Universidade do Minho
Escola de Engenharia
Departamento de Eletronica Industrial

Miguel Alexandre Macedo Araujo

Ontology-Driven Metamodeling Towards
Hypervisor Design Automation:

Secure Hypervisor Design Environment

February 2018

Universidade do Minho
Escola de Engenharia
Departamento de Eletronica Industrial

Miguel Alexandre Macedo Araujo

Ontology-Driven Metamodeling Towards
Hypervisor Design Automation:

Secure Hypervisor Design Environment

Master dissertation
Master Degree in Embedded Systems

Dissertation supervised by
Professor Doutor Adriano José da Conceicao Tavares
Professor Doutor Sandro Emanuel Salgado Pinto

February 2018

ACKNOWLEDGMENTS

To my parents, Anténio Aratjo and Filipa Macedo, for all the emotional, financial and
educational support during the whole academic period.

To my supervisors, Professor Doctor Adriano Tavares and Professor Doctor Sandro Pinto,
who I am grateful for all their time, incentive in pursuing knowledge and very valuable
insights on this dissertation.

To Programming Research for providing the license for their static code analysis tool and
excellent customer support.

To my colleagues, David Almeida, Jodo Alves, José Lopes, José Martins, Miguel Abreu,
Nuno Afonso and Pedro Pereira, for all the help and discussion regarding the work of this
dissertation.

To my friends, Leandro Lopes, Ricardo Sousa, Tiago Lopes and Simdo Félix, and my
brother, Tiago Aratjo, for all the much needed decompressing moments.

Thank you very much everyone!

ABSTRACT

Nowadays, the critical embedded software development industry must develop software
that adheres to strict safety- and security-related standards. Just as important as the de-
veloped software are the development methodologies and tools used in their development.
However, certification does require additional efforts on development leading to an increase
in both its budget and time-to-market.

The aim of this dissertation is to develop a solution that can ease software developers in
achieving compliance with security and safety standards. The solution focuses on the use of
automation and modeling techniques via the development of a domain-specific language
integrated with semantic technology for the automation and validation of a design flow
under a framework named Design Flow Modeling Language.

This dissertation describes the development of the framework through the analysis, de-
sign and implementation, focusing on both the language and the ontology perspectives,
and its applicability in common development scenarios of embedded systems.

The results show how the developed framework uses semantic rules to enrich the em-
bedded software development process with checks and restrictions to provide safety and
security and how automation and external tool integration is made easy with the domain-
specific language.

ii

RESUMO

Atualmente, a industria de desenvolvimento de software embebido critico deve desenvolver
software que adira a rigidos padrdes de seguranca. Tao importante quanto o software de-
senvolvido sdo as metodologias de desenvolvimento e ferramentas utilizadas no seu desen-
volvimento. No entanto, a certificagdo requere esfor¢os adicionais no desenvolvimento que
levam ao aumento tanto do custo como do tempo de colocagdo no mercado.

O objetivo desta dissertacdo é desenvolver uma solucdo que facilite aos arquitetos de
software alcangar conformidade com os padrdes de seguranca. A solugdo foca-se no uso
de automacdo e técnicas de modelagdo através do desenvolvimento de uma linguagem de
dominio especifico integrada com tecnologia semantica para a automacéo e validacdo do
fluxo de design sob uma ferramenta chamada Design Flow Modeling Language (linguagem
de modelagdo de fluxo de design).

Esta dissertagcdo descreve o desenvolvimento da ferramenta através da anélise, concegao
e implementacdo, focando-se em ambas as perspetivas da linguagem e da ontologia, e a
sua aplicabilidade em cendrios comuns de desenvolvimento de sistemas embebidos.

Os resultados mostram como a ferramenta usa regras semanticas para enriquecer o pro-
cesso de desenvolvimento com verificagdes e restri¢cdes de forma a providenciar seguranca
e como a automacgéo e integragdo de ferramentas externas se torna fécil com a linguagem

de dominio especifico.

iii

CONTENTS

1

INTRODUCTION

1.1 Context

1.2 Motivation

1.3 Objectives

1.4 Document Organization

STATE OF THE ART

2.1 Secure Design Flow
2.1.1 Software Development Life Cycle
2.1.2 Security and Safety Standards
2.1.3 Secure Coding Standards
2.1.4 Static Analysis
2.1.5 Continuous Integration

2.2 Domain-Specific Language (DSL)
2.2.1 Xtext and Xtend

2.3 Knowledge Engineering
2.3.1 Web Ontology Language
2.3.2 Semantic Web Rule Language
2.3.3 Protégé

2.4 Related Work
2.4.1 ANSYS SCADE Suite
2.4.2 Tool Chain Analysis
2.4.3 Intelligent Sensors

2.5 Summary

SYSTEM ANALYSIS

3.1 System Architecture

3.2 Design Flow Ontology
3.2.1 Competency Questions
3.2.2 Classes
3.2.3 Properties
3.2.4 Individuals
3.2.5 SWRL Rules
3.2.6 Reasoner Selection

3.3 Design Flow Modeling Language

3.3.1 Language Overview

iv

O 0 0 O O &b A B W W N R R

I
o O

[
[

11
11
12
12
13
14
14
16
16
17
18
18
20
21
21
21

3.3.2 Rules
3.3.3 Keywords
3.4 Summary
IMPLEMENTATION
4.1 Design Flow Ontology
4.1.1 Classes and Individuals
4.1.2 Properties
4.1.3 SWRL Rules
4.2 Design Flow Modeling Language
4.2.1 Grammar
4.2.2 Validators
4.2.3 Generators
4.3 DFML Framework
4.3.1 Inference Engine
4.3.2 Task Executor
4.3.3 Editor Customizations
4.4 Summary
RESULTS
5.1 Tests
5.1.1 Design Flow Ontology
5.1.2 Design Flow Modeling Language
5.1.3 Hypervisor MISRA Compliance
5.2 Results
5.2.1 Sample Project
5.2.2 Example Project
5.2.3 Security Evaluation
5.3 Discussion
5.4 Summary
CONCLUSION
6.1 Conclusions
6.2 Prospect for Future Work
6.3 Final Considerations

LISTINGS
A.1 DFML Grammar
A.2 Validators

A.3 Generators

Contents v

23
23
24
25
25
25
25
27
27
28
33
36
38
38
44
46
49
50
50
50
51
53
54
54
55
56
57

59
60

60
60
61

65
65
68
72

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

"V’ model example.

Static analysis tool architecture.
SWRL rule example.

DEML framework architecture.
The DFO taxonomy.

The DFO class diagram.

The DFML class diagram.

Class hierarchy and individuals.
Object properties matrix.

Data properties matrix.

SWRL rules.

DFML Ecore-based metamodel.
UI plugin extension points.
Example plugin extension points.
OOPS evaluation results.

SWRL Rule-7 test.

Junit tests” results.

DFML editor with sample project.

DFML program with errors.
Example wizard.

DFML editor with example.
Example design flow execution.
Unsecure design flow example.

Secure design flow example.

vi

11
15
18
20
23
26
26
27
28
32
48
49
51
52
52
54
55
56
57

58
59

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4
Table 5

The DFO competency questions.

The DFO object and data properties.

The DFO SWRL rules.

The DFML keywords.

Hypervisor MISRA compliance before and after refactoring.

vii

16
19
22
24
53

ACRONYMS

A
ANTLR ANother Tool for Language Recognition.

ASIL Automotive Safety Integrity Level.

C
cc Common Criteria.

ccMoDE Common Criteria compliant, Modular, Open IT security Development Environ-

ment.
crG Context-free Grammar.

cr Continuous Integration.

D

DFML Design Flow Modeling Language.
DFO Design Flow Ontology.

DL Description Logics.

DSL Domain-Specific Language.

E
EAL Evaluation Assurance Level.
EBNF Extended Backus-Naur Form.

eEMF Eclipse Modeling Framework.

G

GrL General Purpose Language.

viii

IDE Integrated Development Environment.

IRI Internationalized Resource Identifier.
IT Information Technology.

1TsDO IT Security Development Ontology.

o

owL Web Ontology Language.

R

RTO Runtime Ontology.

]
sA Static Analysis.
spDLC Software Development Life Cycle.

SIL Safety Integrity Level.

sspLC Secure Software Development Life Cycle.

SWRL Semantic Web Rule Language.

T
TcL Tool Confidence Level.

TOE Target of Evaluation.

U
ul User Interface.

uML Unified Modeling Language.

W

wsc World Wide Web Consortium.

Y

yAcC Yet Another Compiler Compiler.

Acronyms

ix

1

INTRODUCTION

In this chapter is presented the scope of this dissertation, its respective context as well as
the objectives and the motivation behind it. In the end, is also presented the organization

of this dissertation.

1.1 CONTEXT

Interconnectivity is the word that best describes the current paradigm of technology of
our world. People interact ubiquitously with various amounts of machines and devices
that are, in turn, interacting with other machines and devices. These devices range from
typical consumer electronic items, to vehicles and planes, from manufacturing control and
safety systems to critical medical and healthcare systems. The most recent forecast from
Gartner (2017) estimated 8.4 billion connected devices to be in use in 2017 and projected
20.4 billion devices by 2020, which begs the question of how security can be assured for all
these connected devices.

Looking at critical embedded software development industries like automotive and aero-
nautics, which require high assurance levels of safety and security, and recalling that the
low failure rate of the safety-critical software is achieved due to the mandatory requirement
for certification based on standards(Gutgarts and Temin, 2010), it seems that the answer to
the security problem might start by the mandatory compliance with safety- and security-
related standards. The use of such standards can be seen as a sign of the growing maturity
of the embedded software development.

The Common Criteria (CC) is an international standard that resulted from the combina-
tion of multiple countries Information Technology (IT) security evaluation criteria, therefore
making it recognized world-wide. Like many standards currently adopted by the safety-
and security-related industry, CC concerns not only with the product, referred to in CC as
Target of Evaluation (TOE), but also puts emphasis on the whole development process the
TOE goes through(ISO, 2009).

In order to stay competitive in an ever-demanding market and assure the safety and
security of its products and consumers, manufacturers are required to follow certification

1.2. Motivation

standards, like CC. In a typical embedded systems development process, designers and en-
gineers already have to manage the elevated complexity of the problem and make difficult
decisions and trade-offs concerning the different design metrics, which makes the extra
effort, time and cost required for certification an obstacle to the adoption and compliance
with a standard.

Currently, several approaches exploring different technologies to reduce the certification
costs and efforts are continuously being developed and seem to mainly focus on the use
of automation and/or modeling techniques to solve this problem. ANSYS (2016) provides
a model-based systems engineering solution for the development of safety-related systems
that lowers the time and cost of embedded software development and certification. A
similar approach is proposed by Slotosch et al. (2012), where they present another model-
based approach for tool chain analysis, that reduces tool qualification costs by detecting
critical tools and exposing specific qualification requirements for these.

This dissertation is inserted in the embedded systems area and is part of a collective
project titled Ontology-Driven Metamodeling Towards Hypervisor Design Automation. This
project focuses on the development of different subsystems of a hypervisor architecture
while promoting their reuse and reconfiguration via a semantically-enriched Domain-Specific
Language (DSL) infrastructure. Within this project, this dissertation’s work focuses on the
development of a framework to help the development process of critical embedded soft-
ware, such as a hypervisor, adhere to general safety and security co-engineering guidelines,
by making use of two modeling technologies, DSLs and ontologies.

Regarding DSLs, these are programming or description languages that target a specific
problem domain(Bettini, 2016). Their usage in the description or modeling of a specific
domain its quite appealing since they promote a simpler and faster development, while
providing higher gains in expressiveness, ease of use and productivity when compared to
a General Purpose Language (GPL), like Java or C(Mernik et al., 2005).

Although DSLs are great for modeling domains, Walter (2009) explains how enriching
a DSL with ontology allows for the specification of additional constraints and semantics,

providing better mechanisms for validation and consistency checking.

1.2 MOTIVATION

The opportunity to study and work with ontologies and semantic technology is what
piqued the author’s interest, since the beginning of this dissertation. These two subjects
were completely new to the author and posed an engaging and motivating challenge, re-
quiring research and study of a new topic which always results in great learning experi-
ences. For reasons already presented in the previous section, semantic technology seems

to be a very promising technology for dealing with the current problems and a trending

1.3. Objectives

solution for the future as well. Another area of interest is security, especially in software
development, which is a very concerning topic today.

1.3 OBJECTIVES

This dissertation’s objectives can be seen broadly in two major perspectives. In the first,
regarding the semantic technology area, it is intended to develop an ontology for the design
flow domain, which will be used not only for modeling but also for providing means of
assessing the safety and security properties of the modeled design flow via semantic rules.

In the second perspective, regarding the DSL, it is intended to develop the language
itself which, like its ontology counterpart, will be used as a simple description language for
modeling design flow definitions.

The ultimate goal of this dissertation is the framework that will provide support for the
language in the form of an editor and will be enhanced with reasoning capabilities that
comes from its integration with semantic technology. The framework will assist its user
while modeling a design flow, using the DSL, and perform its validation against safety-

and security-related guidelines, described in the ontology as semantic rules.

1.4 DOCUMENT ORGANIZATION

After a brief contextualization, motivation and objectives, presented in this chapter, Chap-
ter 2 introduces the theoretical foundations and concepts addressed in the development of
this work. In the same chapter are given some remarks regarding some previous conducted
work related to this dissertation’s scope.

In Chapter 3, is presented the overview of the system architecture for the proposed so-
lution and remarks regarding its design, with an explanation of every system component.
Then, are explained the details concerning the creation of the design flow ontology with
emphasis on its design process and concepts. Lastly, are discussed all the matters regarding
the language conception.

In Chapter 4, are presented the important details concerning the Design Flow Modeling
Language (DFML) framework implementation, in the domain of the DSL and the ontology.

In Chapter 5, are presented some test scenarios and discussed the results of the work
developed during this dissertation.

This document finishes with Chapter 6, where are presented the conclusions drawn from
the work developed and some considerations for future work in the improvement of the

framework.

2

STATE OF THE ART

This chapter presents the fundamental concepts that were addressed during the work de-
veloped in this dissertation. Also, are described some of the tools and technologies used to
tackle the objectives discussed in the previous chapter. Lastly, is showed some related work
in the scope of this dissertation.

2.1 SECURE DESIGN FLOW

In the past, security-related activities were performed only during testing, often resulting in
a high number of defects being discovered too late and increasing the cost of their resolution.
A more effective approach has been recently introduced under the concept of Secure Software
Development Life Cycle (SSDLC) which ensures that security-related activities are integrated
across the development process (Mougoue, 2016). By making security a continuous concern,
earlier detection and resolution of flaws will follow, leading to more secure software with
lower costs and, ultimately, lower risks for the organization.

2.1.1 Software Development Life Cycle

Software Development Life Cycle (SDLC) consists of a series of steps or phases that model the
development and maintenance of software artifacts, with the intent of producing a product
that is cost-efficient, effective and of high quality. Overall, the main phases defined in a
software development model consists of the analysis phases, where user requirements are
analyzed, design phase, where the software is designed, implementation phase, where the
software is coded, testing phase, where the software is tested not only for defects but for
the compliance with requirements, release phase and, lastly, maintenance of the released
software. Software development models are a very important topic in software engineering,
which have a huge impact on the SDLC, influencing testing and development time and cost.

Two of the most common SDLC methodologies are the more traditional Waterfall method-
ology and the more recent Agile methodology. Waterfall defines a more structured model
where each phase depends on the outcome of the previous phase and runs sequentially.

2.1. Secure Design Flow

. Validation
Requirements [oo System Testin
Spedcification ¥ g
Verificati
.| High Level » erffication Integration |
Design Testing
Verification
Low Level . .
) Unit Testing [«
Design

Implementation

h 4

Figure 1.: "V’ model example.

What this model provides in terms of simplicity and straightforwardness it lacks in flexibil-
ity as changes in the scope have severe impact in the project’s cost, time and quality. The
Agile model provides a more interactive approach in which the different phases operate
in parallel through cycles, resulting in a working product quickly being available. It pro-
motes the interaction between the customers and developers throughout the project, mak-
ing easier to react to changes and feedback. Despite providing flexibility, the foundational
requirements should remain unchanged to increase the chances of success of the project.
That requires some advanced level of maturity and skill in project development to be able
to define clear and thorough foundational requirements about the developed product.

Other SDLC models include the V-shaped model, showed in Figure 1, the iterative model,
and the spiral model, which are variations of the Waterfall and Agile models, retaining
similar advantages and disadvantages.

When comes to embedding security in the SDLC, the Waterfall and Waterfall-based
methodologies have the upper hand for two main reasons. First the importance of ad-
dressing security early in the analysis phase with the clear definition of security-specific
requirements, appropriate risk analysis scheduling and cost, make this stage critical, which
is a noted disadvantage in Agile methodologies. Another reason is the fact that secure
systems rarely change functionalities, naturally benefiting from a Waterfall rather than an
Agile methodology. Despite that, Agile may have a setting when its application regarding
security might be advantageous when compared to Waterfall. After the deployment of the
product, security must be dealt with as an ongoing process, as new vulnerabilities and new

threats appear they are better handled in a more iterative methodology, such as Agile.

5

2.1. Secure Design Flow

2.1.2 Security and Safety Standards

A standard is a document that establishes engineering and technical requirements that have
been decreed by authority or adopted by consensus, generally covering products, processes,
procedures, practices, and methods. Standards can be either de jure or de facto. A de jure
standard is an official standard with legal status and is, usually, produced by a national
or international organization which has no specific commercial interest or bias. A de facto
standard is a standard that has achieved a dominant position, by tradition, enforcement, or
market dominance.

CC (ISO, 2009) and IEC 61508 (IEC, 2005) are some of the main standards among many
currently adopted by the safety- and security-related industry.

The first one, already mentioned in the previous chapter, is according to Brewer (2000),
one of the most important information security standards. The CC defines seven Evaluation
Assurance Levels (EALs) which work as a scale of assurance with EAL 1 being the lowest and
EAL 7 the highest.

IEC 61508 is the functional safety standard concerning electrical, electronic and pro-
grammable electronic safety-related systems where failure affects people or the environ-
ment. The standard explicitly recognizes two types of failures: random hardware failures,
which concern specific components to which failure rates can be attributed to, like an elec-
tronic component, and systematic failures, which concern failures unique to a given system
and its environment, like software, for instance.

IEC 61508 defines the concept of Safety Integrity Level (SIL) which is quantitatively de-
fined as probability or frequency of dangerous failures depending on the type of safety
function, meaning that higher risk applications require greater robustness to dangerous
failures. IEC 61508 defines four SILs with SIL 1 being the least dependable and SIL 4 the
most. A SIL is determined based on a combination of quantitative and qualitative factors.
Quantitative factors address the frequency of failure and their comparison with a tolerable
risk target. Qualitative factors concern with minimization of systematic failures by appli-
cation of defenses and mechanisms, such as a secure development process and safety life

cycle management.

2.1.3 Secure Coding Standards

For the development of critical systems, the usage of a coding standard is imperative to
improve code safety, security, maintainability, and portability. The use of C/C++ language
can be even more troublesome for critical embedded systems as some of its features are not
fully specified. Often times, C/C++ features lead to interpretation mistakes where the code
behavior differs from what the programmer expects, while other features are implementa-

2.1. Secure Design Flow

Intermediate
Source Code Model Extraction _ Analysis Results
Representations

— ;@O:m%ﬁo@ :>Ej

Control Flow

Abstract Graph Call Graph
Syntax Tree |cFG)

Symbol Table g m

Figure 2.: Static analysis tool architecture.

tion dependent, affecting the portability of the code. Also, some C/C++ statements may be
ambiguous since compilers implicitly perform some operations such as type casting.

Due to the various pitfalls of the C++ language, that make it ill-advised for developing
critical systems, the main objective of the MISRA C++ guidelines are to define a safer subset
of the C++ language suitable for use in safety-related embedded systems (MISRA, 2008).
The MISRA guidelines define this safer subset with a series of 228 rules divided across
several categories including expressions, namespaces and preprocessing directives, just to
name a few. The main purpose of these rules is to restrict the occurrence of known pitfalls
and undefined behaviors of the C++ language. Many rules enforce the programmer to be
explicit, especially regarding types used in expressions, solving many of the ambiguities
of C++, while others address areas like code portability. MISRA also recommends the use
of static analysis tools/techniques, whenever possible, not only for validation but also to

enforce the compliance with its guidelines.

2.1.4 Static Analysis

Static Analysis (SA), or static code analysis, is a technique of program analysis that consists
in the examination of source code or object code without executing the program. Auto-
mated tools can carry out the static analysis to help programmers and developers find
bugs, coding standard violations and security and portability issues, by performing tasks
such as control flow and data flow analysis, check for memory leaks, buffer overruns, un-
reachable code, and other defects. Figure 2 shows a typical architecture of a SA tool. For a
deeper understanding regarding algorithms and the current state of the art in the field of
SA, the work of Meller and Schwartzbach (2015) is highly suggested. According to PRQA

(2016), automation and integration are vital in incorporating static analysis in the develop-

7

2.2. Domain-Specific Language (DSL)

ment process without disturbing development schedules. For instance, the integration of
static analysis with source control systems can help significantly with automation as doing
so, checking in code in a repository would trigger the analysis so that code defects can be

immediately noticed and quickly resolved.

2.1.5 Continuous Integration

Continuous Integration (CI) is a software development practice where members of a team
integrate their work into a shared repository several times a day (Fowler, 2006). Each inte-
gration is verified by an automated build system which includes automated testing tasks
to detect integration errors as quickly as possible. The early detection of bugs and code
defects introduced with integration allows software developers to quickly resolve them,

significantly reducing integration problems.

2.2 DOMAIN-SPECIFIC LANGUAGE (DSL)

Reminding again that DSLs are programming or description languages that target a specific
problem domain, in contrast with GPLs which have a generic purpose, is important to
emphasize that, while not all programs can be described with a DSL when compared to a
GPL, if a DSL covers a problem’s domain then this can be solved easier and faster using
that DSL instead of any other GPL (Bettini, 2016).

2.2.1 Xtext and Xtend

Xtext (Eysholdt and Behrens, 2010) is an Eclipse framework for development of program-
ming languages and DSLs. Besides allowing a simple implementation, Xtext provides sup-
port for a fully-featured infrastructure, complete with parser, linker, typechecker and com-
piler. The framework is also highly customizable, allowing for the creation of a custom
eclipse editor tailored to the specific language in development.

Xtend (Efftinge and Zarnekow, 2011) is a dialect of the Java programming language being
much more concise, readable and expressive. It provides many additional and improved
features like extension methods, lambda expressions, operator overloading and template
expressions, just to name a few. Another great feature of Xtend is the fact of it being com-
pletely interoperable with Java, as everything written in Xtend compiles into Java source
code and interacts seamlessly with any Java library as well.

Xtext is not the only tool available for building languages. Lex (Lesk and Schmidt, 1975)
and Yet Another Compiler Compiler (YACC) (Johnson, 1975) are another alternative used for

building compilers and interpreters. Lex uses a set of regular expressions to generate the

2.3. Knowledge Engineering

lexical analyzer or lexer, which is responsible for segmenting a sequence of characters from
a file into smaller and meaningful units called tokens. These tokens are used by the parser
to determine the syntax of a program, which is described using Context-free Grammar (CFG)
rules. YACC uses a set of these rules to generate a parser.

Another very well known tool for language development is ANother Tool for Language
Recognition (ANTLR) (Parr and Quong, 1995), which, similarly to YACC, generates a parser
from a simple grammar specification and is also widely used to build languages, tools
and frameworks, in fact, Xtext makes use of ANTLR to generate the parser used in the
developed languages.

Xtext provides a clear advantage over the other three as, just by itself and with a simple
grammar specification, is capable of creating all the necessary tools for supporting not just
the language but also a complete feature rich Integrated Development Environment (IDE) that
can be tailored according to the language. This advantage coupled with some already
existing experience working with Xtext made it the chosen tool for the development of the
DSL in this dissertation.

2.3 KNOWLEDGE ENGINEERING

Gruber (2007) defines ontology, in the scope of computer and information sciences, as a set
of representational primitives to model a domain of knowledge or discourse. In the case
of Web Ontology Language (OWL), explained in more detailed in the next section, the main
primitives are classes, object properties, data properties and individuals.

A class expresses a concept or a set of individuals with something in common. Classes
can be declared as either primitive or defined depending if they only describe necessary
conditions or necessary and sufficient conditions. A subclass relationship can be used
between classes to form hierarchies and they can also be declared as disjoint, if so, an
individual that belongs to one class is specifically excluded from belonging to another.
An object property establishes relationships between individuals. Like with classes, it is
possible to express subclass and disjoint relationships between object properties, as well as
restrictions on their cardinality, domain and range. It is also possible to express an inverse
relationship between object properties. A data property relates individuals to data values.
The same relationships and restrictions enumerated previously for object properties can,
likewise, be expressed between data properties. An individual represents an instance of a
class. It may belong to several classes simultaneously and is characterized by its object and
data properties in addition to the class it belongs to.

When these primitives are used to model a domain of knowledge in an ontology, the infor-

mation becomes available to be manipulated by a reasoner, which is a program that infers

2.3. Knowledge Engineering

logical consequences from a list of explicit asserted facts or axioms and, typically, provides
automated support for reasoning tasks such as classification, debugging and querying.

2.3.1 Web Ontology Language

In 2004, the World Wide Web Consortium (W3C) published a document that described OWL
as a language to be used for the semantic web. OWL was defined as a language that can
be used to explicitly represent the meaning of terms in vocabularies and the relationships
between those terms, in order to form an ontology. The goal of OWL was to provide a
richer vocabulary for describing concepts in an ontology, while at the same time making it
easier for computers to automatically process such information.

OWL can be separated into three sublanguages or profiles according to different levels
of expressiveness. OWLLite is the least expressive and provides hierarchy classification
and simple constraints. Then there is OWLDL, named due to its correspondence with De-
scription Logics (DL), which increases in complexity and provides maximum expressiveness
while guaranteeing that all conclusions are computable (completeness) and finish in finite
time (decidability). For that to be possible, OWLDL has access to all the OWL language con-
structs but they can only be used under certain conditions that help guarantee completeness
and decidability. The third sublanguage is OWLFull and it allows for maximum expressive-
ness without guaranteeing computational completeness and decidability. For that reason,
it is certain that no reasoning software will ever be capable of supporting every feature of
this sublanguage.

In 2009, a newer document was published describing OWL 2, an improved version of
OWL that included new features like syntactic sugar and allowed for more expressiveness
while maintaining a very similar overall structure to OWL 1. This document received a
second edition in 2012 being, currently, the most up to date documentation on OWL (W3C
OWL Working Group, 2012).

2.3.2 Semantic Web Rule Language

Since not all statements can be expressed using OWL constructs, the Semantic Web Rule
Language (SWRL) was proposed as an extension to the set of OWL axioms, to include Horn-
like rules (Horrocks et al., 2004). A rule consists of an antecedent (body) and a consequent
(head) and the meaning behind it is if the conditions of the antecedent hold then the con-
ditions of the consequent must also hold. Both the antecedent and consequent can contain
zero or more atoms. SWRL rules operate over individuals of the ontology and can be used
to directly express or infer new knowledge in the ontology. Figure 3 shows an example of
what an SWRL rule looks like and has the following meaning: if exists an individual of

10

2.4. Related Work

Man (?m) ©~ Child(?c) ~ hasChild(?m, ?c) -> Parent (?m)

I_'_l

Atom
L] L J

I T
Antecedent Consedquent

Figure 3.: SWRL rule example.

class Man, characterized by the variable ‘'m’, and exists an individual of class Child, 'c’, as
well as a relationship hasChild between ‘'m” and ’c’, then, ‘'m” belongs to class Parent. In

other words, this rule translates the knowledge that if a man has a child then he is a parent.

2.3.3 Protégé

Protégé, is a Java-based, free open-source ontology development tool created by Stanford
University (Noy et al., 2003). It is a very convenient tool for ontology development and
evaluation as it allows an ontology developer to quickly prototype and tweak different vari-
ants, assess them and experiment with the ontology behavior before committing to its final
model. The tool provides some facilities for testing the ontology like consistency checking
and the use of DL to query the ontology. It has built-in support for different reasoners
and also supports the use of plug-ins, like the SWRL Tab, that allows the formulation of
SWRL rules as well as testing their effect on the ontology, and the OWLViz, which provides
a visualization of the ontology taxonomy.

2.4 RELATED WORK

In this section are presented and discussed some of the related work in the scope of this
dissertation.

2.4.1 ANSYS SCADE Suite

The ANSYS company provides market solutions for engineering simulation and computer-
aided software development. SCADE Suite is one of its products in the line of embedded
systems that uses a model-based approach for critical embedded systems design and de-
velopment, having been successfully used in many safety-critical aeronautics systems by
Airbus, Boeing, Pratt & Whitney, General Electric and many others. The underlying lan-
guage of SCADE Suite is SCADE, a DSL dedicated to critical systems development which
belongs to the family of synchronous languages (Colao et al., 2017).

Overall, the suite provides requirements management, model-based design, verification,

certified code generation, and interoperability with other development tools, reducing cer-

11

2.4. Related Work

tification costs by simplifying application design, automating verification and generating
standard-specific documents. Beyond that, the main cause for the reduced certification
costs and efforts lies in SCADE Suite KCG Code Generator, which is certified under sev-
eral safety- and security-related standards. Because its generated code is already compliant
with the best practices of embedded code, costly code reviews and low-level verification

activities are no longer required (ANSYS, 2016).

2.4.2 Tool Chain Analysis

ISO 26262 is a safety standard, based on IEC 61508, specifically addressing the application of
embedded systems and software in the automotive industry (ISO, 2011). Besides defining,
similarly to IEC 61508, four Automotive Safety Integrity Levels (ASILs) levels ranging from
ASIL A to ASIL D, the standard requires determination of a Tool Confidence Level (TCL) for
each software tool that is achieved via a 2-step process.

In (Slotosch et al., 2012) the author explores the possibility of avoiding expensive tool
qualification by adding checks and restriction to the development process in order to de-
tect and prevent tool defects. According to ISO 26262 standard, by adding these checks
and restrictions the TCL can be lowered so that tool qualification is no longer required.
The authors propose a meta model for tool chains as well as a method for its usage in
tool chain evaluation and TCL determination. They highlight the main advantages of us-
ing a model-based approach: automation, adaptivity, explorability, rework support and
enhanced quality assurance due to automated plausibility checks, ultimately resulting in a
reduction of tool qualification costs.

2.4.3 Intelligent Sensors

In this section of the state of the art, is presented the work developed by Bialas (2011) for the
Common Criteria compliant, Modular, Open IT security Development Environment (CCMODE)
project (CCMODE, 2017), which main goal is to work out a CC-compliant methodology and
tools to develop and manage development environments of IT security-enhanced products
and systems for the purposes of their future certification.

In earlier work, Bialas (2010) introduced the patterns-based IT security development
method and discussed its validation on two different sensors, a medical sensor that re-
motely monitored patients and a methane detector deployed in a coal mine. In (Bialas,
2011) the author improves the method by using possibilities and advantages offered by the
knowledge engineering approach.

He concisely explains the process used for the development of IT Security Development
Ontology (ITSDO), an ontology which domain is constituted by the CC compliant IT security

12

2.5. Summary

development and the TOE development processes, from the definition of its domain and
scope, requirements specification, definition of classes and their hierarchy, definition of
class properties and restrictions, creation of instances and, finally, testing and validation.

The author uses the methane detector sensor as an example to drive the validation of the
ITSDO ontology application. He uses Protégé to show how the ITSDO is used to elaborate
the conceptual security model of the sensor, following the CC-related patterns, including
the identification of threats, specification of security objectives, specification of functional
security requirements for the security objectives, specification of security functions which
implement functional requirements and, finalizing the IT security development process, the
specification of security functions and their evaluation evidences.

The author remarks the advantages of the ontological approach by saying that ITSDO,
and to some extent ontologies in general, enable common understanding of the terms in
the ontology domain, facilitate the reuse and analysis of the domain knowledge and allow
the separation of domain knowledge from operation knowledge. Concluding, the author
shows that all advantages and possibilities offered by the ontological approach, may be

achieved with respect to the IT security development process.

2.5 SUMMARY

The subject study of this dissertation is contained in the secure development field, focusing
on the application of DSLs and semantic technology. It is intended to develop an ontology
as well as a DSL, targeting the domain of design flow, and a framework that can combine
and leverage both artifacts to guide the modeling of design flows in addition to perform
validation according to safety- and security-related standards.

The aim of this chapter is to familiarize the reading of this dissertation with the introduc-
tion of some technical terms and terminology as well as the presentation of the theoretical
background that supports this dissertation. Some of these topics are brought up in the
following chapters.

Regarding the related work, the presented solutions show the relevance of this field and
serve as proof of the application of DSLs and semantic technology when tackling problems

on par with this dissertation’s, even though in a more advanced level.

13

SYSTEM ANALYSIS

This chapter presents the fundamental analysis effort behind the conception of the work de-
veloped in this dissertation. The system architecture is detailed in addition to the method-

ologies employed in the development of both the ontology and language.

3.1 SYSTEM ARCHITECTURE

The system being developed was thought and approached, simplistically, as a text editor
capable of not only understanding the language being developed for the design flow do-
main, but also, capable of interfacing with its ontology counterpart. In terms of its broad
behavior, the system would parse a file written in the DFML language, translate its data
into an ontology equivalent and then execute the described design flow and, if necessary,
generate artifacts to support it.

Figure 4 displays an overview of the system, hereafter referred to as the DFML frame-
work, in the form of a block diagram. The DFML File is presented as the only input to
the framework and it describes a design flow to be executed, using the constructs of the
DFML'’s DSL. The User Interface represents the point of interaction between the user and the
framework, encompassing the editor and its features. The Design Flow Ontology contains
the knowledge representation of design flow domain concepts and also serves as the base
ontology from which the Runtime Ontology is derived. The Runtime Ontology is another
form of representation of the design flow described in the DFML File. This representation
allows for the data to be manipulated with the Reasoner, which is used to perform some op-
erations like retrieve information from the ontology, perform consistency checks and infer
new knowledge. The Ontology Manager, like the name suggests, is a subsystem to handle
ontologies operations like their creation and modification. The InferenceEngine is the core
of the DFML framework and its behavior can be described in two major steps. In the first
step, it begins by extracting the design flow model from the DFML file. After its valida-
tion, it starts parsing the model and mapping the DSL constructs into ontology axioms that
are used in the creation of the Runtime Ontology, finishing with the consistency check of
the produced Runtime Ontology. In the second step, it starts the execution of the chain of

14

3.1. System Architecture

activities that make the design flow by using the Reasoner to decide which activity is exe-
cuted until the last one, following the specified chain. The Build System block represents a
set of outputs of the framework which includes artifacts used to manage the build process
of a software project. The Design Flow Execution block simply represents the automated
execution of tasks carried out by the InferenceEngine.

DFML File

DFM L Framework

~——— _
Design Flow Build System

Ontolog

] Reasaoner Makefiles [| Bash scripts]
"-\-.___‘_-_-_._._._,_,-r“—-_-—'_ Py

Runtime [~ ¥ WL_'_?:\
Ontolog
\T_‘L/ i Tcl scripts]

Ontology InferenceEngine

——
Manager [1 % ‘g“ﬁ

User
Interface |

k

h 4

L
Secure Design Flow Execution

Coding/ Static

. ™ .
refactoring Analysis
Yy

—» Validation — Com pilation

F

p -

Figure 4.: DFML framework architecture.

15

3.2. Design Flow Ontology

Table 1.: The DFO competency questions.

What is the domain? Design flow description
Plan a design flow
What can the ontology be used for? Assess the safety and security of a design flow

Understanding the different phases of development
Is the design flow secure?
Is the design flow complete?
Does the design flow use static analysis?
Does the design flow use continuous integration?
What questions should the ontology answer? Does the design flow have errors?
What is the status of the activities?
Do activities have errors?
What files are used in an activity?
What tools are used in an activity?
It will be used by software designers/developers and general users
It will be maintained by software development domain experts

Who will use and maintain it?

3.2 DESIGN FLOW ONTOLOGY

For the development of the Design Flow Ontology (DFO), was considered the perspective pro-
vided by Noy and McGuinness (2001). According to them, the following are fundamental

rules to be considered during ontology design:

e There is no one correct way to model a domain. The best solution almost always
depends on the application that you have in mind and the extensions that you antici-
pate.

e Ontology development is necessarily an iterative process.

e Concepts in the ontology should be close to objects (physical or logical) and relation-
ships in your domain of interest. These are most likely to be nouns (objects) or verbs
(relationships) in sentences that describe your domain.

They also describe a step-by-step ontology development process and address some complex
issues that arise during ontology design.

3.2.1 Competency Questions

The first step in ontology development consists in determining the domain and scope of the
ontology and for that the authors suggest the use of competency questions as a mechanism
to help defining them. Table 1 contains the competency questions formulated during the
analysis of the DFO. The ontology will be used mainly for design flow description and to
help its users planning and assessing a design flow with regards to their safety and security
properties.

16

3.2. Design Flow Ontology

3.2.2 Classes

Following the formulation of the competency questions, was done the enumeration of terms
to be included in the ontology. Since a design flow involves a chain of activities and each
activity generally uses tools and/or files, the terms activity, tool and file were immediately
selected. When working with tools or files the terms like option, name, location are often
used as properties of both these concepts. Also, since the design flow encompasses a
chain of activities, the ontology would need terms to specify the order of such activities
and so, the terms first, last, next and previous were also included. Regarding the design
flow evaluation, since the goal is to guarantee its security, the terms evaluation, goal and
status were considered. When doing some categorization, more generic and encompassing
terms appeared like resource and process. Other initially contemplated terms were discarded
during the successive iterations of the ontology for either being to generic or overlapping
with other terms. That was the case with terms like Input and Output, for instance.

After the enumeration of the useful terms to be part of the ontology came perhaps the
most important part of the ontology development, the definition of classes and their hierar-
chy. This step helps to differentiate between terms that describe an object with independent
existence, thus being used to specify a class, and terms that describe these objects, that are
used to specify properties of classes, which should be addressed in a following step, al-
though as the authors put it, both are closely intertwined. The definition of the classes
and their hierarchy resulted in the taxonomy displayed in Figure 5. The owl:Thing class is
a predefined class in any OWL ontology. It represents, as the name suggests, things and
every defined class belongs to this class. If a class does not belong to the owl:Thing class,
that indicates that something is wrong with that class as it cannot be classified as a thing,
being instead classified as a subclass of owl:Nothing. Next comes the first set of subclasses
that start to filter the set of all individuals into something more specific. The Entity class
represents the set of units or building blocks that are part of any design flow and has two
subclasses: Activity and Resource. Activity defines the basic structural unit of a design flow,
which can be chained and consume resources, being also refined into five subclasses ac-
cording to different stages of the design flow. Resource establishes the resources used in the
execution of an activity and is further specialized with the classes File and Tool. Although
Figure 5 represents the final version of the taxonomy, the Goal class was one of the last to
be included as it simply exists for the sole purpose of providing some organization and
stands for the goal of a process. This concept will become clearly understood when the
created individuals or instances are explained. The class Process, much like the previous
class, serves the purpose of providing some organizational structure to the ontology, being
further refined into the DesignFlowEvaluation class which represents the evaluation process

of the design flow with regards to its security properties. The last generic class is Prop-

17

3.2. Design Flow Ontology

IntegrationActivity

AnalysisActivity

/X . DesignActivity

A
Activity =]
- A

VerificationActivity

— @Iementationl\@

Entity . S i e
=d

Resource
_ A B Goal

o "4 s=2
owl:Thing X .
-a o
NA .
is-a Process <}—Is=2 DesignFlowEvaluation

Property)<}-i5-2
“Ais-a

Figure 5.: The DFO taxonomy.

erty and encompasses properties of the Entity class. It is specialized in the class Status,
which establishes the status property of an activity, and Option, which defines a property
of resources, for instance, the name of a file or the directory of a tool.

3.2.3 Properties

As the classes alone are not able to answer the competency questions, the next step in the
further refinement of the ontology focuses on the definition of classes” properties.

Table 2 contains the object properties, represented by the ¥, and the data properties of
the DFO. The third column represents the type of a property which can be asserted, when
it is explicitly assigned, or inferred, in this case, from an SWRL rule. The last column
indicates the range of the property which, in the case of object properties is always going to
be another class, and in the case of data properties is a data type where ’(int)’ represents an
integer number, '(string)” represents simply a string and "(boolean)’ represents a true/false
or yes/no condition.

3.2.4 Individuals

The last step is the creation and parametrization of individuals which represent an instance
of the class they belong to. The DFO contains six individuals in total instantiated across
three different classes. The DesignFlowEuvaluation class contains an instance that materializes

the required evaluation named Evaluation. For the Goal class an individual named Security

18

3.2. Design Flow Ontology

Table 2.: The DFO object and data properties.
Class Property Type Range
Activity hasNext* Asserted Activity
hasPrevious* Asserted Activity
hasFile* Asserted File
hasTool* Asserted Tool
hasStatus® Asserted Status
isActivityOf* Asserted DesignFlowEvaluation
hasError Inferred (string)
isFirst Asserted (boolean)
isLast Asserted (boolean)
Goal isGoalOf* Asserted Process
Option isOptionOf* Asserted Resource
isRequired Asserted (boolean)
optionName Asserted (string)
optionOrder Asserted (int)
optionValue Asserted (string)
Process hasGoal* Asserted Goal
DesignFlowEvaluation hasActivity* Asserted Activity
hasError Inferred (string)
isComplete Inferred (boolean)
isSecure Inferred (boolean)
usesClI Inferred (boolean)
usesSA Inferred (boolean)
Resource hasOption* Asserted Option
isResourceOf* Asserted Activity
File isFileOf* Asserted Activity
fileExtension ~ Asserted (string)
fileLocation Asserted (string)
fileName Asserted (string)
Tool isToolOf* Asserted Activity
toolDomain Asserted (string)
toolLocation ~ Asserted (string)
toolName Asserted (string)
Status isStatusOf* Asserted Activity

was created to represent the goal being achieved by the Evaluation individual. The Status

class contains four individuals that represent the possible state of an Activity and these are
NotFinished, NotStarted, Finished and Started.
In Figure 6 is a Unified Modeling Language (UML) class diagram representation of part of

the ontology. The classes contain its data properties, with the inferred ones being suffixed

19

3.2. Design Flow Ontology

DesignFlowEvaluation

Secure Goal isComplete:xsd:boolean* Evaluation

hasGoal/isGoalof—| UsesSAxsd:boolean® Ly
usesCl:xsd:boolean®
isSecure:xsd-boolean®
hasErrorxsd:string®

AnalysisActivity

_ hasActivity/isActivityOf

DesignActivity

hasNext/hasPrevious
1

Activity
ImplementationActivity Status
> istastasd:boolean | hacstatus/isstatusOf <}
isFirstxsd:boolean] [I |

hasError-xsd:string*
SR Finished NotFinished Started NotStarted

VerificationActivity

hasResource /isRe sourceOf

IntegrationActivity Option

Resource
name xsd:string

hasOption/isOption0f— grder-xsd:int

value:xsd:string
isRe quired:xsd-boo lean

L.

Tool File
name xsd:string name:xsd:string
location:xsd:string location:xsd:string
domain:xsd:string extension:xsd:string

Figure 6.: The DFO class diagram.

with the *, and object properties and its inverses represented by connections between
classes. The six individuals are highlighted in green.

3.2.5 SWRL Rules

The ontology by itself is still not able to answer some of the competency questions concern-
ing the design flow validation. For that was necessary to develop SWRL rules that extend
the flexibility of the ontology making it capable of providing answers to the remaining
questions.

Table 3 contains the seven semantic rules that were developed for the DFO. To answer the
question about the security of a design flow was decided that a design flow is considered
secure if it is complete, meaning to have at least one activity in every one of its phases,
and includes static analysis and continuous integration tools. Rule-1 was therefore formu-
lated to translate that concern and is responsible for the evaluation of the security of the
design flow. Rule-1 by itself cannot answer the question and is supported by three other
rules. Rule-2 is used to infer whether a design flow is complete, while Rule-3 and Rule-4

20

3.3. Design Flow Modeling Language

are used to infer the use of static analysis in the verification phase and continuous integra-
tion in the integration phase, respectively. This type of interaction achieved between rules
demonstrates the flexibility provided by SWRL rules and how they are able to provide more
complex inferences over the ontology. Rule-5 and Rule-6 are both used to report activities’
errors during the execution of the design flow. Rule-5 accounts for unfinished activities
and Rule-6 particularizes the case of executing an activity before its precedent activities are
finished. Finally, Rule-7 notifies when the desired goal of security for a design flow is not

met.

3.2.6 Reasoner Selection

Regarding the selection of a reasoner, a comparison of the different available reasoners
done by Bock et al. (2008) was taken into account. Pellet was selected for showing good
performance at load and classification time, especially for small and simple ontologies like
DFO. Furthermore, it offers support for SWRL, on which DFO greatly depends, and an
interface via OWLAPI as well as being available as a plug-in for Protégé which facilitates

testing.

3.3 DESIGN FLOW MODELING LANGUAGE

Regarding the design of the language, the author’s experience from past work with a DSL
and Xtext/Xtend Bettini (2016) was taken into account. The aim of the DFML is to allow
the textual description of a design flow by using the very own syntax of the domain and
additionally to some extent, work as an abstraction layer for ontology management which

relieves its user from the need to understand and interact with ontologies directly.

3.3.1 Language Overview

To use the DFML language correctly in a file, this latter is required to have the ".dfml’
extension. Since the aim is to describe a design flow, a ".dfml’ file was initially thought out
as having a first section for the design flow description followed by a section for a more
detailed description of the activities and ending with a section for describing resources,
either files or tools. After several development iterations, a feature was introduced to allow
the description of a resource template promoting the reuse in various design flows. With
it was necessary a file, with the same ’.dfml” extension, but with a different type of content
that would provide the needed physical separation between a file that described a design
flow and the one that described a resource template.

21

3.3. Design Flow Modeling Language 22

Table 3.: The DFO SWRL rules.
isComplete(Evaluation, true)
“usesSA(Evaluation, true)
“usesCI(Evaluation, true)
-> isSecure(Evaluation, true)
AnalysisActivity(?a)
"DesignActivity(?d)
“ImplementationActivity(?i)
“VerificationActivity(?v)
“IntegrationActivity(?int)
"hasActivity(Evaluation, ?a) Rule-2
“hasActivity(Evaluation, ?d)
"hasActivity(Evaluation, ?i)
“hasActivity(Evaluation, ?v)
"hasActivity(Evaluation, ?int)
-> isComplete(Evaluation, true)
VerificationActivity(?a)
"hasActivity(Evaluation, ?a)
“hasTool(?a, ?t) Rule-3
“toolDomain(?t, “StaticAnalysis”)
-> usesSA(Evaluation, true)
IntegrationActivity(?a)
"hasActivity(Evaluation, ?a)
“hasTool(?a, ?t) Rule-4
“toolDomain(?t, “ContinuousIntegration”)
-> usesCI(Evaluation, true)
hasStatus(?a, NotFinished)
-> hasError(?a, " Activity failed its execution and/or did not finished.”)
hasNext(?a, ?b)
“hasStatus(?b, Finished)
“hasStatus(?a, NotFinished)
-> hasError(?b, ”Activity finished before its previous activities.”)
isSecure(Evaluation, false)
"hasGoal(Evaluation, Security)
-> hasError(Evaluation, “The design flow was declared secure but is
insecure.”)

Rule-1

Rule-5

Rule-6

Rule-7

Figure 7 shows a representation of DFML in a UML class diagram, with the right side
grouping the template description content and the left side grouping the design flow de-

scription.

3.3. Design Flow Modeling Language

analysisActivities
designActivities
implementationAct vities

nActiities

integrationActivities

Main
TemplateModel DesignFlowModel
-secure : EBoolean
rificati
option
templates ¥ 11 resources | activities 0.*
1 1 13
‘ Option
ResourceTemplate) ~req - FRoolean ValueType SetOption) Resource Activity
options, - valueType options resources
0.+ | -mul:EBoolean 11 0.* p : 1.2 - i
-name : EString § ; neme ESting .[name jEstine |
-range : EString[1]
ToolTemplate FileTemplate File Tool

~domain - EString

StringValue FileReference

value

-value : EString

1.1

-filePath : EString

-toolPath - EString

|

fileTemplate
11

toolTemplate
1.1

3.3.2 Rules

Figure 7.: The DFML class diagram.

In order for a DFML program to be considered valid, it has to follow a set of rules as failing

to do so would raise errors in the described model.

e A design flow must have at least one activity and one resource;

e A design flow must not have duplicate activities;

e An activity must have one and only one tool associated to it;

e The design flow must use an activity;

e An activity must use a resource;

¢ A required option must be used;

e The range of an option must be respected;

e A tool can only reference files if both, the tool and referenced files, belong to the same

activity;

e Activities, tools, files and options must have different names;

3.3.3 Keywords

The available keywords provided by the DEML are represented in Table 4.

23

3.4. Summary

Table 4.: The DEML keywords.

Keyword Description

Activity Defines an activity

Analysis Defines the set of activities for the analysis phase

Design Defines the set of activities for the design phase

domain Declares the tool domain

File Defines a file

filename Declares the file name

FileTemplate Defines a file template

Implementation Defines the set of activities for the implementation phase

Integration Defines the set of activities for the integration phase

multiple Declares an option as multiple (used multiple times with
different values)

option Defines an option

range Declares the range of values an option can take

required Declares an option as required

SecureDesignFlow Declares a secure design flow

Tool Defines a tool

toolpath Declares the tool location

ToolTemplate Defines a tool template

Verification Defines the set of activities for the verification phase

3.4 SUMMARY

This chapter started with the presentation and analysis of the system architecture for the
DFML framework with the detailed view of every major system component. Then followed
the description of all the analysis process for the ontology and language. On the ontology
side, was briefly described the methodology used followed by its execution, starting with
the elicitation of concepts and ending with the SWRL rules. On the language side, was
given an overview with the help of an UML class diagram followed by a set of rules as well

as a list of keywords to be part of the language that are close to the design flow domain.

24

IMPLEMENTATION

This chapter builds on the analysis efforts from the previous chapter, presenting the imple-
mentation process of both the ontology and language in addition to the DFML framework.
The ontology is built with following the class hierarchy devised in the analysis chapter,
the data and object properties are realized and parametrized, its individuals are instan-
tiated and the SWRL rules are implemented. The language grammar is specified using
Extended Backus-Naur Form (EBNF) notation and validators are implemented to enforce the
previously defined rules of the language. Lastly, is detailed the framework development,
emphasizing some of the major classes responsible for the semantic integration with the

language and some of the editor customizations.

4.1 DESIGN FLOW ONTOLOGY

After the analysis exercise, the implementation of the DFO was a very straightforward
process. The ontology for this dissertation was implemented in OWL2 using the Protégé
5 ontology editor. First were created the classes, then were declared the object and data
properties followed by the instantiation of individuals and, finally, the creation of semantic

rules.

4.1.1 Classes and Individuals

Figure 8 is a screen shot of the OntoGraf tab in Protégé where are displayed the DFO classes,
represented by the yellow circle, and individuals, represented by the purple diamond.

4.1.2 Properties
Declaration of object properties in Protégé simply involve the attribution of the range and

domain, characteristics which allow for a more enriched meaning of a property, and inverse
properties that contribute to a more complete ontology. Figure 9 contains all the object

25

4.1. Design Flow Ontology

File Edit WView Reasoner Tools Refactor Window Help

[@ esrg:df (esrg:df) - search... |

Active Ontology % | Entities x| Object Proparties x Data Properties x | Indviduals by class x| OWLVEZ X OntoGraf x | SWRLTab x|

Class hierarc| Thing [MEEE § OntoGr:

MEEE

[] v | o R
Tl = ~TT
T oemny AEIEEEEIREREEE OoOIEEIEE
T Ay ssactivty
IS .DesignActivit_y »
VerificationA
v @ Resource

o

A

File @ DesignFlowEvalu
=@ Tool ation
~- @ Goal
V- @Process
@ DesignFlowEvaluation
V. @ Property
© option [norstared H # otFinished |)\
© Status |
— [2 < I:Thi > Goal Securi
- . - @ Property | ® owiThing || @ Goal | @ Security I
] l
_-
@ ImplementationA
" N
B Activit DesignActivi
. [® resource ([Activity]—rfl @ Desig iy |
{ gy | 1
- L
m { R
| ¥
@ IntegrationActi
vity
[« fii [»

To use the reasoner click Reasoner = Start reasoner Show Inferences

Figure 8.: Class hierarchy and individuals.

File Edit Wiew Reasoner Tools Refactor Window Help
|® esrg:df (esrg:df) 'H Search... |
Active Ontology x| Entities x| Object Properties x| Data Properties x | Individuals by class x| OWLViz x| OntoGraf x| SWRLTab x| Property matrix x
‘Oh]ect property matrix ‘ Data property matrix ‘ Object properties palette: DEEE
Object property matrix: = =]
||-‘ ﬂ Fit columns to content ‘| Fit columns to wlnduw| b mowlitopObjectProperty
Object Property j Func Trans ASym Refl Irrefl Domain Range Inverse
v p
mhasNext O O [m] [Activity Activity hasPrevious
¥ isComposedof O O O O O
m hasOption [m] O O O [|Resource Option isOptionOf
= hasGoal O 0 0 [[pracess Goal isGoalof
m hasResource O O O O [Activity Resource isResourceof
= hasTool | | O [|Activity Tool isToolof
hasFile [m] [m] O [Activity File isFileOf
®m hasStatus O O O [Activity Status isStatusof
®m hasActivity O (] (] (] (] DesignFlowEvaluation Activity isActivityOf
Y- misPartOf 0 0 0 0 0
misOptionOf O O O O [|option Resource hasOption
misStatusof O (] (] (] (] status Activity hasstatus
isGoalof m] O0 O0 O0 [|Goal Process hasGoal
isActivity Of [m] O [m] O [Activity DesignFlowEvaluation hasActivity _
¥.-misResourceOf [m] O O O [|Resource Activity hasResource Classes palette: =Rk
- misFileOf O (] (] (] (] File Activity hasFile
- misToolOf [m] [m] [m] [m] [[Tool Activity hasTool
-~ mhasPrevious O O O [|Activity Activity hasNext - ® owl:Thing
[D] | [
To use the reasoner click Reasoner = Start reasoner Show Inferences

Figure 9.: Object properties matrix.

properties declared in the ontology. Some of these properties, like hasTool for instance, were
declared as functional properties. If a property is functional, for a given individual, there
can be at most one individual that is related to the individual via the property. This means if

26

4.2. Design Flow Modeling Language

esrg:df (esrg:df) : /home/mike/miguel/Documents/Escola 2016-20 sertation/DSL/resources/dfo (copy 1).owl]

File Edit WView Reasoner Tools Refactor Window Help

< © esrg:df (esrg:df) ~ | Search...
Active Ontology | Entities x| Object Properties | Data Properties x | Individuals by class x OWLViz x OntoGraf x| SWRLTab x Property matrix
Object property matrix | Data property matrix
Data property matrix: owl:topObjectPrope (ME EE Asserted
- Fit columns to content | Fit columns to window »-- mowl:topObjectProperty
Data Property : Func Domain Range
pE owitopDatarropert) I = I
v m activityDataProperty Activity xsd:boolean
i misFirst v Activity xsd:boolean
~-misLast v Activity xsd:boolean
v- mfileDataProperty File xsd:string
~-mfileName v File xsd:string
- mfileLocation v File xsd:string
- mfileExtension £l File xsd:string
V- mdesignflowDataProperty DesignFlowEvaluation xsd:boolean
-musesCl v DesignFlowEvaluation xsd:boolean
~-misComplete v DesignFlowEvaluation xsd:boolean
- -musesSA v DesignFlowEvaluation xsd:boolean
~-misSecure v/ DesignFlowEvaluation xsd:boolean
- mhasError
V- moptionDataProperty Option (xsd:boolean or xsdiint or xsd:string) _
--moptionName v Option xsd:string
.- misRequired v Option xsd:boolean g
--moptionvalue v Option xsdistring peEiE
~-moptionOrder v Option xsd:int b @ owl:Thing
v-mtoolDataProperty Tool xsd:string
- mtoolLocation v Tool xsd:string
i -mtoolName v Tool xsd:string
~-mtoolDomain v Tool xsd:string

] » o4 »

To use the reasoner click Reasoner = Start reasoner v Show Inferences

Figure 10.: Data properties matrix.

an individual Compile hasTool Compiler and also Compile hasTool CCompiler, then because
hasTool is a functional property, the reasoner can infer that Compiler and CCompiler are
the same individual. Nevertheless, if Compiler and CCompiler are explicitly declared as
different individuals, the previous inference by the reasoner would lead the ontology to
a state of inconsistency. Because an activity can have one and only one tool, hasTool was
therefore declared as a functional property.

Regarding data properties, showed in Figure 10, all of them were declared as functional
properties apart from hasError, as this property can have multiple values, for instance, the

evaluation of a design flow can be negative with one or more errors.

4.1.3 SWRL Rules
The SWRL rules were inserted in the ontology with the help of the SWRLTab plug in,

displayed in Figure 11. For each created rule was given a name as well as a short description
of its purpose.

4.2 DESIGN FLOW MODELING LANGUAGE

As stated before, the DSL was implemented using the Xtext framework with Eclipse IDE.

For the creation of the language support infrastructure, Xtext requires only a grammar

27

4.2. Design Flow Modeling Language

File Edit View Reasoner Tools Refactor Window Help
= @ esrg:df (esrg:df) ~|| Search...

Active Ontology x | Entities x| Object Properties x| Data Properties x | Individuals by class x| 0WLviz x| OntoGraf x SWRLTab x

Name Rule Comment
v dfCl toolDemain(?t, "Continuousintegration”) ™ hasActivity(Evaluation, 7a) ~ hasTool(?a, 7t) ™ IntegrationActivity(?a) -= usesCl(Evaluation, true) Check if design flow uses Continuou...
| [|dfcomplete [AnalysisActivity(?a) ~ DesignActivity(?d) ~ ImplementationActivity(?i) ~ VerificationActivity(?v) ~ IntegrationActivity(?int) ~ hasActivity(Evaluation, ?a) ™ ...
v dfsa VerificationActivity(?a) ~ hasActivity(Evaluation, 7a) ~ hasTool(?a, ?t) ™ toolDomain(?t, "StaticAnalysis”) -> usesSA(Evaluation, true) Check if design flow uses Static Anal...
v dfSecure isComplete(Evaluation, true) ~ usesSA(Evaluation, true) ~ usesCI(Evaluation, true) = isSecura(Evaluation, true) Check if design flow is secure
v| errActFailed hasStatus(?a, Started) -= hasError(?a, "Activity failed it's execution andfor did not finished.") Check if activity has failed
v errActStatus hasNext(?a, ?b) ~ hasStatus(?b, Finished) = hasStatus(?a, NotFinished) -> hasError(?b, "Activity finished before its previous activities.") Check activity's status consistency
v| errDfinsecure isSecura(Evaluation, false) ~ hasGoal(Evaluation, Security) -> hasError(Evaluation, "The design flow was declared secure but is insecure.") Check design flow evaluation results
Edit o x
Name
|dfcomplete
Comment
[Check if design flow is complete
Status
ok

New Edit Clone | Delete

—| 1AnalysisActivity(a) ~ DesignActivity(?d) = ImplementationActivity(?i) ~ VerificationActivity(?v) ~
Control |Rules | Asserted Axloms | Inferred Axioms | @ |ntegrationActivity(?int) ~ hasActivity(Evaluation, 7a) ~ hasActivity(Evaluation, 7d) ~
hasActivity(Evaluation, ?1) ~ hasActivity(Evaluation, ?v) ~ hasActivity(Evaluation, ?int) -=

Using the Drools rule engine. isComplete(Evaluation, true)

Press the 'OWL+SWRL->Drools' button to transfer SWH
Press the 'Run Drools' button to run the rule engine,
Press the 'Drools-=0WL' button to transfer the inferre:

The SWRLAP| supports an OWL profile called OWL 2 RL
See the 'OWL 2 RL' sub-tab for more information on thi

Cancel Ok

To use the reasoner click Reasoner = Start reasoner [v Show Inferences

Figure 11.: SWRL rules.

specification of the language. Some aspects of the language can be directly described in the
grammar while other have to rely on language validators, simply by choice or because they
cannot be expressed in the grammar specification. Validators also work as a mechanism for

providing additional constraint checks to the language that cannot be done at parsing time.

4.2.1 Grammar

The DFML grammar is described in over 100 lines of Xtext and displaying its full length
would compromise the readability of the main text. Therefore smaller snippets of the
grammar were selected to be detailed next while the complete grammar listing is provided
in Appendix A.1.

Main:
DesignFlowModel | TemplateModel

Listing 4.1: Main rule snippet.

Listing 4.1 contains the Main rule which essentially delegates any model into two differ-
ent rules each corresponding to those two types of dfml files, either a resource template or
a design flow description.

28

4.2. Design Flow Modeling Language

1| TemplateModel:

-

11

13

15

templates+=ResourceTemplate+

Listing 4.2: TemplateModel rule snippet.

In the case of the TemplateModel rule, it creates a set of resource templates, denoted by the
use of the '+=" signs, and it must contain at least one element, as is characterized be the

usage of the rightmost "+’ sign in the grammar rule (see Listing 4.2 line 2).

DesignFlowModel:
(secure?=’SecureDesignFlow’)?
>Analysis:’

analysisActivities+=[Activity]x*
’Design:’

designActivities+=[Activity]lx*
’Implementation:’

implementationActivities+=[Activity]x*
>Verification:’

verificationActivities+=[Activity]lx*
’Integration:’

integrationActivities+=[Activity]=*
&activities+=Activity+

&resources+=Resource+

Listing 4.3: DesignFlowModel rule snippet.

As for the DesignFlowModel rule, displayed on Listing 4.3, it specifies the layout, attributes
and elements of a design flow. First, it is declared a boolean attribute, given by the use of the
"?=" characters, named "secure” which is used to indicate whether the model being described
requires security constraint checks or not. In Xtext, grammar keywords are denoted by
being enclosed in single quotes (’), so for a design flow to be declared secure, the keyword
'SecureDesignFlow” must be used prior to its description. Then, follows the layout of the
activities through the different phases of the design flow, with each phase having its own
set of activities. The use of the ¥ symbol, which means zero or more in Xtext, indicates
that the set of any phase can contain zero or more elements. Each set’s element is a cross-
reference to an element of type Activity, as denoted by the use of the square brackets ([]).
This means that a user can reference an activity by its name and Xtext will resolve that
cross-reference by searching in the program for an element of the Activity type with the

-

4.2. Design Flow Modeling Language

given name. If no element is found and error is automatically issued. For this mechanism

to work, the referred element must have an attribute called 'name’.

Activity:
>Activity’ name=ID ’{’
resources+=[Resource]+

7})

Listing 4.4: Activity rule snippet.

As can be seen in the Activity rule in line 2 of Listing 4.4, this indeed possesses the 'name’
attribute which is preceded by the "Activity” keyword. The activity’s resources are enclosed
in brackets ({}), and the resources set must contain at least one or more cross-references to a
resource. This definition enforces the semantic value of the ontology’s Activity concept and

is an example of how semantic support is provided even from the grammar specification.

ResourceTemplate:

ToolTemplate | FileTemplate

Resource:
Tool | File

Listing 4.5: ResourceTemplate and Resource rules snippet.

In Listing 4.5 are shown two very similar rules that delegate the general resource into one
of two types, either a tool or a file. Because the rules that handle each resource are very
similar only the tool type will be described next.

ToolTemplate:
>ToolTemplate’ name=ID (’domain’ domain=STRING)?’{’
options+=0ptionx*

7})

Listing 4.6: ToolTemplate rule snippet.

In the case of the ToolTemplate rule, the definition of a tool template begins with the use of
the keyword "ToolTemplate” followed by the name of the template. Optionally as indicated

30

2

-

(&3]

11

4.2. Design Flow Modeling Language

by the use of the ?” symbol, the domain of the tool template is specified and the options
available are enclosed in brackets, as shown in Listing 4.6.

1| Tool:

’Tool’ (’(’toolTemplate=[ToolTemplate]’)’)? name=ID ’{’

3 ’toolpath’ toolPath=STRING

options+=SetOption*

5 ;}7

Listing 4.7: Tool rule snippet.

The tool definition begins with the "Tool” keyword followed by the template that its options
are inherited from, which is an optional attribute, and its name, as can be seen in Listing 4.7.
Enclosed in brackets are the "toolPath” attribute which unequivocally references the tool’s

executable and a set of options, being the latter inherited from a tool template.

SetOption:
option=[0ption] ’=’ valueType=ValueType

Listing 4.8: SetOption rule snippet.

In Listing 4.8 is displayed the SetOption rule which is used to set options in resource defini-
tions. It simply cross-references an option and attributes it a value.

ValueType:

StringValue | FileReference

StringValue:
value=STRING

FileReference:

value=[File]

Listing 4.9: ValueType, StringValue and FileReference rules snippet.

31

4.2. Design Flow Modeling Language

This value can be one of two types, either a string literal (StringValue rule) or a cross-
reference to a file (FileReference rule), that is why the ValueType rule was folded into two, as
seen on Listing 4.9.

Option:
(req?=’required’)? (mul?=’multiple’)? ’option’ name=ID (’range’ ’{’
range+=STRING (’,’ range+=STRING)* ’}°’)?

Listing 4.10: Option rule snippet.

Finally, the definition of an option is declared in the Option rule in Listing 4.10. It contains
two boolean attributes, ‘req” and ‘'mul’, which are used to characterize an option as required
and/or multiple, respectively. Following those attributes is the keyword “option’, the name
of the option and, optionally, the range of possible values the option can take, which are
enclosed in brackets and preceded by the keyword 'range’.

Ecore Model

Xtext uses the Eclipse Modeling Framework (EMF), which provides modeling and code gen-
eration facilities, for the creation of the model of the parsed program. From the grammar
specification Xtext automatically infers the EMF metamodel for the language, that is de-
fined in the Ecore format. Ecore format is a subset of UML class diagrams, as can be seen
on Figure 12. During parsing, an EMF model is created from the parsed program, which is
extensively used in tasks such as validation and code generation.

#| DFML.ecore E3

w | platform:/resource/orgatext.dfml/model/generated/DFML.ecore
v B dFML
EH Main
H TemplateModel -> Main
H DesignFlowhodel -> Main
H Activity
H ResourceTemplate
H TeolTemplate -» ResourceTemplate
H FileTemplate -» ResourceTemplate
H Resource
H Teol -» Resource
E SetOption
H ValueType
E StringValue -> ValueType
E FileReference -> ValueType
[File-» Resource

E Option

Figure 12.: DFML Ecore-based metamodel.

32

11

13

15

4.2. Design Flow Modeling Language

4.2.2 Validators

Validators are a mechanism used in Xtext to perform some checks to the language that can-
not be expressed in the grammar or cannot be done at parsing time. For instance, a default
validator that is automatically created by Xtext is one that validates that the name of every
element in an EMF model is unique. Validators are written using the Xtend programming
language in a very declarative way. They simply provide the errors or warnings to Xtext
which takes care of generating the error markers in the DSL’s IDE.

Xtext performs validation by invoking each method annotated with ‘@Check’, passing all
of the EMF model instances that have a compatible runtime type to each such method. The
type of the single parameter is important because the error method can only be called on
variables of the same type as the parameter.

@Check
def checkActivityHasTool (Activity activity) {
var toolCounter = 0
for (resource : activity.resources) {
if (resource instanceof Tool) {

toolCounter++

X

}

if (toolCounter < 1) {
error ("Missing tool on Activity ’" + activity.name + "’",
DFMLPackage.Literals.ACTIVITY__NAME)

X

else if (toolCounter > 1) {
error ("Multiple tools on Activity ’" + activity.name + "’",
DFMLPackage.Literals.ACTIVITY__NAME)

}

Listing 4.11: checkActivityHasTool validator.

The first validator checks if an activity contains a tool. As can be seen in Listing 4.11, this
validator starts by creating a variable to store the number of tools of an activity, then it
iterates through each element of an activity’s resource set and for each element that is an
instance of type "Tool” it increments the tool counter. In the end two conditions are verified.
If the number of tools is less than one is emitted an error stating there is a missing tool
for the corresponding activity. If the number is higher than one is emitted an error stating
there are multiple tools in the corresponding activity.

33

4.2. Design Flow Modeling Language 34

1| @Check
def checkOptionRange (SetOption setOption) {
3 if (setOption.valueType instanceof StringValue) {

if (!setOption.option.range.isEmpty && !setOption.option.range.
contains ((setOption.valueType as StringValue).value)) {
5 error ("Value does not belong to the option’s range", DFMLPackage
.Literals.SET_OPTION__VALUE_TYPE)

}

Listing 4.12: checkOptionRange validator.

In Listing 4.12 it is first checked if the 'valueType’ is an instance of the ‘StringValue’. If
true, is then checked if the option’s range is not empty and if it does not contain the value
attributed to the option. If both these conditions are true is issued an error informing of

the incompatibility between the option’s value and the range of accepted values.

@Check

2l def checkActivityToolOptions (Activity activity) {

var Tool tool

4 val EList<File> toolRefFilelList = new BasicEList<File>

6 // Get activity’s tool

for (resource : activity.eCrossReferences) {
8 if (resource instanceof Tool) {
tool = resource as Tool
10 }
}

12

// Get tool referenced files

14 for (option : tool.optioms) {
for (reference : option.valueType.eCrossReferences) {
16 if (reference instanceof File) {

toolRefFilelList.add(reference)
18 }

20}

22 for (file : toolRefFilelList) {

if (lactivity.resources.contains(file)) {

24

26

11

13

17

19

4.2. Design Flow Modeling Language

error ("Tool ° + tool.name + "’ references file ’ + file.name +
"?> that does not belong to the activity", DFMLPackage.Literals.
ACTIVITY__RESOURCES)

}

Listing 4.13: checkActivityToolOptions validator.

The validator on Listing 4.13 checks if the files referenced by the tool belong to the same
activity as the tool itself. First is created a variable that will store the activity’s tool and a
list to store the referenced files followed by the identification of the activity’s tool as well as
the referenced files, which are each stored in their respective variables. Then the validator
iterates through each element of the referenced files list and for each element that is not

part of the activity’s resources is issued an error.

@Check
def checkUnusedActivity (Activity activity) {
//List of used activities
val EList<Activity> usedActivitiesList = new BasicEList<Activity>

val model = activity.eContainer as DesignFlowModel

usedActivitiesList.addAll (model.analysisActivities)
usedActivitiesList.addAll (model.designActivities)
usedActivitiesList.addAll (model.implementationActivities)
usedActivitiesList.addAll (model.verificationActivities)

usedActivitiesList.addAll (model.integrationActivities)

//Traverse declared activities
for (currentActivity : model.activities) {

if (!(usedActivitiesList.contains (currentActivity)) && (

currentActivity.name == activity.name)) {

error ("Unused Activity °’" + activity.name + "’", DFMLPackage.
Literals.ACTIVITY__NAME)
}

Listing 4.14: checkUnusedActivity validator.

To prevent unused activities from cluttering the design flow description, the validator from
Listing 4.14 was implemented. First are created two variables, one is a list to store used

35

-

11

13

15

4.2. Design Flow Modeling Language

activities and the other stores the entire design flow model. Then, all the activities from
the different phases are collected in the used activities list and, finally, the model is used to
traverse through each activity to verify if each belongs to the used activities list. If not, an
error is emitted stating the which activities are not being used.

In order to avoid extending this subject too much, the rest of the validators are detailed
in the Appendix A.2.

4.2.3 Generators

After the program is parsed and its representational model is validated, code generation
takes place. The DSL Xtext editor is already integrated in the automatic building infras-
tructure of Eclipse and so the generator is automatically called when a source file written
in DFML is saved. To implement a code generator in Xtext is only necessary to override
the void doGenerate(Resource res, IFileSystemAccess fsa) method, which receives
an EMF Resource with the model of the program, and the IFileSystemAccess with the
path location where generated code will be written to. In this method is only necessary to
specify the relative path where the generated file will be created and its content as a string.

Generally, code generators are used in DSLs to generate code for GPLs, however in this
case, the DFML framework uses them to provide support for the generation of CMake-
Lists.txt files according to Kitwares build system platform, CMake (Kitware, 2017).

The current CMake supported commands are present in the CMakeLists file template,
written in DFML, in Listing 4.15. In a CMakelLists file, only the cmake minimum_required
command is required but other common commands are project, add_executable and

target_include_directories.

FileTemplate CMakeLists {
required option cmake_minimum_required
option enable_language
option project
multiple option add_custom_command
multiple option add_custom_target
multiple option add_executable
multiple option add_library
multiple option add_subdirectory
multiple option aux_source_directory
multiple option file
multiple option include_directories
multiple option link_directories
multiple option link_libraries

multiple option 1list

36

17

11

13

4.2. Design Flow Modeling Language

multiple option set
multiple option target_include_directories

multiple option target_link_libraries

Listing 4.15: CMakelLists file template.

Listing 4.16 contains a snippet of the CMakeLists generator. First are retrieved from the
model all the File objects that use the CMakeLists file template (line 4). Then, the list
is iterated and for each object is generated a file using the filePath attribute which has
its name. Regarding the content of the file, it is generated using the multi-line template
expressions offered by Xtend. This type of expressions is enclosed in triple single quotes,
can span multiple lines and a newline in the expression corresponds to a newline in the
final output. The variable parts can be inserted in the expression using guillemets(<>>>),
and valid Xtend code can be used inside them to perform loops, conditions or call methods.
For instance, every file that is generated starts with a comment stating that it was generated
by the DFML framework (line 8). Then, in the first set of guillemets (line 10), the model’s
File object is parsed for the first option, in this case cmake minimum _required, after that, the
name of the option is printed followed by the “(VERSION ” set of characters and then the
option’s value followed by the closing parenthesis ’)’. The rest of the generator works in
a very similar way, parsing a command and then printing its name followed by its value
enclosed in parenthesis, but for all the different supported commands. The complete listing
of the generator is available in Appendix A.3.

override doGenerate (Resource resource, IFileSystemAccess2 fsa,
IGeneratorContext context) {
val model = resource.contents.get(0) as DesignFlowModel
if (model !== null) {
val cmakeFiles = model.getFilesFromTemplate ("CMakeLists")
for (cmakefile : cmakeFiles) {
fsa.generateFile (cmakefile.filePath,

20

DFML generated file

<val ol = cmakefile.parseOption("cmake_minimum_required").
iterator .next>

<ol.option.name>> (VERSION < (ol.valueType as StringValue).
value>>)

<K IF !cmakefile.parseOption("project").empty>

<FOR o : cmakefile.parseOption("project")>

37

15

17

19

21

23

25

27

29

4.3. DFML Framework

<o.option.name> (K (o.valueType as StringValue).value>)
< ENDFOR>
<KENDIF>

<K IF !cmakefile.parseOption("add_custom_command") .empty>>

<FOR o : cmakefile.parseOption("add_custom_command")>
<o.option.name> (K (o.valueType as StringValue).value>)
< ENDFOR>

<K ENDIF>

20

Listing 4.16: CMakeLists generator snippet.

4.3 DFML FRAMEWORK

Most of the DFML’s IDE features were provided directly from Xtext, as it already provides
a fully featured editor for the DSL being developed. Smaller customizations to the editor
were introduced, but the major development effort was focused on its integration with
semantic technology. Java was the language used for the development of the framework
and the OWLAPI which provides an interface for manipulating OWL ontologies using Java
(Horridge and Bechhofer, 2011).

4.3.1 Inference Engine

As was said previously in the Section 3.1, the Inference Engine is the core component of the
DFML framework and, therefore, a specific Java class for this component was created.

public class InferenceEngine {
public static class RTOntology {
public OWLOntology ontology = null;

public boolean isInsecure = false;

private static ExecutorService executorService = Executors.

newSingleThreadExecutor () ;

38

11

13

15

17

19

21

23

25

27

29

31

33

35

37

private static

private static

private static

private static

private static

private static

4.3. DFML Framework

final boolean debug = false;

final boolean verbose = true;
final String ontIRI = "esrg:df";
final String rtOntIRI = "dfml:df";
boolean isInitialized = false;

OWLOntologyManager manager = OWLManager.

createOWLOntologyManager () ;

private static
O3
private static
private static
private static
private static
private static
private static

private static

private static
private static
private static
I0OException;
private static
I0Exception;
private static
private static
resources) ;
private static
Set<OWLAxiom>
private static

activities);

OWLDataFactory factory = OWLManager.getOWLDataFactory

OWLOntology ontology = null;
RTOntology runtimeOntology = new RTOntology () ;

PelletReasoner reasoner = null;

final String CONSOLE_NAME = "InferenceEngine";
MessageConsole console = null;
MessageConsoleStream out = null;
MessageConsoleStream err = null;

void createConsole () ;
boolean checkConsistency (OWLOntology ontology);
void saveOntology (String exportOnt) throws

void loadOntology (String importOnt) throws

void parseDesignFlowModel (DesignFlowModel model) ;

void parseResources (EList<org.xtext.dFML.Resource>

void parseOptions(org.xtext.dFML.Resource resource,
axioms) ;

void parseActivities (EList<org.xtext.dFML.Activity>

public static boolean init () ;
public static void parseDSL (Resource resource) ;

public static void runDesignFlow(Resource resource);

Listing 4.17: InferenceEngine interface.

Listing 4.17 contains all the variables and functions implemented in this class which is

detailed next. Starting in line 2, the RTOntology serves as a data structure for represent-

39

4.3. DFML Framework

ing the runtime ontology of the InferenceEngine. It is composed of an ontology and a
state variable which indicates its state regarding security. Since this class will be respon-
sible for executing a design flow, that means it will need to be able to execute each step
asynchronously. Java provides a series of utility classes commonly useful in concurrent pro-
gramming from which the ExecutorService was selected for providing a complete asyn-
chronous task execution framework, managing queuing and scheduling of tasks. More
specifically, the SingleThreadExecutor (line 7) was used because, as read from the docu-
mentation, it uses a single worker thread operating off an unbounded queue, that means
the number of tasks to be executed has no limits and they are executed sequentially one
at a time. It perfectly fits to the situation of the design flow execution since, likewise, only
one task will be executed at a time. Lines 9 and 10 contain two boolean flags, debug and
verbose, used during development for controlling some debug features and the amount of
verbose or information presented during the framework execution, respectively. On lines
12 and 13 are two strings which represent the Internationalized Resource Identifiers (IRIs) of
the DFO and the Runtime Ontology (RTO). These simply serve as a mean for identifying
and referencing the ontologies. The isInitialized flag is used to indicate whether the
InferenceEngine is initialized (line 15). For the InferenceEngine to be able to manipulate
ontologies, an ontology manager is required. The OWLOntologyManager (line 16) is declared
by the OWLAPI and provides methods for creating and editing ontologies. Simultaneously,
the engine will also handle with OWL data types, thus requiring the OWLDataFactory (line
17) also declared by the OWLAPI. Lines 18 and 19 have the declaration of two variables for
holding two ontologies, the first will be a reference to the DFO which will serve as a base
for the construction of the second, the RTO. The PelletReasoner (line 20) is also necessary
to be able to do inferences on the RTO. Lastly, for being able to display some information to
the user, the framework requires a console. On line 21 is declared a string which contains
the name of the console, line 22 contains the reference to the actual MessageConsole and
lines 23 and 24 have the two streams of data to the console, one for general output and
other for errors specifically.

Lines 26 to 33 contain several auxiliary methods used in the InferenceEngine. The
createConsole() is used when initializing the engine for creating the console and assigning
its output streams. For performing ontology consistency analysis, the checkConsistency ()
method is used which returns the result using a boolean data type. Besides checking for
the logical consistency of the ontology, this method also provides information with regards
to the security evaluation that is performed on the design flow, identifying and clarifying
to the user the reason for the security evaluation results as well as providing guidelines
on their correction, if so. The methods loadOntology () and saveOntology() are used for
loading ontologies during the initialization of the engine and saving them various times

throughout the execution of the framework. The last four methods are used in the first

40

10

12

14

16

18

20

22

4.3. DFML Framework

major step of the InferenceEngine, the parsing of the model, with each method focusing
on a specific element of the model. Generally, the parsing involves the translation of the
information of the model into OWL axioms that are then added to the RTO.

The last three methods were declared public and correspond to the initialization of the

engine and each of the two main steps it executes.

public static boolean init () {
if (!isInitialized) {
// Setup InferenceEngine console

createConsole () ;

// Load design flow ontology
try {

LoadOntology ("resources" + File.separator + "dfo.owl");
} catch (IO0Exception e) {

e.printStackTrace () ;

// Create a reasoner for the InferenceEngine
if (ontology != null) {
reasoner = PelletReasonerFactory.getInstance ().

createNonBufferingReasoner (ontology) ;

// Check ontology consistency

isInitialized = checkConsistency(ontology) ;

}

return isInitialized;

Listing 4.18: init() method.

Starting with the init () method represented on Listing 4.18, it begins by verifying if the
engine was already initialized. If not, then is created the engine’s console with the auxiliary
method createConsole (line 4) followed by the loading of the DFO ontology. After the
load, comes the creation of an instance of the reasoner (line 15). First is verified if the ontol-
ogy was in fact loaded successfully and, if so, the reasoner is created and the consistency
of the ontology is immediately checked with the result being used for setting the state of
the initialization of the engine. If the consistency is false, so is the initialization state and if
it is true, which tends to always be the case since the ontology being loaded is a tested oc-

41

10

12

14

18

20

22

24

26

28

30

32

4.3. DFML Framework

currence of the DFO, then the initialization is also true, finishing with the return statement

of this value.

public static void parseDSL(Resource resource) {

final String local_log = "[ParseDSL] ";

// Check if the DSL model is valid

IResourceValidator validator = ((XtextResource)resource).
getResourceServiceProvider () . getResourceValidator () ;

List<Issue> issues = validator.validate (resource, CheckMode.
FAST_ONLY, CancellIndicator.NullImpl);

if (!'issues.isEmpty ()) A
err.println(local_log + "There are errors in the model.");
issues.forEach(error -> err.println(local_log + error.getMessage ()
)5
out.println(local_log + "Aborting InferenceEngine run...");

3

else {

out.println(local_log + "Parsing + resource.getURI().lastSegment

() + u..‘u);

try {
// Create new ontology for runtime manipulation
if (runtimeOntology.ontology != null) {
if (manager.contains (runtimeOntology.ontology)) {

manager .removeOntology (runtimeOntology.ontology) ;

}
runtimeOntology.ontology = manager.createOntology (IRI.create(
rtOntIRI), manager.getOntologies());
} catch (OWLOntologyCreationException el) {
el.printStackTrace () ;

final DesignFlowModel model = ((DesignFlowModel) resource.
getContents () .get (0));

// Create all instances in the runtime ontology
parseDesignFlowModel (model) ;
parseResources (model.getResources ());

parseActivities (model.getActivities ());

42

34

36

38

40

42

44

46

4.3. DFML Framework

out.println(local_log + "Parse complete: + runtimeOntology.

ontology.getAxiomCount () + " axioms were inferred.");

// Check consistency

checkConsistency (runtimeOntology.ontology) ;

// Save ontology
try {

SaveOntology (ResourcesPlugin.getWorkspace () .getRoot ().
getLocation() + resource.getURI() .path().replaceFirst("/resource",
"").replace(".dfml", "") + ".owl");

} catch (IOException e) {
e.printStackTrace () ;

3

return;

Listing 4.19: parseDSL() method.

The parseDSL () method is in charge of performing the translation of the DFML model, that
resulted from the parsed program, into an ontology so that this can be manipulated by the
framework during the design flow execution, as shown in Listing 4.19.

The first step consists in obtaining an instance of the IResourceValidator to perform
validation of the extracted model. If there are any issues those are displayed in the console
to the user and the functions returns, otherwise the parsing process can begin. Before going
straight to the parsing, it is first created the new ontology that would be used to hold the
information derived from the model.

First is confirmed that there is not already an existing runtime ontology, if one does exist
it is removed from the ontology manager, after that a clean runtime ontology is created
and inserted with axioms copied from the initially loaded DFO (line 22). Concluding that
procedure, the parsing begins with the declaration of the model variable which stores the
model of the program (line 27) followed by the execution of the auxiliary functions that
effectively parse the model elements.

Starting with the general design flow parsing, here the hasGoal data property may be
asserted depending on the state of the isSecure attribute that is set in the DFML program.
Then each activity has its individual created and assigned to the specific phase as well
as have the order of execution established by the assertion of the hasNext object property,
according to the model. The hasStatus object property is also asserted between each activity
individual and the NotStarted individual, which essentially serves to set every activity in
the not started state. Simultaneously for each activity are asserted the isFirst and isLast data

43

11

13

4.3. DFML Framework

properties, accordingly, and the method ends with the insertion of all the asserted axioms
in the RTO ontology.

The parseResources () method receives the list of resources from the model and iterates
each of them, first identifying the type of the resource, file or tool, and following a series
of procedures accordingly. For instance, in case of a tool, an individual of class Tool is
created and, after the information of the model goes through some processing, the toolName,
toolLocation and toolDomain data properties are asserted. Then, for each resource is executed
the parseOptions () method which takes care of creating the individuals of the Option class
and asserting their object and data properties.

The last auxiliary method executed is the parseActivities() which receives the list
of activities from the model and asserts the hasTool and hasFile object properties for each
activity individual as well as the hasActivity object property with the DesignFlowEvaluation
individual, finishing with the insertion of all the axioms in the ontology.

After printing a short message indicating the successful parsing procedure, the just cre-
ated RTO ontology is checked for logical consistency in addition to the design flow security
evaluation and saved. The parseDSL() finishes with the return statement and with it the
first step of the InferenceEngine is concluded.

4.3.2 Task Executor

During the design flow execution step, the framework needs to be able to handle the exe-

cution of the activities” commands and so, the TaskExecutor class was created.

public class TaskExecutor implements Callable<Boolean> {

private String[] command;

private static String workingDirectory = null;

private static final String CONSOLE_NAME = "TaskExecutor";
private static IOConsole console = null;

private static BufferedReader in = null;

private static I0OConsoleQutputStream out = null;

private static IOConsoleOutputStream err = null;

private IOConsole findConsole(String name) ;

TaskExecutor (String[] command, String workingDir) ;

@0verride public Boolean call();

Listing 4.20: TaskExecutor interface.

44

10

12

14

16

4.3. DFML Framework

As can be seen from the interface shown in Listing 4.20, TaskExecutor implements the
Callable Java interface since its instances will be executed by another thread, separated
from the main thread. The Runnable interface was initially considered but because it was
necessary to return the results of the command’s execution, and since this does not allow
any type of return, it ended up being rejected in favor of the Callable interface.

In terms of internal variables, the TaskExecutor class has an array of strings to store the
command and its parameters (line 2) as well as a string for the working directory from
which the command is executed. Similarly to the InferenceEngine, the TaskExecutor
also uses a console which not only serves the purpose of presenting information to the
user regarding the commands execution, but it is also used to prompt the user regarding
its successful execution when such cannot be inferred automatically. Therefore, the class
contains a string which stores the name of the console (line 4), a reference to the console
itself (line 5) and three data streams, for input, output and errors.

Regarding its internal methods, it contains only the findConsole() method which is
useful for each instance to be able to find and use the same console instead of having each
spawning its own console, which would end up being very unpractical. If the console is
not found then one is created.

The constructor (line 12) is called when each instance is created and it simply initializes
all the internal variables.

Lastly, the call1() method, which is an override method per the Callable Java interface,
is where the command execution is effectively carried out. Listing 4.21 contains a snippet

of its implementation.

@0verride
public Boolean call()
{

ProcessBuilder pb = new ProcessBuilder () .redirectErrorStream(true) ;
pb.directory(new File(workingDirectory)) ;

// Command processing

pb. command (cmd) ;

p = pb.start () ;

Thread outputGobbler = new Thread(new StreamGobbler (p.getInputStream

(), out));
outputGobbler.start () ;

45

18

20

22

24

26

28

4.3. DFML Framework

if (p.waitFor (INTERVAL, TimeUnit.SECONDS)) {
retVal = p.waitFor ();

b
else {
throw new InterruptedException("Process became unresponsiveln");

}
outputGobbler. join () ;

// Process return value

Listing 4.21: call() method code snippet.

After initializing some local variables and displaying in the console the working directory
and command to be executed, a ProcessBuilder object is created to manage the command
execution. First is set the working directory and, after some command processing, the
command is also set and its execution started.

Because some commands might generate a lot of output, care was taken to have a dedi-
cated separated thread just to handle it to prevent the main thread from failing to be able
to process it, thus hanging the main application. This thread is created on line 15 and it
starts executing on line 16.

Then, in the main thread is waited the command execution termination, but in order to
prevent the command from remaining in execution indefinitely, the waiting lasts only for a
determined interval, after which an exception is thrown to forcibly destroy the processing.

Normally, upon the termination of the command execution, all that is left to do is the
processing of its return value. When this value is zero, which indicates a successful execu-
tion, the methods terminates, otherwise the user is informed of its value and prompted to
either stop the design flow from proceeding or allow it to continue, if the return value is

the expected one.

4.3.3 Editor Customizations

As stated in the beginning of this section, Xtext already provides most of the DFML editor
features but some customizations were necessary to add some required functionality into

the framework.

46

N

IS

4.3. DFML Framework

Menus and Keyboard Shortcuts

To begin with, the InferenceEngine execution needs to be embedded with the editor and to
do so, some methods were implemented to allow its execution to be triggered via context
menus or the use of keyboard shortcuts. When creating the DSL project for the first time,
Xtext creates a dedicated project just for the User Interface (UI) portion of the DSL’s Eclipse
editor. In this project resides the plugin.xml file which contains information on how to
display icons and menu items and so on in the editor’s Ul. Adding a new menu item
to be displayed in the UI required the modification of this file and the actions associated
with it were defined in a Java class. In total were developed two pairs of context-specific
menu entries, one for each step of the InferenceEngine, for the project explorer context
and another for the editor context, together with a keyboard binding for each menu entry.
Because the implementation shares very similar procedures, only the menu entry for the
execution of the first step of the InferenceEngine in the editor context will be detailed.
Starting with the menu handler which codes the behavior of the menu item, first is
identified, from the event that is received from the UI, the instance of the active editor and
from this is obtained a reference to the file currently displayed in the editor, which should
be a DFML file. Then, a thread is spawned and verifies if the InferenceEngine is initialized

before executing the parseDSL() method, as can be seen in Listing 4.22.

@0verride
public Boolean exec(XtextResource file) throws Exception
{
if (InferenceEngine.Init()) {
InferenceEngine.ParseDSL(file) ;

}

return Boolean.TRUE;

Listing 4.22: Handler code snippet.

In order for a menu entry to display the item that would trigger this action, some entries
were added in three extension points on the plugin.xml of the UI project, as shown in Fig-
ure 13. First was created a new handler, in the org.eclipse.ui.handlers extension point,
that matches a commandId with the Java class of the given behavior which was described
before. In the org.eclipse.ui.commands, was added an entry that refers to the commandId
and provides the name to be displayed in the menu and a description of the command.
Lastly, was added a new entry on the org.eclipse.ui.menus corresponding to the same
commandId and a condition for when that menu entry is visible, which only happens when
the DFML editor is opened.

47

4.3. DFML Framework 48

Regarding the keyboard shortcuts, in the org.eclipse.ui.bindings extension point en-
tries were added to bind the commandId with a sequence of key presses. The 'F1” key was
bound to the first step of the engine while the 'F9” was bound to the second.

All Extensions 13 PO

Define extensions for this plug-in in the following section,

type filter text

4= org.eclipse.ui.editors A Add...
v 4= org.eclipse.uihandlers
org.eclipsextext.ui.editer.hyperlinking, OpenDeclaration (handler) Remove
org.xtext, DFMLvalidate (handler)
org.eclipse.xtext.ui.editor.copyqualifiedname. EditerCopyQualifiedMame (hz
org.eclipsextext.ui.editer.copyqualifiedname.QutlineCopyQualifiedMame Up
org.xtext.dfml.ui.handler.RuninferenceEngineFromTextEditor (handler)
org.xtext.dfmlui.handler.RuninferenceEngineFromProjectExplorer (handler) Down
org.xtext.dfml.ui.handler.RunDesignFlowFromProjectExplorer (handler)
org.xtext.dfml.ui.handler.RunDesignFlowFromTextEditer (handler)
w 4= org.eclipse.ui.commands

wal [oe] [os] [oe)] [] [o=] [o2] [o2

Trigger expensive validation (command)

Copy the qualified name for the selected element (command)
Copy the qualified name for the selected element (command)
Run the InferenceEngine (command)

Run the InferenceEngine (command)

Run the Design Flow (command)

o) [oe] [o=] [o2] [[32] [

Run the Design Flow (command)
w 4= org.eclipse.ui.menus
v i popup#TextEditorContext?after=additions (menuCentribution)
~ [H] orgstext.dfmluihandler.RuninferenceEngineFromTextEditor (commanc
w |¥| falze (visibleWhen)
% orgxtext. DFML.Editor.opened (reference)
% popup:#TextEditorContext?after=group.edit (menuContribution)
¥ nonunEFTevtFditorCnntext ?after- conv (menuContributinn)

Figure 13.: Ul plugin extension points.

DFML Project Wizard

Another customization introduced in the editor was a specific DFML project wizard that
guides the user into creating and setting up a new DFML project. Once again, the Xtext
framework proves its usefulness and flexibility by generating a lot of the boiler plate classes
required to support such a wizard being only necessary to complete a few stubs. One
of this stubs is the generateInitialContents() procedure which is automatically called
when creating a new project using the project wizard. Like the name indicates, this method
generates the initial content for the new project and, in this case, the project has available a
series of ".dfml’ files which provide support for some development tools like CMake, Make,
PRQA’s static code analyzer and Jenkins continuous integration system. Beyond that it also

provides a sample design flow description, so the user can avoid starting one from scratch.

Example Project Wizard

One last customization implemented was the addition of another wizard, for the creation
of a complete working example of a DFML project to help the user better understand the
use of the framework. Once again, this only took the addition of a few entries on the
org.eclipse.emf.common.ui.examples extension point of a plugin.xml file, displayed in

Figure 14. These entries contain a small description of the example and a reference to a

".zip’ file with all the project’s content.

All Extensions

Define extensions for this plug-in in the following section.

type filter text

o= org.eclipse.ui.newWizards

o= org.eclipse.ui.newWizards

o= org.eclipse.ui.newWizards

o= org.eclipse.ui.newWizards

w 4= org.eclipse.emf.common.ui.examples

w 1% DFML Example (example]
i| Exarnple project that performs generation
¥ dfmlexample.cmake/Medel.dfml (fileToO

< >

Figure 14.: Example plugin extension points.

4.4 SUMMARY

Presenting the implementation details of this dissertation was the focus of this chapter.
First was explained the creation of the DFO which started with the creation of the classes
and properties and the instantiation of individuals followed by the addition of the SWRL
rules. Then, regarding the DFML language was described the grammar rules implemented
in Xtext, the validators which perform additional checks that cannot be done at parsing
time and the CMakeLists code generator. Finally, was demonstrated the implementation
of the DFML framework. The two major classes, InferenceEngine and TaskExecutor,

which make the core of the framework were explained in detail as well as some of the UI

customizations done to the editor.

d P
ARSI

Add...

Remove

4.4. Summary

49

RESULTS

In this chapter are evaluated and presented the results of the work of this dissertation. First
will be described the tests done regarding the ontology and the language followed by the
exhibition of some use case scenarios to showcase the DFML framework and finishing with
a discussion of the obtained results.

5.1 TESTS

The testing of the DFML framework was split according to its two main parts. Regard-
ing the ontology, it was tested for its full integrity and usability as well as its semantic
rules, which were tested separately. As for the DSL, this was tested using the Junit (Junit,
2017) framework and some additional utility classes provided by Xtext. Lastly, as part of
a collaborative work, was conducted a code review on the hypervisor developed by some
colleagues to assess its compliance with the MISRA standard.

5.1.1 Design Flow Ontology

During its elaboration, the DFO ontology was tested to avoid commonly known errors and
validated to assess its usability using OOPS (Poveda-Villalon et al., 2009) which is available
as a web service at http://oops.linkeddata.es/. As can be seen from Figure 15, three
pitfalls were flagged in the DFO, one from the minor category and two belonging to the
important category. The minor pitfall refers to 53 ontology elements from DFO which do
not have any human readable annotations tied to them. The other two pitfalls refer to the
lack of declaration of ontology metadata, such as version information, creation date and so
on, and the lack of license information that applies to the ontology. Because the resolution
of these pitfalls did not seem to directly impact the functionality of the DFML framework
they were left to be addressed in a future iteration.

50

http://oops.linkeddata.es/

5.1. Tests

Evaluation results

It is obvious that not all the pitfalls are equally important; their impact in the ontology will depend on multiple factors, For this reason, each
pitfall has an importance level attached indicating how impeortant it is. We have identified three levels;

= Critical ™ : It is crucial to correct the pitfall. Otherwise, it could affect the ontology consistency, reasoning, applicability, etc.

= Important © ;: Though not critical for ontology function, it is important to correct this type of pitfall.

= Minor ' ' : It is not really @ problem, but by correcting it we will make the ontology nicer

[Expand All] | [Collapse All]
Results for P08: Missing annotations. 53 cases | Minor
Results for P38: No OWL ontology declaration. ontology® | Important
Results for P41: No license declared. ontology™ | Important

Figure 15.: OOPS evaluation results.

SWRL Rules

Contrary to the overall ontology evaluation, the evaluation of the SWRL rules were rather la-
borious. For each rule, the necessary conditions were manually asserted in a clean instance
of the ontology, then the reasoner would be used to execute the rules and the inferences
would be evaluated against the expected result.

The semantic rules were divided across three test scenarios, the first tested Rule-1, Rule-
2, Rule-3 and Rule-4 in a scenario of a secure design flow being successfully evaluated,
the second tested both Rule-5 and Rule-6 as involved errors related to activities, and the
last tested Rule-7 which involved errors in the evaluation. For example, to test Rule-7,
the object property hasGoal and the data property isSecure were both manually asserted
for the Evaluation individual and after the activation of the reasoner, the inferred properties
showed up, denoted by the colored background, as can be seen in Figure 16. As the inferred

properties correspond to the expected, the test was deemed successful.

5.1.2 Design Flow Modeling Language

Xtext is integrated with Junit, which is a unit test framework for Java, and provides a series
of classes that were used to perform tests on certain components of the DFML language
during its implementation.

One of the first components tested was the language parser and the test consisted simply
in providing a sample program to the parser and verify the constructed EMF model. This
is accomplished using an assertion, which is a way of specifying the desired outcome and
comparing it with the actual outcome. If both outcomes are the same, the assertion succeeds,
otherwise, it fails.

All the developed language validators were also tested, each with its own unit test using
Junit. For each test was provided a sample code that specifically caused the validator under

test to fail and an assertion would be used to test that it failed.

51

5.1. Tests

Property assertions: Evaluation

Object property asseions
mhasGoal Security
misComposedOf Security

Crata property asserions

misSecure false

mhasError "The design flow was declared secure but is insecure.”~~xsd:string
m designflowDataProperty false

Negative object property assertions

Negative data property assertions

Figure 16.: SWRL Rule-7 test.

The Figure 17 shows the results of the execution of the Junit tests for both the language
validators and the parser.
g JUnit 3 = 0
e® oI BE| QR mEH T

Finished after 4,834 seconds

Runs: 8/8 B Errors: 0 B Failures: 0

W E| orgxtext.tests. DFMLValidatorsTest [Runner: JUnit 4] (1,233 5)
B'E'—_| testcheckDuplicateActivity (0,925 =)
EF—'—_l testcheckfctivityHasToel (0,011 =)
piE] testcheckActivityToolOptions (0,224 5)
EF_'—_| testcheckUnusedActivity (0,017 =)
B'E'—_| testcheckMultipleTools (0,018 =)
EF—'—_l testMarmesirelnique (0,073 5
Elb—'—_l testcheckUnusedResource (0,024 =)
W E| orgxtext.tests. DFMLParsingTest [Runner: JUnit 4] (0,025 =)
tE] loadMadel (0,025 5)

Figure 17.: Junit tests’ results.

52

5.1. Tests

Table 5.: Hypervisor MISRA compliance before and after refactoring.
Before After

Number of files 24 21
Lines of code 2188 2185
Total preprocessed code lines 617 573
Diagnostic count 1074 261
Rule violation count 1151 273
Violated rules 58 22
Compliant rules 160 196
File compliance index 97.20% 98.90%
Project compliance index 73.39% 89.91%

5.1.3 Hypervisor MISRA Compliance

In order to assess the hypervisor’s code compliance with the MISRA standard was used
QA-C++, a static analysis tool used by industry-leading companies and developed by Pro-
gramming Research. The tool requires the use of the MISRA compliance module, as by
itself QA-C++ does not provide any MISRA checks. The module integrates with the static
analyzer and provides coverage of 92% of all the subsets enforceable rules.

Table 5 contains data extracted from two rule compliance reports that were generated
by the QA-C++ tool, one upon the first analysis of the hypervisor and another taken after
some iterative refactoring of the hypervisor in order to comply with the MISRA guidelines.
In the table, the number of files represents the source code files that make the code base of
the hypervisor, counting with the header files included by those source code files. The lines
of code metric is the sum of lines of code in source code files, not counting header files. The
number of diagnostics represents all the diagnostics appearing in all files with diagnostics
in header files being counted only once, even if included in multiple source files. The
rule violation count is the sum off all the rule violations and is different from the count of
diagnostics since a single diagnostic may refer to more than one rule violation. The last two
metrics represent the overall compliance with the standard with the file compliance index
representing the mean of all the individual files compliance and the project is calculated in
a similar way but considering violations across all the files.

Summing up the data from the table, the total count of rule violations decreased from
1151 to 273, while the total number of compliant rules increased from 160 to 196, out of 219
rules that are enforced by the tool. These results are reflected in the principal metric given
by the compliance report, the project compliance index, which increased 17%. The fact that
both the file and project compliance indices are close indicates that each file in the project

is violating the same rules.

53

5.2. Results
5.2 RESULTS

In this section are presented the results achieved with the developed work, focusing mainly
on the use of the DFML framework.

5.2.1 Sample Project

Starting with a simple and common task done in any IDE, this first demonstration covers
the creation of a new DFML project using the custom developed wizard. Upon the creation
and setup of a new DFML project, the user is greeted with the DFML editor as shown in
Figure 18. In the Project Explorer view is displayed the structure of the DFML project, in the
Outline view is displayed a different representation of the program consisting in a model
build of its main elements, and on the right side is the DFML file editor which provides the
user with content assists, like auto completion and references suggestions, when describing
a design flow. By default, the project provides to the user a series of templates for tools and
files as well as the DFML file for the design flow definition, which simply provides a stub

for an activity and a tool.

workspace - Resource - main/Model.dfml - DFML

File Edit MNavigate Search Project Window Help

N E i A ity S e i 4 quick Access | {1 Se [E9)
[Project Explorer &3 B S ¥ = 0 |Z Medel.dfml 28 = 0
¥ (Zmain : . q e

- DML * This is an example mode

- (= templates Analysis:
[CMake.dfml SCEIvEty
2] CMakeLists.dfml Design:
[Eclipse.dfml 5 .
2 Jenkinsdfmil Implementation:
[JenkinsConfig.dfml Verification:
&) Make dfml Integration:
£ PRQA.dfmI
Bl Model.dfml . .
= Activity activity
{
tool|
[EE Outline 83 ‘ s = 0 I ~ I“l tool
= Model toolpath "/path/to/tool”
=tool : Tool
¥ Tasks 83 = = 0
0items
v g Description Resource Path Location Type

Writable Insert 18:9

Figure 18.: DFML editor with sample project.

Figure 19 serves to showcase how errors are conveyed to the user in the framework. In
this case, there are two errors in the program, one is in the multiple references of the same
activity throughout the design flow and the other is in the reference of more than one

54

5.2. Results

workspace - Resource - main/Medel.dfml - DFML

File Edit Mavigate Search Project Window Help

Cx GG A ow G w Gl v B0 Oy Do C:uckéu’essll s @
[Project Explorer 12 0= ¥ = 0O ||& modeldfml 5 = 8 || problems ¥~ =0
> Zmain e/* 4 errors, 0 warnings, 0 others

~ (= DFML :/Th” is an example model Description Resource | Path | Location Type

~ (= templates Analysis: ¥ @ Errors (4 tems)
2 CMake.dfml a activity = @ Duplicate Activity 'activity' Model.dfml} /main; line: 10 /main/Model.dfml { DFML Problem
Design: @ Duplicate Activity activity' Model.dfml} /main| line: 13 /main/Model.dfml | DFML Problem
@ Duplicate Activity ‘activity' Model.dfml /main line: 5 /main/Model.dfm| :DFML Problem
Implementation: @ Multiple tools on Activity 'activity'| Model.dfml /main line: 18 /main/Model.dfml | DFML Problem
a activity | : : :
Verification:
1x] activity B
B Model.dfml Integration:
0 = Activity ac =
{
tool

" = tool
8 outline 5 | 8 =} 3
v i= Model

. = Tool tool
(= activity : Activity
i=tool : Tool toolpath "/path/to/tool"
¥

| Tasks | & Console 53

b
B

#EySy =0

InferenceEngine

[ParseDSL] There are errors in the model.
[ParseDSL] Duplicate Activity ‘activity®
[ParseDSL] Duplicate Activity 'activity'
[ParseDSL] Duplicate Activity 'activity'
[ParseDSL] Multiple tools on Activity 'activity’ ~
[ParseDsL] Aborting InferenceEngine runm... H

Figure 19.: DFML program with errors.

tool in the activity. In the editor are displayed error markers on the corresponding lines
in addition to the squiggly lines shown under the name of the elements at fault. Beyond
that, there is the Problems view which displays all the errors in addition to the location of
their occurrence. Lastly, if the user attempts to execute the InferenceEngine, its execution is
aborted, as the model is not valid, and the errors are printed in the console.

5.2.2 Example Project

The added example project consists of a simple design flow that includes three very com-
mon activities of embedded software development. Its goal is to generate a build system,
compile and execute an application written in C++, which in this case consists of a classic
printing of the "Hello World” statement. Beyond the design flow program, the project in-
cludes all the DFML templates for the used tools, CMake and Make, the file template for
the generation of the CMakeLists file and the C++ source code.

Figure 20 displays the wizard views. On the left is the New Project view that is presented
to the user when creating a new project. The user has the option to create a new DFML
project or create an already setup project using the provided example. After selecting the
example option, on the right side is presented the New Example view that is showed to the
user and displays a brief description about the project.

55

5.2. Results
New Project £ New Example
Select a wizard — Example Projects]
DFML with CMake example Create the example projects listed below.
Wizards: dfml.example.cmake
type filter text a
P (= General
¥ = DFML
[%i DFML Project
w = Examples
¥ DFML CMake E: le - - - =
Example project that performs genaration of CMakesm ocfie [RGNS
P = Java and uses CMake and Make for compilation of a C++ Hello World
P = Examples example.
® < Back | Cancel | Finish ® | < Back | Next > Cancel |

Figure 20.: Example wizard.

When the setup of the new example is finished the user is presented with the editor in
the state displayed in Figure 21. On the Project Explorer view we have the content of the
project in a tree view, there is the generated CMakeLists.txt file, some templates for tools
and files used in the example, the source code of the C++ program, and the DFML file with
the design flow description. Then there is the Outline view which displays the model of
the program containing some condensed information and on the right side is the DFML
program.

In Figure 22 can be seen, in the Console view, the output of the TaskExecutor console
which resulted from the execution of the design flow in the example. In the Project Explorer
view can be seen the added files as a result of the successful compilation of the program in
addition to its equally successful execution, as evidenced by the printed "Hello World'.

5.2.3 Security Evaluation

In order to show how security is effectively addressed, two examples were developed. In
the first example, the design flow is declared as a secure design flow, but it only contains
activities in the integration phase, concerning the Continuous Integration domain, and will,
therefore, violate some of the SWRL-based rules of the ontology. As can be seen in Figure 23,
the design flow evaluation results in the output seen on the InferenceEngine console, which
specifies the reasons for the design flow not being considered secure and offers suggestions

on how to make it so.

56

5.3. Discussion

workspace - Resource - dfml.example.cmake/Model.dfml - DFML

File Edit MNavigate Search Project Window Help

o= AR LR A T B =R =T - 4
[Project Explorer 32 0 = ¥ = 0O ||E modeldfml 5 = g
w [dfml.example.cmake S
- = build * This is a HelloWorld with CMake example model
(= buil .
[E] CMakeLists.txt Analysis:
2= DFML i
TE Design:
w (= templates
=| CMake.dfml Implementation:
= . BuildGeneration
|Z] CMakelLists.dfml Compilation
2 Make.dfml
-ia Verification:
(sre . Execution
main.cc
2 Model.dfml Integration:
= Activity BuildGeneration {
cmakel
cnll
8= Outiine 53 Eia =o i
+ = Model = Activity Compilation {
ki
=BuildGeneration : Activity y e
= Compilation : Activity "
= Execution : Activity
= App: Tool] Tasks 32 v~ =0
= cmake1 : Tool Oitems
} 6= path_to_source(cml1) - T Description Resource Path Location Type
» i=-G(Unix Makefiles)
wi=make : Tool
¥ i=target(App)
» i=-C(build)
wi=cmll :File
} = cmake_minimum_required(3.3)
} &= project(Test)

Writable Insert 66:4

Figure 21.: DFML editor with example.

The second example, much like the previous, is also declared as secure design flow, and
because it complies with all the criteria of the SWRL-based rules for a secure design flow,

its execution proceeds without any errors, as is shown in Figure 24.

5.3 DISCUSSION

The examples presented previously demonstrate the flexibility provided by the DFML
framework in the automation, security assessment and tool integration involved in the
execution of a design flow. The example project demonstrated the automation and tool in-
tegration achieved with the framework for typical embedded software development tasks.
It included the generation of the CMakeLists.txt file which is then used by an external
tool to generate an entire build system. The last two examples showed how security is
assessed by the DFML framework with the use of semantic rules applied over the ontology
representation of the design flow.

The adoption of certain types of tools can help increase the productivity, quality and
security, but according to Grammatech (2015), the best approach is the one that automates
the use of a combination of tools from all categories and, as the obtained results show, the
DFML framework can be a good proof of this approach.

One of the current downsides of the framework is the lack of flexibility during the design

flow execution. Once its execution is initiated, this becomes immutable, and only stopped

57

5.3. Discussion

File Edit Mavigate Search Project Window Help

i 00 1 L= EI SRR LA 2 IR (= 4= e N =) S A
H

| Project Explorer 52 & v = 8 |[2 vodeldm 52 = O | & consle 2

= build . -- Check for wurkimj CXX cumi)iler: fusr/bin/c++ -- works
= Activity Compilation { -- Detecting CXX compiler ABI info
¥ (= CMakeFiles make -- Detecting CXX compiler ABI info - done

2 App } -- Detecting CXX compile features

= -- Detecting CXX compile features - dene

A cmake install.cmake - Activity Execution { -~ Configuring done

[2l CMakeCache wt App Generating done

[CMakeLists.oxt } Build files have been written to: /heme/mike/DFML/workspace/dfml.e>

[l Makefile = Tool App { working Directory: /home/mike/DFML/workspace/dfml.example.cmake

~ (= DFML toolpath "build/App" Command: make App -C build
- }

E templates make: Entering directory '/home/mike/DFML/workspace/dfml.example.cmake
[2) CMake.dfml = Tool (CMake) cmakel { . make[1]: Entering directory '/home/mike/DFML/workspace/sdfml.example.cn
= CMakeLists.dfml toolpath "/opt/cmake-3.7.1-Linux-x86 ¢ make[2]: Entering directory '/home/mike/DFML/workspace/dfml.example.cn
- path_to_source = cmll make[3]: Entering directory '/home/mike/DFML/workspace/dfml.example.cn

Make.dfml -G = "Unix Makefiles" Scanning dependencies of target App
} make[3]: Leaving directory '/home/mike/DFML/workspace/dfml.example.cmz
make[3]: Entering directory '/home/mike/DFML/workspace/dfml.example.cn
I = 7 //out-source build [56%] Building CXX object CMakeFiles/App.dir/home/mike/DFML/workspace
- =Tool (Make) make { [186%] Linking CXX executable Aj
toolpath "make" make[3]: Leaving directory '/home/mike/DFML/workspace/dfml.example.cme
- target = "App" [100%] Built target App
= BuildGi I Acti N
1= BuildGeneration : Activity -C = "build” make[2]: Leaving directory */home/mike/DFML/workspace/dfml.example.cme
= Compilation : Activity } § make[1]: Leaving directory '/home/mike/DFML/workspace/dfml.example.cm:
= Execution : Activity . make: Leaving directory '/home/mike/DFML/workspace/dfml.example.cmake;
e =File (CMakelLists) emll { --
LG8 filename "build/CMakeLists.txt" working Directory: /home/mike/DFML/workspace/dfml.example.cmake
wi=cmake1 : Tool cmake_minimum_required = "3.3" Command: build/App
= project = "Test™
DL e =il add_executable ../src/main. cc" Hello World!
-G(Unix Makefiles) }
make : Tool ;) LK .
¥ i=target(App) 7 Tasks % ~ = 0
-C(build) Oitems
=cmit : File v ! Description Resource Path Location Type
} = cmake_minimum_required(3.3)
} &= project(Test)

& dfml.example. cmake

Figure 22.: Example design flow execution.

File Edit Mavigate Search Project Window Help

I 0 [T A AR R LT A F e == I AN =p S A |Qulckﬁcc?ss|5§@
[R:. Project Explorer 52 0 & v = 8O |[E vodeldml = & console S kA ~ & =0
3 dfml.example.cmake iectrel_lesi:nﬂw f
= nalysis: [Loadontology] Loading Ontology...
L
. [LoadOntology] Loaded esrg:df successfully.
(= build Design: [LoadOntology] Loaded esrg:upper successfully.
w = DFML R [CheckConsistency] Consistent: true
N | Implementation: [CheckConsistency] There are no unsatisfiable classes.
& templates . [ParseDSL] Parsing Model.dfml...
} = include verification: [ParseDSL] Parse complete: 385 axioms were inferred.
sre . [CheckConsistency] Consistent: true
Integration: [CheckConsistency] There are no unsatisfiable classes.
) configxml JenkinsSetup - [CheckConsistency] Evaluation
2 Model.dfml JenkinsBuild [CheckConsistency] Error:The design flow was declared secure but is insecure.
% Model.owl L. [CheckConsistency] Design flow is incomplete.
3 Model.ow “Activity JenkinsSetup { [CheckConsistency] Make sure there is at least one activity in each phase of the
jenkins_createjob design Flow.
config [CheckConsistency] Design flow does not use any kind of static analysis.
} [CheckConsistency] Make sure that a static analysis tool is used during
S o . Verification phase of the design flow.
= Activity JenkinsBuild { [SaveOntology] Saving /home/mike/GitHub/DFML/productoutput/DFML/testspace/
jenkins build unsecuredf/Model.owl Ontology...
[Outline 5% = g5 } [SaveOntology] Saved dfml:df successfully.
—
= JenkinsSetup : Activity & Tasks 52 = = 7
ufjenkmssu\\d +Activity s
¥ &= config: File v t Description Resource Path Location Type

P = jenkins_createjob : Tool
P = jenkins_build : Tool

5 unsecuredf

Figure 23.: Unsecure design flow example.

if an error occurs during the execution of one of its activities or it ultimately finishes. If any
alteration to the design flow is deemed necessary, it cannot be done on-the-fly, instead the
design flow must be stopped, updated and then started over from the first activity again.

58

5.4. Summary

el.dfml - DFML

File Edit MNavigate Search Project Window Help

I o 2 O 2 N) T R = = T S [|Quck»‘«ccess|5 = @
[Project Explorer 12 0 & = = B |2 vodeldm = O | B console 2 S eiE] mE-Cie O
3 dfml.example.cmake 1 SecureDesignFlow InferenceEngine
= 2 Analysis: LRUNDES1GNF LOW] LAUNCNING eXecuTor:/opT/prqa/praa-Tramework-2.Z. 7 common,
v (& securedf 3 Requirements bin/qacli
¥ (= build a [CheckConsistency] Consistent: true
» &= DFMIL 5 Design: [CheckConsistency] There are no unsatisfiable classes.
6 Flowcharts B B
» = include 7 [RunDesignFlow] Launching executer:/opt/prqa/prqa-framework-2.2.0/commen/
P = prga 8 Implementation: bin/qacli
) 9 BuildGeneration [CheckConsistency] Consistent: true o
b E=sre 10 Compilation [CheckConsistency] There are no unsatisfiable classes.
[config.xml 11
B Model.dfml 12 Verification: [RunDesignFlow] Launching executor:build/App
- 13 PROA_createproject [CheckConsistency] Consistent: true o
|# Model.owl 14 PROA populateproject [CheckConsistency]l There are no unsatisfiable classes.
tml 15 PROA_analyzeproject
:Dprqaprqex xm 16 PROA_reportproject [RunDesignFlow]l Launching executor:/home/mike/Downloads/jenkins-cli.jar
[prgaprojectxml 2.2.0.9151-gax.stamp 17 Execution [CheckConsistency] Consistent: true
|2 prgaproject.xml.status 18 [CheckConsistency] There are no unsatisfiable classes.
W unsecuredf 19 Integration: B B B B
= 20 JenkinsSetup %R:nDislgnFlnw] L?unchu)g executor:/home/mike/Downloads/jenkins-cli.jar
- = 21 JenkinsBuild CheckConsistency] Consistent: true
&= Outline 33‘ laz =] 22 [CheckConsistency] There are no unsatisfiable classes.
¥ i= Model N 23 Activity PROA createproject { R R
24 qacli_admin2 [SaveOntolegy] Saving /home/mike/GitHub/DFML/productoutput/DFML/workspace/
= PRQA_createproject : Activity 25 gcc_cct securedf/Model.owl Ontology...
i=Requirements : Activity 26 mcpp_rcf [SaveOntology] Saved dfml:df successfully.
= Flowcharts : Activity 27 mcpp_act [RunDesignFlow] Design Flow terminated.
= BuildGeneration : Activity - -
ompilation : Activity & Tasks 52 v = 7
[=PRQA_populateproject : Activity 0 items
= PRQA _analyzeproject : Activity S !t Description Resource Path Location Type
RQA_reportproject : Activity
xecution : Activity
= JenkinsSetup : Activity
= JenkinsBuild : Activity
} = gacli_admin2 : Tool
P = gacli_admin3 : Tool

Writable Insert 34:17

Figure 24.: Secure design flow example.

Another drawback is the inability to describe design flows with multiple paths. In a more
sophisticated design flow, multiple paths of execution, and therefore decision-making, are
certainly necessary, but it is currently unsupported by the DFML framework.

5.4 SUMMARY

This chapter focused mainly on the presentation of the accomplished results with the work
of this dissertation. First were explained and clarified the tests conceived for both the
ontology and the language in addition to the tools and methodologies employed. Then were
demonstrated the results ultimately achieved in the development of the DFML framework
with a series of examples and pictures of the DFML editor, finishing with a discussion on
the obtained results.

59

CONCLUSION

In this chapter are presented the conclusions drawn from the work of this dissertation and

are discussed some prospects for future work.

6.1 CONCLUSIONS

This dissertation described the effort taken in the development of the DFML framework, an
ontology enhanced modeling DSL for secure design flow targeting embedded software de-
velopment. The project was based on the integration of two modeling technologies, ontolo-
gies and DSLs, which were used to promote design flow automation and tool integration
while addressing security from the outset.

The use of a DSL provides guidance to the software developer through the definition of
the design flow and makes it easier to customize according to the product being developed.

Regarding the use of semantic technology;, its integration with the DSL allowed the specifi-
cation of additional constraints and semantics, ultimately providing better validation mech-
anisms and knowledge consistency of the design flow domain.

The different design flow examples were used as a proof of concept and its results demon-
strate how security is enforced through semantic rules and how easy development tools
integration and design flow automation can be using the DFML framework.

With the compliance with safety and security standards becoming increasingly important
every day and likely to become mandatory in the future, tools like the DFML framework
can make an impact by effectively reducing the development time, enforcing security from

the outset and helping lower the efforts of certification.

6.2 PROSPECT FOR FUTURE WORK
In terms of the future developments, series of features were identified that could be imple-

mented in order to further enhance the framework, not only regarding functionality but

also to improve its maturity. One of the next steps of improvement would be the addition

60

6.3. Final Considerations

of more semantic rules to the DFO ontology that can model the complete set of require-
ments of safety and security standards, such as CC, IEC 61508 and others. Another area
with room for improvement is the framework’s code generation feature. Currently, the only
way to provide code generation is to implement the code generator within the framework
development, which requires the recompilation of the entire tool in order to be available for
the user. By taking advantage of the flexibility that Xtext provides, is possible to make the
framework extendable with custom code generators provided by the users at runtime. That
would require the development of an interface for code generators that could be plugged
into the DFML framework, the creation of an extension point in the framework to accept
the user defined code generators using the developed interface and, of course, any required
refactoring of the framework to accommodate such feature. One last thing that should be
addressed by the framework is traceability, which can be defined as the ability to help
stakeholders understand the associations and dependencies that exist among entities cre-
ated or used during a software development process (Pan et al., 2013). In its current state,
the framework only allows the results of the activities to be viewed in the console as long
as the current instance of the framework is being executed, and although it is possible to
integrate a third-party tool that provides traceability in the design flow it makes sense that
this feature should be part of the framework.

63 FINAL CONSIDERATIONS

The elaboration of this dissertation contributed to the knowledge of the author and the
scientific community through the authorship and co-authorship of a scientific article in the
field of embedded systems. Below is presented the article already submitted.

S. Pinto, M. Macedo,]J. Martins, J. Alves, A. Tavares, “DFML: An Ontology Enhanced
Domain-Specific Language for Modeling Secure Design Flow”, submitted to IEEE “Embed-
ded Systems Letters” on November 2017.

61

BIBLIOGRAPHY

ANSYS. Qualified Code Generation Greatly Reduces Cost of Safety-Critical Automotive
Software. White Paper, pages 1—4, 2016.

Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt Pub-
lishing, 2016. ISBN 9781782160304.

Andrzej Bialas. Intelligent sensors security. Sensors, 10(1):822-859, 2010. ISSN 14248220.

doi: 10.3390/5100100822.

Andrzej Bialas. Common criteria related security design patterns for intelligent sensors-
knowledge engineering-based implementation. Sensors, 11(8):8085-8114, 2011. ISSN

14248220. doi: 10.3390/5110808085.

Jiirgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking OWL reasoners. In
CEUR Workshop Proceedings, volume 350, 2008. ISBN 9781595936493.

David F. C. Brewer. Ten Years On: Doesn’t the World of Security have anything to offer
the World of Safety? In Lessons in System Safety, Proceedings of the Eighth Safety-critical
Systems Symposium, Southampton, UK 2000, pages 246—268. Springer-Verlag, 2000. ISBN

9781852332495.

CCMODE. Common criteria compliant, modular, open it security de-velopment environ-

ment, 2017. URL http://www.commoncriteria.pl/.

Jean-Louis Colao, Bruno Pagano, and Marc Pouzet. Scade 6: A Formal Language for Em-
bedded Critical Software Development. In Eleventh International Symposium on Theoretical
Aspect of Software Engineering (TASE), Sophia Antipolis, France, September 13-15 2017.
Invited paper.

Sven Efftinge and Sebastian Zarnekow. Xtend documentation, 2011. URL http://wuw.

eclipse.org/xtend/documentation/.

Moritz Eysholdt and Heiko Behrens. Xtext. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications companion -
SPLASH 10, page 307, 2010. ISBN 9781450302401. doi: 10.1145/1869542.1869625. URL
http://portal.acm.org/citation.cfm?doid=1869542.1869625.

62

http://www.commoncriteria.pl/
http://www.eclipse.org/xtend/documentation/
http://www.eclipse.org/xtend/documentation/
http://portal.acm.org/citation.cfm?doid=1869542.1869625

Bibliography

Martin Fowler. Continuous Integration, 2006. URL http://martinfowler.com/articles/

continuousIntegration.html.

Gartner. Gartner says 8.4 billion connected “things” will be in use in 2017, up 31 percent
from 2016, 2017. URL https://www.gartner.com/newsroom/id/3598917.

Grammatech. A Four-Step Guide to Security Assurance for IoT Devices. Technical report,
Grammatech, 2015.

Tom Gruber. Definition of Ontology, 2007.

Peter B. Gutgarts and Aaron Temin. Security-critical versus safety-critical software. In
2010 IEEE International Conference on Technologies for Homeland Security, HST 2010, pages
507-511, 2010. ISBN 9781424460472. doi: 10.1109/THS.2010.5654973.

Matthew Horridge and Sean Bechhofer. The OWLAPI: a Java API for OWL ontologies.
Semantic Web, 2(1):11—21, 2011. ISSN 15700844. doi: 10.3233/SW-2011-0025.

Ian Horrocks, Peter F Patel-schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike
Dean. SWRL : A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member submission 21, pages 1-20, 2004.

IEC. IEC 61508 : Functional safety of electrical/electronic/ programmable electronic safety-

related systems, 2005.

ISO. ISO/IEC 15408-1:2009 - Evaluation Criteria for IT Security, 2009. URL https://wuw.
iso.org/standard/50341.html.

ISO. ISO 26262 Road Vehicles Functional safety, 2011.

Stephen C Johnson. Yacc : Yet Another Compiler-Compiler. Computing Science Technical
Report No. 32, page 33, 1975.

Junit. Junitg, 2017. URL http://junit.org/junit4/.
Kitware. Cmake, 2017. URL https://cmake.org/.

M.E. Lesk and E. Schmidt. Lex - A Lexical Analyzer Generator. Computing science technical
report, 39:12—9, 1975. ISSN 19447973. doi: 10.1029/WRo004i005p01115. URL http://
ken-cc.googlecode.com/svn/trunk/doc/lex. pdf.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316—344, 2005. ISSN 03600300. doi:
10.1145/1118890.1118892. URL http://portal.acm.org/citation.cfm?doid=1118890.
1118892.

63

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://www.gartner.com/newsroom/id/3598917
https://www.iso.org/standard/50341.html
https://www.iso.org/standard/50341.html
http://junit.org/junit4/
https://cmake.org/
http://ken-cc.googlecode.com/svn/trunk/doc/lex.pdf
http://ken-cc.googlecode.com/svn/trunk/doc/lex.pdf
http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://portal.acm.org/citation.cfm?doid=1118890.1118892

Bibliography

MISRA. MISRA-C++ 2008: Guidelines for the Use of the C++ Language in Critical Systems.
MISRA, 2008. ISBN 9780952415626.

Anders Moller and Michael I. Schwartzbach. Static program analysis. Elektronische Rechenan-

lagen, 27(2):89—95, 2015. URL http://cs.au.dk/{~}amoeller/spa/spa.pdf.

Ernest Mougoue. Ssdlc 101: What is the secure software development life cycle?, 2016. URL

https://www.synopsys.com/blogs/software-security/secure-sdlc/.

Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford Knowledge Systems Laboratory, page 25, 2001. ISSN
09333657. doi: 10.1016/j.artmed.2004.01.014.

Natalya F Noy, Monica Crubézy, Ray W Fergerson, Holger Knublauch, Samson W Tu,
Jennifer Vendetti, and Mark A Musen. Protégé-2000: An Open-Source Ontology-
Development and Knowledge-Acquisition Environment. AMIA Annu Symp Proc, 953:
953, 2003. ISSN 1942-597X. doi: Do30003158[pii]. URL http://protege.stanford.edu.

Jeff Z. Pan, Steffen Staab, Uwe Afimann, Jiirgen Ebert, and Yuting Zhao. Ontology-driven
software development. Springer-Verlag Berlin Heidelberg, 2013. ISBN 9783642312267. doi:
10.1007/978-3-642-31226-7.

Terrence J. Parr and Russell W. Quong. ANTLR: A predicated-LL (k) parser generator.
Software: Practice and Experience, 25(7):789-810, 1995. URL http://www3.interscience.
wiley.com/journal/113446166/abstract.

Maria Poveda-Villalén, Mari Carmen Suarez-Figueroa, Miguel Angel Garcia-Delgado, and
Asuncién Gémez-Pérez. OOPS! (OntOlogy Pitfall Scanner!): supporting ontology evalua-
tion on-line. Undefined, 1:1-5, 2009. ISSN 1552-6283. doi: 10.4018/ijswis.2014040102. URL
http://www.semantic-web-journal.net/system/files/swj989.pdf.

PRQA. Succeding with Static Code Analysis: An Implementation Guide, 2016.

Oscar Slotosch, Martin Wildmoser, Jan Philipps, Reinhard Jeschull, and Rafael Zalman. ISO
26262 - Tool chain analysis reduces tool qualification costs. Automotive - Safety & Security,
210:27-38, 2012. ISSN 16175468.

W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview. OWL 2
Web Ontology Language, pages 1—7, 2012. URL http://www.w3.org/TR/owl2-overview/.

Tobias Walter. Combining Domain-Specific Languages and Ontology Technologies. In Pro-
ceedings of the Doctoral Symposium at MODELS 2009, 2009.

64

http://cs.au.dk/{~}amoeller/spa/spa.pdf
https://www.synopsys.com/blogs/software-security/secure-sdlc/
http://protege.stanford.edu
http://www3.interscience.wiley.com/journal/113446166/abstract
http://www3.interscience.wiley.com/journal/113446166/abstract
http://www.semantic-web-journal.net/system/files/swj989.pdf
http://www.w3.org/TR/owl2-overview/

[

12

14

16

18

20

22

24

LISTINGS

This appendix provides several code listings whose length would compromise readability

of the main text.

A.1 DFML GRAMMAR

Listing A.1 contains the entire DFML grammar specification in Xtext.

e

grammar org.xtext.DFML hidden(WS, ML_COMMENT, SL_COMMENT)
generate dFML "http://www.xtext.org/DFML"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Main:

DesignFlowModel | TemplateModel

TemplateModel:

templates+=ResourceTemplate+

DesignFlowModel:
(secure?=’SecureDesignFlow’)?
’Analysis:’

analysisActivities+=[Activity]=*
’Design:’

designActivities+=[Activity]*
>Implementation:’

implementationActivities+=[Activity]x*
>Verification:’

verificationActivities+=[Activity]lx*
’Integration:’

integrationActivities+=[Activity]=*

65

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

kactivities+=Activity+

&resources+=Resource+

Activity:
>Activity’ name=ID ’{’
resources+=[Resource]+
;}7
ResourceTemplate:
ToolTemplate | FileTemplate
ToolTemplate:
’ToolTemplate’ name=ID (’domain’ domain=STRING)?’{’
options+=0ption*
)})
FileTemplate:
’FileTemplate’ name=ID ’{’
options+=0ptionx*
7})
Resource:
Tool | File
Tool:
>Tool’ (’(’toolTemplate=[ToolTemplate]’)’)? name=ID

’toolpath’ toolPath=STRING
options+=SetOptionx*
J})
SetOption:

option=[0ption] ’=’ valueType=ValueType

ValueType:

StringValue | FileReference

A.1. DFML Grammar

7{7

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

StringValue:
value=STRING

FileReference:

value=[File]

File:

A.1. DFML Grammar

’File’ (’(’fileTemplate=[FileTemplate]’)’)? name=ID ’{’

>filename’ filePath=STRING
options+=SetOption*

7}7

Option:

(req?=’required’)? (mul?=’multiple’)? ’option’ name=ID (’range’ ’{’
range+=STRING (’,’ range+=STRING)* ’}’)7?

/ *
* Terminal rules

*/

terminal FLOAT returns ecore::EFloat:

/* (=2 |’>+2)7%x/ (INT ’.’> INT) ((’e’ | ’E’) INT)?;

terminal BOOL returns ecore::EBoolean:

>true’ | ’false’;

terminal ID:

LRl d (’a’..’z’ | YA 070 | bl b 7_;) (Ja;“727 | L AR | bl)

P |)OJ'.)gi)*;

terminal INT returns ecore::EInt:
/*(7_1 I 7+))?*/ (707_.)97)+;

terminal STRING:

yno (;\\7 . /*)bal;t>|7n)|)f7|;r)|>u)|:n;ln;ul;\\; */ | !(7\\7 |

;))* yn o | nomn ()\\;
/*)b;|1t7|7n;|>f7|;r7|7u7|JH;|H;H|;\\;

/ | !(7\\) | u;u)) n;u;

J

67

108

110

112

114

116

118

120

122

10

12

A.2. Validators

terminal ML_COMMENT:
)/*)_>)*/);

terminal SL_COMMENT:
/7> 1 CA\n> | \r)* O\r’? \n?)7;

terminal IRI:
()#; | 1y)4 PR PR | 0) P2} 170 | g’)z b) 7)
.. Lo o0 7. .. _
g

>

terminal WS:

¢ 21 2N\e2 | Nr? | ’\n?)+;

terminal ANY_OTHER:

L)

Listing A.1: DFML grammar.

A.2 VALIDATORS

@Check
def checkDuplicateActivity(DesignFlowModel model) {
// Collect all activities
val allActivities = <Integer, Activity>newHashMap ()
allActivities.putAll (activityIndex (model.analysisActivities,
ANALYSIS_ID))
allActivities.putAll (activityIndex (model.designActivities, DESIGN_ID
))
allActivities.putAll (activityIndex (model.implementationActivities,
IMPLEMENTATION_ID))
allActivities.putAll (activityIndex (model.verificationActivities,
VERIFICATION_ID))
allActivities.putAll (activityIndex (model.integrationActivities,
INTEGRATION_ID))

findDuplicateActivities (model, allActivities)

def activityIndex (EList<Activity> activitylList, Integer phaseID) {
val activityIndexMap = <Integer, Activity>newHashMap ()

var index = 0

68

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

A.2. Validators

//Traverse activities list

for (activity : activityList) {
activityIndexMap.put (index+phaseID, activity)
index++

3

return activityIndexMap

def findDuplicateActivities(DesignFlowModel model, HashMap<Integer,
Activity> activityList) {
val visitedActivities = <Activity, Integer>newHashMap ()

val duplicateActivities = <Integer, Activity>newHashMap ()

//Traverse activities list
val Iterator<Integer> iter = activitylList.keySet.iterator
while (iter.hasNext) {

val index = iter.next

var activity = activitylList.get(index)

//Found duplicate
if (visitedActivities.containsKey(activity)) {

duplicateActivities.put(visitedActivities.get(activity),

activity)
duplicateActivities.put(index, activity)
X
else {
visitedActivities.put(activity, index)
}

//Throw error to every duplicate found

val Iterator<Integer> iter2 = duplicateActivities.keySet.iterator
while (iter2.hasNext) {
var i = iter2.next

val activity = duplicateActivities.get (i)
var EStructuralFeature feature
if (ANALYSIS_ID <= i && i < DESIGN_ID) {
feature = DFMLPackage.Literals.
DESIGN_FLOW_MODEL__ANALYSIS_ACTIVITIES
i = i - ANALYSIS_ID
}
else if (DESIGN_ID <= i && i < IMPLEMENTATION_ID) {

69

A.2. Validators

56 feature = DFMLPackage.Literals.
DESIGN_FLOW_MODEL__DESIGN_ACTIVITIES

i = i - DESIGN_ID
58 }
else if (IMPLEMENTATION_ID <= i && i < VERIFICATION_ID) {
60 feature = DFMLPackage.Literals.
DESIGN_FLOW_MODEL__IMPLEMENTATION_ACTIVITIES

i = i - IMPLEMENTATION_ID
62 }
else if (VERIFICATION_ID <= i && i < INTEGRATION_ID) {
64 feature = DFMLPackage.Literals.
DESIGN_FLOW_MODEL__VERIFICATION_ACTIVITIES

i = i - VERIFICATION_ID
66 }
else if (INTEGRATION_ID <= i) {
68 feature = DFMLPackage.Literals.
DESIGN_FLOW_MODEL__INTEGRATION_ACTIVITIES

i = i - INTEGRATION_ID
70 }
error ("Duplicate Activity °’" + activity.name + "’", feature, i)

72 }

Listing A.2: checkDuplicateActivity validator and auxiliary methods.

The validator in Listing A.2 is responsible for verifying there are no duplicate activities
being used in the design flow. First is created a hash map that maps an integer num-
ber to an activity followed by the collection of all the activities from every phase into
this hash map. During the collection the activityIndex() method is used to perform
some conversion between the activity index and the phase it belongs to. Lastly, is called
the findDuplicateActivities () method which issues an error for each duplicate activity.
These methods were created to avoid complexity in the validator since was necessary to
introduce some extra logic to traverse hash maps. In essence, the method iterates through
every activity and each duplicate found is added to a second hash map of duplicated ac-
tivities. Finally, it iterates through every element of the hash map and issues an error. The
need to use a hash map is what made this validator’s implementation a little more complex
and came from the fact that because the activities are stored in a set for each phase, in order
for the error marker to be placed in the correct activity within a set is necessary to have the
index of the activity in the set.

1(@Check W

70

11

13

15

19

21

23

25

A.2. Validators

def checkUnusedResource (Resource resource) {
//List of used resources
val EList<Resource> usedResourceslList = new BasicEList<Resource>

val model = resource.eContainer as DesignFlowModel

//Traverse activities
for (activity : model.activities) {
//Traverse resources
for (currentResource : activity.resources) {

usedResourcesList.add(currentResource)

//Traverse used resources

for (currentResource : model.resources) {
if (!(usedResourceslList.contains(resource)) && (currentResource.
name == resource.name)) {

if (resource instanceof Tool) {

error ("Unused Tool ’" + resource.name + "’", DFMLPackage.
Literals.RESOURCE__NAME)
}
else {
error ("Unused File ’" + resource.name + "’", DFMLPackage.
Literals.RESOURCE__NAME)
}

Listing A.3: checkUnusedResource validator.

In order to prevent unused resources from cluttering the design flow description the val-
idator from Listing A.3 was implemented. First is created a list to store used resources and
a variable to store the entire design flow model. The model is then traversed in order to
collect every resource used by every activity of the design flow in the used resources list.
Finally, every resource definition in the model is verified against the used resources list, if
it is not in the list that means that it is not used by any activity and an error message is

issued depending if the resource is either a file or a tool.

@Check

2l def checkMultipleOption(SetOption setOption) {

val List<String> multipleOptionsList = newArrayList ()

71

10

10

12

14

A.3. Generators

(setOption.eContainer as Resource) .options.forEach[SetOption so |

multipleOptionsList.add(so.option.name)]

if ((Collections.frequency(multipleOptionsList, setOption.option.
name) > 1) && (!setOption.option.mul)) {
error ("Option ’" + setOption.option.name + "’ is not allowed to
have multiple occurrences", DFMLPackage.Literals.SET_OPTION__OPTION
)

3

Listing A.4: checkMultipleOption validator.

This validator checks if an option’s multiplicity is incorrectly applied. First is created a list
to store every option’s name followed by the collection of all the options of a resource into
this list. If an option’s name appears with a frequency higher than one in the list and if
that option’s ‘'mul” attribute is false, that means the option is not allowed to have multiple

values and a corresponding error is issued, as can be seen in Listing A 4.

A.3 GENERATORS

Listing A.5 shows the full implementation of the CMakeLists generator.

override doGenerate (Resource resource, IFileSystemAccess2 fsa,
IGeneratorContext context) {
val model = resource.contents.get(0) as DesignFlowModel
if (model !'== null) {
val cmakeFiles = model.getFilesFromTemplate ("CMakeLists")
for (cmakefile : cmakeFiles) {
fsa.generateFile (cmakefile.filePath,

)))

DFML generated file

<val ol = cmakefile.parseOption("cmake _minimum_required").
iterator.next>

< ol.option.name>(VERSION < (ol.valueType as StringValue).
value>>)

<K IF !cmakefile.parseOption("project").empty>

<FOR o : cmakefile.parseOption("project")>
<o.option.name> (K (o.valueType as StringValue).value>)

72

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

A.3. Generators

< ENDFOR>
<K ENDIF>
<K IF !cmakefile.parseOption("enable_language").empty>>

<FOR o : cmakefile.parseOption("enable_language")>
<Lo.option.name>» (KL (o.valueType as StringValue).value>>)
< ENDFOR>

<KL ENDIF>

<K IF !cmakefile.parseOption("set").empty>

<FOR o : cmakefile.parseOption("set")>
<o.option.name> (K (o.valueType as StringValue).value>>)
< ENDFOR>

< ENDIF>

<K IF !cmakefile.parseOption("file").empty>

<FOR o : cmakefile.parseOption("file")>
<Lo.option.name> (KL (o.valueType as StringValue) .value>>)
< ENDFOR>

<K ENDIF>

<K IF !cmakefile.parseOption("list").empty>

<FOR o : cmakefile.parseOption("list")>
<o.option.name> (K (o.valueType as StringValue).value>>)
< ENDFOR>

< ENDIF>

<K IF !cmakefile.parseOption("add_subdirectory").empty>

<KFOR o : cmakefile.parseOption("add_subdirectory")>
<o.option.name>»> (K (o.valueType as StringValue).value>>)

< ENDFOR>

<KENDIF>

<K IF !cmakefile.parseOption("aux_source_directory").empty>>

<FOR o : cmakefile.parseOption("aux_source_directory")>
<Ko.option.name>» (KL (o.valueType as StringValue).value>>)

< ENDFOR>

< ENDIF>

<K IF !cmakefile.parseOption("include_directories").empty>

<KFOR o : cmakefile.parseOption("include_directories")>
<o.option.name>>» (K (o.valueType as StringValue) .value>)
< ENDFOR>

73

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

A.3. Generators

<KENDIF>
<K IF !cmakefile.parseOption("add_library") .empty>

<FOR o : cmakefile.parseOption("add_library")>
<o.option.name> (K (o.valueType as StringValue).value>>)
< ENDFOR>

< ENDIF>

<K IF !cmakefile.parseOption("link_directories").empty>

<FOR o : cmakefile.parseOption("link directories")>
<o.option.name>»> (K (o.valueType as StringValue).value>>)
< ENDFOR>

<K ENDIF>

<K IF !'cmakefile.parseOption("link_libraries").empty>>

<FOR o : cmakefile.parseOption("link_libraries")>
<o.option.name> (K (o.valueType as StringValue).value>>)
< ENDFOR>

< ENDIF>

<K IF !cmakefile.parseOption("add_executable") .empty>

<KFOR o : cmakefile.parseOption("add_executable")>>
<o.option.name>> (K (o.valueType as StringValue) .value>)
< ENDFOR>

<KENDIF>

<K IF !cmakefile.parseOption("target_include_directories").

empty>

>

<KFOR o : cmakefile.parseOption("target_include_directories")

<o.option.name> (K (o.valueType as StringValue).value>>)

< ENDFOR>

< ENDIF>

<K IF !cmakefile.parseOption("target_link_libraries").empty>>

<FOR o : cmakefile.parseOption("target_link_libraries")>
<o.option.name>» (K (o.valueType as StringValue).value>>)
< ENDFOR>

<K ENDIF>

<K IF !cmakefile.parseOption("add_custom_target").empty>

<FOR o : cmakefile.parseOption("add_custom_target")>
<o.option.name> (K (o.valueType as StringValue).value>>)

74

100

102

104

106

108

110

112

A.3. Generators

< ENDFOR>
<K ENDIF>
<K IF !cmakefile.parseOption("add_custom_command").empty>>

<FOR o : cmakefile.parseOption("add_custom_command")>
<Lo.option.name>» (KL (o.valueType as StringValue).value>>)
< ENDFOR>
<KL ENDIF>

200

Listing A.5: CMakeLists generator.

75

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Organization

	2 State of the Art
	2.1 Secure Design Flow
	2.1.1 Software Development Life Cycle
	2.1.2 Security and Safety Standards
	2.1.3 Secure Coding Standards
	2.1.4 Static Analysis
	2.1.5 Continuous Integration

	2.2 Domain-Specific Language (DSL)
	2.2.1 Xtext and Xtend

	2.3 Knowledge Engineering
	2.3.1 Web Ontology Language
	2.3.2 Semantic Web Rule Language
	2.3.3 Protégé

	2.4 Related Work
	2.4.1 ANSYS SCADE Suite
	2.4.2 Tool Chain Analysis
	2.4.3 Intelligent Sensors

	2.5 Summary

	3 System Analysis
	3.1 System Architecture
	3.2 Design Flow Ontology
	3.2.1 Competency Questions
	3.2.2 Classes
	3.2.3 Properties
	3.2.4 Individuals
	3.2.5 SWRL Rules
	3.2.6 Reasoner Selection

	3.3 Design Flow Modeling Language
	3.3.1 Language Overview
	3.3.2 Rules
	3.3.3 Keywords

	3.4 Summary

	4 Implementation
	4.1 Design Flow Ontology
	4.1.1 Classes and Individuals
	4.1.2 Properties
	4.1.3 SWRL Rules

	4.2 Design Flow Modeling Language
	4.2.1 Grammar
	4.2.2 Validators
	4.2.3 Generators

	4.3 DFML Framework
	4.3.1 Inference Engine
	4.3.2 Task Executor
	4.3.3 Editor Customizations

	4.4 Summary

	5 Results
	5.1 Tests
	5.1.1 Design Flow Ontology
	5.1.2 Design Flow Modeling Language
	5.1.3 Hypervisor MISRA Compliance

	5.2 Results
	5.2.1 Sample Project
	5.2.2 Example Project
	5.2.3 Security Evaluation

	5.3 Discussion
	5.4 Summary

	6 Conclusion
	6.1 Conclusions
	6.2 Prospect for Future Work
	6.3 Final Considerations

	A Listings
	A.1 DFML Grammar
	A.2 Validators
	A.3 Generators

