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A B S T R A C T

Background: Transcriptomics profiling aims to identify and quantify all transcripts present within a cell type or
tissue at a particular state, and thus provide information on the genes expressed in specific experimental settings,
differentiation or disease conditions. RNA-Seq technology is becoming the standard approach for such studies,
but available analysis tools are often hard to install, configure and use by users without advanced bioinformatics
skills.
Methods: Within reason, DEWE aims to make RNA-Seq analysis as easy for non-proficient users as for experi-
enced bioinformaticians. DEWE supports two well-established and widely used differential expression analysis
workflows: using Bowtie2 or HISAT2 for sequence alignment; and, both applying StringTie for quantification,
and Ballgown and edgeR for differential expression analysis. Also, it enables the tailored execution of individual
tools as well as helps with the management and visualisation of differential expression results.
Results: DEWE provides a user-friendly interface designed to reduce the learning curve of less knowledgeable
users while enabling analysis customisation and software extension by advanced users. Docker technology helps
overcome installation and configuration hurdles. In addition, DEWE produces high quality and publication-ready
outputs in the form of tab-delimited files and figures, as well as helps researchers with further analyses, such as
pathway enrichment analysis.
Conclusions: The abilities of DEWE are exemplified here by practical application to a comparative analysis of
monocytes and monocyte-derived dendritic cells, a study of clinical relevance. DEWE installers and doc-
umentation are freely available at https://www.sing-group.org/dewe.

1. Introduction

Transcriptomics profiling aims to identify and quantify all tran-
scripts present within a cell type or tissue at a particular state, and thus
provides information on which genes are being expressed in precise
experimental settings, differentiation or disease conditions. Such pro-
filing is essential to understand how changes in gene expression relate
to functional changes in the organism, as well as to provide insights into
transcriptional regulation, signalling pathways and gene network

organisation [1]. Traditional transcriptomic approaches were based on
microarrays cDNA-DNA hybridisation, but high-throughput sequencing
of mRNA (also called RNA-Seq) offers many advantages over hy-
bridisation-based studies. Deep sequencing allows the identification
and quantification of eventually all mRNA in the samples of the ex-
periment with potentially high accuracy. Accuracy depends on the se-
quencing depth of a cell type at a specific condition, including small
RNAs and other non-coding RNAs, such as micro-RNAs. The increase of
sequencing coverage in new platforms and the introduction of depletion
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techniques have enabled dual RNA-Seq, i.e. to perform simultaneous
transcriptomic studies in interacting organisms. For instance, it is now
possible to characterise host-pathogen interactions in a single experi-
ment [2]. Moreover, RNA-Seq can identify de novo transcripts as it is not
dependent on previous probe design and synthesis [3].

The many advantages of RNA-Seq are partly possible due to the
generation of an enormous number of raw sequencing reads, typically
tens of millions for a standard experiment, which capture even low
abundant transcripts. Consequently, the analysis of RNA-Seq data re-
quires software specifically designed to handle huge amounts of data.

Over recent years, a number of data analysis methods and software
tools were developed to support the different tasks generally included
in RNA-Seq data analysis [4]. Typically, the main stages of a differential
expression (DE) workflow include: (i) trimming reads and clipping
adapters (e.g. using FastQC [5] or Trimmomatic [6]); (ii) reading
alignments (e.g. using Bowtie2 [7] or HISAT2 [8]); (iii) transcript as-
sembly and quantification (e.g. with StringTie [9], Cufflinks [10] or
iReckon [11]); and, (iv) the DE analysis itself (e.g. supported by Ball-
gown [12], edgeR [13], DESeq [14], baySeq [15], or Cuffdiff [10]).

Existing software varies greatly in terms of the stages of analysis
covered. Notably, some software combines several of the previous tools
in order to implement complete workflows [16–18]. Moreover, since
the installation, the configuration and the use of these tools are not
always trivial, a variety of interfaces exists to help non-proficient end-
users [19]. For example, easyRNASeq [20], Nextpresso [21], Galaxy for
RNA-Seq [22], RNASeqGUI [23], RobiNA [24], RSeqFlow [25], and
SePIA [26].

Despite these efforts, RNA-Seq interfaces are still affected by several
technical difficulties [19]. Therefore, this work presents DEWE (Dif-
ferential Expression Workflow Executor), a new RNA-Seq DE analysis
tool that enables the execution of complete workflows by non-proficient
users as well as analysis customisation by experienced bioinformati-
cians. DEWE runs inside a Docker container to expedite installation and
configuration in the main operating systems, i.e. Windows, Mac OS X
and Linux [27–29]. Likewise, DEWE interface was designed to minimise
the software learning curve. Ultimately, the aim of DEWE is to allow
less experienced users (in particular, biomedical and health re-
searchers) to use known analysis workflows as a black box, while en-
abling more advanced users to customise existing workflows, or even
build their own pipelines, according to particular needs and interests.

2. Materials and Methods

2.1. DEWE differential expression analysis workflows

DEWE offers built-in, easy-to-configure and well-consolidated
workflows to conduct differential expression analyses as well as enables
the execution of individual analysis steps. In particular, DEWE work-
flows entail the following steps (Fig. 1): (i) the creation of a reference
index for the genome of interest, (ii) the alignment of reads to the re-
ference index, (iii) transcript assembly and quantification, and (iv) the
differential expression analysis itself. Noteworthy, DEWE workflows do
not include quality control or pathway enrichment as integrated steps,
i.e. these should be manually executed before and after the analysis,
respectively. However, it is highly recommended to perform quality
control steps over the raw sequence reads [19]. Additionally, DEWE
integrates the IGV viewer to support the interactive exploration of the
expression files [27]. Supplementary Material S1 collects the third-
party tools currently included in DEWE.

2.1.1. Quality control of the samples
Quality control of raw reads includes the analysis of sequence

quality, Guanine-Cytosine (GC) content, and the presence of adaptors,
among others. To enable such quality controls, DEWE integrates the
FastQC [5] and Trimmomatic tools [6].

FastQC provides a modular set of analyses, which gives a basic idea

of whether the input data have any problems that could affect down-
stream analysis. DEWE allows the analysis of multiple raw reads (in
FASTQ format) at the same time, generating individual quality reports.
Trimmomatic filters raw reads by discarding low-quality reads, trim
adaptor sequences and poor-quality bases. DEWE supports the trim-
ming of both single- and paired-end raw sequence reads in FASTQ
format. Section 4.1 of the user's manual provides technical details on
these steps.

2.1.2. Creation of the reference index
Initially, reads are mapped against a reference genome in order to

identify the corresponding genomic positions. For this purpose, DEWE
integrates Bowtie2 [7] and HISAT2 [8] tools. Prior to the alignment, a
reference index must be created or imported. DEWE accepts reference
genomes in FASTA format without any size limitation. Section 5.2.1 of
the user's manual provides technical details on this step.

2.1.3. Alignment to the reference sequence
The alignment to the reference sequence allows the collection of

subsets of reads and the quantification of the transcripts represented by
these reads. As stated before, DEWE integrates Bowtie2 [7] and HISAT2
[8] tools for this purpose. Moreover, DEWE enables the analysis of both
single- and paired-end raw sequence reads in FASTQ format without
any size limitation.

The output alignment files produced in the Sequence Alignment
Map (SAM) format are converted into the Binary Alignment Map (BAM)
format using SAMtools [29].

Technical details on this step can be found in sections 4.2-4.3 and
5.3-5.4 of the user's manual.

2.1.4. Transcript assembly and quantification
DEWE uses the StringTie [9] tool to conduct transcript discovery

and abundance estimation. StringTie assembles the transcripts from the
RNA-Seq reads aligned to the reference index and performs their
quantification. It follows a netflow algorithm, i.e. the assembly and
quantification of highly expressed transcripts are executed simulta-
neously, removing the corresponding reads, and repeating the process
until all the reads are used. So, DEWE generates one model per sample
using a user-uploaded GTF file; then, all these models are merged into a
single GTF file, which is used to assemble the transcripts from the input
alignments. The transcripts are quantified in terms of Fragments Per
Kilobase Million (FPKM) and Transcripts Per Million (TPM). The FPKM
quantification is used by the Ballgown tool to perform differential ex-
pression analysis.

Additionally, HTSeq [30] is executed to produce raw counts using
the alignment files in BAM format. Then, the raw counts are normalised
in the Trimmed Mean of M-values (TMM). While the FPKM/TPM nor-
malisation, produced by StringTie, tends to perform poorly when
samples have heterogeneous transcript distributions, TMM normal-
isation is able to ignore highly variable and/or highly expressed fea-
tures, and thus improves performance [4]. The TMM quantification is
used by the edgeR tool to perform differential expression analysis.

Details on how data should be normalised can be found in sections
4.2 and 4.3 of DEWE user's manual.

2.1.5. Differential expression analysis
The last step of the workflow is the differential expression analysis,

i.e. the exploratory analysis of the obtained data and corresponding
statistical modelling. For this step, DEWE integrates two R packages, i.e.
Ballgown [12] and edgeR [13].

Ballgown offers functions to organise, visualise, and analyse the
expression measurements of transcriptome assembly. It includes func-
tions for interactive exploration of the transcriptome assembly, visua-
lisation of transcript structures and feature-specific abundances for each
locus, and post hoc annotation of assembled features to annotated fea-
tures. In turn, edgeR enables the analysis of RNA-Seq expression
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profiles with biological replication. It implements a range of statistical
methods based on the negative binomial distributions, including em-
pirical Bayes estimation, exact tests, generalised linear models and
quasi-likelihood tests.

DEWE generates a summary report of these two analyses, notably of
the overlapping genes, and allows interactive visualisation of the main
outputs (see section 3.2 for more details). Technical details on this step
are collected in sections 4.2-4.3, and 5.7 of the user's manual.

2.1.6. Pathway enrichment
As an additional step, DEWE enables the discovery of enriched

pathways via the R library pathfindR [31]. Using a GSEA approach,
pathfindR performs pathway enrichment using active subnetworks, i.e.
groups of interconnected genes in a protein-protein interaction network
(PIN) containing most of the significant genes. First, the enriched
pathways are detected from the PINs, and then the pathways are
grouped by user-selected hierarchical cluster analysis. As input, path-
findR uses the significant differentially expressed genes tables (i.e. q-
value<0.05) from Ballgown and edgeR analyses. Section 5.9 of the
user's manual provides the corresponding technical details.

2.2. DEWE implementation

The DEWE software v1.2 is implemented in Java 8 using AIBench

[32], which is a framework for the rapid development of scientific
applications, with several successful biomedical developments [33–36].
The source code of DEWE is divided into four modules: (i) the api,
which contains the Application Programming Interface (API) definition;
(ii) the core, which incorporates the default API implementation; (iii)
the gui, which includes several reusable GUI components; and, (iv) the
aibench, which implements the final GUI application. Thanks to this
structure, each part of DEWE, i.e. business logic, GUI components and
end-user application, is conveniently isolated.

The first two modules, i.e. the api and the core, provide the basis for
the functionalities offered in DEWE and, most notably, support the in-
tegration of third-party applications. A Java interface was developed to
run each software using the so-called binaries executor, which acts as a
gateway between DEWE and those external applications. The gui
module, which was created in Java Swing using the freely available
extensions SwingX and GC4S [37] (https://www.sing-group.org/gc4s/
), provides GUI components to display results and collect user inputs.
The JSparklines library was used for enhanced data table visualisation
[38]. Finally, the aibench module defines the end-user application by
creating an AIBench deployment that relies on the other modules.

Since some of the used third-party software (shown in
Supplementary Material S1) are only available for Linux-based systems,
the Docker technology was used to simplify the installation and setup.
Notably, a Docker container, which includes DEWE along with all its

Fig. 1. Steps comprised of a typical differential expression analysis workflow. The central flow represents the main steps of a DEWE workflow. Quality control of the
samples and pathway enrichment are included as additional/optional steps. Currently, DEWE implements two workflows, i.e. the Pertea, M. et al. workflow [16], and
the Griffith, M et al. workflow [28].

Fig. 2. DEWE deployment architecture.
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dependencies, was created. As illustrated in Fig. 2, when this container
is executed, the DEWE GUI can be accessed using an Xpra remote dis-
play client (https://www.xpra.org/). Since Xpra clients are available
for the main operating systems (i.e. Windows, Mac OS X and Linux),
DEWE becomes a multiplatform application and, more importantly,
issues related with installing and configuring a variety of third-party
dependencies are eliminated.

In addition to the Docker-based installers, it is available a
VirtualBox (https://www.virtualbox.org/) machine, with all de-
pendencies installed and configured.

The DEWE software is released under a GNU GPL 3.0 License
(http://www.gnu.org/copyleft/gpl.html). The software, as well as all
documentation and training tutorials, are publicly available at https://
www.sing-group.org/dewe. The source code is available at https://
github.com/sing-group/dewe.

2.3. Case study dataset: monocyte-derived dendritic cells

The translational application of DEWE to practical biomedical stu-
dies is illustrated through the comparative characterisation of the dif-
ferential expression of monocyte cells and monocyte-derived dendritic
cells (moDCs). This dataset comprises reads obtained from human
monocyte and moDCs samples and is freely available for download at
https://www.sing-group.org/dewe/downloads.html.

These RNA-Seq samples were aligned and annotated against the
Homo sapiens reference genome. The Pertea, M. et al. workflow [16]
was applied to compare the expression of monocytes (i.e. the control
condition) and moDCs (i.e. the treatment condition). The introduction
and the description of the isolation, differentiation and sequencing
methods are exposed in Supplementary Material S2. The results of the
DE analysis are presented in the Discussion section and are further
disclosed in Supplementary Material S3.

3. Results

The motivation of DEWE is to equip users less proficient in bioin-
formatics with the means to execute differential expression analyses
while enabling GUI-supported advanced customisation if desired.
Therefore, among DEWE's main contributions, it is relevant to notice
the out-of-the-box use of well-established and varied analysis tools,
including the customised execution of individual tools as well as com-
plete workflows, and the user-friendly management and visualisation of
a large number of differential expression results generated.

The following subsections describe DEWE contributions in some
detail.

3.1. Workflow execution

The sequence of steps to execute a DEWE built-in workflow is de-
picted in Fig. 3 and can be described as follows:

I. Selection of the workflow to be executed from the Workflow cata-
logue. Currently, DEWE implements two workflows: the Pertea, M.
et al. workflow [16], and the Griffith, M et al. workflow [28]
(Fig. 1).

II. Introduction or creation of the reference genome index. To build a
new index, the reference genome must be provided in FASTA
format.

III. Configuration of the workflow, namely: (A) the reference genome
index; (B) the name of the experimental conditions; (C) the samples
to analyse (in FASTQ or compressed FASTQ format); (D) the an-
notation file (in GTF format); (E) the working directory where all
results will be saved; and, (F) the configuration parameters for the
analysis tools. DEWE provides an option to fill all the required in-
formation about the samples automatically, and thus minimise the
manual effort, and possible errors in data introduction.

IV. Final checking of configuration setup, after which the workflow is
launched. As additional support, DEWE shows all commands and
steps in the log window as well as displays the execution progress in
the progress bar.

V. When the analysis is completed, the results are automatically dis-
played in the graphical interface.

Fig. 4 collects the list of results generated in the working directory.
After a workflow execution, DEWE automatically displays all the gen-
erated data tables and enables the generation of additional outputs, in
the form of plots and new data tables (refer to the next subsection,
Workflow results, for more details).

3.2. Workflow results

The main results of a built-in workflow are the outputs provided by
the Ballgown and the edgeR packages. At first, DEWE presents a
common set of results (Fig. 5):

• The significant differentially expressed genes (q-value<0.05) be-
tween the two conditions (Fig. 5A). A different threshold can be
used on user demand.

• The distribution of the p-values obtained for fold-change values
(Fig. 5B).

• The distribution of the differential expression fold-change values
(Fig. 5C).

• The distribution of the differential expression of the p-values of the
genes (Fig. 5D).

Additionally, DEWE makes available results provided only by the
Ballgown package, namely:

• The distribution of the FPKM values across the samples (Fig. 6A).

• The distribution of the differential expression p-values of transcripts
(Fig. 6B).

• The FPKMs correlation between the two conditions (Fig. 6C and D).

• The heatmap of the FPKM values for the statistically significant
genes (q-value< 0.05) (Fig. 6E).

• The principal component analysis of the global variance of the ex-
periment groups (Fig. 6F).

Additionally, the user may generate a plot of the FPKM distribution
for a given transcript (Fig. 6G) and a plot describing the structure and
expression levels of the distinct isoforms of a particular transcript gene
in a given sample (Fig. 6H). The overlap that exists between the pre-
dictions of differentially expressed genes outputted by Ballgown and
edgeR is described in a data table and a Venn diagram.

Considering the variety of plots of possible interest in DE analyses,
and their usual inclusion in scientific articles, DEWE enables figure
customisation. By default, the plots illustrated in Figs. 4 and 5 are
created in grayscale with a fixed size (1000× 1000) and format
(JPEG), but the user may customise the format, size and colour.

Detailed information on the results provided for a workflow can be
found in section 6 of the user's manual.

3.3. Performance

As a basic reference of the performance to be expected in the
practical use of DEWE, Supplementary Material S4 reports the execu-
tion times achieved by each workflow over the moDCs case study, de-
scribed in the Materials and Methods section, and other three example
datasets, described in the Supplementary Material S5. These executions
were performed in four different environments: (i) the DEWE Virtual
Machine with three different configurations; (ii) Linux using the Docker
image, which is equivalent to run it as a native Linux application; (iii)
Windows using the Docker image; and, (iv) Mac OS X using the Docker
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image. For each environment, the total execution time is reported along
with the execution time of each main analysis step. Due to the size of
the Homo sapiens HG38 and the moDCs datasets, a minimum of 8 GM of
RAM is required to reproduce these analyses.

4. Discussion

The first comparison of DEWE's design premises with those of si-
milar purpose tools enabled the identification of key requirements in

Fig. 3. Steps to execute a DE workflow in DEWE. I. selection of the workflow from the Workflow catalogue. II. build or import of the reference genome index. III.
inputs introduction: (A) reference genome, (B) experimental conditions, (C) samples to analyse, (D) annotation file, (E) working directory, and (F) tool parameters.
IV. checking the configuration summary. V. visualisation of the results and generation of additional analysis.
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terms of software installation, configuration, usability and doc-
umentation. The software analysed were ArrayExpressHTS [39], easy-
RNASeq [20], Galaxy [22], PRADA [40], RNASeqGUI [23], and RobiNA
[24].

Most of the DE tools are platform dependent, except for RobiNA. To
overcome/minimise installation issues, DEWE provides all-in-one

installers, i.e. the automatic download and installation of the required
components, for Linux, Windows and Mac OS platforms. Similar to
RNASeqGUI and RobiNA, DEWE’S interface aims to guide users
throughout the analysis. Other tools, such as PRADA, ArrayExpressHTS
or easyRNASeq, perform the analysis via command line, which can be
somewhat challenging to less proficient users. Regarding

Fig. 4. Results generated after running a DE analysis in DEWE. The analysis folder contains the differential expression results; the samples folders contain the
alignment and transcription files of each sample; the stringtie folder contains the merged annotations; the read-mapping-statistics.csv file contains the statistical results
of the sample alignment; run.log file reports all steps and commands executed; the workflow.dewe file keeps the workflow configuration and can be imported for
further executions; and, the workflow-description.txt file contains the summary of the selected inputs and the configuration of the analysis in a human-readable format.

Fig. 5. DE results generated by Ballgown for the moDCs case study. (A) Visualisation of a differentially expressed genes; (B) Volcano plot of p-values against fold
changes; (C) Overall distribution of differential expression fold changes for genes; (D) Overall distribution of differential expression.
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documentation, DEWE follows the same approach of Galaxy and
RNASeqGUI, i.e. provides a web user manual with detailed installation
and usage explanations using practical examples. Other tools, such as
PRADA or RobiNA, provide somewhat more limited documentation
(e.g. missing installation instructions, and fewer examples).

Other key software aspects such as completeness (i.e. whether the
tool included all major DE analysis steps), organism's availability, re-
port generation and reproducibility were further inspected. Like most of
the similar tools, DEWE can potentially analyse data from any eu-
karyote organism for which a complete genome is available and im-
plements the main steps of DE analysis, including quality control and
reads filtering. Exceptions made for PRADA, which does not support
differential analysis and only processes human data, and
ArrayExpressHTS that does not support differential analysis. Regarding
report generation, DEWE provides an assortment of usual output re-
sults, including different data plots as well as run and debug logs. In
contrast, PRADA does not allow for generating graphs, and

ArrayExpressHTS only provides reports for raw and aligned data.
Lastly, DEWE experiments can be easily reproduced using the two files
generated upon workflow configuration: one in plain text that allows
the user to know the workflow configuration and one in DEWE format
for automatic reproduction of the workflow.

The practical use of DEWE was validated using a case study of
biomedical interest that compared the gene expression of monocytes
and monocyte-derived dendritic cells (moDCs). The Pertea, M. et al.
workflow [16] was applied to 4 samples of monocytes and moDCs
(Supplementary Material S2). The obtained results (detailed in Sup-
plementary Material S3) revealed that genes encoding transcription
regulatory factors, such as FOXO1, RUNX3 and C/EBPo, were highly
expressed in monocytes. Among the top up-regulated genes were C1QC,
TREM2, HAMP, APOE, PPARG, CEP55, SYK and APOC1, whereas genes
such as SYN1 and SERPINA1 were among the top under-expressed
genes. As described in previous studies, these expression changes are
related to inflammation (interacting with TNF, IFN-γ, and IL-6

Fig. 6. Additional results generated by Ballgown for the moDCs case study: (A) distribution of FPKM values across the samples; (B) distribution of differential
expression p-values for transcripts; (C) FPKM values correlation between the two conditions; (D) FPKM values correlation as density plot; (E) Heatmap of the FPKM
values for the significant genes across the samples; (F) principal component analysis plot; (G) FPKM distribution for a transcript; (H) structure and expression levels of
the distinct isoforms of the gene CD274 in specific sample.
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cytokines) and lipid metabolism [41]. Another gene of interest was
CD14, which is known to be positively expressed in monocyte cells and
negatively expressed in moDCs [41]. In the present analysis, this gene
obtained a log2-fold change value of −4.06, which agrees with pre-
vious studies.

Also, the RNA-Seq results showed that both HLA-DRB1 and HLA-
DRB6 were over-expressed in moDCs. Previous studies demonstrated
that mature moDCs expressed high levels of MHC class II, a protein
complex responsible for the presentation of antigens to T cells, and
costimulatory molecules, which mediated in T cell activation [42]. In-
terestingly, in the present analysis, the HLA-DRA1 gene was found
under-expressed, which was unexpected as the MHC class II is a het-
erodimer composed of an alpha chain encoded by HLA-DRA gene and a
beta chain encoded by one of the HLA-DRB genes. This apparent dis-
cordance in regulation might be due to inter-individual variability [43].
However, and although some costimulatory molecules necessary in the
moDC-T cell interaction were overexpressed (i.e. CD40: log2-fold
change value of 8.42, CD80: log2-fold change value of 4.45, PD-L1:
log2-fold change value of 11.47, and PD-L2: log2-fold change value of
8.47), other genes mandatory in this interaction (e.g. CD86, ICOSL and
OX40L) did not show increased expression (i.e. ICOSL decreased: log2-
fold change value of −6.27). All these genes are mandatory for T cell
activation [44]. In this sense, the maturation marker CD83 was not
overexpressed in moDCs, so RNA-Seq results supported the idea that
moDCs generated in vitro are immature DCs with a limited ability to
activate T cells.

5. Conclusion

DEWE is a new RNA-Seq analysis tool specifically designed to allow
users less proficient in bioinformatics to conduct differential expression
analyses on their own, whereas enabling analysis customisation and
software extension by more advanced users. DEWE offers out-of-the-
box, easy-to-configure, and well-established analysis tools, including
individual DE steps as well as complete workflows. DEWE's interface
enables the user-friendly management of differential expression results,
including the preparation of high-quality and publication-ready plots
and data tables.

The present paper describes the overall software architecture as well
as its main functionalities, linking these descriptions to the corre-
sponding, and more detailed, sections of the user manual. The trans-
lational application of DEWE to biomedical problems was illustrated
with a case study of clinical relevance: the comparative characterisation
of the differential expression of human monocyte cells and monocyte-
derived dendritic cells.

DEWE is open to further extension, in particular to new types of
analysis and workflows, such as the Cufflinks-based protocol. DEWE
(https://www.sing-group.org/dewe) is freely distributed under the
GPLv3 license. A comprehensive user manual is available at https://
www.sing-group.org/dewe/manual.html.

6. Summary

Transcriptomics profiling aims to identify and quantify all tran-
scripts present within a cell type or tissue at a particular state, and thus
provide information on the genes expressed in specific experimental
settings, differentiation or disease conditions. RNA-Seq technology is
becoming the standard approach for such studies, requiring specific
analysis software that facilitate the work of laboratory scientists.
Available tools are often hard to install, configure and use by users
without advanced bioinformatics skills. Therefore, this paper presents
DEWE, an alternative, open source software that aims to reduce the
learning curve of less knowledgeable users (in particular, biomedical
and health researchers), while enabling analysis customisation and
software extension by advanced users. Its two key assets are a user-
friendly interface, which enables the customised execution of individual

tools as well as of complete, well-established workflows, and broad
management and visualisation of differential expression results.
Currently, DEWE supports two well-established and widely used dif-
ferential expression analysis workflows: one combines Bowtie2 and
StringTie whereas the other applies HISAT2 and StringTie; and, both
use the Ballgown and edgeR packages in the final stages of the analysis.
DEWE also enables the tailored execution of individual tools as well as
helps with the management and visualisation of differential expression
results. It produces high quality and publication ready outputs, e.g. tab-
delimited files and figures, as well as aids in further analysis, such as
pathway enrichment analysis. Thanks to the Docker container, DEWE
can be easily installed in Windows, Mac OS X and Linux operating
systems, requiring minimal configuration effort. The practical and
translational application of DEWE was illustrated with a comparative
analysis between monocytes and monocyte-derived dendritic cells.
DEWE installers and documentation are freely available at https://
www.sing-group.org/dewe.
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