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This paper is devoted to the study of the initial value problem of nonlinear fra
tional di�erential equations involving a

Caputo type fra
tional derivative with respe
t to another fun
tion. Existen
e and uniqueness results for the problem are

established by means of the some standard �xed point theorems. Next, we develop the Pi
ard iteration method for solving

numeri
ally the problem, and obtain results on the long-term behaviour of solutions. Finally, we analyze a population growth

model and a gross domesti
 produ
t model with governing equations being fra
tional di�erential equations that we have

introdu
ed in this work. Copyright
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1. Introdu
tion

Fra
tional 
al
ulus is a bran
h of mathemati
s that studies integrals and derivatives of non-integer order. Leibniz and L-Hôpital

have already wondered what would be a derivative of order 0:5. Although in the beginning fra
tional 
al
ulus had a development

as a pure mathemati
al idea, in re
ent de
ades its use has also spread into many other �elds of s
ien
e su
h as physi
s,

me
hani
s, and bioengineering [13, 19℄. Various phenomena of vis
oelasti
ity, di�usion pro
edures, relaxation vibrations,

ele
tro
hemistry, et
. are su

essfully des
ribed by fra
tional di�erential equations (FDE). The resear
hers tried to suggest

several types of fra
tional operators to des
ribe more a

urately these phenomena (see, e.g., [1, 6, 7, 22, 28℄). Due to the

large number of de�nitions that exist for fra
tional derivatives, one simple way to deal with su
h a variety is to 
ombine those


on
epts to a single one by 
onsidering fra
tional derivatives of fun
tion f with respe
t to another fun
tion [21℄. Moreover,

as the purpose operator depends on a kernel, it provides, besides the order, any number of free parameters to better 
alibrate

a system. Therefore, we �nd the theory of FDEs with derivatives depending on a kernel, as a promising area for further

investigations. In this paper, we intend to present the fundamentals of a theory for FDEs with a general derivative. For related

results 
on
erning FDEs with di�erent type of fra
tional derivatives, we refer to [2, 3, 4, 9, 10, 17, 25℄.

The outline of the paper is the following. In Se
tion 2, we present the main de�nition of this work: the  -Caputo fra
tional

derivative, that is, a Caputo-type derivative of a fun
tion with respe
t to another fun
tion; in Theorem 1, we prove that this

operator is the left inverse of the fra
tional integral. Se
tion 3 is devoted to the study of FDEs with  -Caputo fra
tional

derivatives. First, in Se
tion 3.1, the problem of existen
e and uniqueness of solutions is investigated. Then, based on the Pi
ard

iteration method, we present a s
heme for solving this type of FDEs. Se
tion 3.3 
ontains results on the long-term behaviour

of solutions de�ned on suÆ
iently large intervals. In Se
tion 4, possible appli
ations of the theory developed in this paper to
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model a population growth and a gross domesti
 produ
t are presented.As governing equations of a mathemati
al formulation

of those models we propose fra
tional di�erential equations with the  -Caputo fra
tional derivative. Finally, we �nish the paper

by a 
on
lusion se
tion.

2. Preliminaries

In the following and throughout the text, � > 0 is a real, x : [a; b℄! R an integrable fun
tion and  2 C

n

[a; b℄ an in
reasing

fun
tion su
h that  

0

(x) 6= 0, for all x 2 [a; b℄.

The  -Riemann{Liouville fra
tional integral of x of order � is de�ned as

I

�; 

a+

x(t) :=

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

x(�) d�;

and the  -Riemann{Liouville fra
tional derivative of x of order � is de�ned as

D

�; 

a+

x(t) :=

(

1

 

0

(t)

d

dt

)

n

I

n��; 

a+

x(t)

=

1

�(n � �)

(

1

 

0

(t)

d

dt

)

n

∫

t

a

 

0

(�)( (t) �  (�))

n���1

x(�) d�:

Here, n = [�℄ + 1. In parti
ular, for suitably 
hosen  , we obtain some well known fra
tional operators, like the Riemann{

Liouville, the Hadamard and the Erd�elyi{Kober type. The fra
tional integrals satisfy the semigroup law [15℄: let �; � > 0, then

the relation

I

�; 

a+

I

�; 

a+

x(t) = I

�+�; 

a+

x(t)

holds. In the present work, we deal with a Caputo type di�erential operator.

De�nition 1 Let � > 0 and  2 C

n

[a; b℄ be a fun
tion su
h that  is in
reasing and  

0

(x) 6= 0, for all x 2 [a; b℄. Given

x 2 C

n�1

[a; b℄, the  -Caputo fra
tional derivative of x of order � is de�ned as

C

D

�; 

a+

x(t) := D

�; 

a+

[

x(t) �

n�1

∑

k=0

x

[k℄

 

(a)

k!

( (t) �  (a))

k

]

where

n = [�℄ + 1 for � =2 N; n = � for � 2 N;

and

x

[k℄

 

(t) :=

(

1

 

0

(t)

d

dt

)

k

x(t):

If x 2 C

n

[a; b℄, then the  -Caputo fra
tional derivative of x 
an be represented by the expression (
f. [5, Theorem 3℄)

C

D

�; 

a+

x(t) := I

n��; 

a+

(

1

 

0

(t)

d

dt

)

n

x(t):

Thus, if � = m 2 N, we have

C

D

�; 

a+

x(t) = x

[m℄

 

(t);

and for � =2 N, we have

C

D

�; 

a+

x(t) =

1

�(n � �)

∫

t

a

 

0

(�)( (t) �  (�))

n���1

x

[n℄

 

(�) d�:

Some known fra
tional derivatives are just parti
ular 
ases of the  -Caputo fra
tional derivative. For appropriate 
hoi
es of

the kernel  , we obtain the Caputo fra
tional derivative [21℄ (for  (t) = t), the Caputo{Hadamard fra
tional derivative [11, 14℄

(for  (t) = ln(t)) and the Caputo{Erd�elyi{Kober fra
tional derivative [18℄ (for  (t) = t

�

).

The  -Caputo fra
tional derivative of a power fun
tion is given next. Let � 2 Rwith � > n. The  -Caputo fra
tional derivative

of the fun
tion

x(t) = ( (t) �  (a))

��1

is given by the formula

C

D

�; 

a+

x(t) =

�(�)

�(� � �)

( (t) �  (a))

����1

:

The  -Caputo fra
tional derivative is a left inverse of the  -Riemann{Liouville fra
tional integral. Below we generalize

Theorems 4 and 5 of [5℄.

2 Copyright
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Theorem 1 Let x : [a; b℄! R. The following holds:

1. If x 2 C[a; b℄, then

C

D

�; 

a+

I

�; 

a+

x(t) = x(t):

2. If x 2 C

n�1

[a; b℄, then

I

�; 

a+

C

D

�; 

a+

x(t) = x(t) �

n�1

∑

k=0

x

[k℄

 

(a)

k!

( (t) � (a))

k

:

Proof For proving 1 observe that, by de�nition,

C

D

�; 

a+

I

�; 

a+

x(t) := D

�; 

a+

[

I

�; 

a+

x(t) �

n�1

∑

k=0

(I

�; 

a+

x)

[k℄

 

(a)

k!

( (t) �  (a))

k

]

:

Attending that

(I

�; 

a+

x)

[k℄

 

(t) =

(

1

 

0

(t)

d

dt

)

k

I

�; 

a+

x(t)

=

1

�(�� k)

∫

t

a

 

0

(�)( (t) �  (�))

��k�1

x(�) d�;

we dedu
e the following relation

∣

∣

∣(I

�; 

a+

x)

[k℄

 

(t)

∣

∣

∣ �

kxk

�(�� k + 1)

( (t) �  (a))

��k

;

and thus (I

�; 

a+

x)

[k℄

 

(a) = 0, for all k = 0; 1; : : : ; n � 1. Therefore,

C

D

�; 

a+

I

�; 

a+

x(t) = D

�; 

a+

I

�; 

a+

x(t) =

(

1

 

0

(t)

d

dt

)

n

I

n��; 

a+

I

�; 

a+

x(t) =

(

1

 

0

(t)

d

dt

)

n

I

n; 

a+

x(t) = x(t);

whi
h ends the �rst point of the proof. To prove 2, let

y(t) := x(t) �

n�1

∑

k=0

x

[k℄

 

(a)

k!

( (t) � (a))

k

:

Thus, I

�; 

a+

C

D

�; 

a+

x(t) = I

�; 

a+

D

�; 

a+

y(t); and so it is enough to prove that I

�; 

a+

D

�; 

a+

y(t) = y(t): For this purpose, observe that

I

�; 

a+

D

�; 

a+

y(t) =

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

D

�; 

a+

y(�) d�

=

1

 

0

(t)

d

dt

{

1

�(�+ 1)

∫

t

a

 

0

(�)( (t) �  (�))

�

D

�; 

a+

y(�) d�

}

:

Integrating by parts, we obtain

? :=

1

�(�+ 1)

∫

t

a

 

0

(�)( (t) �  (�))

�

D

�; 

a+

y(�) d�

=

1

�(�+ 1)

∫

t

a

( (t) �  (�))

�

d

d�

[

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�)

]

d�

=

[

( (t) � (�))

�

�(�+ 1)

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�)

]

t

a

+

1

�(�)

∫

t

a

( (t) �  (�))

��1

d

d�

[

(

1

 

0

(�)

d

d�

)

n�2

I

n��; 

a+

y(�)

]

d�:

Sin
e

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�) =

1

�(1� �)

∫

�

a

 

0

(s)( (�) �  (s))

��

y(s) ds;

we dedu
e that

∣

∣

∣

∣

∣

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�)

∣

∣

∣

∣

∣

�

kyk

�(2� �)

( (�) � (a))

1��

;
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and so

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�) = 0 at � = a:

Thus, performing again integration by parts, we obtain the equality

? =

1

�(�)

∫

t

a

( (t) �  (�))

��1

d

d�

[

(

1

 

0

(�)

d

d�

)

n�2

I

n��; 

a+

y(�)

]

d�

=

[

( (t) �  (�))

��1

�(�)

(

1

 

0

(�)

d

d�

)

n�2

I

n��; 

a+

y(�)

]

t

a

+

1

�(�� 1)

∫

t

a

( (t) � (�))

��2

d

d�

[

(

1

 

0

(�)

d

d�

)

n�3

I

n��; 

a+

y(�)

]

d�

=

1

�(�� 1)

∫

t

a

( (t) � (�))

��2

d

d�

[

(

1

 

0

(�)

d

d�

)

n�3

I

n��; 

a+

y(�)

]

d�:

Repeating this pro
edure, we arrive to

? =

[

( (t) �  (�))

��n+2

�(�� n + 3)

(

1

 

0

(�)

d

d�

)

I

n��; 

a+

y(�)

]

t

a

+

1

�(�� n + 2)

∫

t

a

( (t) �  (�))

��n+1

d

d�

I

n��; 

a+

y(�)d�

=

1

�(�� n + 2)

∫

t

a

( (t) �  (�))

��n+1

d

d�

I

n��; 

a+

y(�)d�

=

[

( (t) �  (�))

��n+1

�(�� n + 2)

I

n��; 

a+

y(�)

]

t

a

+

1

�(�� n + 1)

∫

t

a

 

0

(�)( (t) � (�))

��n

I

n��; 

a+

y(�)d�

= I

��n+1; 

a+

I

n��; 

a+

y(t) = I

1; 

a+

y(t):

In 
on
lusion, we prove the desired formula:

I

�; 

a+

D

�; 

a+

y(t) =

1

 

0

(t)

d

dt

I

1; 

a+

y(t) = y(t):

3. Fra
tional Di�erential Equations

This se
tion 
ontains our main results. We prove existen
e and uniqueness results for the initial value problem of nonlinear FDE

involving  -Caputo fra
tional derivative

C

D

�; 

a+

x(t) = f (t; x(t)), develop the Pi
ard iteration method for solving this problem

and for a parti
ular 
ase of FDEs we establish results on the long-term behaviour of solutions.

3.1. Existen
e and uniqueness of solution

Consider the problem (P ), given by the nonlinear FDE

C

D

�; 

a+

x(t) = f (t; x(t)); t 2 [a; b℄;

subje
t to the initial 
onditions

x(a) = x

a

and x

[k℄

 

(a) = x

k

a

; k = 1; : : : ; n � 1;

where

1. 0 < � =2 N and n = [�℄ + 1,

2. x

a

and x

k

a

, for k = 1; : : : ; n � 1, are �xed reals,

3. x 2 C

n�1

[a; b℄ su
h that

C

D

�; 

a+

x exists and is 
ontinuous in [a; b℄,

4. f : [a; b℄�R! R is 
ontinuous.

Also, we denote x

0

a

:= x

a

. We �rst prove an equivalen
e relation between the fra
tional Cau
hy problem (P ) and the Volterra

integral equation.

Theorem 2 A fun
tion x 2 C

n�1

[a; b℄ is a solution to problem (P ) if and only if x satis�es the following fra
tional integral

equation

x(t) = I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

: (1)

4 Copyright
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Proof This result is a 
onsequen
e of Theorem 1. The impli
ation (P )) (1) is 
lear: applying the operator I

�; 

a+

to both sides

of the equation

C

D

�; 

a+

x(t) = f (t; x(t)) and using the initial 
onditions, we obtain (1). To prove the 
onverse, we apply the

operator

C

D

�; 

a+

to both sides of equation (1) and use the fa
t that

C

D

�; 

a+

( (t) �  (a))

k

= 0; 8k 2 f0; 1; : : : ; n � 1g;

to obtain

C

D

�; 

a+

x(t) = f (t; x(t)). Finally, we have to prove that the initial 
onditions are also met. It is 
lear that x(a) = x

a

.

Also, dire
t 
omputations lead to

x

[1℄

 

(t) =

x

0

(t)

 

0

(t)

=

1

�(�� 1)

∫

t

a

 

0

(�)( (t) �  (�))

��2

f (�; x(�)) d� +

n�1

∑

k=1

x

k

a

(k � 1)!

( (t) �  (a))

k�1

;

and so x

[1℄

 

(a) = x

1

a

. Repeating this pro
ess, we arrive to

x

[n�1℄

 

(t) =

(x

[n�2℄

(t))

0

 

0

(t)

=

1

�(�� n + 1)

∫

t

a

 

0

(�)( (t) �  (�))

��n

f (�; x(�)) d� + x

n�1

a

:

Sin
e f (�; x(�)) is 
ontinuous on [a; b℄, there exists a positive 
onstant A su
h that

∣

∣

∣

∣

1

�(�� n + 1)

∫

t

a

 

0

(�)( (t) �  (�))

��n

f (�; x(�)) d�

∣

∣

∣

∣

� A

( (t) �  (a))

��n+1

�(�� n + 2)

;

whi
h vanishes at the initial point t = a, and thus x

[n�1℄

 

(a) = x

n�1

a

.

Theorem 3 Assume that fun
tion f is Lips
hitz 
ontinuous with respe
t to the se
ond variable, that is, there exists a positive


onstant L su
h that

jf (t; x

1

) � f (t; x

2

)j � Ljx

1

� x

2

j; 8t 2 [a; b℄8x

1

; x

2

2 R: (2)

Then, there is a 
onstant h 2 R

+

su
h that there exists a unique solution to problem (P ) on the interval [a; a + h℄ � [a; b℄.

Proof Let h be a real satisfying the 
onditions

L

( (a + h)�  (a))

�

�(�+ 1)

< 1 and a+ h � b:

De�ne the set

U :=

{

x 2 C

n�1

[a; a+ h℄ :

C

D

�; 

a+

x 2 C[a; a+ h℄

}

; (3)

and the operator F : U ! U by the rule

F [x ℄(t) := I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) � (a))

k

: (4)

We �rst prove that F is well de�ned, that is, F (U) � U. For that purpose, 
onsider a fun
tion x 2 C

n�1

[a; a+ h℄. It is 
lear that

the map t 7! F [x ℄(t) is of 
lass C

n�1

. Also,

C

D

�; 

a+

F [x ℄(t) =

C

D

�; 

a+

I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

C

D

�; 

a+

( (t) �  (a))

k

= f (t; x(t))

is 
ontinuous in [a; a+ h℄. Next, we shall show that F is a 
ontra
tion. Given x

1

; x

2

2 U, we have

kF (x

1

)� F (x

2

)k = max

t2[a;a+h℄

jF [x

1

℄(t)� F [x

2

℄(t)j = max

t2[a;a+h℄

jI

�; 

a+

(f (t; x

1

(t))� f (t; x

2

(t)))j

� L

( (a + h)�  (a))

�

�(�+ 1)

kx

1

� x

2

k;

whi
h proves that F is a 
ontra
tion. By the Bana
h �xed point theorem, we get the result of the theorem.

Next, we prove the existen
e of a solution to the fra
tional Cau
hy problem (P ) using on the S
haefer �xed point theorem.

Theorem 4 Assume that fun
tion f is 
ontinuous and there exist two positive 
onstants k

0

and k

1

su
h that

jf (t; x)j � k

0

+ k

1

jx j; 8t 2 [a; b℄8x 2 R:

Then, there exists a 
onstant h > 0 su
h that problem (P ) has at least one solution de�ned on the interval [a; a + h℄ � [a; b℄.
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Proof Let h > 0 be su
h that a + h � b and

1�

k

1

�(�+ 1)

( (a + h)� (a))

�

> 0:

Consider the set U and the operator F : U ! U de�ned by (3) and (4), respe
tively. We shall divide the proof in four steps.

Claim I: F is 
ontinuous.

Let (x

n

) be a sequen
e 
onverging to x in U. Then,

kF (x

n

)� F (x)k = max

t2[a;a+h℄

jF [x

n

℄(t)� F [x ℄(t)j = max

t2[a;a+h℄

jI

�; 

a+

(f (t; x

n

(t))� f (t; x(t)))j

� kf (�; x

n

(�))� f (�; x(�))k

( (a + h)�  (a))

�

�(�+ 1)

:

Sin
e f is a 
ontinuous fun
tion, we have

F (x

n

)� F (x)! 0 as n!1:

Claim II: F maps bounded sets into bounded sets in U.

We prove that, for all r > 0, there exists some r

0

> 0 su
h that

8x 2 A

r

:= fx 2 U : kxk � rg : kF (x)k � r

0

:

Indeed, given x 2 A

r

, and using the relation

jf (t; x(t))j � k

0

+ k

1

kxk � k

0

+ k

1

r; 8t 2 [a; a+ h℄;

we have

kF (x)k �

k

0

+ k

1

r

�(�+ 1)

( (a + h)�  (a))

�

+

n�1

∑

k=0

jx

k

a

j

k!

( (a + h)�  (a))

k

:= r

0

;

whi
h is independent of t and x , and so F is uniformly bounded.

Claim III: F maps bounded sets into equi
ontinuous sets in U.

Let t

1

; t

2

2 [a; a+ h℄ with t

1

< t

2

, A

r

de�ned as in Claim II, and set the signum fun
tion

sgn(�) :=

{

1 if � > 1

�1 if � 2 (0; 1):

Then, for all x 2 A

r

:

jF [x ℄(t

2

)� F [x ℄(t

1

)j

� jI

�; 

a+

(f (t

2

; x(t

2

))� f (t

1

; x(t

1

)))j +

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

)�  (a))

k

� ( (t

1

) �  (a))

k

]

=

1

�(�)

∣

∣

∣

∣

∫

t

2

a

 

0

(�)( (t

2

)�  (�))

��1

f (�; x(�)) d� �

∫

t

1

a

 

0

(�)( (t

1

) �  (�))

��1

f (�; x(�)) d�

∣

∣

∣

∣

+

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

) �  (a))

k

� ( (t

1

) � (a))

k

]

�

k

0

+ k

1

r

�(�)

[
∫

t

1

a

sgn(�) 

0

(�)

[

( (t

2

)�  (�))

��1

� ( (t

1

)�  (�))

��1

]

d�

+

∫

t

2

t

1

 

0

(�)( (t

2

)�  (�))

��1

d�

]

+

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

) �  (a))

k

� ( (t

1

) � (a))

k

]

�

k

0

+ k

1

r

�(�+ 1)

[sgn(�) [( (t

2

)�  (a))

�

� ( (t

2

)�  (t

1

))

�

� ( (t

1

)�  (a))

�

℄ + ( (t

2

)�  (t

1

))

�

℄

+

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

) �  (a))

k

� ( (t

1

) � (a))

k

]

:

Sin
e the right-hand side of the above inequality 
onverges to zero as t

2

! t

1

, we have that F [x ℄(t

2

)! F [x ℄(t

1

). As a


onsequen
e of Claims I{III together with the Arzel�a{As
oli Theorem, we 
on
lude that F is 
ompletely 
ontinuous.

Claim IV: To 
on
lude the proof, we show that the set

T := fx 2 U : x = �F (x) for some � 2 (0; 1)g

6 Copyright
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is bounded. Let x 2 T and � 2 (0; 1) be su
h that x = �F (x). For all t 2 [a; a+ h℄, we have

jF [x ℄(t)j �

k

0

+ k

1

kxk

�(�+ 1)

( (t) �  (a))

�

+

n�1

∑

k=0

jx

k

a

j

k!

( (t) �  (a))

k

;

and so

kxk < kF (x)k �

k

0

+ k

1

kxk

�(�+ 1)

( (a + h)�  (a))

�

+

n�1

∑

k=0

jx

k

a

j

k!

( (a + h)�  (a))

k

;

, kxk �

k

0

�(�+1)

( (a + h)�  (a))

�

+

∑

n�1

k=0

jx

k

a

j

k!

( (a + h)�  (a))

k

1�

k

1

�(�+1)

( (a + h)�  (a))

�

;

whi
h proves that T is bounded. By the S
haefer �xed point theorem, F has a �xed point.

Corollary 1 Assume that fun
tion f is 
ontinuous and bounded. Then, there is at least one solution to problem (P ), de�ned on

some interval [a; a+ h℄.

3.2. Pi
ard iteration

Let us re
all that, by Theorem 2, x is a solution of problem (P ) if and only if x is a solution of the equation

x(t) = I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

: (5)

Consider the sequen
e of fun
tions (x

m

)

1

m=0

, de�ned re
ursively through

{

x

0

(t) =

∑

n�1

k=0

x

k

a

k!

( (t) �  (a))

k

x

m+1

(t) = I

�; 

a+

f (t; x

m

(t)) +

∑

n�1

k=0

x

k

a

k!

( (t) � (a))

k

; m = 0; 1; 2; : : : :

Under the assumptions of Theorem 3, we shall prove that (x

m

)

1

m=0


onverges uniformly on the interval [a; b℄ to a fun
tion x that

veri�es equation (5). Set

M := max

t2[a;b℄

jf (t; x

0

(t))j:

We prove, by indu
tion, that for all m 2 N[ f0g, the following inequality holds:

jx

m+1

(t) � x

m

(t)j � M

L

m

�((m + 1)�+ 1)

( (t) �  (a))

(m+1)�

:

First, we have that

jx

1

(t)� x

0

(t)j =

∣

∣

∣I

�; 

a+

f (t; x

0

(t))

∣

∣

∣ � MI

�; 

a+

1 = M

( (t) �  (a))

�

�(�+ 1)

:

On the other hand,

jx

m+2

(t)� x

m+1

(t)j � I

�; 

a+

jf (t; x

m+1

(t))� f (t; x

m

(t))j � LI

�; 

a+

jx

m+1

(t)� x

m

(t)j

� M

L

m+1

�((m + 1)�+ 1)

I

�; 

a+

( (t) �  (a))

(m+1)�

= M

L

m+1

�((m + 1)�+ 1)�(�)

( (t) �  (a))

��1

�

∫

t

a

 

0

(�)

(

1 �

 (�) �  (a)

 (t) � (a)

)

��1

( (�) �  (a))

(m+1)�

d�:

Pro
eeding with the 
hange of variables

u =

 (�)�  (a)

 (t) �  (a)

;

and with the help of the Beta fun
tion B(�; �), we arrive to

jx

m+2

(t)� x

m+1

(t)j � M

L

m+1

�((m + 1)�+ 1)�(�)

( (t) �  (a))

(m+2)�

∫

1

0

(1� u)

��1

u

(m+1)�

du

= M

L

m+1

�((m + 1)�+ 1)�(�)

( (t) �  (a))

(m+2)�

B(�; (m + 1)�+ 1)

= M

L

m+1

�((m + 2)�+ 1)

( (t) �  (a))

(m+2)�

:
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Now, we prove that the series

1

∑

m=0

M

L

m

�((m + 1)�+ 1)

( (b) � (a))

(m+1)�

is 
onvergent. Applying the ratio test, we get

lim

m!1

M

L

m+1

�((m+2)�+1)

( (b) � (a))

(m+2)�

M

L

m

�((m+1)�+1)

( (b) � (a))

(m+1)�

= L( (b) �  (a))

�

lim

m!1

�((m + 1)�+ 1)

�((m + 1)�+ 1 + �)

= 0;

sin
e (see Eq. (1) in [24℄)

�((m + 1)�+ 1)

�((m + 1)�+ 1 + �)

=

1

((m + 1)�+ 1)

�

(

1�

�(�� 1)

2((m + 1)�+ 1)

+O(((m + 1)�+ 1)

�2

)

)

:

Attending that

jx

m+1

(t)� x

m

(t)j � M

L

m

�((m + 1)�+ 1)

( (b) �  (a))

(m+1)�

;

for all t 2 [a; b℄, by the Weierstrass M-test [26℄, we 
on
lude that the series

1

∑

m=0

(x

m+1

(t)� x

m

(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k


onverges uniformly in [a; b℄, and let x be its limit. Observe that, for all l 2 N,

l�1

∑

m=0

(x

m+1

(t)� x

m

(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

= x

l

(t);

and sin
e

jf (t; x

l

(t))� f (t; x(t))j � Ljx

l

(t) � x(t)j;

we get that f (�; x

l

(�)) 
onverges uniformly to f (�; x(�)) in [a; b℄, as l !1. Sin
e

x

m+1

(t) = I

�; 

a+

f (t; x

m

(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

; m = 0; 1; 2; : : : ;

letting m!1, we dedu
e

x(t) = I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

;

that is, x is a solution to problem (P ). Also, we have the upper bound

∣

∣

∣

∣

∣

x(t) �

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

∣

∣

∣

∣

∣

�

1

∑

m=0

jx

m+1

(t) � x

m

(t)j

�

1

∑

m=0

M

L

m

�((m + 1)�+ 1)

( (t) � (a))

(m+1)�

�

M

L

1

∑

m=1

(L( (t) �  (a))

�

)

m

�(m�+ 1)

=

M

L

(E

�

(L( (t) �  (a))

�

) � 1) ;

where E

�

is the Mittag{Le�er fun
tion:

E

�

(z) :=

1

∑

k=0

z

k

�(k� + 1)

:

Example 1 Consider the system

{

C

D

1:5; 

0+

x(t) = x(t)

x(0) = 1; x

[1℄

 

(0) = 0:

The solution of this problem is the fun
tion (see Lemma 2 in [5℄).

x(t) = E

�

(( (t) �  (0))

1:5

):
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For this 
ase, the Pi
ard iterative pro
ess is des
ribed as

{

x

0

(t) = 1

x

m+1

(t) = 1 + I

1:5; 

0+

x

m

(t); m = 0; 1; 2; : : :

In Figure 1, we present the results for two di�erent kernels: (a)  (t) = t, (b)  (t) = t

2

. In both 
ases, we present the plot of

the exa
t solution x and three approximations of it, by 
onsidering x

1

, x

3

and x

5

, in the Pi
ard iterations.

(a) For  (t) = t. (b) For  (t) = t

2

.

Figure 1. The Pi
ard iterations with respe
t to the two di�erent kernels.

3.3. The long-term behaviour of solutions

Consider the following initial value problem

C

D

�; 

a+

x(t) = f (t; x(t)); x(a) = x

a

; (6)

where 0 < � < 1, x

a

2 R. We assume that  : [a;1)! R is an in
reasing and unbounded fun
tion su
h that  

0

(x) 6= 0 for all

t � a. We are interested in the behaviour of the solutions of (6) when t !1. Therefore, we have to extend previously presented

results on the existen
e and uniqueness of solutions.

Theorem 5 Assume that fun
tion f : [a; b℄�R! R is 
ontinuous and Lips
hitz with respe
t to the se
ond variable, that is,


ondition (2) holds. Then, there exists a unique solution x 2 C[a; b℄ to problem (6).

Proof Let t

1

2 R be su
h that a < t

1

< b and

L

( (t

1

)�  (a))

�

�(�+ 1)

< 1:

Then, using the same method applied in the proof of Theorem 3, we 
an show that there exists a unique solution x

1

2 C[a; t

1

℄ to

problem (6). This solution 
an be found applying the Pi
ard iteration, presented in Se
tion 3.2. Now observe that, by Theorem 2,

we 
an write a solution to (6) in the form:

x(t) = x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d� +

1

�(�)

∫

t

t

1

 

0

(�)( (t) �  (�))

��1

x(�) d�: (7)

Given that over the interval [a; t

1

℄ equation (6) possesses a unique solution, we 
an rewrite (7) as follows

x(t) = x

0

(t) +

1

�(�)

∫

t

t

1

 

0

(�)( (t) �  (�))

��1

x(�) d�;

where

x

0

(t) = x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�

is a known fun
tion. Now, let 
hoose t

2

= t

1

+ h

1

with h

1

> 0, su
h that t

2

< b and

L

( (t

2

)�  (t

1

))

�

�(�+ 1)

< 1:

Math. Meth. Appl. S
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By the same arguments as in the proof of Theorem 3, we 
an show that there exists a unique solution x

2

2 C[t

1

; t

2

℄ to equation

(6). Repeating the previous reasoning, 
hoosing t

k

= t

k�1

+ h

k�1

with h

k�1

> 0 su
h that t

k

< b and

L

( (t

k

)�  (t

k�1

))

�

�(�+ 1)

< 1;

we 
an show that problem (6) possesses a unique solution x

k

2 C[t

k�1

; t

k

℄ on ea
h interval [t

k�1

; t

k

℄, k = 1; : : : ; l , where

a = t

0

< t

1

< : : : < t

l

= b. This shows that there exists a unique pie
ewise 
ontinuous solution to problem (6) on the interval

[a; b℄. However, sin
e  is 
ontinuous, we have

lim

"!0

+

∫

t+"

t

 

0

(�)( (t) �  (�))

��1

d� = 0:

Therefore, the obtained solution is 
ontinuous on [a; b℄.

Corollary 2 Assume that fun
tion f : [a;1) �R! R is 
ontinuous and Lips
hitz with respe
t to the se
ond variable, that is,


ondition (2) holds for all t 2 [a;1) and all x

1

; x

2

2 R. Then, there exists a unique solution x 2 C[a;1) to problem (6).

Proof Note that, under assumptions of Corollary 2, we 
an apply Theorem 5. Sin
e we 
an take b > a arbitrary large, it follows

that there exists a uniquely de�ned fun
tion x 2 C[a;1) solving problem (6).

Observe that, if f (t; 0) = 0 for all t � a, and x

a

= 0, then the fun
tion x(t) = 0 is a solution to initial value problem (6).

Below we prove 
onditions ensuring that a solution to (6), with x

a

> 0, 
onverges to zero as t !1.

Theorem 6 Consider problem (6) with x(a) = x

a

> 0 and fun
tion f : [a;1) � [0; x

a

℄! (�1; 0℄ being 
ontinuous and Lips
hitz

with respe
t to the se
ond variable, that is, 
ondition (2) holds for all t 2 [a;1) and all x

1

; x

2

2 [0; x

a

℄. Moreover, assume that

f (t; 0) = 0 for all t. Then, the unique solution to (6) exists on [a;1) and satis�es 0 � x(t) � x

a

for all t � a.

Proof By Theorem 2, a solution to (6) satis�es the following

x(t) = x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�: (8)

De�ne

~

f (t; y) =











f (t; x

a

) if y > x

a

f (t; y) if 0 � y � x

a

0 if y < 0

(9)

and in this way extend the domain of f to [a;1) �R. The extended fun
tion

~

f satis�es assumptions of Corollary 2. Therefore,

problem (6), with fun
tion (9), has a unique 
ontinuous solution x . Now, we prove that this solution satis�es inequality

0 � x(t) � x

a

for all t � a. Suppose that x 
hanges the sign, that is











x(t) > 0 for a � t < t

1

x(t) = 0 for t = t

1

x(t) < 0 for t

1

< t � t

2

:

Thus, for the extended

~

f we have

{

~

f (t; x(t)) � 0 for a � t � t

1

~

f (t; x(t)) = 0 for t

1

< t � t

2

:

(10)

Combining (10) with (8) yields

x(t

2

) = x

a

+

1

�(�)

∫

t

2

a

 

0

(�)( (t

2

) � (�))

��1

~

f (�; x(�)) d�

= x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t

2

) � (�))

��1

~

f (�; x(�)) d�

+

1

�(�)

∫

t

2

t

1

 

0

(�)( (t

2

)�  (�))

��1

~

f (�; x(�)) d�

= x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t

2

) � (�))

��1

~

f (�; x(�)) d�

� x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t

1

) � (�))

��1

~

f (�; x(�)) d�

= x(t

1

) = 0;
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be
ause  is an in
reasing fun
tion. But x(t

2

) < 0, a 
ontradi
tion. Hen
e, x(t) � 0 for all t � a. Now, observe that, by

de�nition,

~

f (t; x) � 0 for all t and x . Therefore, by (8), x(t) � x

a

. We have shown that 0 � x(t) � x

a

for all t. This means

that (t; x(t)) is in the original domain of f and we 
on
lude that x is the unique solution to originally 
onsidered problem.

Theorem 7 Consider problem (6) with x(a) = x

a

> 0 and fun
tion f : [a;1)� [0; x

a

℄! (�1; 0℄ being 
ontinuous and Lips
hitz

with respe
t to the se
ond variable. Moreover, assume that f (t; 0) = 0 for all t, and that for all b > 0 and all 
ontinuous fun
tions

y : [a;1)! [b; x

a

℄ the following

lim

t!1

I

�; 

a+

f (t; y(t)) = �1 (11)

holds. Then, the unique solution to (6) satis�es lim

t!1

x(t) = 0.

Proof Firstly, observe that by Theorem 6 there exists a unique solution to problem (6), say x , su
h that 0 � x(t) � x

a

for all

t � a. Therefore, lim

t!1

x(t) � 0. Suppose that lim

t!1

x(t) = g > 0 and de�ne

y(t) =

{

x(t) for t > t

0

x(t

0

) for t � t

0

;

(12)

where t

0

is su
h that x(t) � g=2 for all t � t

0

. Clearly, y : [a;1)! [g=2; x

a

℄ is a 
ontinuous fun
tion. Applying Theorem 2 for

t > t

0

, we get

x(t) = x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�

= x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

f (�; y(�)) d�:

(13)

Observe that the se
ond term in (13) is bounded. Indeed, we have

∣

∣

∣

∣

∫

t

a

 

0

(�)( (t) �  (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

t

0

a

 

0

(�)( (t) �  (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

∣

∣

∣

∣

�

∣

∣

∣

∣

∫

t

0

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

t

0

a

 

0

(�)( (t) � (�))

��1

f (�; x(t

0

)) d�

∣

∣

∣

∣

� 2 sup

�2[a;t

0

℄;z2[0;x

a

℄

jf (�; z)j

1

�

[( (t) �  (a))

�

� ( (t) �  (t

0

))

�

℄

As  is in
reasing, the last expression is a positive and de
reasing fun
tion of t and hen
e bounded. Now, letting t !1 in (13)

we obtain

lim

t!1

x(t) = lim

t!1

(

x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) � (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

+

1

�(�)

∫

t

a

 

0

(�)( (t) � (�))

��1

f (�; y(�)) d�

)

and, by assumption (11), we have lim

t!1

x(t) = �1, whi
h 
ontradi
ts to x(t) � 0. Hen
e, lim

t!1

x(t) = 0.

Example 2 Consider the following initial value problem

C

D

�; 

a+

x(t) = ��x(t); x(a) = x

a

> 0; � > 0: (14)

Note that assumptions of Theorem 7 are satis�ed. In fa
t, sin
e  is an in
reasing and unbounded fun
tion, for all b > 0 and

all 
ontinuous fun
tions y : [a;1)! [b; x

a

℄, we have the following:

lim

t!1

I

�; 

a+

(��y(t)) � ��b lim

t!1

( (t) �  (a))

�

�(�+ 1)

= �1:

Therefore, there exists a unique solution x to (14), and su
h solution satis�es the 
ondition lim

t!1

x(t) = 0. Figure 2 presents

the solutions to problem (14) for di�erent values of �, with � = 2. In plot (a), the kernel is the fun
tion  (t) = 2

t

, and in plot

(b), the kernel is  (t) = t. We remark that 
ase (b) 
orresponds to the (usual) Caputo fra
tional derivative, with � = 1 being

the 
lassi
al derivative. Figure shows similarities between 
orresponding results with the  -Caputo derivative and the Caputo

derivative. However,  -Caputo derivative provides, besides the order, any number of free parameters to better 
alibrate a system.

This is a major advantage of the  -Caputo derivative over the 
lassi
al fra
tional derivatives.

Math. Meth. Appl. S
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(a) For  (t) = 2

t

. (b) For  (t) = t.

Figure 2. Solutions to equation (14) with � = 2, di�erent values of � and for two kernels.

4. Appli
ations to real-world problems

In this se
tion, we 
onsider appli
ations of FDE's, with  -Caputo fra
tional derivatives, to the world population growth and the

gross domesti
 produ
t (GDP) of some 
ountries. The goal is to determine the order � and the kernel  in su
h a way that

solutions to FDE's �t with given real data. Obtained in this way a fra
tional model, we then 
ompared it with the 
lassi
al one

(that is, when the order is � = 1 and the kernel is  (t) = t). The least squares �tting te
hnique (routine lsq
urvefit from

the Matlab Optimization Toolbox [20℄) will be used to provide a solution to the problem of �nding the values of the unknown

parameter A of the theoreti
al model x = F (A; t). Given a 
ertain data 
onsisting of N points (

~

t

i

; ~x

i

)

i=1;:::;N

, the goal is to

minimize the sum of squared residuals, a residual being the di�eren
e between an observed value and the �tted value provided

by the model:

minE

abs

= min

N

∑

i=1

[~x

i

� F (A;

~

t

i

)℄

2

:

Sin
e  is a in
reasing fun
tion, we impose the 
onstraint  (

~

t

i

) <  (

~

t

i+1

), for all i . In ea
h of the two appli
ations, we will �nd

the optimal parameters for fra
tional models, that is, the order � and the values of the kernel in the data  (

~

t

i

), for i = 1; : : : ; N.

To 
ompare the eÆ
ien
y of the pro
edure, we present in ea
h 
ase the relative errors

E

rel

=

∑

N

i=1

[~x

i

� F (A;

~

t

i

)℄

2

∑

N

i=1

(~x

i

)

2

:

In our 
al
ulations, we use the data available from [23℄, 
onsisting of 28 values, from the year 1960 until 2014, measured every

two years. Then, using the best estimative of the parameters, we determine an approximation of the data with respe
t to the odd

years. To estimate the values of  in the odd years we do the following pro
edure: for ea
h i ,  (t

2i�1

) = ( (t

2i�2

) +  (t

2i

))=2,

ex
luding 2015, where  (2015) =  (2014).

4.1. World population growth

In 1798, the British e
onomist Thomas Malthus published a book entitled An Essay on the Prin
iple of Population, where several

issues were 
onsidered regarding the growth of the human population. Malthus purposed a theoreti
al model, were the human

population exhibits exponential growth, being des
ribed by the linear di�erential equation N

0

(t) = �N(t), where � is the net

growth rate (birth rate minus death rate in population) and it is assumed to be 
onstant in time. The solution of this di�erential

equation is the exponential fun
tion

N(t) = N

0

exp(�t); (15)

where N

0

is the population at time t = 0. This model does not take into a

ount the natural 
onstraints of the system, like the

food and spa
e availability, the 
ompetition between spe
ies, pollution, et
. Thus, more 
omplex di�erential equations may be

purposed to deal with su
h problems regarding real data (e.g. Verhulst and augmented logisti
 models). However, the Malthusian

type model with the  -Caputo fra
tional derivative is suitable enough for this purpose, as we shall see. Let us 
onsider the linear

FDE

C

D

�; 

0+

N(t) = �N(t); where � 2 (0; 1) is a real. The solution of the equation is given by the Mittag{Le�er fun
tion:

N(t) = N

0

E

�

(�( (t) �  (0))

�

): (16)

Observe that, when � = 1, we re
over the 
lassi
al solution (15). We analyze growth rates in Lithuania and Qatar, 
ountries

with one of the lowest and the highest growth rates, respe
tively. The initial 
onditions are given by the initial population in ea
h


ountry: N

0

= 2 778 550, for Lithuania, and N

0

= 47 309, for Qatar. In Figure 3, we present the obtained kernels for Lithuania

and for Qatar that optimally �t with data. Figure 4 shows the two models (
lassi
al and fra
tional) for the two 
ountries,


ompared with the population size. In Tables 1-2, we present relative errors obtained in the pro
edure and the values of the

estimated parameters � and �.
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(a) Lithuania. (b) Qatar.

Figure 3. The optimal kernel for Lithuania and for Qatar.

(a) Lithuania. (b) Qatar.

Figure 4. Population size: 
lassi
al vs fra
tional models.

Even years Odd years � �

Classi
al 0:0104 0:6769 0:0049 {

Fra
tional 0:0040 0:0045 0:1251 0:1111

Table 1. Errors and the parameters with respe
t to Lithuania.

Even years Odd years � �

Classi
al 0:0217 0:0191 0:0702 {

Fra
tional 6:5984 � 10

�10

0:0065 0:1503 0:9270

Table 2. Errors and the parameters with respe
t to Qatar.

4.2. GDP growth rate in USA

The GDP per 
apita is equal to the GDP of a 
ountry divided by the midyear population of the 
ountry. This is the average

per-person output of the e
onomy. Kitov purposed in 2005 [16℄ a model to des
ribe the GDP growth rate variations in the USA.

He assumed that annual in
rement is 
onstant in time and expressed the dynami
s by a linear di�erential equation G

0

(t) = A,

where G is the real GDP per 
apita and A is a 
onstant. The solution is given by

G(t) = At + G

0

; (17)

Math. Meth. Appl. S
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where G

0

is the starting GDP in the studied period. If we 
onsider now the situation modeled by

C

D

�; 

0+

G(t) = A, its solution is

given by the fun
tion

G(t) = I

�; 

0+

A+ G

0

; (18)

when � 2 (0; 1). Later, when we apply the least squares method to determine the optimal �, we do not impose any 
onstraint

over � in order to obtain a better a

ura
y for the model. We also remark that, 
onsidering (t) := t, and �! 1

�

, the fra
tional

solution (18) 
onverges to the 
lassi
al solution (17). As initial 
ondition we use G

0

= $3007, 
orresponding to the GDP per


apita in USA in the year 1960. In Figure 5, we present the kernel obtained by the pro
edure, and 
ompare both models to the

given data.

(a) Kernel. (b) GDP.

Figure 5. The optimal kernel and the GDP for USA.

In Table 3, we present the errors obtained, for the even and for the odd years, and the values of the parameters A and �.

Even years Odd years A �

Classi
al 0:0299 0:0289 0:8172 {

Fra
tional 3:0109 � 10

�7

0:0014 0:3287 1:6846

Table 3. Errors and the parameters with respe
t to USA.

5. Con
lusions

In re
ent years, many new types of fra
tional derivatives have been proposed, investigated and applied to real world models.

Therefore, it is natural to try to 
ombine those 
on
epts into a single one. As we have mentioned, the important issue is

to develop the fundamentals of a theory for fra
tional di�erential equations with a general derivative. In this paper, we have

dis
ussed the 
lassi
al questions 
on
erning di�erential equations, su
h as existen
e and uniqueness of solutions, the Pi
ard

iteration method and the long-term behaviour of solutions. Moreover, using the real data, we have shown, that mathemati
al

models with the  -Caputo fra
tional derivative are more 
exible. Apparently, the  -Caputo derivative has the potential to extra
t

hidden aspe
ts of real world phenomena.
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