions are implemented, the MuscLab Calibration, where the
signal calibration functions are implemented, the MuscLabPeripherals, responsible for
the MCU peripherals functions and the MuscLabSDCard which uses the FatFs library
in order to connect with the memory card. The timer 1 is configured to activate its
Interrupt Service Routine (ISR) function, responsible to activate the flag which allows the
program to read the sensors output in periods of 10 ms, to achieve a sample frequency
of 100 Hz. The timer 2 is responsible for allowing the program to read the battery
voltage. Since this variable has a more gradual evolution (the system requires low
energy), its sampling period is 30 seconds. Figure 48 represents a flowchart of the
main state machine algorithm.

Initiaize system and
sensors variables
and peripherals:

Enable start tral flag

! na

Enable stop trial lag

Reset flag and start
trial

Enable stop tral flag and
closes memory card trial
fle

Increment time value
and enable read
sensors flag

Disable flag and stop tial

Disable flag and read sensors
data and write fo memory card f
offine mode tral i on

Figure 48: Main State Machine Flowchart.

Figure 49 represents a flowchart of the MuscLab module functions. When starting
a trial, the system resets its values and checks if the trial will run in offline or online
mode. If it starts in offline mode the program will first check if the memory card
is correctly inserted and ready to be written, otherwise an error will occur. If all
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conditions allow the system to start a trial, the timer responsible for reading the FSR
data will be activated. This timer is turned off at the end of the respective trial.

Although in offline mode the data is printed in the memory card every time the
sensors output are sampled, in online mode the data is only saved and updated and
is only sent to the desktop application when it is received an acknowledge byte from
the GUI, allowing a synchronism between the device and the desktop application.

MuscLab_StartTrial MuscLab_readSensors MuscLab_StopTrial
Musclab_readBattery

Initialize variables Stop timer 1 and
and reset flags Read sensors output trialLed off Read battery voltage

]

Calibrate sensors
data and recognize
human motion

SD Card
successiully
mounted?

calibrationLed On
s battery charge'
status crifical?

Is offline irial
frialLed On running?
calibrationLed On

Start timer 1

Save data in memory
card

batteryLed On Shut down system

SD Card
successfully
written?

trialLed Off and
calibrationLed Cn

Figure 49: MuscLab Functions Flowchart.

When the battery charge is checked, the system will analyse if it is low. If so the
system warns the user by turning on the low battery led. If the battery charge enters a
critic state, the MCU will immediately turn off its peripherals and block every function,
becoming not operable. It was studied the value read from the MCU ADC for each
input voltage, and for each of that value associate with a percentage from o to 100,
representing the battery charge level percentage. With those values, a linear regression
was made, with the aid of the MatLab tool, represented in Figure 50, resulting in
Equation 5.

battery = 2.58867 x input — 478.054 (5)
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Battery Charge (%)

Figure 50: Battery Charge Equation.

5.1.1  MuscLabCalibration

This module is responsible for the FSR signals calibration. This calibration consists

in three different stages, as represented in Figure 51.
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Figure 51: Signal Calibration Stages.

The first stage will be acquiring data while the muscle is relaxed in the beginning
of each trial in a period of 5 seconds, and with that it will be possible to remove the
signal offset by calculating its mean value and subtract it to the sensor output signal.
The second stage of the software calibration is the calculus of the sensors software
gains while the subject is contracting the respective muscle. These gains are found by
measuring the sensors maximum values and then the gains are applied in a way that
the maximum values reach 100 when multiplied by them. These gains are updated in
periods of 10 ms. The third stage is when these gains are already being applied and
still being updated until the end of trial.

The flowchart presented in Figure 52 sums up the signal calibration algorithm.
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Figure 52: Signal Calibration Flowchart.

5.1.2  MuscLabMotion

In this module are the functions regarding the gait event detection and recognition.
This algorithm was developed in order to detect and recognize the gait event toe-off,
which ends the stance phase and initiates the swing phase. The muscles monitored in

this algorithm are the anterior tibialis and the gastrocnemius muscles.
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Figure 53 represents the algorithm flowchart. This algorithm first step is to make
sure the gait event will only be detected and recognized if the current trial is past the
offset calibration. If that is the case, the algorithm will analyse which is the current
phase (stance or swing). If it is the swing phase, the program will analyse if the FSR
value of each muscle is above the threshold values defined. If this condition is verified,
it means that the subject is now in phase stance. Finally if the subject is already in
phase stance and the FSR values are lower than the threshold values, it means that the
user is currently in the toe-off gait event. This event is here detected and recognized

and also from here begins the swing phase.

Receives sensors

Is the trial past the™__No
offset calibration?

s swing the current phase and both fsr

Currentphaseis | |
signals above their threshold values?

stance

Current event is toe-
off and phaseis ||
swing

5 stance the current phase and both fsi
signals below their threshold values?

Figure 53: Gait Event Recognition Flowchart.

5.1.3 Output

The microcontroller output, which is sent to the GUI and saved in the memory card,
is an array of bytes, which is represented in Figure 54. This array contains 16 bytes,
in which the first byte corresponds to the time in milliseconds which that data was
sampled, followed by the sensors output values. After the sensors outputs comes the
sensors gains (result of the sensors software calibration that are updated in periods of

10 ms), and finally the last byte indicates the current gait event detected.
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Figure 54: Output Array.

5.2 DESKTOP APPLICATION (HIGH LEVEL)

The GUI was developed in the QT Creator environment. Qt Creator is a cross
platform IDE to create C++ and Qt Modeling Language (QML) applications for
multiple desktop, embedded and mobile platforms.This IDE was chosen due to
its simple and intuitive interface, features a code editor with syntax highlighting
and auto-completion, drag-and-design Ul creation, visual debugging & profiling
tools and many other tools (Qt, 2018). The language used to program the desktop
application was C++, since it is a highly portable language and is often the language
of choice for multi-device, multi-platform app development, and is an object-oriented
programming language and includes data abstraction and a modular code.

Figure 55 represents the GUI developed. This application can only be run in online
mode. The device must be already powered on and no trial should be running in
offline mode.

81 Wearable muscle force sensory system - MuscLab - o0 x

Figure 55: Desktop Application.

The buttons are all divided in group boxes, such as the connection to the device
buttons, the start and stop trial command buttons and the file writing functions. The
battery charge level can be analysed in the top left corner, showing its percentage. The

sensors gains provided from the MCU software calibration are also available in this
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application, below the file buttons box, and showing the plots respective colours. In
the bottom left corner is displayed the current gait event detected, and finally, in the
right side of the application it can be analysed the muscles signals plots.

With the flowchart presented in Figure 56, it is clearer to observe that the GUI main
tasks are to establish the bluetooth communication with the device, by sending data
such as the command to start or stop a trial or an acknowledge to receive further data.
Another main task is to parse the data coming from the device and update the values
displayed, to allow the user to study the sensors signals in plots and their gains and
the current gait event detected, and write the data in a txt file if that option is enabled.

Signal: stopButton myReadData

Parse input buffer
Reset sensor values Send char ‘0" into the respective
variables

Signal:

connectButton Signal: startButton

v
{0
0

Initialize system
variables, serial
communication and
plot
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Yes
Reset plot Reset sensor values
and plot No | Reset sensor valuss,
gains and plot
Send warning T 1
Yes

— Send char "1 Reset plot

Signal:
refreshButton Signal:
disconnectButton

Update list of serial
port available

()

Update plot, battery
status, gains and gait
event

)

Send char '

0
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O

Close serial port

Is save file mode
enabled?

Write data to file

|

Figure 56: GUI Flowchart.

5.3 INTEGRATION IN THE SMARTOS SYSTEM

As it was explained in Chapter 3, this system is one of the subsystems integrating
the SmartOs system. To integrate it in the SmartOs, the code implemented in the
MuscLab MCU must be transferred to the SmartOs microcontroller. Figure 57 shows

the SmartOs several modules that are integrated in it.
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Figure 57: SmartOs Modules.

The development board where these modules are implemented is the
STM32F4DISCOVERY, illustrated in Figure 58. From this board the data is acquired
and processed and sent later to the system Central Processing Unit (CPU), which is a

Raspberry Pi.

Figure 58: STM32F4DISCOVERY (STMicroelectronics, 2018b)

This board contains the STM32F407VG MCU, and contains many resources, such
as featuring 32-bit ARM Cortex, 1 Mbyte Flash memory and 192 Kbyte Random Access
Memory (RAM), and an oscillator frequency of 160 MHz maximum.

One advantage of integrating the MuscLab in this MCU is the fact that both
microcontrollers are compatible, containing both ARM architecture, so the low level
functions are similar. Another advantage is that both systems are programmed in
modules, so that the integration becomes more practical. The SmartOs development
board was already developed in order to acquire data from 7 analogic pins. To
integrate the MuscLab code in this MCU, it was only needed to copy the timer 1
configuration in order to acquire data from the analogic pins in periods of 10 ms, and
the functions responsible to process that data, such as the signals calibration functions

and the gait event recognition functions. The functions responsible for sending data to
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the GUI and saving it in a memory card were withdrawn, as well as the battery reading
function, because the SmartOs modules purpose is to update the data acquired in each
one of them, in order to send the the data to the system CPU.

The MuscLab board MCU is withdrawn, as well as the battery. The board is supplied
by connecting the 3.3 V and GND pins to the SmartOs board, and the sensors output
pins instead of being connected to the former MCU is connected to the SmartOs board

analogic pins.



SYSTEM VALIDATION

In this chapter it will be presented two different validation trials, one corresponding
to the FSR signal quality by comparing it to the EMG signal, studying regression
models with the purpose of converting the FSR to EMG signal, and finally studying

the gait detection algorithm accuracy in the trials already performed.

6.1 FSR EMG SIGNAL COMPARISON

This section consists in describing the trials protocols, such as which muscles will
be monitored, the types of sensors to be used and their hardware interfaces , the trials
procedure, and finally the results obtained.

These trials will be divided in two groups: static and dynamic. The static trials were
performed in the CMEMS laboratory and the dynamic trials were performed in the
Laboratorio de Biomecinica do Porto (LABIOMEP), located in the Faculdade de Desporto
da Universidade do Porto (FADEUP) facilities, due to their available equipment and

resources capable of providing better and more realistic results.

6.1.1 Static Trials

Three subjects participated in these trials, repeating each trial 3 times. The subjects
studied had different gender, age (24.33 & 2.31), weight (67 = 8.89 Kg) and height (1.7
4 0.07 m).

It was used two types of sensors in these trials, as Figure 59 shows, such as the
electrodes to obtain EMG signals and the FSR sensors, to measure the muscular
strength. In order to obtain these two signals as much synchronized as possible, the

FSR sensors were placed in top of the electrodes, sharing the same muscle location.
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(a) Electrodes (Olimex, (b) FSR (MakerBright,
2018). 2018).

Figure 59: Sensors Used.

For the EMG signal acquisition 3 electrodes were used on the target muscle, one
serving as reference (inserted on top of the knee) and the other two to obtain the
voltage drop (located in the muscle belly). These electrodes are connected to a
customized EMG signal acquisition board, as shown in Figure 60, developed in
the laboratory. This board contains two potentiometers, one for calibrating the the
signal gain and the other the signal offset. The PCB also contains seven stages,
as Figure 61 shows, such as an instrumentation amplifier for potential acquisition,
initial amplification (x50) and common mode rejection; a bandpass filter (20 Hz
to 500 Hz) and a notch filter to attenuate the effect of the noise and the power
network; an amplification stage to increase the resolution, allowing the signal to be
readable without losing information; a full wave rectifier (depending of the state of
the switch), for signal rectification; and finally, a voltage limiter for protection of
the digital processing unit using the ADC reference. The output is connected to a
microcontroller. This description shows how much more complex the EMG signal
acquisition hardware is, comparing with the FSR sensors hardware interface designed
in the MuscLab system.

Figure 60: EMG Signal Acquisition Board.
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Figure 61: EMG Signal Acquisition PCB Stages.

To obtain the FSR signal, the FSR sensors were placed in top of the electrodes,
perpendicular to the respective muscle belly, covered with an elastic band to ensure
that the muscles activations apply pressure in the FSR sensors, as Figure 62 shows.

Figure 62: Sensors Setup.

For these trials it was used 4 PCBs, represented in Figure 63: 2 EMG signal
acquisition boards, 1 responsible for converting 5 V to -5 V to supply the EMG signal
acquisition boards and also for providing the same ground to all boards, and finally
the system device PCB, where the MCU is located. The sensors final output are all
connected in this last development board. For these trials both signals were acquired
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with a sample frequency of 500 Hz. In the static trials it was used a development board
without the low-pass filter allowing to use this sample frequency.

Figure 63: Trials PCBs.

To validate the leg muscle activity monitoring in the static trials, the motions to
be performed were the ankle plantarflexion and dorsiflexion (Figure 64a) and the knee

flexion and extension (Figure 64b).

Plartarfie xion

A joint

(a) Ankle Dorsiflexion and (b) Knee Flexion and
Plantarflexion. Extension.

Figure 64: Ankle and Knee Motions (AceFitness, 2018).

The muscles to be monitored regarding the ankle motions were the anterior tibialis
and the gastrocnemius, illustrated in Figure 65 due to their influence in these specific

movements (AceFitness, 2018).
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Figure 65: Ankle Plantarflexors and Dorsiflexors (AceFitness, 2018).

For the knee movement, the muscle to be monitored was the the wvastus lateralis
(Figure 66), which is responsible for the knee extension (AceFitness, 2018).

The leg motions to be studied were performed and repeated 10 times in each trial.
The trials are repeated 3 times.

\ Vastus
Intermedius

“\Vastus
‘medialis

Figure 66: Vastus Lateralis.

The metrics calculated were the Pearson Correlation, the delay between the EMG
and FSR signals, and their Root Mean Square Error (RMSE) percentage. These metrics
were calculated by using the MatLab functions. Figure 67 shows an example of the
signals output. The top plot is the raw signal acquisition and the bottom plot displays
the data filtered, by using a butterworth second order filter, with a cutoff frequency of
1.6 Hz. This filter was applied due to the EMG raw signal containing lots of noise.

Since this filter induces a delay to the raw signal, this filter was applied in both
signals in order to obtain a better comparison between them. The calibration period
in the beginning of each trial was also withdrawn, in order to calculate the desired
metrics.
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Figure 67: EMG and FSR Signals.

From their plots it can be seen concluded that both signals have a similar behaviour,
since the muscle activity peaks are synchronized with each other. It can also be
concluded that the muscle monitored contracts both in the flexion and extension of
the respective joint. This indicates that both antagonist muscles work at the same
time. While one muscles has a concentric contraction the other one has an eccentric
contraction.

Table 12 represents the trials metrics results, such as the pearson correlation (C),
which range of values goes from -1 (worst case) to 1 (best case), the delay between both
signals which was calculated by measuring their cross-correlation, and their RMSE

percentage.
Table 12: Static Trials Results.
. AT Gastro VL
Subjects
C Delay(s) RMSE(%) C Delay(s) RMSE(%) C Delay(s) RMSE(%)

1 0.6 0.079 7.06 0.55 0.09 6.55 0.73 0.076 13.43

2 0.75 0.162 13.18 0.79 0.058 10.6 0.68 0.078 6.31

3 0.65 0.045 7.32 0.62 o0.15 11.57 0.72 0.102 10.9

With these results it can be analysed that for all muscles, both signals are correlated,
although the gastrocnemius showed the worst correlation result (subject 1) and some
inconsistency between subjects correlation values. One of the main reasons for this

behaviour is the delay between signals, which can decrease their correlation value.
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These delays can be induced due the fact that the EMG signals happens before the
FSR ones, and the fact of possible displacements between the electrodes and the FSR,
being both positioned in different places in the same muscle, which have different
activation times. Also the RMSE showed low values, with the worst scenario only
having a RMSE of 13.43 %, indicating that both signals values are not very different
from each other. To obtain these values first it was necessary to normalize the signals
to the same scale, in order to obtain more realistic values.

In conclusion these results turned out to be quite satisfactory, indicating that, for
these specific motions, the FSR sensors can contribute with similar EMG signals,

providing enough information for the muscle activity monitoring in this scenario.

6.1.2  Dynamic Trials

In these trials the muscles activity monitoring was performed while the subject is
walking, to validate the system while the subject is moving.

For these trials, it was used the EMG signal acquisition equipment from Delsys,
which was available in the LABIOMEP. Figure 68 represents the LABIOMEP facilities
and the Delsys equipment.

(b) Delsys EMG  Signal
Equipment (Delsys,
(a) Labiomep. 2018).

Figure 68: Labiomep Equipment.

To ensure a ground truth for helping synchronizing the data, two FSR sensors were
placed in the toe and heel of the respective foot, as Figure 69 shows.
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For the dynamic trials, the muscles monitored were the anterior tibialis and the
gastrocnemius, since these muscles are the ones that contribute the most to the human
gait. Three subjects participated in these trials, of both genders, different age (24.33
+ 0.58), weight (68.33 £ 12.42 Kg) and height (1.71 & 0.12 m). These trials consist in
walking in three different speeds: low pace, fast pace and a normal comfortable gait

pace. Three trials were performed for each condition.

Figure 69: Foot FSR Location.

The FSR and EMG signals were acquired in sample frequencies of 100 Hz and 1
kHz respectively, so the EMG signal was later decimated to a frequency of 100 Hz.
Since it was used different systems, it was needed to synchronize both MuscLab and
the LABIOMEP systems. In the beginning and ending of each trial, the MuscLab sent a
signal to the other system. The Delsys system output was the EMG raw signal, which
contained lots of noise and negative values. So the signal was first rectified and then
a butterworth second order low pass filter was applied with a cutoff frequency of 1.6

Hz. This process resulted in the signal available in Figure 7o.
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Figure 70: EMG Raw and Filtered Signals.

For these trials, the metrics validated were the delay between the signals, using the
same process in the static trials and their RMSE values. Table 13 and Table 14 shows
the delays and RMSE obtained in these trials respectively.

Table 13: Dynamic Trials Delays.

) AT Gastro
Subjects
Slow Medium Fast Slow Medium Fast
1 0.29  0.007 0.33 0.22 0.03 0.6
2 -0.01 -0.45 0.12  0.15 0.47 -0.02
3 0.37 0.37 -0.28 0.02 -0.5 -0.14
Table 14: Dynamic Trials RMSE.
. AT Gastro
Subjects
Slow Medium Fast Slow Medium Fast
1 30.13 28.68 25.87 36.53 43.5 24.27
2 18.92 30.19 33.55 23.77 37.88 23.45
3 15.92 18.47 26.62 26.26 25.34 26.10

In these trials the RMSE values were superior to the ones presented previously in
the static trials. One of the main reasons that caused this difference is the fact that
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these signals are less linear than the ones obtained in the static trials. Another main

reason is the bigger delay between both signals.
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Figure 71: Dynamic Trial Plots.

The time delays were also superior to the ones measured in the previous trials. In
this case, since the electrodes used from the Delsys system have bigger dimensions
than the ones used in the static trials, it was not possible to insert the FSR sensors on
top of the electrodes, so it was placed near the electrode. This induces a delay between
both signals, because both muscle locations are activated in different times, as shown
in Figure 71a. Also, some delays turned out to be negative because in some trials
the FSR was anticipated to the EMG signal. After measuring the delays and RMSE
between the signals, they were aligned in order to obtain more realistic correlation
values (Figure 71b).

Due to the signals less linearity, two types of correlations were calculated: the
pearson correlation which evaluates the linear relationship between two continuous
variables, and the spearman correlation which evaluates the monotonic relationship
between two continuous or ordinal variables (Minitab, 2018).

Both correlations were measured only in the instances when the corresponding
muscle is activated and synchronized in both signals. So, a percentage of FSR



6.1. FSR EMG Signal Comparison

EMG synchronized peaks was also measured, as well as the mean of the magnitude
difference between the EMG and the FSR maximum peaks value.

Table 15 represents the percentage of synchronized EMG FSR peaks, as well as the
mean error between their maximum values.

Table 15: Dynamic Trials Peaks Comparison.

AT Gastro
Subjects Slow Medium Fast Slow Medium Fast
Sync Error Sync Error Sync Error Sync Error Sync Error Sync Error
1 67.67 254 6733 14.35 81 16.06 87.67 20.68 66.67 23.62 72 17.72
2 71.33 -2.41 69.67 19.79 69.33 16.04 66 1.6 83 20.42 58 13.97
3 7525 824 6033 335 6733 11.97 6333 12.64 4933 1027 5533 14.38

Some of the peaks maximum value error percentage turned out to be negative
because the EMG signals maximum peak value turned out to be higher than the FSR
ones. As for the amount of synchronized peaks percentage, the worst scenario just had
49.33 %, and the best scenario 81 %. This shows how much the sensors displacement
regarding the electrodes can influence these results.

Table 16 shows the pearson correlation (CP) and the spearman correlation (CS).

Both correlations showed similar results in most of the trials, and all of them showed
that there was a strong correlation between the signals when the respective muscle is

activated. This means that both signals have similar behaviours when the muscle is

activated.

Table 16: Dynamic Trials Correlations.

AT Gastro
Subjects Slow Medium Fast Slow Medium Fast

cep ¢ Cp C5 CP CS CP CS CP CS5 CP CS

1 0.75 0.72 0.82 0.82 0.74 0.5 0.1 0.69 o071 076 08 082
2 072 0.69 0.71 0.66 o0.75 0.7 0.5 0.6 o0.75 0.83 0.78 0.69
3 078 o0.76 o0.77 0.74 o0.77 0.78 0.75 o0.77 0.78 0.78 0.72 0.74

With these results, the Research Question 1 (can the force sensors provide valid
information to monitor muscle activity?) can be answered. Since in the FSR signals
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it can be easily analysed when the respective muscle contracts and relaxes, and by
comparing them with the EMG signals, which is the standard method for muscle
monitoring and by these positive results which proved some similarities between them,
yes the force sensing resistors can provide enough valid information for the muscle

monitoring.

6.1.3 Regression Models

After validating the FSR signals, it was attempted to convert the FSR in EMG signals.
To achieve this purpose, the relationship between both signals was studied and then

several regression models were applied.

The regression models were estimated by using MatLab functions, such as normal
linear regression and linear, quadratic and gaussian Support Vector Regression (SVR)
models. SVR are very specific class of algorithms, characterized by usage of kernels,
absence of local minima, sparseness of the solution and capacity control obtained by
acting on the margin, or on number of support vectors, etc (Kernelsvm, 2018). These
models were trained by introducing the raw FSR signals synchronized with the EMG
filtered signals obtained in the previous dynamic trials, in the respective regression
function, and then predict the final values based on the FSR data and compare the
resulting data with the EMG signal. Figure 72 shows an example of both FSR and

EMG signals inserted in the regression functions.
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Figure 72: FSR and EMG Signals Regression Inputs.
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For the signals presented in Figure 72, the linear normal regression was estimated,
as well as the linear, quadratic and gaussian SVR models. Figure 73 shows the EMG
values in the y axis with the FSR values in the x axis, as well as the models curves
trying to establish a connection between the FSR and EMG values. Both signals do not
share a pattern between them, so the models can not achieve the pretended behaviour.

The gaussian SVR model also showed some overfit behaviour.
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Figure 73: FSR and EMG Signals Regression Models.

Figure 74 represents the models predicaments to the FSR data along the trial. All
models share similar behaviours, only changing the signal peaks values, although the

normal linear regression model induces some offset between its signal peaks.
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Figure 74: Regression Outputs.
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Since this method didn’t work, another approach was taken in action, that consisted
repeating the previous method, but the signals inputs would be the signals peaks

concatenated. Figure 75 shows the models curves trying to establish a pattern between

the EMG points through the FSR values.
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Figure 75: FSR and EMG Peaks Signals Regression Models.

of unrealistic models, as Figure 76 shows.
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This method was applied in 3 different trials of 3 different subjects, and the results
were all similar. The model responses consisted only in increasing or decreasing
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Figure 76: FSR and EMG Peaks Signals Regression Models.




6.2. Gait Event Recognition Validation

the signals peaks values, maintaining their wave forms. These results discarded the
possibility of converting the FSR in EMG signals.

6.2 GAIT EVENT RECOGNITION VALIDATION
The gait event recognition algorithm was validated in the dynamic trials. The
metrics measured in this validation was the algorithm accuracy and its delay. Table 17

sums up these metrics. The accuracy is displayed in % and the delay in ms.

Table 17: Toe-off Event Recognition Results

) Slow Medium Fast
Subjects
Acc  Delay Acc Delay Acc  Delay
1 82.67 0.34 80 -2.275 76 -1.11
2 56 -0.1 84  1.45 87 0.04
3 89 572 82  -531  87.33 -4.34

There were only two scenarios in which the gait event recognition had an accuracy
lower than 8o %. One of the main reasons why this happened was because of possible
sensor displacements, not being able to acquire data correctly. In the remaining
scenarios, the algorithm showed good results, displaying an accuracy between 82 %
and 89 %. The delays which the algorithm took to recognize the gait event were also
satisfactory, showing a maximum delay of 5.72 ms. The negative delay values mean
that the algorithm detected the gait event before it really happened.

From these results, it can be concluded that with the signals provided by the FSR
sensors, the toe-off gait event can be detected and recognized accurately, answering
so the Research Question 2 (is it possible to detect and recognize gait events through

muscle activity provided from the force sensors?).
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CONCLUSION

After this dissertation development, several conclusions could be achieved.

All the dissertation goals proposed were achieved successfully. An ergonomic and
adaptive device was developed in order to monitor the muscle activity of a person,
regardless its characteristics. Several projects were studied, in order to choose which
sensor to use for monitoring the muscles, concluding that the FSR sensor would be
the best choice due to its simplicity, small dimensions and its flexibility. The device
hardware was also designed in order to contain small dimensions, in order to not cause
discomfort in the subject, allowing him to move freely. The device hardware consists
in 2 different interfaces: the battery interface, used to connect the battery to the MCU
and use a voltage divider in order to analyse the battery output voltage by connecting
its output to the microcontroller analogic pin, and the FSR sensor interface, used to
connect the sensor to the MCU, consisting also in a voltage divider to acquire the
sensor output and connect it to a low-pass filter, to ensure the signal does not contain
aliasing. This design was also developed in a small PCB to ensure its ergonomics. The
signal software calibration implemented in the device MCU also allows the system
to automatically adapt to the subject wearing it, by withdrawing the signals offset
and applying software gains accordingly to the subject’s muscle stiffness, making the
system versatile to every possible subject.

The muscle activity can also be monitored in real-time with the aid of a developed
GUI and in offline mode, by reading the data saved in a memory card. The GUI allows
the signal plots monitoring in real-time and displays also the sensors software gains
estimated in the MCU signal calibration algorithm, as well as the current gait event
detected. It also allows to check the battery charge level. This application is also able
to save data in a file for future analysis, in case that option is enabled. The user can
also run trials without the GUI aid, by running it in offline mode, with the device
saving the data in a memory card inserted in it.
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An algorithm was implemented in the microcontroller in order to detect and
recognize the toe-off gait event based only in the data provided by the FSR data. The
muscles monitored in order to detect it are the anterior tibialis and the gastrocnemius,
due to their great influence in the human gait. This event is detected when the subject
is already in the phase stance and both muscles relax, detecting the gait event, which
also marks the transition from stance to swing phase.

Several protocols were established in order to validate the FSR signals and the toe-off
gait event detection algorithm. The FSR signals were compared to the EMG signals,
which is the standard method for muscle monitoring, and several metrics were studied.
This comparison was made by performing trials in different condition with different
subjects. This protocol was divided in 2 groups, such as the static trials where the
subjects performs specific motions several times, and dynamic trials where the user
walks in different paces with two FSR sensors placed in the subject’s foot, one in the
toe and the other in the heel. These trials were performed in different environments,
using different EMG signal acquisition equipments. In the static trials, the FSR sensors
were placed in top of the EMG electrodes. The metrics measured were the pearson
correlation, the signals delay and their RMSE. These trials results showed that both
signals presented good correlation between them, containing also small delays and
low RMSE percentage, proving that they were similar. These trials also showed that
both antagonists muscles responsible for a specific motion contract at the same time,
one having a concentric contraction and the other an eccentric contraction. In the
dynamic trials, different electrodes were used, containing bigger dimensions, needing
to place the FSR sensors right next to the electrodes, in different places. For this reason,
the signals acquired contained greater delays and RMSE, since they capture different
muscle activation times, needing to align the signals acquired first in order to compare
them, estimating the pearson and spearman correlations, and their peaks synchronized
percentage, as well as their magnitude error. The peaks synchronized percentage
values varied a lot, showing just how much the FSR and EMG sensors displacements
can influence. As for the spearman and pearson correlations regarding the signals
peaks, the trials showed strong correlations between them, proving that both signals
have similar behaviours when the muscle is being activated. It was also attempted to
convert the FSR signals in EMG signals, though normal regression models and SVR
models. The results turned out to be negative, withdrawing this possibility.

As for the toe-off gait event detection algorithm validation, the algorithm was
applied in the dynamic trials, with the FSR sensors placed in the subject’s foot serving

as a ground truth. The metrics estimated in this validation were the algorithm accuracy
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and delay. The results proved to be satisfactory, with most of the trials showing
accuracies higher than 8o % and the highest delay was 5.72 ms.

The system was also developed in order to function as a stand-alone product
and was integrated in the SmartOs system, functioning as sensory subsystem. The
modular programming and the fact that both microcontrollers being compatible by

sharing the same hardware architecture made the integration process much easier.

The functions responsible for acquiring and processing the FSR data and recognize the

gait event were copied and adapted, discarding the other MuscLab system functions.

The MuscLab board is supplied by the SmartOs board and the FSR output pins are
connected to the SmartOs analogic pins.

7.1 RESEARCH QUESTIONS

Along the dissertation development, the research questions proposed were also
answered.

Research Question 1: Can the force sensors provide valid information to monitor
muscle activity? When validating the system by comparing the FSR with the EMG
signal, it can be concluded that the FSR sensors provide enough information for
muscle activity monitoring. Although the EMG signal can provide a more detailed
monitoring, this process requires a much more complex electronics interface, and its
raw data contains more noise than the FSR signal. By withdrawing the FSR signal
offset it is easy to analyse when the muscle is activated though the signal peaks, and
how much effort is being applied in those activations by also analysing the sensors
software gains.

Research Question 2: Is it possible to detect and recognize gait events through
muscle activity provided from the force sensors? Another conclusion taken from
this dissertation development is that it is also possible to detect and recognize the
toe-off event accurately from the FSR sensors positioned in the anterior tibialis and the
gastrocnemius muscles. This algorithm was validated showing high accuracy values

and low delays.

7.2 CONTRIBUTIONS

In this dissertation a wearable system was developed in order to monitor the
subject’s muscles activity, which can be useful in the sports area to improve an athlete’s
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performance, or in the medical rehabilitation area, functioning as a stand-alone project
or as sensory system integrated in the SmartOs system.

This dissertation proved that it is possible to monitor the muscles activity without
the need of expensive resources like the EMG signal acquisition requires, which is
the standard method for muscle monitoring. In the MuscLab system only a voltage
divider and a low-pass filter was needed to acquire the FSR sensor output. The
FSR sensors allow the muscle monitoring without the need of a specific gel or
hairless hair, becoming a more independent tool than the EMG electrodes sensors.
They can also be easily integrated in a wearable system due to their flexibility and
simplicity, not needing complex electronics and signal processing as the EMG signal
acquisition requires, allowing to design and develop a system hardware containing
fewer components and more reduced dimensions, allowing it to be more practical and

cheaper.

7.3 FUTURE WORK

One possible future system update is to integrate the FSR sensors in textiles,
improving the system ergonomics. One of the FSR main advantages is their flexibility
and how easily they can be integrated in textiles, allowing the muscle monitoring in a
more ergonomic way. The possibility of switching the device PCB to a Flexible Printed
Circuit Board (FPCB) could also be studied, so that the device hardware could also be
integrated in clothes, discarding the need of the cases developed and allow the user
to feel more comfortable. These improvements would increase significantly the device
ergonomics and efficiency, allowing it to become a very useful tool to be used in the
medical rehabilitation area and also in the sports area.
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