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Abstract

For the generalized periodic model of hematopoiesis

x′(t) = −a(t)x(t) +

m∑
i=1

bi(t)

1 + x(t− τi(t))n
,

with 0 < n ≤ 1, sufficient conditions for the global attractivity of its positive periodic solution
are given, improving previous results in the literature. The effectiveness of the present criterion
is illustrated by a numerical example.
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1 Introduction

The delay differential equation (DDE)

x′(t) = −γx(t) +
β

1 + x(t− τ)n
, t ≥ 0, (1.1)

where γ, β, τ, n ∈ (0,∞), was introduced by Mackey and Glass [8] and since then has proven to
be a suitable model to describe the hematopoiesis (the process of production, multiplication, and
specialization of blood cells in bone marrow). In (1.1), x(t) is the density of the mature cells in
the circulation, τ is the time delay between the production of immature cells in the bone marrow
and their maturation for release in the bloodstream, γ is a destruction rate, and β is the maximal
production rate. More details can be found in [8].

Since Mackey and Glass’ publication, model (1.1) has been studied by many researchers (see
[1, 4, 5, 6, 7] and references therein) from different points of view. As all coefficients are positive,
equation (1.1) has a unique steady state k, which is the positive solution of the equation

γk =
β

1 + kn
.

The stability of the equilibrium point k has been studied by several authors. For the case 0 < n ≤ 1,
E. Liz et al. [6] proved that k is a global attractor of (1.1) (in the set of positive solutions) without
further constraints.

As the environment plays an important role in many biological and ecological dynamical systems,
the model is often more realistic if periodic parameters are considered, taking into account the
periodicity of the environment. In fact, periodic versions of (1.1) have attracted the attention of
several authors (see [1, 5, 10] and references therein).

1Corresponding author.
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For ω > 0, and a, b : R→ (0,∞), τ : R→ [0,∞) ω-periodic continuous functions, the model

x′(t) = −a(t)x(t) +
b(t)

1 + x(t− τ(t))n
, t ≥ 0, (1.2)

has a positive ω-periodic solution x̃(t) (see [10]) but, to the best of our knowledge, for 0 < n ≤ 1, to
prove or disprove that all positive solutions of (1.2) converge to the positive periodic solution x̃(t)
remains an open problem [1]. A first contribution to solve this problem was given by G. Liu et al. in
[5], where the authors considered the following generalized model of hematopoiesis:

x′(t) = −a(t)x(t) +

m∑
i=1

bi(t)

1 + x(t− τi(t))n
, t ≥ 0, (1.3)

with m ∈ N, n ∈ (0, 1], and a, bi : R → (0,∞), τi : R → [0,∞) ω-periodic continuous functions
i = 1, . . . ,m. For this equation, G. Liu et al. proved the existence of a unique positive ω-periodic
solution x̃(t) [5, Theorem 2.1], and established a criterion for its global attractivity in the set of
positive solutions [5, Theorem 3.1].

Motivated by the open problem referred to above (see [1, Problem 4]), in this note we give an
improvement of the global stability criterion presented in [5, Theorem 3.1]. For this purpose, we insert
(1.3) in a more general framework studied in our previous works [2, 3]. An illustrative numerical
example in Section 4 shows that the requirements to apply such criterion are easy to check.

2 Preliminaries and Notations

First, we set some notations. Let C := C([−τ, 0];R) be the Banach space of continuous functions
from [−τ, 0] to R equipped with the sup norm, ‖ϕ‖ = max

−τ≤θ≤0
|ϕ(θ)|. For delay functions τi : [0,∞)→

[0,∞) continuous and bounded (1 ≤ i ≤ m), define

τ(t) = max
1≤i≤m

{τi(t)}, τ = sup
t≥0
{τ(t)},

and consider a DDE of the form

y′(t) = −a(t)y(t) +

m∑
i=1

fi(t, y
i
t), t ≥ 0, (2.1)

where a : [0,∞) → [0,∞) is continuous, fi(t, y
i
t) = fi

(
t, y|[t−τi(t),t]

)
and fi(t, ϕ), i = 1, . . . ,m,

are functions defined for t ≥ 0 and ϕ ∈ C([−τi(t), 0];R) in the following way: for t ≥ 0 and
ϕ ∈ C([−τi(t), 0];R), we take the extension ϕ∗ ∈ C of ϕ which is ϕ(−τi(t)) on [−τ,−τi(t)], and
define fi as the restriction of some continuous function Fi : [0,∞) × C → R, with Fi(t, ϕ

∗) :=

fi

(
t, ϕ∗|[−τi(t),0]

)
= fi(t, ϕ). For a DDE (2.1) in C, initial conditions have the form yt0 = ϕ for ϕ ∈ C,

where, as usual, yt0 is defined by yt0(θ) = y(t0 + θ) for θ ∈ [−τ, 0].
Assuming f(t, 0) = 0 for t ≥ 0, in [2, 3] the authors considered the model (2.1) (with and

without impulses) and gave sufficient conditions for the stability and global attractivity of the trivial
solution. Due to the interpretation of the models under consideration, one frequently restricts the
set of admissible initial conditions, as well as the set of solutions, so that the concept of attractivity
only applies to a subset of initial conditions S∗ ⊆ C. A set S∗ is said to be an admissible set of initial
conditions for (2.1) if

ϕ ∈ S∗ ⇒ yt(·, t0, ϕ) ∈ S∗, for t ≥ t0 ≥ 0,

where y(t, t0, ϕ) denotes the solution of (2.1) such that yt0 = ϕ.
The definition of global attractivity is recalled below.
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Definition 2.1. We say that a solution y∗(t) of a DDE (2.1) is globally attractive in an admissible
set S∗ ⊆ C if y∗t ∈ S∗ and

y∗(t)− y(t)→ 0, as t→∞,

for all solutions y(t) with initial condition in S∗.

For the non-impulsive situation, the main assumptions in [2] can be summarized as follows:

(H1)

∫ ∞
0

a(u)du =∞;

(H2) there are piecewise continuous functions λ1,i, λ2,i : [0,∞)→ [0,∞) such that

−λ1,i(t)Mi
t(ϕ) ≤ fi

(
t, ϕ|[−τi(t),0]

)
≤ λ2,i(t)Mi

t(−ϕ), t ≥ 0, ϕ ∈ S∗, i = 1, . . . ,m,

where Mi
t(ϕ) = max

{
0, sup
θ∈[−τi(t),0]

ϕ(θ)

}
is the so-called Yorke’s functional;

(H3) there is T > 0 with T − τ(T ) > 0 such that

α∗1α
∗
2 < 1, (2.2)

where the coefficients α∗j := α∗j (T ) are given by

α∗j = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s) e−
∫ t
s
a(u)du ds, j = 1, 2.

Note that the above hypothesis (H2) implies that fi(t, 0) = 0 for all t ≥ 0, thus y(t) = 0 is an
equilibrium point of (2.1). The following stability result holds:

Theorem 2.1. [2] Assume (H1)-(H3), with S∗ ⊆ C an admissible set of initial conditions for (2.1).
If 0 ∈ S∗, then the zero equilibrium point is globally attractive (in S∗).

Recall that, for a function z(t) defined for t ≥ 0, we say that z(t) is oscillatory if it is not eventually
zero and it has arbitrarily large zeros; otherwise, it is called non-oscillatory.

Remark 2.1. In [2], (H3) was used only to treat the case of oscillatory solutions. Moreover, from
the proofs of Lemmas 2.2, 2.4 and Theorems 2.1, 2.2 in [2], the conclusion of Theorem 2.1 is obtained
under (H1), (H3) and a weaker version of (H2), as follows: for solutions y(t) of (2.1) with initial
condition in S∗,

(i) if y(t) is non-oscillatory, the solution-segment yt satisfies

(H2∗) for i = 1, . . . ,m and large t ≥ 0,

fi

(
t, y|[t−τi(t),t]

)
≤ 0 if y|[t−τi(t),t] ≥ 0 and fi

(
t, y|[t−τi(t),t]

)
≥ 0 if y|[t−τi(t),t] ≤ 0;

(ii) if y(t) is oscillatory, (H2) is satisfied for large t with ϕ|[−τi(t),0] replaced by y|[t−τi(t),t] .

We now go back to the generalized model of hematopoiesis (1.3). For the functions a, bi and τi
in (1.3), we shall denote

τ(t) = max
1≤i≤m

{τi(t)}, τ = max
t∈[0,ω]

{τ(t)}, ā = max
t∈[0,ω]

{a(t)}, and bi = min
t∈[0,ω]

{bi(t)},

and consider it in the phase space C = C([−τ, 0];R).
By biological reasons, only positive solutions of (1.3) are meaningful and therefore hereafter we

consider the set of initial conditions as

S = {ϕ ∈ C : ϕ(θ) ≥ 0 for − τ ≤ θ < 0, ϕ(0) > 0}.
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It is easy to show that S is an admissible set for (1.3), i.e., xt(·, t0, ϕ) ∈ S for t ≥ t0 ≥ 0 and ϕ ∈ S,
where x(t, t0, ϕ) denotes the solution of (1.3) with initial condition xt0 = ϕ.

In this note, we study the global attractivity of an ω-periodic solution x̃(t) of (1.3) in the set S,
whose existence was established in [5]. We shall use some uniform lower bound estimates proven in
[5, Lemmas 3.1, 3.2, and 3.3].

Lemma 2.2. [5] The positive ω-periodic solution of (1.3), x̃(t), satisfies

x̃(t) ≥ x1 exp

(
− sup
t∈[0,ω]

∫ t

t−τ
a(u)du

)
=: X1, for all t ∈ R, (2.3)

where x1 is the unique positive solution of the equation

āx =

m∑
i=1

bi
1 + xn

.

Lemma 2.3. [5] If x(t) is a positive solution of (1.3) such that x(t)− x̃(t) is oscillatory, then there
is Tx > T such that

x(t) ≥ X1, for t ≥ Tx. (2.4)

Remark 2.2. In fact, in the proof of [5, Lemma 3.1], there is an oversight in the definition of X1,
and the correct definition should be as above in (2.3).

3 Global Attractivity

In this section, we prove the following criterion for the global attractivity of the positive ω-periodic
solution of (1.3), which improves the stability criterion in [5, Theorem 3.1].

Theorem 3.1. If there is T > 0 such that

nXn−1
1

(1 +Xn
1 )

2 sup
t≥T

∫ t

t−τ(t)

m∑
i=1

bi(s) e−
∫ t
s
a(u)du ds < 1, (3.1)

then the positive ω-periodic solution x̃(t) of (1.3) is globally attractive (in the set of all positive
solutions).

Proof. By the change of variables y(t) = x(t)− x̃(t), model (1.3) is reduced to

y′(t) = −a(t)y(t) +

m∑
i=1

bi(t)

[
1

1 + (y(t− τi(t)) + x̃(t− τi(t)))n
− 1

1 + x̃(t− τi(t))n

]
, t ≥ 0. (3.2)

Clearly, zero is an equilibrium point and the equation (3.2) has the form of the DDE (2.1) with

fi(t, ϕ) = bi(t)

[
1

1 + (ϕ(−τi(t)) + x̃(t− τi(t)))n
− 1

1 + x̃(t− τi(t))n

]
, (3.3)

for all t ≥ 0, ϕ ∈ C, and i = 1, . . . ,m. As only positive solutions of (1.3) are admissible, naturally

S̃ = {ϕ ∈ C : ϕ(θ) ≥ −x̃(θ) for − τ ≤ θ < 0, ϕ(0) > −x̃(0)} (3.4)

is the set of admissible initial conditions for (3.2). We need to show that the zero equilibrium of (3.2)

is globally attractive in S̃ and, in order to do so, the cases of oscillatory and non-oscillatory solutions
are considered separately.
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On the one hand, as the positive continuous function a(t) is ω-periodic, then (H1) holds, and, on

the other hand, it is clear that hypothesis (H2∗) holds for all ϕ ∈ S̃. Consequently, from [2, Lemma
2.2] we conclude that all non-oscillatory solutions of (3.2) converge to zero as t→∞.

Now we consider y(t) an oscillatory solution of (3.2) with an initial condition in S̃. Naturally,
y(t) = x(t) − x̃(t) for some x(t) positive solution of (1.3) and by Lemma 2.3 there is Tx > T such
that (2.4) holds. From Lemma 2.4 and Theorem 2.2 in [2] (see Remark 2.1), it is enough to show

that hypothesis (H2) holds for ϕ ∈ S̃ replaced by yt, for all t > Tx .
For t > Tx and i ∈ {1, . . . ,m}, the Lagrange’s Theorem allows us to conclude that there is

ξ = ξ(t, y) between y(t− τi(t)) + x̃(t− τi(t)) = x(t− τi(t)) and x̃(t− τi(t)) such that

fi(t, yt) = bi(t)

[
1

1 + (y(t− τi(t)) + x̃(t− τi(t)))n
− 1

1 + x̃(t− τi(t))n

]

= −nξ
n−1bi(t)

(1 + ξn)
2 y(t− τi(t)).

From Lemmas 2.2 and 2.3, we know that x̃(t) ≥ X1 and x(t) ≥ X1 for all t > Tx. Consequently,

ξ = ξ(t, y) ≥ X1 for all t ≥ Tx and, as σ 7→ nσn−1

(1+σn)2 is a non-increasing function on (0,∞), we have

fi(t, yt) =
nξn−1

(1 + ξn)
2 bi(t)

(
− y(t− τi(t))

)
≤ nξn−1

(1 + ξn)
2 bi(t)M

i
t(−yt) ≤

nXn−1
1

(1 +Xn
1 )

2 bi(t)M
i
t(−yt).

Analogously, we have

fi(t, yt) = − nξn−1

(1 + ξn)
2 bi(t)y(t− τi(t)) ≥ −

nξn−1

(1 + ξn)
2 bi(t)M

i
t(yt) ≥ −

nXn−1
1

(1 +Xn
1 )

2 bi(t)M
i
t(yt).

Thus, (H2) holds, with ϕ = yt, for t > 0 large and

λ1,i(t) = λ2,i(t) =
nXn−1

1

(1 +Xn
1 )

2 bi(t).

Finally, condition (3.1) is equivalent to (2.2) with α∗1 = α∗2, and we conclude that y(t)→ 0 as t→∞.
The proof is complete.

Remark 3.1. In [5, Theorem 3.1], G. Liu et al. prove that the positive ω-periodic solution x̃(t) of
(1.3) is a global attractor of all positive solutions if

nXn−1
1

1 +Xn
1

eA(ω)

eA(ω)−1

∫ ω

0

m∑
i=1

bi(s)ds ≤ 1, (3.5)

where A(ω) =

∫ ω

0

a(u)du. We claim that (3.1) is a weaker condition than (3.5). In fact, for t > 0
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and considering N(t) ∈ N such that τ(t) ∈
(
(N(t)− 1)ω,N(t)ω

]
, we have∫ t

t−τ(t)

m∑
i=1

bi(s) e−
∫ t
s
a(u)du ds ≤

N(t)∑
j=1

∫ t−(j−1)ω

t−jω

m∑
i=1

bi(s) e−
∫ t
s
a(u)du ds

=

N(t)∑
j=1

e−(j−1)A(ω)

∫ t−(j−1)ω

t−jω

m∑
i=1

bi(s) e−
∫ t−(j−1)ω
s

a(u)du ds

=

N(t)∑
j=1

(
e−A(ω)

)j−1∫ t

t−ω

m∑
i=1

bi(s) e−
∫ t
s
a(u)du ds

=
e−N(t)A(ω)−1

e−A(ω)−1

∫ t

t−ω

m∑
i=1

bi(s) e−
∫ t
s
a(u)du ds

<
eA(ω)

eA(ω)−1

∫ t

t−ω

m∑
i=1

bi(s) e−
∫ t
s
a(u)du ds

≤ eA(ω)

eA(ω)−1

∫ ω

0

m∑
i=1

bi(s)ds,

which shows that condition (3.5) implies condition (3.1). Therefore, Theorem 3.1 improves the
stability criterion in [5]. Moreover, the example given below shows that condition (3.1) is strictly less
restrictive than condition (3.5).

4 Numerical example

In this section, a numerical example is given to illustrate the effectiveness of the new result presented
in Theorem 3.1. Here, we have used the Matlab software [9], to plot the numerical simulation of the
solutions.

Letting n = 1, m = 2, a(t) = 1+ 1
2 cos(2πt), b1(t) = 3

8

(
1 + 1

2 cos(2πt)
)
, b2(t) = 3

8

(
1 + 1

2 sin(2πt)
)
,

and τ1(t) = τ2(t) = 1
2 (1 + sin(2πt)) in the hematopoiesis model (1.3), we have de DDE

x′(t) = −
(

1 +
1

2
cos(2πt)

)
x(t) +

6 + 3
2 (cos(2πt) + sin(2πt))

8(1 + x(t− 1
2 (1 + sin(2πt))))

, t ≥ 0. (4.1)

Eq. (4.1) is 1-periodic and, by easy computations, we can see that X1 =
√
2−1
2 e−1 and∫ t

t−τ(t)
(b1(s) + b2(s)) e−

∫ t
s
a(u)du ds ≤

∫ 1

0

(b1(s) + b2(s))ds =
3

4
,

thus 3
4

1
(1+X1)2

≈ 0.64757 < 1. Consequently, from Theorem 3.1, the positive 1-periodic solution x̃(t)

of (4.1) attracts all positive solutions. See the numerical simulations for three solutions shown in
Figure 1.

However, since

nXn−1
1

1 +Xn
1

eA(ω)

eA(ω)−1

∫ ω

0

m∑
i=1

bi(s)ds =
2 e

2 e +
√

2− 1

e

e−1

3

4
≈ 1.10248 > 1,

condition (3.5) is not satisfied, thus the result of G. Liu et al. [5] cannot be applied to this example.
Figure 1 illustrates our example by plotting the graph of three solutions of (4.1) with the following

initial conditions in S:

x0 = ϕ1, where ϕ1(θ) = cos(θ), for θ ∈ [−1, 0];
x0 = ϕ2, where ϕ2(θ) = 0.5 eθ, for θ ∈ [−1, 0];
x0 = ϕ3, where ϕ3(θ) = 0.1− sin(πθ), for θ ∈ [−1, 0].
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Figure 1: Behavior of three positive solutions of (4.1).
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