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This paper is devoted to the study of the initial value problem of nonlinear fractional differential equations involving a
Caputo type fractional derivative with respect to another function. Existence and uniqueness results for the problem are
established by means of the some standard fixed point theorems. Next, we develop the Picard iteration method for solving
numerically the problem, and obtain results on the long-term behaviour of solutions. Finally, we analyze a population growth
model and a gross domestic product model with governing equations being fractional differential equations that we have
introduced in this work. Copyright (€ 2009 John Wiley & Sons, Ltd.
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1. Introduction

Fractional calculus is a branch of mathematics that studies integrals and derivatives of non-integer order. Leibniz and L-Hopital
have already wondered what would be a derivative of order 0.5. Although in the beginning fractional calculus had a development
as a pure mathematical idea, in recent decades its use has also spread into many other fields of science such as physics,
mechanics, and bioengineering [13, 19]. Various phenomena of viscoelasticity, diffusion procedures, relaxation vibrations,
electrochemistry, etc. are successfully described by fractional differential equations (FDE). The researchers tried to suggest
several types of fractional operators to describe more accurately these phenomena (see, e.g., [1, 6, 7, 22, 28]). Due to the
large number of definitions that exist for fractional derivatives, one simple way to deal with such a variety is to combine those
concepts to a single one by considering fractional derivatives of function f with respect to another function [21]. Moreover,
as the purpose operator depends on a kernel, it provides, besides the order, any number of free parameters to better calibrate
a system. Therefore, we find the theory of FDEs with derivatives depending on a kernel, as a promising area for further
investigations. In this paper, we intend to present the fundamentals of a theory for FDEs with a general derivative. For related
results concerning FDEs with different type of fractional derivatives, we refer to [2, 3, 4, 9, 10, 17, 25].

The outline of the paper is the following. In Section 2, we present the main definition of this work: the ¥-Caputo fractional
derivative, that is, a Caputo-type derivative of a function with respect to another function; in Theorem 1, we prove that this
operator is the left inverse of the fractional integral. Section 3 is devoted to the study of FDEs with -Caputo fractional
derivatives. First, in Section 3.1, the problem of existence and uniqueness of solutions is investigated. Then, based on the Picard
iteration method, we present a scheme for solving this type of FDEs. Section 3.3 contains results on the long-term behaviour
of solutions defined on sufficiently large intervals. In Section 4, possible applications of the theory developed in this paper to
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model a population growth and a gross domestic product are presented.As governing equations of a mathematical formulation
of those models we propose fractional differential equations with the ¥-Caputo fractional derivative. Finally, we finish the paper
by a conclusion section.

2. Preliminaries
In the following and throughout the text, o > 0 is a real, x : [a, b] — R an integrable function and ¢ € C"[a, b] an increasing

function such that 9'(x) # 0, for all x € [a, b].
The -Riemann—Liouville fractional integral of x of order « is defined as

20 (t) = ﬁ / W () () — () " x(7) d,

and the 1-Riemann—Liouville fractional derivative of x of order « is defined as

p2x(0) = (g ae) o)

1 n—o—1
- t d
et () [ O - vy ar
Here, n=[a]+ 1. In particular, for suitably chosen v, we obtain some well known fractional operators, like the Riemann—
Liouville, the Hadamard and the Erdélyi—-Kober type. The fractional integrals satisfy the semigroup law [15]: let a, B8 > 0, then

the relation
ISV 18X (1) = 1577 x (1)

holds. In the present work, we deal with a Caputo type differential operator.

Definition 1 Let o >0 and ¥ € C"[a, b] be a function such that 1 is increasing and ¥'(x) # 0, for all x € [a, b]. Given
x € C™a, b], the -Caputo fractional derivative of x of order c is defined as

n—1 [k]
“D3’x(t) = DY |x(1) —Z (@ )(wm —¥(a)) }
k=0
where
n=[a]+1 fora ¢ N, n=a for a €N,
and

o (1 d\*
x}l}](t) = (1/)’(1.“)%) x(t).

If x € C"[a, b], then the ¥-Caputo fractional derivative of x can be represented by the expression (cf. [5, Theorem 3])

CpEIx(t) = (7 <w+t)%> x(t).

Thus, if « = m € N, we have
D3I x(t) = X0,

and for a ¢ N, we have

Cped(t) = / W ()W) — () (r) dr

Some known fractional derivatives are just partlcular cases of the 1-Caputo fractional derivative. For appropriate choices of
the kernel ¥, we obtain the Caputo fractional derivative [21] (for ¥(t) = t), the Caputo—Hadamard fractional derivative [11, 14]
(for 9(t) = In(t)) and the Caputo—Erdélyi—Kober fractional derivative [18] (for ¥(t) = t7).

The ¥-Caputo fractional derivative of a power function is given next. Let 8 € R with 8 > n. The 9-Caputo fractional derivative
of the function

x(t) = (P(t) — (a))*!
is given by the formula

“DIx(D) = [(B) B () — 9@

The 1-Caputo fractional derivative is a left inverse of the i¥-Riemann—Liouville fractional integral. Below we generalize
Theorems 4 and 5 of [5].
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Theorem 1 Let x : [a, b] = R. The following holds:

1. Ifx € Cla, b], then
DIV I x (1) = x(1).

2. Ifx € C"*a, b], then

K]
I3 DI x(t) = x(t) - Z ’”()

(¥(t) —(a)".
Proof For proving 1 observe that, by definition,

n—1 /alll [K]
159 x(t) — ZM(W) ¥(a)”

k=0

DIYIEYx(t) = DY

Attending that

Ny 1 d\ .
(1% wx)[k](t) = <w'(t)ﬁ) la+"’x(t)

=t | VOO - vy xm ar,

we deduce the following relation

(5200 < )

T W —v@r

and thus (l;“;r"’x)%‘](a) =0, forallk=0,1,..., n — 1. Therefore,

a o, o, a, 1 d " n—ao, o, 1 d ! n,
D5 = DIV = (e ) V0 = (G o) (0 = (o)
which ends the first point of the proof. To prove 2, let

n—1 1[:]( )
y(t) = x(t) - Z

(W(t) —¥(a)".

Thus, I2¥DZYx(t) = 12 D2Yy(t), and so it is enough to prove that /%Y D%¥y(t) = y(t). For this purpose, observe that

IOHIJDCX ¢y(t.) — ﬁ/ wl(T)(w(f) _ w(q_))cx lDa ¢y('r) dr
- s e FaT | YW - s oty ar}.

Integrating by parts, we obtain

= ey [ VW - v D) or

a 1 d e n—ao,
= i [ W v [(wmﬁ) iy ’”y(f)} dr

WO -vE)* (1 d\" '
e (vmer) ”“’L

1 ‘ a—1 d 1 d 2 n—a,
+ i [ @ - v [(wm +) o ”’ym] dr

Since )
1 d ’77 I'I o,
(Fa) B = gy [ VW~ ve) "y b5
we deduce that
L d\"" jpaw vl
,‘pl(,r) E ‘7+ .y(T) = [—(2 ) ("p(T) "p(a)) ’
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1 d n—1 -
() dr I7%%y(r)y=0 at T=a.

Thus, performing again integration by parts, we obtain the equality

— L ‘ _ a—1 d 1 d 2 n o,
A O %) [( ) y(ﬂ]

W —w)* (1 d\"? .. '
(o) (w'(f)ﬁ) "y (T)]

ey [ @0 v [( L) /;::““’ym] dr

)
-2 d 1 d n—a,
e / (W(1) — 9(m) [( ) ‘”ym] dr

Repeating this procedure, we arrive to

B )]

m/ B0 — LSy o

and so

—+

[ @ - vy C’T/” “Vy(r)dr

t

T (o n+2)

_ (’(l)(t) — (T))a i n—a,
o { Mo —n+2) lat wy(T)]

= 27ty (1) = 15y (t).

s [ VOWO ) o

a

In conclusion, we prove the desired formula:
1 d
— L

ad/ adl —

y(t) =y(t).

3. Fractional Differential Equations

This section contains our main results. We prove existence and uniqueness results for the initial value problem of nonlinear FDE
involving 4-Caputo fractional derivative ©D%¥x(t) = f(t, x(t)), develop the Picard iteration method for solving this problem
and for a particular case of FDEs we establish results on the long-term behaviour of solutions.

3.1. Existence and uniqueness of solution
Consider the problem (P), given by the nonlinear FDE
“DXYx(t) = f(t,x(t)), t€]Ja, bl

subject to the initial conditions

x(a) =x. and xl[pk](a):x‘f, k=1,..., n—1,
where
l.0<a¢Nandn=[a]+1,
2. xand x¥, fork=1,..., n—1, are fixed reals,

3. x € C"'[a, b] such that ©D%¥x exists and is continuous in [a, b],
4. f:[a, b] x R = R is continuous.

Also, we denote x{ := x,. We first prove an equivalence relation between the fractional Cauchy problem (P) and the Volterra
integral equation.

Theorem 2 A function x € C"'[a, b] is a solution to problem (P) if and only if x satisfies the following fractional integral

equation
n—1 k

x(t) = 15 F (£ x(8) + Z T (W(t) — ¥(a))" . (1

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-15
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Proof This result is a consequence of Theorem 1. The implication (P) = (1) is clear: applying the operator /2, to both sides
of the equation CD';ﬁf;r”’x(i') = f(t, x(t)) and using the initial conditions, we obtain (1). To prove the converse, we apply the
operator € D%¥ to both sides of equation (1) and use the fact that

CpEP(y(t) —w(a)f =0, Vke{0,1,....n—1},
to obtain ©D2¥x(t) = f(t, x(t)). Finally, we have to prove that the initial conditions are also met. It is clear that x(a) = xa.
Also, direct computations lead to

n—1

X(t) _ 1)/ W (1) (W(t) — () > F (T, x(fr))d'r+z = 1),(11/(1“) ¥(a)

Y(t) (o

1
X)) =

and so xz[,}](a) = x2. Repeating this process, we arrive to

o A
O = T = e n+1>

Since f(+, x(-)) is continuous on [a, b], there exists a positive constant A such that

[ VO - vt ar

(W(t) —p(a))*"*" ,

<
SA MNa—n+2)

T L YW~ wr) () or

which vanishes at the initial point t = a, and thus xl[,}"*l](a) =xI1

Theorem 3 Assume that function f is Lipschitz continuous with respect to the second variable, that is, there exists a positive
constant L such that
|f(1.',X1)—f(f,X2)| < L|X1—X2|, Vt € [a, b]VX1,X2 eR. (2)

Then, there is a constant h € R such that there exists a unique solution to problem (P) on the interval [a, a+ h] C [a, b].

Proof Let h be a real satisfying the conditions

(Wt h) —¢(a)”

<1 and a+h<b.

Ma+1)
Define the set
U= {x €C" a,a+h : DX¥x € Claat h]} , (3)
and the operator F : U — U by the rule
FIXI(t) == 15V F (£, x(1)) + Z (w(r) P(a)). (4)

We first prove that F is well defined, that is, F(U) C U. For that purpose, consider a function x € C""'[a, a + h]. It is clear that
the map t — F[x](t) is of class C""!. Also,

n—1 k

CDIFIA(L) = "D I A(t, X(t))+Z ”D‘“”(w(t)—w(a)) = f(t, x(t))

is continuous in [a, a + h]. Next, we shall show that F is a contraction. Given xi, x> € U, we have
IFOa) = FOo)ll = max [FDal(t) = Fhol(t)] = max |/} Y(F(ta(t) = F(E (1)

(W(a+h) —¥(a)*
Ma+1)

<L [ = xll,

which proves that F is a contraction. By the Banach fixed point theorem, we get the result of the theorem.
Next, we prove the existence of a solution to the fractional Cauchy problem (P) using on the Schaefer fixed point theorem.

Theorem 4 Assume that function f is continuous and there exist two positive constants ko and ki such that
|F(t,x)| < ko + ki|x|, Vt € [a, b]Vx € R.

Then, there exists a constant h > 0 such that problem (P) has at least one solution defined on the interval [a,a+ h] C [a, b].

Math. Meth. Appl. Sci. 2009, 00 1-15 Copyright (© 2009 John Wiley & Sons, Ltd.
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Proof Let h > 0 be such that a+ h < b and

1- r(a+1)(¢(a+h) Y(a)® > 0.

Consider the set U and the operator F : U — U defined by (3) and (4), respectively. We shall divide the proof in four steps.
Claim I: F is continuous.
Let (x,) be a sequence converging to x in U. Then,

IFOm) — FOoll = | max IF[Xn](t) FIXI(0)] = max 157 (F(t, xa(2)) — F(£, x(1)))]

tela,a tefa.a+h]
< 1F () = Fx HEED =R,

Since f is a continuous function, we have
F(xs)— F(x) =0 as n— oo.

Claim Il: F maps bounded sets into bounded sets in U.
We prove that, for all r > 0, there exists some r’ > 0 such that

Ux €A :={xeU:|x||<r}:|IF)|<LT.
Indeed, given x € A, and using the relation
[F(t, x(t))] < ko + kil||x|| < ko + kar, Vi €[a,a+ h],

we have
—1

(W(a+h) —y(a)® Z

k=0

ko + kir

ah — ()" =

IFOIIl < =——=—3

which is independent of t and x, and so F is uniformly bounded.
Claim IlI: F maps bounded sets into equicontinuous sets in U.
Let t1, to € [a,a+ h] with t1 < t», A, defined as in Claim Il, and set the signum function

(a) = 1 ifa>1
SIMX =3 —1 ifae(0,1).

Then, for all x € A,:

|F[X)(t2) = FIxI(t)]

n—1

S (Pt x(8) = Flanx()] + 3055 S [(p(tn) - w(a))* - (0(e1) — ()]
= ﬁ i W ()W) — () (7 x(r) dr / ()W) — () (T x(1)) dr
+ Z ol [w(e) — w(@) ~ W) - v()]
< kf’r?ak)” [ santew (r) [(9(e) = ()™ = w(e) — ()™ ar
+ [T v - v df] + Yol — v - @) - v@)]
f1 k=0
< R fsan(a) [(W(t2) = ()" = (W(ta) = ()" = (W(8) = V(@) + (b(t2) = b(t2))"]
n—1 k
+ 3ol ) — @) - i) - v
k=0

Since the right-hand side of the above inequality converges to zero as t» — t1, we have that F[x](t2) = F[x](t1). As a
consequence of Claims I-IIl together with the Arzelda—Ascoli Theorem, we conclude that F is completely continuous.
Claim IV: To conclude the proof, we show that the set

T:={x€eU : x=XF(x) forsome X € (0,1)}

n Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-15
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is bounded. Let x € T and X\ € (0, 1) be such that x = AF(x). For all t € [a, a + h], we have

n—1 k
ol < 2l - wayr + X bl - v
k=0 '
and so )
ko + k| o bl

lIxIl < IFCONl < (W(a+h) — ()",

(W(a+h) —p@)* +>
k=0

Ma+1) kI

n— Xk
s ((a+ h) — p(a)* + Ty Bl (w(a + h) — w(a))*
1— ms(W(a+ h) —(a)*
which proves that T is bounded. By the Schaefer fixed point theorem, F has a fixed point.

& [Ixll <

Corollary 1 Assume that function f is continuous and bounded. Then, there is at least one solution to problem (P), defined on
some interval [a, a + h].

3.2. Picard iteration

Let us recall that, by Theorem 2, x is a solution of problem (P) if and only if x is a solution of the equation

n—1
a, Xa
x(t) = 157 F (£, x(1)) +Zﬂ(¢(t) —P(a))". (5)
k=0
Consider the sequence of functions (xm)5m=o, defined recursively through

{mm=zg%wm—wmkk
i1 () = ISV F(t xm(1)) + Spp B (W(8) — (@), m=0,1,2,....

Under the assumptions of Theorem 3, we shall prove that (x)n=o converges uniformly on the interval [a, b] to a function x that
verifies equation (5). Set
M = max |f(t, xo(t))].
tela,b]

We prove, by induction, that for all m € NU {0}, the following inequality holds:

LITI

m (w(t) — '(P(a))(’”‘*'l)cx.

|Xm+1(t) — Xm(t)| <M

First, we have that (P(t) (a))
) e < meby = g B0 — (@)
ba(8) = xo(0)] = |5 F(8x0(6)| < MIZTL = M=z,
On the other hand,

X2 (£) = X1 ()] < 132 [F (8 X1 (8)) = (£, X (8))] < LIS Xanta (8) = Xn(2)]
m+1

<M Da D o (O = @)™

Lm+1
=M Dar D@

t ' _ w(T) — ’l,b(a) et _ (m+1)a
< [ (1-5D=IE) T win - van ™ ear

(w(t) = (a)*™

Proceeding with the change of variables
L _ W) = 9(a)
Y(t) —(a)’

and with the help of the Beta function B(-,-), we arrive to

Lm+1 (m+2)ax ! a—1 (m+1)a
m - m < - -
Pomeat) = xmea ()] < Mg osms ((0) = (@)™ [ (1= 0 g

=M L (Y(t) — ()" *B(a, (m+ 1) + 1)
Tf((m+1Da+ 1M (o)

M e () — (@)
M((m+2)a+1)

Math. Meth. Appl. Sci. 2009, 00 1-15 Copyright © 2009 John Wiley & Sons, Ltd.
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Now, we prove that the series

o Lm

Y Meminasn ¥

m=0

(b) — W(a)) "+
is convergent. Applying the ratio test, we get

Mg ($(b) — w(2) " . F((m+1)a+1)
Ry oy ) e S A LN (GRS P s R

since (see Eq. (1) in [24])

r(m+1a+1) 1 ( ala—1)

M(m+Da+l+a) (m+La+1)=\" 2(m+Da+1)

+O0(((m+ 1o+ 1)72)) )

Attending that
Ll'n

rM(m+a+1)
for all t € [a, b], by the Weierstrass M-test [26], we conclude that the series

|Xm+1(f) — Xm(f)| <M (w(b) _ w(a))(m+l)cx’

n—1

S Gomsa (£) — (1)) + Z w(r) W(a))*

m=0

converges uniformly in [a, b], and let x be its limit. Observe that, for all / € N,

n—1

Z(Xmﬂ(t) — xm(t)) + Z ("l’(t) - "l’(a)) = x(t),

m=0

and since
[F(t.x(t)) — £(t, x(£))] < Lx(t) —x(t)],

we get that (-, x;(+)) converges uniformly to (-, x(+)) in [a, b], as | — oo. Since

n—1 k

Xmp1(t) = 1% f(txm(t))—l-z H(w(t) — ¥), m=012,...,

letting m — oo, we deduce
n—1 k

x(t) = I3 f (¢, X(t))+z (W) - ¥(a))",

that is, x is a solution to problem (P). Also, we have the upper bound

n—1 Xk o
X(t) - Z k_i("p(t) - "p(a))k Z |Xm+1(t) - Xm(t)|
k=0 ' m=0
<3 M E () — ()

- r(m+1a+1)

(L(p(t) —p(a)*)”
Z M(mo+1)

m=1

T (Ea(L(w(f) -¥(a)%*) - 1),

where E4 is the Mittag—Leffler function:

0 Zk
EQ(Z) = ; m

Example 1 Consider the system
CDéf"’x(t) = x(t)
x(0)=1, x(0)=o0.

The solution of this problem is the function (see Lemma 2 in [5]).

x(t) = Ea(((t) — (0))").

E Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-15
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For this case, the Picard iterative process is described as

{ xo(t) =1

Xm1(t) = 14+ 107Yxm(t), m=0,1,2,...

In Figure 1, we present the results for two different kernels: (a) (t) = t, (b) ¥(t) = t2. In both cases, we present the plot of
the exact solution x and three approximations of it, by considering xi1, x3 and xs, in the Picard iterations.

(a) For %(t) = t. (b) For 9(t) = t2.

Figure 1. The Picard iterations with respect to the two different kernels.

3.3. The long-term behaviour of solutions

Consider the following initial value problem
DI x(t) = F(t, x(1)),  x(a) = xa, (6)

where 0 < a < 1, x, € R. We assume that 9 : [a,c0) — R is an increasing and unbounded function such that 9’(x) # 0 for all
t > a. We are interested in the behaviour of the solutions of (6) when t — oco. Therefore, we have to extend previously presented
results on the existence and uniqueness of solutions.

Theorem 5 Assume that function f : [a, b] x R — R is continuous and Lipschitz with respect to the second variable, that is,
condition (2) holds. Then, there exists a unique solution x € Cl[a, b] to problem (6).

Proof Let t; € R be such that a < t; < b and
L W) =) _
Ma+1)
Then, using the same method applied in the proof of Theorem 3, we can show that there exists a unique solution x* € C[a, t1] to

problem (6). This solution can be found applying the Picard iteration, presented in Section 3.2. Now observe that, by Theorem 2,
we can write a solution to (6) in the form:

1.

x(t) = xa + ﬁ / YT W(E) = 9(n)* T (r x(1) dr + ﬁ /t1 Y (1) (W(t) = P(1))* " x(7) dT. (7

Given that over the interval [a, t1] equation (6) possesses a unique solution, we can rewrite (7) as follows

x(t) = xo(t) + ﬁ/t Y (T)(W(t) = $(1))* " x(7) dT,

where ,
1 1 o
xo(t) = xa + @/ P (T)(W(t) = P(T)* (T, x(7)) dT
is a known function. Now, let choose t» = t1 + h1 with hy > 0, such that to < b and

(Y(t2) = W(t1))*

Math. Meth. Appl. Sci. 2009, 00 1-15 Copyright (© 2009 John Wiley & Sons, Ltd. n
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By the same arguments as in the proof of Theorem 3, we can show that there exists a unique solution x> € C[t1, t2] to equation
(6). Repeating the previous reasoning, choosing tx = tk—1 + hx—1 with hx_1 > 0 such that t,x < b and

| (1) = Y(6-1))°
Ma+1)

<1,

we can show that problem (6) possesses a unique solution x¥ € C[tx_1, tx] on each interval [tx—1, tx], k=1,..., I, where
a=ty < t; <...<t;=b. This shows that there exists a unique piecewise continuous solution to problem (6) on the interval
[a, b]. However, since 1 is continuous, we have

t+e
im [ W@ -9 dr =o.
e—=0t J¢
Therefore, the obtained solution is continuous on [a, b].

Corollary 2 Assume that function f : [a, 00) x R — R is continuous and Lipschitz with respect to the second variable, that is,
condition (2) holds for all t € [a,00) and all x1, x> € R. Then, there exists a unique solution x € C[a, co) to problem (6).

Proof Note that, under assumptions of Corollary 2, we can apply Theorem 5. Since we can take b > a arbitrary large, it follows
that there exists a uniquely defined function x € C[a, co) solving problem (6).

Observe that, if f(t,0) =0 for all t > a, and x, = 0, then the function x(t) = 0 is a solution to initial value problem (6).
Below we prove conditions ensuring that a solution to (6), with x, > 0, converges to zero as t — oo.

Theorem 6 Consider problem (6) with x(a) = xa > 0 and function f : [a, c0) X [0, xa] = (—o0, 0] being continuous and Lipschitz
with respect to the second variable, that is, condition (2) holds for all t € [a, c0) and all x1, x» € [0, xa]. Moreover, assume that
f(t,0) =0 for all t. Then, the unique solution to (6) exists on [a, 0o) and satisfies 0 < x(t) < x, for all t > a.

Proof By Theorem 2, a solution to (6) satisfies the following

X(t) =50+ 757 | W) = w7 x() d (8)
Define
f(t,xa) ify>x,
flt.y) =4 f(ty) ifo<y<x (9)
0 ify<o

and in this way extend the domain of f to [a,c0) X R. The extended function f satisfies assumptions of Corollary 2. Therefore,
problem (6), with function (9), has a unique continuous solution x. Now, we prove that this solution satisfies inequality
0 < x(t) < x, for all t > a. Suppose that x changes the sign, that is

x(t)>0 fora<t<ty
x(t)y=0 fort=t
X(t)<0 for ty < t < ts.

Thus, for the extended f we have

Ft,x(t)) <0 fora<t<t (10)
Ft,x(t)) =0 forti <t<ty.
Combining (10) with (8) yields
x(1) = %, + ﬁ / W () (W) — () F (7 x(7)) dT
— ot ﬁ / Y ) W(t) — () (r, x(1) dr
* ﬁ / " (D@t — W) x(r)) dr
- ﬁ / Y ) W(t) — () (r, x(1) dr
> 0+ ﬁ / W)W — () (r x(1)) d
= X(fl) =0,
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because ¥ is an increasing function. But x(t») < 0, a contradiction. Hence, x(t) > 0 for all t > a. Now, observe that, by
definition, f(t,x) <0 for all t and x. Therefore, by (8), x(t) < x,. We have shown that 0 < x(t) < x, for all t. This means
that (t, x(t)) is in the original domain of f and we conclude that x is the unique solution to originally considered problem.

Theorem 7 Consider problem (6) with x(a) = x, > 0 and function f : [a, c0) X [0, xa] = (—o0, 0] being continuous and Lipschitz
with respect to the second variable. Moreover, assume that f(t,0) = 0 for all t, and that for all b > 0 and all continuous functions
y i [a, 00) = [b, xa] the following

lim 15 £(t, y (1)) = =00 (11)

holds. Then, the unique solution to (6) satisfies lim¢_e x(t) = 0.

Proof Firstly, observe that by Theorem 6 there exists a unique solution to problem (6), say x, such that 0 < x(t) < x, for all
t > a. Therefore, limisoo X(t) > 0. Suppose that lime—s x(t) = g > 0 and define

) x(t)  fort>to
y(t) = {x(to) for t < to, (12)

where tg is such that x(t) > g/2 for all t > to. Clearly, y : [a,00) — [¢g/2, xa] is a continuous function. Applying Theorem 2 for
t > to, we get

X)) =%+ iy | WD) - W) X)) dr
=0+ 25 | VO@EO =9 I x() = Fry(r)] dr (13)

+ ﬁ / W () () — (r) " (1, y (7)) dT.

Observe that the second term in (13) is bounded. Indeed, we have

/ Y () (W(t) = P(1)* T [F(1,x(1)) = (7, y(7))] dT

/0 Y (T)(W(t) = P(1)* " [F(7.x(7) = F(1,y(1)] dT

< / T ()W) — () (r x(1)) dT | + / T ()W) — () (7 x(10)) d

<2 sup  |f(72)| é [((t) = P(a)* — (Y(t) — ¥(t0))°]

TE[a,tp].z€[0,xa]

As 9 is increasing, the last expression is a positive and decreasing function of t and hence bounded. Now, letting t — oo in (13)
we obtain

fim x(6) = fim (4 o3 [ W@ 9 Frx(r) = ()] o7

b | PO = v () o)
and, by assumption (11), we have lim;_ x(t) = —oo, which contradicts to x(t) > 0. Hence, lim;- x(t) = 0.

Example 2 Consider the following initial value problem
“DIYx(t) = =Ax(t), x(a)=x >0, A>O0. (14)

Note that assumptions of Theorem 7 are satisfied. In fact, since v is an increasing and unbounded function, for all b > 0 and
all continuous functions y : [a,00) — [b, xa], we have the following:

: : t) —¥(a)*

lim &% (— < _ [ (11}(7 —

JAm [ (F(0) < =Ab fim =2 o0
Therefore, there exists a unique solution x to (14), and such solution satisfies the condition lim:_. x(t) = 0. Figure 2 presents
the solutions to problem (14) for different values of a, with X\ = 2. In plot (a), the kernel is the function ¥(t) = 2°, and in plot
(b), the kernel is 1 (t) = t. We remark that case (b) corresponds to the (usual) Caputo fractional derivative, with o = 1 being
the classical derivative. Figure shows similarities between corresponding results with the 1-Caputo derivative and the Caputo
derivative. However, 1-Caputo derivative provides, besides the order, any number of free parameters to better calibrate a system.
This is a major advantage of the 1-Caputo derivative over the classical fractional derivatives.
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Figure 2. Solutions to equation (14) with X\ = 2, different values of & and for two kernels.

4. Applications to real-world problems

In this section, we consider applications of FDE's, with 1-Caputo fractional derivatives, to the world population growth and the
gross domestic product (GDP) of some countries. The goal is to determine the order o and the kernel 4 in such a way that
solutions to FDE's fit with given real data. Obtained in this way a fractional model, we then compared it with the classical one
(that is, when the order is & = 1 and the kernel is ¥(t) = t). The least squares fitting technique (routine 1sqcurvefit from
the Matlab Optimization Toolbox [20]) will be used to provide a solution to the problem of finding the values of the unknown
parameter A of the theoretical model x = F(A, t). Given a certain data consisting of N points (£, %)i=1...n, the goal is to
minimize the sum of squared residuals, a residual being the difference between an observed value and the fitted value provided
by the model:

N
min Eaps = min > _[% — F(A, £)I.
i=1
Since 1 is a increasing function, we impose the constraint 1(%;) < ¥(&i+1), for all i. In each of the two applications, we will find

the optimal parameters for fractional models, that is, the order o and the values of the kernel in the data ¥(&;), fori =1, ..., N.
To compare the efficiency of the procedure, we present in each case the relative errors

Sil% — F(A B
. )
> iz (X0)?
In our calculations, we use the data available from [23], consisting of 28 values, from the year 1960 until 2014, measured every
two years. Then, using the best estimative of the parameters, we determine an approximation of the data with respect to the odd

years. To estimate the values of 1 in the odd years we do the following procedure: for each i, ¥(tai—1) = (Y(tri—2) + ¥(t2i))/2,
excluding 2015, where ¥(2015) = ¢ (2014).

Erer =

4.1. World population growth

In 1798, the British economist Thomas Malthus published a book entitled An Essay on the Principle of Population, where several
issues were considered regarding the growth of the human population. Malthus purposed a theoretical model, were the human
population exhibits exponential growth, being described by the linear differential equation N'(t) = AN(t), where X is the net
growth rate (birth rate minus death rate in population) and it is assumed to be constant in time. The solution of this differential
equation is the exponential function

N(t) = Noexp(At), (15)

where Np is the population at time t = 0. This model does not take into account the natural constraints of the system, like the
food and space availability, the competition between species, pollution, etc. Thus, more complex differential equations may be
purposed to deal with such problems regarding real data (e.g. Verhulst and augmented logistic models). However, the Malthusian
type model with the 9-Caputo fractional derivative is suitable enough for this purpose, as we shall see. Let us consider the linear
FDE DY N(t) = AN(t), where a € (0,1) is a real. The solution of the equation is given by the Mittag—Leffler function:

N(t) = NoEa(X(%(t) — %(0))%). (16)

Observe that, when o = 1, we recover the classical solution (15). We analyze growth rates in Lithuania and Qatar, countries
with one of the lowest and the highest growth rates, respectively. The initial conditions are given by the initial population in each
country: No = 2778550, for Lithuania, and Ny = 47 309, for Qatar. In Figure 3, we present the obtained kernels for Lithuania
and for Qatar that optimally fit with data. Figure 4 shows the two models (classical and fractional) for the two countries,
compared with the population size. In Tables 1-2, we present relative errors obtained in the procedure and the values of the
estimated parameters X and «.
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Figure 4. Population size: classical vs fractional models.

Even years  Odd years A a
Classical 0.0104 0.6769 0.0049 -
Fractional 0.0040 0.0045 0.1251 0.1111

Table 1. Errors and the parameters with respect to Lithuania.

Even years Odd years A a
Classical 0.0217 0.0191 0.0702 —
Fractional 6.5984 x 10°™®  0.0065  0.1503 0.9270
Table 2. Errors and the parameters with respect to Qatar.

4.2. GDP growth rate in USA

The GDP per capita is equal to the GDP of a country divided by the midyear population of the country. This is the average
per-person output of the economy. Kitov purposed in 2005 [16] a model to describe the GDP growth rate variations in the USA.
He assumed that annual increment is constant in time and expressed the dynamics by a linear differential equation G'(t) = A,
where G is the real GDP per capita and A is a constant. The solution is given by

G(t) = At + Go, (17)
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where Gp is the starting GDP in the studied period. If we consider now the situation modeled by CDS‘fG(t) = A, its solution is
given by the function

G(t) = IS A+ Go, (18)

when o € (0, 1). Later, when we apply the least squares method to determine the optimal a, we do not impose any constraint
over a in order to obtain a better accuracy for the model. We also remark that, considering %(t) = t, and a — 1%, the fractional
solution (18) converges to the classical solution (17). As initial condition we use Go = $3007, corresponding to the GDP per
capita in USA in the year 1960. In Figure 5, we present the kernel obtained by the procedure, and compare both models to the
given data.

GDP (in thousands)

1960 1970 1980 1990 2000 2010
Year

1960 1970 1980 1990 2000 2010 _ :
p © Classical _®  Fractional X Data

(a) Kernel. (b) GDP.

Figure 5. The optimal kernel and the GDP for USA.

In Table 3, we present the errors obtained, for the even and for the odd years, and the values of the parameters A and a.

Even years Odd years A a

Classical 0.0299 0.0289 0.8172 -
Fractional 3.0109 x 10~ 0.0014 0.3287 1.6846

Table 3. Errors and the parameters with respect to USA.

5. Conclusions

In recent years, many new types of fractional derivatives have been proposed, investigated and applied to real world models.
Therefore, it is natural to try to combine those concepts into a single one. As we have mentioned, the important issue is
to develop the fundamentals of a theory for fractional differential equations with a general derivative. In this paper, we have
discussed the classical questions concerning differential equations, such as existence and uniqueness of solutions, the Picard
iteration method and the long-term behaviour of solutions. Moreover, using the real data, we have shown, that mathematical
models with the 1-Caputo fractional derivative are more flexible. Apparently, the ¢-Caputo derivative has the potential to extract
hidden aspects of real world phenomena.
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