Specification of Industrial Digital Controllers with
Object-Oriented Petri Nets

Ricardo Jorge Machado

Joao Miguel Fernandes

Alberto José Proenca

Department of Informatics, Engineering School, University of Minho
4709 Braga codex, Portugal
rmac,miguel,aproenca@di.uminho.pt

Abstract — The main purpose of this pa-
per is to present an Object-Oriented PN model
(shobi-PN) to specify industrial digital controllers.
The shobi-PN model (Synchronous, Hierarchical,
Object-Oriented and Interpreted Petri Net), was
developed to support the use of hierarchy to model
both the control unit and the plant of the systems.
A CAD environment, SOFHIA, was developed to
model digital controllers, to validate their proper-
ties and to simulate their behaviour. SOFHIA has
an open architecture, which eases the integration of
multiple code generator blocks to allow the imple-
mentation of the system in a wide range of technolo-
gies (hardwired, microprogrammed, programmed).
Modelling of an Industrial Reactor control system
is considered as a case study to ilustrate the model’s
applicability and capabilities.

I. INTRODUCTION

The design of complex digital control systems is con-
ceptually c%ivided in two parts: the control unit and
the plant. The behaviour of the control unit is usually
described with an FSM, and the plant resources are di-
rectly controlled by the actions from the controller. To
specify a digital control system, both the control unit
and the plant should be considered by the specification
model and the CAD environment. The complexity of
the design task grows when the controller behaviour
presents parallel activities.

There are several languages that allow the imple-
mentation of industrial controllers with Programmable
Logic Controllers (PLCs), such as “ladder diagrams”,
logic languages, and GRAFCET [1]. Some of these
languages are based on graphical formalisms, allowing
the modelling of sequential or parallel control systems
[2]. FSMs are used mainly for sequential controllers,
while GRAFCET, based on PNs, is used for parallel
controllers [3].

Some manufacturers make available tools to directly
implement FSMs. FSM became so popular for specify-
ing sequential controllers, due to the existence of spec-
ification tools and the generalized use of PLDs.

It is also possible to specify a parallel controller us-
ing FSM techniques: serially-linked controllers can be
obtained by identifying sub-routines in the specifica-
tion, while concurrently-linked controllers should be
connected with semaphore bits or common lines [4].
These approaches are usually hard to apply, and can
result in ineflicient implementations due to the pre-
gartitioning, which limits the concurrency to the num-

er of FSMs used. Is is also hard to check for par-
allel synchronization problems (deadlock and multiple-
sourcing).

Among the existing modelling paradigms, the PN-
based one is the only that allows an easy specification of
cooperative subsystems. PNs are a graphical language,
easy to understand and a system modeled with a PN

IEEE Catalog Number: 97THS280

-78 -

may benefict from a mathematical theory to formally
verify its properties [5]. Using GRAFCET is similar to
PNs, although slight differences make awkward to apply
analysis techniques to the GRAFCET models [2].

The PN-based formalism presents the following char-
acteristics [2]:

o Expressiveness, allowing the model to be built in

a modular way;

Explicit and clear modelling of activities and
events;

e Graphical representation which can be used as an
interface between users and designers;

Strong theory for analysis and validation;

. Coxl?sputer tools to aid the designers in some design
tasks;

Easy implementation of the system in a wide range
of technologies.

An extension to SIPNs (Synchronous and Inter-
preted PNs) [6] was developed, supporting hierarchy
on the PN models and the use of objects to model the
plant. A full digital control system can be specified
and tested, following a structured and incremental ap-
proach. SOFHIA (Software for Hierarchical Architec-
tures), a CAD environment that covers all the design
pha&sels, was developed to directly support the shobi-PN
model.

This paper is structured as follows. The characteris-
tics of the shobi-PN model relevant for the purpose of
this ga%er are presented in Section II.. In Section III.,
the SOFHIA CAD environment is introduced. A de-
tailed example is considered in Section IV., which clar-
ifies the presented concepts and shows the PN model
capabilities to specify parallel digital controllers for in-
dustrial applications.

IL. shobi-PN: THE PETRI NET MODEL

The writing of this l}))g)per has assumed that the reader
is familiar with the PNs theory concepts. For details
on PNs, please refer to [7].

A new PN model, shobi-PN (Synchronous, Hierar-
chical, Object-Oriented and Interpreted Petri Net), was
developed to support the use of hierarchy and to model
the control unit and the plant in the specification of
digital systems.

he shobi-PN model presents the same character-
istics as the SIPN (Synchronous and Interpreted PN)
model [6], in what concerns synchronysm and interpre-
tation, and adds functionalities by supporting object-
oriented modelling approaches and new hierarchical
mechanisms, in both the control unit and the plant.

ISIE’97 — Guimaries, Portugal

This model embodies concepts present in Synchronous
PNs, Hierarchical PNs, Coloured PNs, and Object-
Oriented PNs [8, 9, 10].

In the shobi-PN mcdel, the tokens represent objects
that model plant resources. The instance variables rep-
resent the information of the plant and the methods are
the interface between the control unit and the plant.
The tokens may be considered as coloured, if SIPN to-
kens are viewed as uncoloured.

A node (a transition or a place) invokes the tokens’
methods, when the tokens arrive at that node. Nev-
ertheless, only the methods that have a direct relation
with the hardware control signals are directly invoked in
the PN. There are additional methods available at the
objects’ interface that are not used by the PN. These
methods are invoked by the simulation software to vi-
sualize the contents of any structure of the plant in any
state of the PN.

Each arc has one or more colours which associate
the arc to the type of objects that are allowed to pass
through it. This means that, for each plant structure,
there is a well-defined path on the PN. ’Iglis requirement
simplifies the PN and limits the capacity of some places,
since it is not needed that objects, that are not invoked,
unnecessarily traverse the PN.

Hierarchy can be introduced in the models in two
different ways:

e The control unit is modelled by the PN structure,

and to implemens the hierarchy on the controller,
macronodes (representing sub-PNs) may be used;

e The plant resources are represented by the inter-
nal structure of the tokens, and the hierarchy can
be obtained by aggregation (composition) of sev-
eral objects inside one single token (a macrotoken)
or by using the inheritance of methods and data
structures.

Whenever several methods that use the same data
structures are concurrently invoked to a given token
in different nodes, it is necessary to support a replica
mechanism. This mechanism allows a token to be repli-
cated as many times as needed, so that it is structurally

ossible to concurrently invoke methods to the same to-

en, but in distinct areas of the PN. This mechanism
can be used as an elegant solution for a complex prob-
lem (the multiple-sourcing) that could be alternatively,
but innefficiently, solved at the algorithmic level, by
changing the PN structure. In Section IV., the use of
this mechanism is used in the example.

A glossary for the shobi-PN model follows:

o Control Net: set of contiguous nodes and arcs of
the shobi-PN that structurally corresponds to the
SIPN without reinitilizations.

¢ Control Track: path defined by a token in the Con-
trol Net.

¢ Control Nodes: nodes (places or transitions) of the
Control Net.

e Control Arcs: arcs of the Control Net.

e Closing Track: path defined by a token outside the
Control Net.

e Closing Nodes: nodes of a Closing Track.
e Closing Arcs: arcs of a Closing Track.

o Closing Cycle: path defined by the movement of a
token in the shobi-PN. It is composed by a Control
Track and also, if applicable, by a Closing Track.
It can be identified by the tracking of the colour
associated with all the arcs of the cycle.

o Associated Net: SIPN structurally equivalent to
the Control Net after the introduction of the reini-
tilizations for the uncoloured tokens.

IEEE Catalog Number: 97TH8280

79 -

III. THE SOFHIA CAD ENVIRONMENT

The SOFHIA CAD environment [11] is appropriate
for specifying industrial controller systems with the
shobi-PN model. At the moment, it feeds any ECAD
gackage that accepts VHDL as input. The hierarchical

N specification is directly and efficiently mapped to
boolean equations. This approach simplifies the VHDL
code debbuging, since there is a direct correspondence
between the original PN and the produced VHDL code.
The complete framework is illustrated in Fig. 1.

All the tasks needed for industrial digital con-
trollers design using shobi-PN-based specifications are
completely supported by the SOFHIA environment.
Among those tasks are: (1) formal verification of the
properties of the model; (2) simulation; and (3) code
generation to implement the system.

The SOFHIA environment 1s organized in 3 blocks:
the Main Unit (MU), the Control Unit Manager

(CUM), and the Data Path Manager (DPM) !. The
MU is responsible for the full integration of the envi-
ronment and for the interface with the user. The CUM
is responsible for formally verifying the properties of the
model and its correctness. It is also the Cl?M that gen-
erates code for the control unit implementation. The
DPM generates a file describing the plant resources.

The most important inner blocks (in Fig. 1.}, for the
goals of this paper, are next described.

The Model Verifier checks if the input specification
fulfils the rules imposed by the shobi-PN model. The
tested rules include the definition of the initialization
nodes, and the verification of the conservative property
of the shobi-PN.

The Simulator module simulates (step-by-step or
batch) the behaviour of the PN. The user can check
the tokens’ contents which aids to verify the correct-
ness of the output values. For large or complex PN
specifications, the formal verification may demand too
many computer resources, which makes simulation one
of the possible solutions. Another problem with formal
verification is that it does not ensure that the system
behaves as the user expected.

The Hw/Sw Partitioner selects the proper code gen-
erator block to generate descriptions of the system parts
(control unit and plant) in intermediate languages.
These descriptions will feed the CUMs and the DPMs
to allow the parts to be synthesized in software and/or
in hardware. This block allows the use of the SOFHIA
environment for codesign. The algorithms for Hw/Sw
partitioning are still under study.

he Corﬁas Generator aims the generation of inter-
mediate descriptions to feed the CUMs and the DPMs
blocks. The CONPAR Generator [12] is already imple-
mented and it creates a file with the textual description
of the specified PN in the intermediate CONPAR lan-
guage. This descrig;uion is only related to the control
unit of the shobi-PN and it will be used by the CUM.
The DATAPAR Generator creates a file with the tex-
tual description of the specified PN in an intermediate
language. This description is only related to the plant
of the initial PN and it will feed the DPM (module
not yet implemented). This CAD environment has an
open architecture, which eases the integration of multi-
ple code generator blocks to allow the implementation
of the system in a wide range of technologies (hard-
wired, microprogrammed, programmed).

Several CUMs may exist in the environment, depend-
ing on the number of final representations for imple-
menting the control unit. This allows several possible

1Since the environment is not only used for industrial control
systems, the term “data path” was chosen to mean the “con-
trolled part” of any specified system.

ISIE’97 — Guimaries, Portugal

l S1 ’ } S2 '
' , B
u OpenS1 J_I_ OpenS2 ——

Start
FullCl1 FullC2
EmptyCl c1 2 EmptyC2
OpenCl OpenC2
FullR :t gz Turn
EmptyR R
‘l—]' OpenR
G
Back K T / 0
OpenT EmptyT
Begin P C) 3 End

Fig. 2. The mixing and transport system for the reactor.

Back

Begin

Fig. 3. shobi-PN for the industrial reactor.

Fig. 4. SIPN for specifying the industrial reactor.

IEEE Catalog Number: 97THS8280 -80 - ISIE’97 — Guimaries, Portugal

shobi-PN

Main Unit Codes Generator
Graphical Mo.del Simulator Hw/Sw ConPar DataPar | | .
Iriterface Verifier Partitioner Generator Generator
i
Errors ConPar DataPar
T
l Control Unit Manager Data Path Manager
R ——— Properties Compi]er
Analyser
l]
Coverability VHDL | | e
Graph

Fig. 1. The SOFHIA CAD environment.

implementations to be obtained (PLCs languages). The
first already developed CUM accepts as input the spec-
ification of a control unit using SIPNs [6], written in
CoONPAR, an intermediate language. For experimental
purposes, the Compiler generates VHDL code, which
allows the controller to be simulated or synthesized.

The Properties Analyser verifies if the input specifi-
cations are live and conflict-free, issuing a message to
the user, whenever a problem occurs (deadlock or con-
flict). Since it is not appropriate to mark a place if it is
already marked, that situation is also detected, clearly
located and an adequate message is sent to the user
interface.

Similarly, several DPMs may exist in SOFHIA, de-
pending on the number of final representations to im-
plement the data path. It may exist a DPM respon-
sible for creating a VHDL file for the data path g’om
an intermediate description supplied by the DATAPAR
Generator.

IV. THE INDUSTRIAL REACTOR EXAMPLE

To clarify the concepts introduced in the previous
sections, a detailed example is presented: the industrial
reactor, which controls the behaviour of a system for
mixing and transporting products. For further details
about the system, please refer to [13, 14].

Before starting to build the shobi-PN, the industrial
reactor’s plant resources need to be modelled, by iden-
tigying the objects and defining its variables and meth-
o

s.

After a careful analysis of the system in Fig. 2., eight
different objects are identified to model the plant: two
simple tanks S1 and S2, two tanks with sensors C1 and
C2, one central reactor R, one transport car T, one in-

IEEE Catalog Number: 97TH8280

-81-

dustrial mixer Mix, and one button B. According to this
selection, the corresponding classes to the identified ob-
jects are declared and coded (Fig. 5.).

The control unit is then specified with a shobi-PN,
using instances of the previously defined classes. Each -
instance is invoked by methods existing in its interface
during its travelling along the shobi-PN. This example
uses two instances of the tank class (S1 and S2), three
instances of the tank_sensor class (C1, C2 and R), one
instance of the tank_wheel class (T), one instance of the
mizer class (Mix) and one instance of the button class
(B).

The industrial controller can be specified by the
shobi-PN in Fig. 3. The design is a concurrent Moore
machine comprising 23 places and 13 transitions. This
shobi-PN possesses several closing paths and must use
the replica mechanism. This need is imposed by the
existence of concurrent invokations of different meth-
ods to the same object (the invokation of WR_open (H),
RD_full(H) and RD_full(L) to the central reactor R).
Whenever the object R arrives to transition t4, it is
divided into two replica, each one following different
paths until they arrive to transition t11, where they
are unified again. An alternative to the replica mech-
anism would be to decompose the reactor R in several
sub-objects, since the concurrent methods’ invokations
are made to distinct parts.

The shobi-PN has no initially marked control places,
but it has two declarations of reinitializing nodes (t1 as
an initial node and t13 as a final node. The contrel net
is then reinitialized by adding one marked place, which
is an input place to t1 and an output place to t13. To
obtain the structure of the associated net (Fig. 4.), it is
necessary to remove all the closing places (pcl, pc2, ...
pc8) and the arcs that are connected to these places.

ISIE’97 — Guimaries, Portugal

For the interpretation of the associated net, the colours
references must be deleted and the methods invokations
must be transformed into hardware signals.

The textual specification of the system controller in
CONPAR notation is listed in Fig. 6. As an example of
a generated code for synthsizing the controller, a data
flow VHDL file (Fig. 7.) was produced by an already
implemented CUM. The ASSERT statements, automat-
ically generated by the compiler tool, help the user in
the system simulation. Those statements roughly de-
tect transitions in conflict and deadlock situations.

V. CONCLUSIONS

This communication shows that the shobi-PN model
is an useful and efficient modelling tool to specify in-
dustrial digital control systems. This model is the
only known formalism using obiiect-oriented PNs to
specify both the parallel control unit and the plant
in an integrated and modular way. The shobi-PN
model presents synchronous behaviour, object-oriented
approaches, and hierarchical mechanisms. As a conse-
quence, this new approach directly supports hierarchi-
cal structures in both the control unit and the plant
allowing the specification of industrial digital arallel
control systems in a modular, hierarchical and incre-
mental way.

A complete CAD environment was presented,
SOFHIA, which supports the specification, analysis,
animation, simulation and synthesis of digital systems.
The environment generates a file with the control unit
specification. The SOFHIA environment can be used
for Hw/Sw Codesign which allows the system to be im-
plemented in several technologies.

The analysis of some case studies —included in this
communication is the Industrial Reactor— also shows
that there is a relation between the structure of the PNs
and the kind of approach followed in the system speci-
fication. In the Reactor example, the obtained PN re-
flects a control-driven approach, because the control net
is open. On the other hand, in the data-driven approach
the nets embody in the control net the reinitializations
of the objects with no need to partially or totally in-
corporate the closing tracks. Tﬁe data-driven control
nets can be totally closed (i.e. they do not have reini-
tializing nodes). On the other hand, the control-driven
control nets must be opened. This analysis shows that
the shobi-PN directly follows a data-driven approach
in the specification of parallel digital systems, and it
properly supports the specification of both the control
unit and the plant.

VI. REFERENCES

[1] Luis Gomes and A. Steiger-Gar¢ao. Programmable
Contoller Design Based on a Synchronized Colored
Petri Net Model and Integrating Fuzzy Reasoning.
In G. De Michelis and IV% Diaz, editors, Applica-
tions and Theory of Petri Nets 1995, volume 935
of Lecture Notes in Computer Science, pages 218
237. Springer-Verlag, Berlin, Germany, 1995.

[2] Manuel Silva. Logical Controllers. In A. De Carli,
editor, IFAC Low Cost Automation: Techniques,
Components and Instruments, Applications, vol-
EmelgIé 9pages F157-F166bis, Milan, Italy, Novem-

er .

IEEE Catalog Number: 97TH8280

-82-

(3]

[4]

(5]

[7]

(8]

[9]

[10]

(11]

(12]

[13]

[14]

René David and Hassane Alla. Petri Nets &
Grafcet; Tools for modelling discrete event sys-
tems. Prentice-Hall International, UK, 1992. ISBN
0-13-327537-X.

James Pardey and Martin Bolton. Logic Synthesis
of Synchronous Parallel Controllers. Proceedings of
the IEEE International Conference on Computer
Design, pages 454-7, 1991.

R. Valette, M. Courvoisier, J.M. Bigou, and J. Al-
bukerque. A Petri Net Based Programmable Logic
Controller. In IFIP First International Conference
on Computer Applications in Production and En-
ginnering, April 1983.

Jodo M. Fernandes, Anténio M. Pina, and Al-

berto J. Proenca. Concurrent Execution of Petri

Nets based on Agents. In 1st Workshop on Object-
Oriented Programming and Models of Concurrency

within the XVI International Conference on gilp-
lications and Theory of Petri Nets, Torino, Italy,
une 1995.

Tadao Murata. Petri Nets: Properties, Analy-
sis and Applications. Proceedings of the IEEE,
77(4):541-80, April 1989.

Kwang-Hyung Lee and Joel Favrel. Hierarchical
Reduction Method for Analysis and Decomposi-
tion of Petri Nets. IEEE Transactions on Systems,
Man and Cybernetics, SMC-15(2):272-80, 1985.

Charles Lakos. The Object Orientation in Object
Petri Nets. In Ist Workshop on Object-Oriented

Programming and Models of Concurrency, Torino,
Italy, June 1995.

Kurt Jensen. An Introduction to the Theoretical
Aspects of Coloured Petri Nets. Technical report,

Comp. Science Dept, Aarhus University, Denmark,
August 1994.

Ricardo J. Machado, Jodo M. Fernandes, and Al-
berto J. Proenga. SOFHIA: A CAD Environment
to Design Digital Control Systems. In Proceed-
ings of the XIII IFIP Conference on Computer
Hardware Description Languages and Their Ap-
plications (CHDL’97), Toledo, Spain, April 1997.
Chapman & Hall. :

Jodo M. Fernandes, Marian Adamski, and Al-
berto J. Proenca. VHDL Generation from Hier-
archical Petri Net Specifications of Parallel Con-
troller. IEE Proceedings: Computers and Digital
Techniques, 1997. To appear.

Marian Adamski. Direct Implementation of Petri
Net Specification. In 7th International Conference
on Control Systems and Computer Science CSCS7,
pages 74-85, 1987.

Marian Adamski and Jodo L. Monteiro. PLD Im-
plementation of Logic Controllers. In Proceedings
of the IEEE International Symposium on Indus-
trial Electronics ISIE’95, pages 706-11, Athens,
Greece, 1995.

ISIE’97 — Guimaries, Portugal

CLASS: tank
VAR, INST.: BOOL: cpen
FLOAT: capacity
COMST.: CAP = xxx
NETDS. INST.:
bool RD_OPEN (BOOL level)
{ 17 (Level == HICH)
thez return (open)
else Tetura (MOT open)

void WR_OPEN (BOOL level)
{ if (level == HIGH)
then open = HIGH
else open = LOV

}

float RD_CAP O

{ retura (capacity)
}

void WR_CAP (FLOAT value)
{ capacity = value
}

CLASS: tenk_sensor
SUBCLASS OF: taak
VAR. INST.: BOOL: full, empty
METDS. INST.:
bool AD_FVLL (BOOL level)
{ if (Qevel == HIGH)

ther Tetura (full)

else Teturn (MOT full)
}
bool RD_EMPTY (BOOL level)
{ if (level == HIGH)

then return (empty)

else Teturn (NOT empty)

void WR_FULL (BOOL level)
{ if (level == HIGH)
then full = HIGH
else full = LOW

void WR_ENPTY (BOOL level)
{ it (level == HIGH)

then empty = HIGH

else empty = LOW

}
void WR_CAP (FLOAT value)
{ i1 (value >= CAP)
then full = HIGH
else full = LOW
it (value == 0)
then empty = HIGH
. mpty = LOV
capacity = value

CLASSE: tank_wheel
SUBCLASS OF: tan
VAR. INST.: BOOL: go, back, empty, start, end
METDS. INST.:
bool RD_GO (BOCL level)
{ if (Qevel == HIGH)
then return (go)
olse return (MOT go)

void WR_GO (BOOL level)
{ it (level == RICH)
then go = HIGH
else go = LOW

bool RD_BACK (BOOL level)

{ it (level == HIGH)
thea return (back)
else return (NOT back)

void WR_BACK (BOOL leval)
{ if (level == HICH)
then back = HIGH
else back = LOW

bool RD_ENPTY (BOOL level)
{ it (level == HIGH)
then return (empty)
else Tetura (MOT empty)

void WR_EXPTY (BOOL level)
{ it (level == KIGH)

thea empty = HIGH

else empty = LOV

void WR_CAP (FLOAT value)
{ if (value == D)
then empty = HIGH
o mpty = LOW
capacity = value

Fig. 5. The classes for the industrial reactor.

<#==-= Input and Output signals ---—->

.clock CILX

-input START FULLCL EMPTYCI FULLC2 ENPTYC2 FULLR EMPTYR BEGIN
END EMPTYT

-output OPENS1 OPENS2 OPENC1 OPENC2 OPENR TURN GO BACK OPENT

<#---- Industrial Reactor SIPR ---~#>

.part REACTOR

.place pl p2 p3 p4 pS p6 p7 p8 pd pi0 pil pi2 pi3 pi4 piS pis
.transition t1 $2 £3 t4 t6 t68 t7 t8 t9 t10 til t12 +13

.net

ti: pl e START |- p2 « p3 » p8;
t2: p2 » FULLC1 - H
t8: ps o FULLC2 |- p6;
t4: p4 « pb |- p8 ¢ pd = pi0;
t6: p8 FULLR I- p7;
t6: pT . 1FULLR |- p8;
t7: pd e ENPTYCL |- pii;
t8: pig e EMPTYC2 |- pi2;
t9: pé o BEGIN i- p13;
t10: pil & pi2 e pi8 1- p14;
t11: p8 » pi4 » EXPTYR I- p18;
t12: pis # END I- pie;
t13: p16é « ENPTYT |- p1;
.Moorelutput

p2 |- OPENSI;

»2 I~ OPENS2;

-

7 -

M |-

p10 I~

pie I-

pis -

pi8 -

<¢---= Initial Narking =---->
-mazking pl
..

Fig. 6. CoNPAR. code for the industrial reactor.

IEEE Catalog Number: 97TH8280

-83-

ENTITY controller IS
PORT (zeset, start, fullci, ..., end, emptyt, clk : IN BIT;
opensi, opsms2, openci, ..., back, opent : OUT BIT);
END contreller;

ARCHITECTURE dstaflow OF comtroller IS

== Place Signals
SIGNAL p1 : REG_BIT REGISTER;
SIGNAL Npi : BIT;
SIGNAL p2 : REG_BIT REGISTER;
SIGMAL Mp2 : BYT;
SIGNAL pi6 : REG_DIT REGISTER;
SIGNAL Npig : 2AIT;

== Transition Signals
SIGHAL t1 : BIT;
SIGNAL €2 : BIT;

SIGNAL 18 : BIT;

BEGIN
PART : BLOCK (clk=’1’
BEGIN
pL <= GUARDED Npt
p2 <= GUARDED Np2
P16 <= GUARDED Npi6 WHEN reset=’0’ ELSE *0°;
END BLOCK;

AND NOT ¢1k’STABLE)

WHEN reset=’0’ ELSE 1’3
WHEM reset=’0’ ELSE ’0?;

== Dataflovw descriptica for transitions
t1 <= NOT p2 AND WOT p3 AND NOT p8 AND start AND pi;
%2 <= NOT p4 AND fullci AMD p2;
t3 <= NOT p6 AND fullc2 AND p3;
t4 <= NOT p® AND NOT pS AND NOT piO AND pS AND p4;
6 <~ NOT p7 AND fullr AND p8;
68 <= NOT p8 AND NOT fullr AND p7;
t7 <= MOT pii AND emptyci AND p9;
t8 <= NOT pl2 AND emptyc2 AND pi0;
t9 <= NOT pi3S AND begin AND pé;
10 <= NOT p14 AND piS AND pi2 AND pii;
+11 <= NOT pi§ AND emptyr AND pi4 AND p8;
12 <= NOT p1¢ AND end AND pi§;
+18 <= MOT pl1 AMD emptyt AND pi6é;

== Dataflow description for next place markings
Npl <= 18 OR (pi AND NOT t1);
Np2 <= t1 OR (p2 AND NOT t2);
WpS <= ¥1 OR (p3 AND NOT t3);
Np4 <= 12 OR (p4 AND NOT t4);
NpE <= 3 OR (pS AND NOT t4);
Npé <= t1 OR (p6 AND NOT t9);
NpT <= t§ OR (p7 AND NOT t6);
Np8 <= t6 OR t4 OR (p8 AND NOT t11 AND NOT v6);
Wp9 <= t4 OR (p® AND NOT t7);
Npi0 <= t4 OR (piO AND NOT t8);
Npii <= £7 OR (pii AND NOT +10);
Npi2 <= t8 OR (pi2 AND NOT £10);
Npi3 <= t9 OR (pi3 AND NOT t10);
Npi4 <= 10 OR (pi4 AND WOT t11);
Npl§ <= t11 OR (pl6 AND NOT t12);
Npi6 <= t12 OR (pi6 AND NOT t13);

== Output Signals Equations

copensi <= p2;
opens2 <= p8;
opencl <= pd;
openc2 <= pl0;
openr <= pi4;
turn <= pT;

8o <= pi6;

back <= p6;

opent <= plé;

== Transitions in conflict
ASSERT NOT (t¢ AND t4)
REPORT "t6 and t4 are in conflict, because of output place p8."
SEVERITY ERROR;
ASSERT NOT (411 AND t5)
REPORT "t11 and t5 are in conflict, because of iaput place p8."
SEVERITY ERROR;
~= No Ensbled Tronsitions
ASSERT NOT (t1=20° AND t2=°0° AND ... $13=7Q°)
REPORT "Petri Net may be deadlocked”
SEVERITY WARNING;

END dstaflow;

Fig. 7. VHDL code for the industrial reactor.

ISIE’97 — Guimarides, Portugal

