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Abstract: This study is a contribution for the improvement of healthcare in children and in society
generally. This study aims to predict children’s height when they become adults, also known as “target
height”, to allow for a better growth assessment and more personalized healthcare. The existing
literature describes some existing prediction methods, based on longitudinal population studies and
statistical techniques, which with few information resources, are able to produce acceptable results.
The challenge of this study is in using a new approach based on machine learning to forecast the
target height for children and (eventually) improve the existing height prediction accuracy. The goals
of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient
boosting machine regression (LightGBM) algorithms achieved considerably better results on the
height prediction. The developed model can be usefully applied by pediatricians and other clinical
professionals in growth assessment.

Keywords: child height prediction; growth assessment; child personalized medicine; data mining;
XGB—Extreme Gradient Boosting Regression; LGBM—LightGradient Boosting Machine Regression

1. Introduction

Children’s growth assessments are a very important aspect of health status monitoring, for
example, in order to identify development deviations, and diseases or interventions/treatments impacts
(i.e., obesity care or stunting). Monitoring the children’s growth ensures children develop in the best
possible way [1-4].

But what exactly is growth and growth study? Growth is a complex interaction between heredity
and environment. Growth refers mainly to changes in magnitude, increments in the size of organs,
increases in the tissue thickness, or changes in the size of individuals as a whole [5].

The study of growth is focused on monitoring individuals that have not reached the “mature”
stage, where full growth potential should be [6].

Knowing the importance of growth assessment several growth standards have been developed
in the past decades, for instance (the most popular) NCHS/WHO, CDC 2000, Tanner standards, or
Harvard standards [1,7].

In 1978, the NCHS—National Center for Health Statistics growth reference (the most-used
reference until then) was replaced after a recommendation of The World Health Assembly in 1994,
which considered the reference did not represent early childhood growth [8].

The NCHS reference was based on a longitudinal study of children from a single community in
the USA, which were measured every three months [9,10].
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The WHO-World Health Organization Standards were developed using data collected on the
WHO Multicentre Growth Reference Study (combines a longitudinal study with a cross-sectional study)
between 1997 and 2003. Data include about 8500 children from South America (Brazil), Africa (Ghana),
Asia (India, Oman), Europe (Norway), and North America (USA) [10-12].

A global survey was conducted in 178 countries to understand the use and the recognized
importance of the new standards. The importance of this work was recognized after huge scrutiny and
a wide adoption for more than 125 countries in just five years after the work was released (April 2006).
Child growth charts are currently one of the most used tools for assessing children’s wellbeing,
and allow the physiological needs for growth to be followed and establishing whether the expected
development of the child would be met [1,11].

Still, the main reason for non-WHO Standards adoption was the preference for local (or national)
references, considered more appropriate [1].

Studies compared WHO growth standards with local/national growth references, considering
different geographic areas with genetic and environment diversity. These studies reveal that the local
references are more faithfully than the WHO standards [3,13].

The WHO standards do not consider ethnicity, socio-economic status, feeding mode, or other
factors. They consider a healthy and “common” population and those not appropriated to individuals
that belong to a risk population segment, such as the poor, belonging to an ethnic minority, parents,
the unemployed, or those with some particular health issue with a high influence on the child [1,4].

As mentioned above the current standards present some limitations. These limitations can be
overcome using personalized medicine, a concept that it’s becoming more popular every day.

Personalized medicine has achieved better results than a “standard” medicine, including in
children, and with the evolution of technology, it is expected to bring true revolution on patient care
on the near future. This new approach to health care can bring considerable advances in disease
prediction, preventive medicine, diagnostics, and treatments [14,15].

But what is personalized medicine? The US National Institutes of Health, for instance, describes it
as, “the science of individualized prevention and therapy”. It can simply be described as a way of
synthesizing an individual’s health history, including information family history, clinical data, genetics,
or the environment in a way to benefit individuals” health and wellbeing [15,16].

The current study aims to contribute to improving growth assessments on children, creating
a new tool that combines the main concepts above, namely expected growth and personalized
medicine on children. Having a more accurate target height will allow pediatricians, and other health
professionals, to apply growth standards in a more accurate way and provide a better assessment on
children’s development.

Until now, the growth standards have been applied by professionals by considering the actual
“state” (growth measure) for the child and the existing methods described in the state-of-the-art,
which offer a less accurate prediction. We have created a new tool that offers better outcomes and can
be adapted to specific populations, by considering their specificities.

Artificial Intelligence and machine learning are contributing, through many studies and projects
all over the world, to more personalized medicine, thereby delivering better outcomes. We believe our
study is a step towards the medicine of the future.

For achieving the proposed goals, we have decided to research and analyze the existing methods,
through state-of-the-art research, followed by the application of the CRISP-DM, an open standard
methodology for data mining. This methodology includes a process that goes from the business
understanding to the solution deployment, which allows our work to deliver value (a solution)
to society.

Finally, we have documented our results and conclusions, where we also describe potential
future work.
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2. State-of-the-Art

As discussed in the previous chapter, the height assessment on a child assumes critical importance
when improving child health and wellbeing.

Prediction for adult height can be used both for diagnosis or following treatments and provides a
valuable tool in pediatrics. For instance, it can help detect growth hormone deficiency with hGH and
follow treatment performance. In diagnosis, the height of the child can be compared with the so-called
“target height”, by considering the parent’s height and child’s gender [5].

There are two known methods for assessing the “target height”.

Horace Grey has defined the following model to forecast the height (when adult) for a child [17]:

n father height X 12/13 + mother height

Female height (inches) = 7 )
Male height (inches) — + father height + mgther height x12/13 )
Other common used model is the Mid-Parental Method (described by Tanner) [18,19]:
Female height (inches) = +father height ; mother height _ 25 3)
Male height (inches) — + father height + mother height 425 )

2

There is a lot of information regarding the applicability of the methods, but information about
the studies’ bases and characteristics are scarce, probably because they have been performed some
decades ago. Still, it was possible to comprehend that both methods are based on statistics approaches
where a simple regression method is applied to the population and the “optimal” formula is defined.
In a generic way, these approaches try to find the mathematical formula that best fits the general
characteristics of the population.

Horace grey approach reports to a study published in 1948 and is based on 53 collected cases.
This method introduces a different weight on the mother’s or father’s height when calculating the
output prediction. It emphasizes that a mother and father’s influence is different for different child’s
genders [17].

The method described by Tanner was introduced in 1970 and has been a standard procedure for
assessing children’s growth since. It was not possible to find a description of the dataset used in the
study, but it was still possible to understand that this method approaches the height of parents on the
same proportion, given the emphasis on children’s gender, which is critical to defining height [20].

As we observed, the methods did not introduce personalization to the individual level, besides
the influence of gender, which is one of the advantages that machine learning can introduce in these
areas of study.

There are other studies besides parent’s height can use bone age, actual age, or child’s current
height. All these studies were based on longitudinal population projects [21,22].

These projects, also called cohort studies, involve observing and measuring population variables
(the same individuals—cohort) for long periods, which can involve years or decades.

In the current study, we will only focus on information gathered at childbirth, and as far as we
know, the two methods described before are the only existing “tools” for predicting a child’s height
when adults. They are quite popular and it is easy to find applications of these methods in several
child development areas.

We have also found research on applications of machine learning methods that address “target”
height prediction. We did not find studies addressing this subject.

Knowing that this subject was never approached on this perspective represents, in our view,
an opportunity, and was one of the main reasons for proceeding with this work. This study develops a
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new method in forecasting children’s target height using a completely different approach based on
machine learning tools.

3. Methodology

To pursuit the goal defined for this study we have considered as possible methodologies
CRISP-DM—CRoss Industry Standard Process for Data Mining, DMME—Data Mining Methodology
for Engineering Applications or SEMMA—Sample, Explore, Modify, Model, and Assess, the most
common approaches on data mining projects [23,24].

CRISP-DM it’s an open standard, developed by IBM in cooperation with other industrial companies.
It has the particularly of not specifying the data acquisition phase as it assumes the data has been
already collected. It's a popular methodology that has proven to increase success on data mining
challenges, including in the medical area [25-27].

DMME it’s an extension of the CRISP-DM methodology that includes the process of data
acquisition [23].

SEMMA was developed by the SAS Institute and is more commonly used by SAS tools users as it
is integrated into SAS tools such as Enterprise Miner [23].

On our study the data to use was already been collected and those we will not need to perform this
task. Considering this particularity, we have decided to use CRISP-DM methodology that is clearly the
most popular approach among the community for the current type of challenge that we are addressing.

CRISP-DM model, represented on Figure 1, is a hierarchical and cyclic process that breaks data
mining process into the following phases (resume description) [28,29]:

e  Business Understanding: Determination of the goal.

e Data Understanding: Become familiar with data and identify data quality issues.

e  Data Preparation: Also known as pre-processing and will have as output the final dataset.

e  Modeling: where a model that represents the existing knowledge it’s built through the use of
several techniques. The model can be calibrated in a way to achieve a more accurate prediction of
the target value defined as the goal on the 1st phase.

e  Evaluation: Evaluate the model performance and utility. This moment defines if a new CRISP-DM
iteration will be needed or if to continue to the final phase.

e Deployment: Deployment of the solution.

Data
Understanding

Business
Understanding | ¢

Data
Preparation

A

Y

Modelling

[ Deployment Evaluation

Figure 1. Phases of the Industry Standard Process for Data Mining (CRISP-DM) reference model
(adapted from the original diagram) [28].
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4. Work Methodology Proposed

4.1. Business Understanding

The main goal for this study is to contribute to a better growth assessment creating a new method
to forecast a child’s height when they are an adult, also known as the target height. The model output
will be personalized to the child (person-centric) and is expected to deliver a more accurate prediction
when compared with the existing methods, already described in the previous chapters.

We began search for a “better” tool that provided a way to compare, for instance, a metric.
We extensively researched this subject and found several methods for measure/comparing models’
performance, such as: Accuracy, confusion matrix, and several associate measures such as sensitivity,
specificity, precision, recall or f-measure (very useful when facing classification problems with
imbalanced classes), MSE—mean square error, ROC—Receiver Operating Characteristic Curve,
AUC—area under the roc curve, RMSE—root mean squared error, MAE—mean absolute error, RZ—R
Squared, Log-loss, Cohen’s kappa, Sum squared error, Silhouette coefficient, Euclidean distance, or
Manhattan distance [30-33].

The several methods/measures present different approaches for different problems (regression,
classification, and clustering) with advantages and drawbacks. In this paper we will not describe or
proceed with an extensive analysis on this subject, since other works, for instance, the ones mentioned
as references, have already provided excellent analysis. Accuracy is a simple method (easy to compute
and low complexity) able to discriminate and select the best (optimal) solution. It has limitations when
dealing with classes and can result in sub-optimal solutions when classes are not balanced.

Our problem is not a classification problem, but a regression problem, and our goal is to provide
better performance on our predictions. Considering our challenge characteristics, we believe the
measure that best suits our goal is accuracy.

The performance results for the state-of-the-art height prediction when adult models were
measured are presented in Table 1. The best accuracy is obtained by the Mid-Parental Method which
presents an accuracy of 59.53%.

Table 1. Models identified on our existing literature research (our reference models) outputs.

Mean Squared Error Accuracy
Horace Grey 20.6983 58.55%
Mid Parental 5.2836 59.53%

4.2. Data Understanding

For the proposed study, was decided to use a dataset based on the famous study 1885 of
Francis Galton (an English statistician that founded concepts such as correlation, quartile, percentile
and regression) that was used to analyse the relations between child’s heights when adult to their
parent’s heights.

The dataset is based on the observation of 928 children and the corresponding parents (205 pairs),
where several variables have been recorded, such as father and mother height or child gender and
adult height [34].

Galton’s study made an important contribution in understanding multi-variable relationships and
introduced the concept of regression analysis. It has proved that parents’ height were two Gaussian
distributions (also known as normal), one for the mother and one for the father, that, when joined
together, could be described as bivariate normal. It also has proved that adult children’s height could
be described by a Gaussian distribution [35].

The dataset used to this experiment is composed of 898 cases and the measuring unit is the inch.
The dataset file includes the following information:

e  Family: Family identification, one for each family.
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e  Father: Father’s height (in inches).

e  Mother: Mother’s height (in inches)

e  Sex: Child’s gender: F or M.

e  Height: the child’s height as an adult (in inches).

e Nkids: the number of adult children in the family, or, at least, the number whose heights
Galton recorded.

Figure 2 plots the distribution of heights on mother, fathers, child’s (regardless of gender), female
child’s and male child’s. The horizontal axis represents the height, in inches, and on the vertical axis we
can find the distribution density or another way the probability of a given value on the horizontal axis.

Analyzing the graphic provides the following conclusions:

e  Childs gender it’s a feature with high impact on height;

e All “segments” heights (mothers, fathers, child’s, female child’s and male child’s) correspond to
Gaussian distributions;

e Female child’s and mother’s height distributions are similar. The same happens with the male
child’s and parent’s heights.

0.175 A A\ —— fathers

\ —— mothers
—— female child's
—— male child's

0.150 4

0.125 A

0.100 A

0.075 A

0.050 1

0.025 4

0.000 — : , = , .
55 60 65 70 75 80

height
Figure 2. Heights distributions, namely mother, father, both parents, child’s, female child’s and
male child’s.

The following charts allow visualizing the relation between father’s heights, represented on the
horizontal axis, and child’s heights on the vertical axis. On the first chart (Figure 3) we used all dataset
which made it possible to understand that the relation had two nuclei. This means that there are two
“focus” on the relationship between father’s and child’s heights.

height

55

B00 625 650 675 700 725 750 7IS5 80O
father

Figure 3. Relation between father height and child height (regardless of gender).
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To understand these two different densities, we decide to split the dataset on male and female
child’s what can be observed in Figures 4 and 5, respectively.

600 625 650 675 700 725 750 TS5 800
father

Figure 4. Relation between father height and male child height.

[=24] B5 70 75 80
father

Figure 5. Relation between father height and female child height.

Figures 4 and 5 clearly identity a relation of father’s height with child’s height that is different
when considering child’s gender. For the same father height a child will be taller when male and
shorter when female.

The same exercise was made using the mother’s height (rather than father’s) and we obtain similar
shapes but show different influence dimensions. This analysis outputs a high degree of influence
caused by the child’s gender as well as different influences from mother and father.

Understanding the influence on child height were different on father and mother we have
performed a correlation analysis using person correlation measure.

Several approaches were implemented, such as analyzing children’s height by gender or parents,
according to height distribution quarters. The results can be found in Table 2.
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Table 2. Height correlation considering different perspectives, namely child’s regardless of gender and
considering gender and father and mother height quarters.

Child’s Male Female

Father All 0.275 0.391 0.459
quarter 1 0.115 0.055 0.130

<mean 0.215 0.263 0.216

>mean 0.144 0.255 0.356

quarter 4 0.044 0.156 0.187

Mother All 0.202 0.334 0.314
quarter 1 0.180 0.275 0.236

<mean 0.134 0.197 0.291

>mean 0.217 0.249 0.351

quarter 4 0.159 0.311 0.247

Based on the obtained results we considered the following conclusions:

e  Parent’s height correlation with the child’s height differs between different child’s genders. This is
evident for example when considering (all) father influence on female (0.459) and male (0.391)
children. We observe a bigger influence on females.

e  Father height and mother height have different weights/influences on the child’s height. This can
be observed for example on females’ child’s height correlated with father height (0.495) and
mother height (0.314).

e  The parent’s height influence on child’s height it’s not constant, it varies among the height range.

Based on the study dataset, a linear regression analysis was performed. We have taken several
approaches, such as considering on the horizontal axis the sum of parent heights (Figure 6), the mother
height or father height individually and considering for vertical axis child’s height (regardless of
gender), or considering the child’s gender (Figure 7 for female gender).

Comparing sum of both parent's with (female) child height

70 A

68

Female Child height
o o o o
S N & &

U
[os]
1

wn
o3}
L

125 130 135 140 145
Parent's Height

Figure 6. Regression analysis considering (both) parents and female child height.
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Comparing father height with (female) child height
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Figure 7. Regression analysis considering father and female child height.

We found a multilinear regression, where the child’s height dependended on the individual’s
variable mother and father height. We also observed a high variance on the relations as it could easily
be observed on the plots.

This phase also includes verifying the dataset for incomplete or missing data, errors, duplicates
or other data issues. In Table 3, it is possible to observe one of the tools used in our verification
for checking information, such as the number of rows, that every row has values to every feature,
or number of unique values for each feature.

Table 3. Dataset resume.

Family Father Mother Sex Height Nkids
count 898 898.000000 898.000000 898 898.000000 898.000000
unique 197 - - 2 - -
top 185 - - M - -
freq 15 - - 465 - -
mean - 69.232851  64.084410 - 66.760690  6.135857
std - 2470256  2.307025 - 3.582918  2.685156
min - 62.000000  58.000000 - 56.000000  1.000000
25% - 68.000000  63.000000 - 64.000000  4.000000
50% - 69.000000  64.000000 - 66.500000  6.000000
75% - 71.000000  65.500000 - 69.700000  8.000000
max - 78.500000  70.500000 - 79.000000  15.00000

There was no need for data cleaning or other tasks on the dataset. This was expected, since our
dataset was previously used for other scientific purposes.

4.3. Data Preparation

The data preparation phase includes several tasks to achieve the final dataset to process, including
feature selection, which is crucial to improving the models” outcomes.

Feature selection can be performed using several techniques. These techniques can be segmented,
a first step, supervised, unsupervised, and semi-supervised approaches. Inside the supervised segment,
the category applied to our case, we can find different categories namely filter methods, wrapper
methods, embedded methods, among others. Example of feature selection methods that fit these
categories, include information gain, Relief, Fisher score, gain ratio, and Gini ind47ex [36-38].
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According to previous data analysis, the “family” feature defines the family to which the child
belongs. The machine learning models can use the “family” feature to extract the brothers and sister
heights when adults use this information to forecast their child’s height. In our scenario we did
not want to use brothers’” and sisters” heights, since in real cases, they are unlikely to be adults yet,
and consequently we will not have this information. Therefore, we decided to exclude the family
column from the dataset and eliminate family relations.

We have also excluded the “nkids” feature which refers to the number of brothers of an individual,
since machine learning can also use this information. This information is not valid since, for instance,
at the first brother born there is no information about how many brothers he will have in the future.

Considering feature selection, we also analysed the remaining features. Through the analysis
performed in the previous chapter, we can verify that all of them seem to present a degree of influence
on our prediction goal, the target height. Also, the algorithms that will be used on this study wrap
feature selections techniques and those can address feature selection automatically. Considering these
facts, we have decided to include all the remaining features in the modelling phase.

Finally, the gender feature was converted into a binary feature defining whether the child “is
male?” so it can be used on the generality of machine learning models.

For applying machine learning supervised methods is necessary to divide the entire dataset on
training and test sets. Usually a ratio of 80/20 or 70/30 is applied. We decided to use the first option.
Once divided it’s important to assure that both (sub) datasets maintain the original dataset shape,
which was assured as it can be observed in Tables 4 and 5.

Table 4. Train dataset provide to our model’s training.

Father Mother Sex Height
count 718.000000  718.000000 718 718.000000
unique - - 2 -
top - - M -
freq - - 370 -
mean 69.358496 64.108774 - 66.839972
std 2.518236 2.290169 - 3.570904
min 62.000000 58.000000 - 56.000000
25% 68.000000 63.000000 - 64.000000
50% 69.500000 64.000000 - 67.000000
75% 71.000000 65.500000 - 70.000000
max 78.500000 70.500000 - 79.000000

Table 5. Test dataset to evaluate our model’s performance.

Father Mother Sex Height
count 180.000000  180.000000 180 180.000000
unique - - 2 -
top - - M -
freq - - 95 -
mean 68.731667 63.987222 - 66.444444
std 2.204908 2.377103 - 3.623191
min 62.500000 58.000000 - 57.000000
25% 67.375000 63.000000 - 63.500000
50% 69.000000 64.000000 - 66.250000
75% 70.000000 65.500000 - 69.050000
max 75.000000 70.500000 - 76.500000

4.4. Modelling

To resolve the challenge, there was the need to choose which machine learning “tools” to
use. For this study the criteria adopted was to choose the most popular machine learning
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algorithms, namely: Linear regression, SVR—Support Vector Regression (several kernels), Lasso,
Elastic Net, Ridge Regression, K-Neighbors Regression, Bayesian Regression, AdaBoost Regression,
SGD—Stochastic Gradient Descent Regression, Decision Tree Regression, XGB—Extreme Gradient
Boosting Regression and LGBM—Light Gradient Boosting Machine Regression [39,40].

To pursue our goals, we start by applying all the previously described algorithms to our dataset,
according to the partition described in the previous chapter.

For this study was used, as a development environment, Jupyter notebooks with Python 3.6 and
the algorithms libraries Sklearn, XGBoost and Lightgbm.

Regarding the algorithm’s “configuration”, we have decided to start our modelling phase using
the default (hyper) parameters which are defined by the libraries used on the study, mention above.
The results obtained can be visualized in Table 6.

Table 6. Machine learning algorithms performance with default parameter.

Mean Squared Error Accuracy
Linear 5.1781 60.33%
SVR RBF 6.1269 53.08%
SVR Linear 5.2167 60.04%
SVR Poly Invalid output -
.SVR. 13.262 1.58%
Sigmoid
Lasso 9.8600 24.47%
Elastic Net 9.9896 23.48%
Ridge 5.1829 60.30%
KNeighbors 6.3785 51.14%
Bayesian 5.1805 60.32%
AdaBoost 5.3941 58.68%
SGD Invalid output -
Decision 5.5017 57.86%
Tree
XGB 4.8290 63.01%
LightGBM 4.7938 63.28%

Using this approach, we have achieved the goals outlined for the study, and several algorithms
(such as SVR Linear, Ridge, Bayesian or Linear regression) were able to overcome the accuracy in
the state-of-the-art models. Most of these algorithms achieved a small improvement, but XGB and
LightGBM achieved a considerable improvement.

Based on the present approach, SVR Poly and SGD were difficult to converge and were not able to
produce a valid output.

Although, the goals of the study, forecasting target height, and where possible, overcome the
existing models, Horace Grey and Mid Parental method accuracy were achieved. It would be important
to achieve the best accuracy possible, as the output is a valuable contribution to the growth assessment.

When using machine learning algorithms, it is possible to improve results using techniques like
scaling and hyper-parameters tuning.

Regarding the scaling technique, our study has tried several approaches, namely techniques,
such as StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler and Scale. The best results were
obtained with the MaxAbsScaler, which rescales data in a way that all feature values are in the range
[0, 1].

Table 7 highlights the technique impact obtain on accuracy (column impact) when using
MaxAbsScaler. The value “No change” includes very small challenges, mainly justified by the
algorithms common variations.
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Table 7. Machine learning algorithms performance with MaxAbsScaler.

Mean 2 Error Accuracy Impact
Linear 5.1781 60.33% No change
SVR RBF 5.3131 59.30% Improved
SVR Linear 5.2398 59.86% Deteriorate
SVR Poly 5.7943 55.61% Valid output
SVR Sigmoid 5.4715 58,09% Improved
Lasso 10.6798 18.19% Deteriorate
Elastic Net 10.8461 16.92% Deteriorate
Ridge 5.1916 60.23% Deteriorate
KNeighbors 5.4779 58.03% Improved
Bayesian 5.1798 60.32% No change
AdaBoost 5.2607 59.70% Improved
SGD 17.3546 32.93% Valid output
Decision Tree 5.5299 57.64% No change
XGB 4.8290 63.01% No change
LightGBM 4.7938 63.28% No change

Although, this technique improved the accuracy of some algorithms, an improvement was not
made on the height prediction parameter.

Note, in this case, SVR Poly and SGD were able to converge and present a valid output, as the
new scale overcomes the previous verified convergence issue with these two algorithms.

For hyperparameters tuning we considered two possible strategies: Grid search and Random
Search. As Grid search requires a lot of resources and time to compute all possible algorithms
and parameter dimensional space and those that adopted the random search strategy performed
several iterations.

The applicability of this technique to the study dataset can be observed in Table 8.

Table 8. Machine learning algorithms performance after hyper-parameters tuning.

Mean 2 Error Accuracy Impact
Linear 5.1781 60.33% No change
SVR RBF 5.3131 59.30% No change
SVR Linear 5.2021 60.15% Improved
SVR Poly 5.2965 59.42% Improved
SVR Sigmoid 5.3044 59.36% Improved
Lasso 5.1697 60.40% Improved
Elastic Net 5.1697 60.39% Improved
Ridge 5.1782 60.33% Improved
KNeighbors 5.2945 59.44% Improved
Bayesian 5.1798 60.32% No change
AdaBoost 5.2607 59.70% No change
SGD 5.1871 60.27% Improved
Decision Tree 5.5339 57.60% No change
XGB 4.7125 63.90% Improved
LightGBM 4.6159 64.64% Improved

Hyper-parameter tuning has improved the accuracy of many algorithms, and most importantly,
has achieved progress on the study goal, increasing children’s “target” height prediction accuracy.

Besides the importance of the performance output, it is also important to compare the complexities
and costs regarding the algorithm’s applicability. We have decided to perform an analysis of the
computation resources consumption required for each of the methods used above.

Since CPU consumption can present some variability, we decided to analyse CPU time mean and

standard deviation by considering 1000 executions (Table 9).
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Table 9. Machine learning algorithms resources comptions.

CPU Time Mean CPU Time Std  Memory Consumption (MB)

Linear 1.87 ms 20 us 138.44
SVR RBF 197.00 ms 3.33ms 141.62
SVR Linear 101.00 ms 1.66 ms 140.76
SVR Poly >10.00 m * * *
SVR Sigmoid 11.60 ms 211 ps 156.61
Lasso 1.50 ms 26.2 us 156.87
Elastic Net 1.65 ms 58.1 us 154.52
Ridge 1.18 ms 39.8 us 154.91
KNeighbors 868 s 34.8 ps 156.00
Bayesian 1.44 ms 33.7 us 156.02
AdaBoost 15.00 ms 260.0 us 156.19
SGD 5.85 ms 68.4 us 156.32
Decision Tree 1.36 ms 28.8 us 156.57
XGB 26.6 ms 1.01 ms 157.84
LightGBM 107.00 ms 1.26 ms 163.16

* the purpose of this analysis is to compare execution consumptions which usually stand on the millisecond scale.
Support Vector Regression (SVR) Poly algorithm consumes more than 10 min processing and those we have decided
to classify it simply has “long time processing” (>10 m).

The computer supporting this study has the following characteristics:

e  Processor: Intel Core i7-3770 3.40GHz.
e RAM:8GB.
e  Operating System: Windows 10, 64 bits, x64-based processor.

4.5. Evaluation

Through the output of the data mining process, we have obtainead several models that can
forecast the child “target” height. Ten of those models have overcome the results obtained on the
state-of-the-art reference model, Mid-Parental Method, and two of the models produced, XGB and
LightGBM, with significant improvements. These two models have achieved the second goal defined
in the business understating phase, improving the existing prediction accuracy.

Considering these results, it was possible to proceed to the next phase.

Regarding the computation resources consumption between different methods, we can verify
that memory consumption presents a low variance (15%) with a minimum of 140 Mb and a maximum
of 163 Mb. In our option, there was not a significant difference, even when dealing with large files,
considering the availability of resources nowadays.

We can divide algorithms into four classes based on CPU time. The algorithms on the milliseconds
range (i.e., Linear, SGD or KNeighbors), those on the tens of milliseconds range (i.e., AdaBoost or
26.6 ms), the class for the hundreds of milliseconds (i.e., SVR RBF or LightGBM), and finally the SVR
Poly on the long-time processing class.

The CPU consumption is directly proportional to the algorithm’s complexity and it was expected
to have a low processing consumption for a “simple” linear regression and bigger processing needs
for support vector regressions. Remembering that linear regression method builds a linear equation
(i.e., y = f0 + B1 x 1) that fits the best linear relationship between a set of input data to predict the
output value, while SVR algorithms try to fit data using a hyper-plane where the support vectors
threshold can assume different shapes (including nonlinear). These can vary according to the kernel
defined as parameter [41,42].

Focusing on the algorithms that present the best improvements, XGB and LightGBM, we can
observe a huge difference on the CPU consumption, where the last requests quadruple the time
consumed by the first one.
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Both algorithms are gradient boosted tree-based ensemble methods. XGB grows trees horizontally,
as most of the tree base algorithms, while LightGBM grows tree vertically. That means that LightGBM
grows from the leaf with greater loss (leaf-wise), while the other considers the level (level wise),
what can reduce loss and result in better accuracy [43—45].

LightGBM was developed after XGB and uses a novel sampling method called Gradient-based
One-Side Sampling. It was developed with the purposes of achieving faster training, lower memory
needs and better accuracy. Our results can confirm the accuracy overcome but we observe the inverse
for the resources consumption. That can easily be explained as LightGBM was developed for large
datasets, which was not the case in our study.

4.6. Deployment

After achieving the goals defined in this study, it is important to deliver an easy way for clinical
professionals, particularly undertaking growth assessments, to benefit from this evolution. For that we
have developed a basic interface (Figure 8), connected by a web service to the model, that allows us to
quickly introduce the inputs and generate the output prediction. This interface, model and service can
be easily deployed to an existing IT infrastructure on hospitals, clinics, or other care facilities.

Child’s Target Height Prediction

Father height | |
Inches

Mother height | Inches

Gender - ‘

Child target height Inches

Figure 8. Interface for Child’s Target Height Prediction.

5. Results

In this study, we used several machine learning algorithms as a way to forecast a child’s height
prediction when they turn into adults and we have also been successful in improving accuracy when
compared with the currently existing models.

The models that presented the best accuracy were XGB and mainly LightGBM with considerable
improvements when compared with the best-known existing model, the Mid-Parental method.

It is important to understand how LightGBM accuracy has been able to surpass the accuracy of
the Mid-Parental method (the best model on state-of-the-art). Also, we believe that understanding the
fundamentals of the prediction will make the model outputs more trustworthy for its users.

In analyzing the model outputs, we first decide to compare the outputs (vertical axis) against
the sum of parents’ height (horizontal axis) using Figure 9 where we can find LightGBM (red) and
Mid-Parental methods (green) results. In Figure 10 we also add the real values for the child height
(blue).
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Figure 9. LightGBM (red) and Mid-Parental (green) prediction outputs.
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Figure 10. LightGBM (red), Mid-Parental (green) prediction and child’s real height (blue).

In the previous figures (Figures 9 and 10), was possible to verify that the Mid-Parental predicts the
same child height, for the same gender, when considering the same parent’s height sum, while Light GBM
model presents variations. When comparing both models LightGBM and Mid-Parental outputs with
the real values it’s possible to understand that the first model is able to achieve predictions that are
closer to the real values.

Focusing on gender influence on predictions, we verify that both models (LightGBM and
Mid-Parental) were able to influence of gender the child height prediction.

The Mid-Parental considers a constant difference of 5 inches between male and female children.
In Figure 9, we can easily observe two parallel green lines formed by several green points, one for each
gender, with a 5 inches difference.

Figure 11 shows the influence of gender on LightGBM in the dataset. The cadet blue colour
presents male child’s (variable is_male = true) and dark orchid colour corresponds to female child’s
(variable is_male = false). The influence of gender it’s not a constant of 5 inches, but otherwise its
centre around 5 inches presents some small variability. The variability is about 0.5 inches on female
(dark orchid area) and 0.7 on male (cadet blue area). The variability is not related to any trend on child
height, but instead with the parents’ individual heights influence.



Appl. Sci. 2019, 9, 5447 16 of 20

is_male

Figure 11. Influence caused by gender on child’s height prediction (dark orchid for the female gender
and cadet blue for the male gender).

Previously, in the data exploration and visualization chapter, we verified that the influence
of mother and father is different for different genders and for different mother and father heights.
In Figure 9, Observing figure 9 we can verify that our model (LightGBM) it’s able to capture and embed
that variations that are not linear and where same parents” heights produce different outputs.

We have verified average fathers” and mothers” heights” influence our model, according to
children’s genders, as presented in Figure 12. Importantly, fathers” and mothers” heights influence is
different for different children’s genders. This fact confirms the results obtained on data exploration
and visualization phase where we found, for instance, that the correlation of father height and female
children was 0.459 and 0.391 for male children.

mother

father Female
0.0 05 P10 15 20 25
father i
! Male

Figure 12. Parent’s influence on child height, considering child gender.

In Figure 12, it is possible to observe the average influence of parent’s height. In Figure 13,
we observe the detail influence of mother and father height in the dataset records for a female child.

The graphic below represents all female children’s order from tallest to lowest. The red colour
represents a positive influence and the blue colour a negative influence on the child’s height.

The most important fact to extract from the previous figure is that parents” height influences their
children’s height differently. The tallest female child, above the mean, mainly had a positive influence
of fathers height, while the same is not true for mothers” height, where we can see a lot of fluctuations.

By observing the oscillations, it is possible to see that the relationship is not linear, as defined by
the Mid-Parental method, and that presents variance, mainly on the mother case. This variance was
already observed in the data analysis phase, where we observed that the correlation between mother
and female children have fluctuations.
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Figure 13. Influence of parents height on each female child height (red for positive influence and blue
for negative influence).

Following the figure above (Figure 13) we can verify that our model is able to incorporate
the different influences of the parent’s heights on different situations. This leads to a model with
better accuracy.

For the evaluation described above, we have used some resources from SHAP library, including
some graphics generated by the tool. SHAP (SHapley Additive exPlanations) is a framework that
combines features contributions and game theory to explain the machine learning predictions [46,47].

6. Conclusions

In our study, we assessed the ability to predict children’s height when they became adults, and we
challenges ourselves to overcome the existing predictive models using machine learning techniques.
Based on the developed work, our research group was able to find better approaches to forecast
children’s height when they become adults. For most of the approaches, the improvements were minor
but with the XGB and LightGBM algorithms were possible for achieving a considerable improvement
on accuracy.

By analyzing the LightGBM model, we understood that our model was able to incorporate the
different degree of influence of fathers’” and mothers” heights in different stages, and on different
children’s genders, what has contributed to improving the results obtained when compared with the
previously existing models (Horace Grey and Mid-Parental method).

At the end of the study, we found that a step forward toward more personalized medicine,
creating a new “tool” where growth assessments can be made using as reference the “real” potential
growth for analysis in children.

The final model still has some variation when compared to real values. We believe it can be reduced
by adding other signification variables to the model, such as grandparent’s height, existing pathologies,
economical level and alimentation access/quality. This will be probably approached in future work.

In future work, we would like to develop three new studies:

1. Use the procedures defined in this article for a current population, using a bigger dataset.
Contact with Portuguese public institutions/services is being made to explore the current
Portuguese height records.

2. Develop anew approach where the height of a child is forecast from birth to adulthood, monitoring
the full development by year, and where data from previous years will probably take prominence.

3. Use the methodology defined for this experience using a dataset with more features. We would
like to add to the existing features variables, such as grandparent’s height, existing pathologies,
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economical level and alimentation access/quality. We are already developing contacts with
Geracao XXI project (Portugal) that has created a cohort study with a considerable number of
child’s (about 8000), that can help to deepen this study.

We believe that other features can reduce the variability on the model, and consequently
increase accuracy.
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