
On Refinement of Software Architectures

Sun Meng1,3?, Lúıs S. Barbosa2??, and Zhang Naixiao3

1 School of Computing, National University of Singapore, Singapore
2 Department of Informatics, Minho University, Portugal

3 LMAM, School of Mathematical Science, Peking University, China
sunm@comp.nus.edu.sg, lsb@di.uminho.pt, znx@pku.edu.cn

Abstract. Although increasingly popular, software component techniques
still lack suitable formal foundations on top of which rigorous method-
ologies for the description and analysis of software architectures could
be built. This paper aims to contribute in this direction: building on
previous work by the authors on coalgebraic semantics, it discusses com-
ponent refinement at three different but interrelated levels: behavioural,
syntactic, i.e., relative to component interfaces, and architectural. Soft-
ware architectures are defined through component aggregation. On the
other hand, such aggregations, no matter how large and complex they
are, can also be dealt with as components themselves, which paves the
way to a discipline of hierarchical design. In this context, a major contri-
bution of this paper is the introduction of a set of rules for architectural
refinement.

Keywords: software component, software architecture, refinement, coal-
gebra.

1 Introduction

As the size and complexity of software increase continuously, the design and
specification of the overall software architecture [28] becomes a central design
problem. Software architecture [28] is an important aspect of software engineer-
ing, which has a major impact in system’s efficiency, adaptability, reusability,
and maintainability. Research on software architecture is still in its progressing
phase as witnessed by the emergence, in recent years, of a significative number
of approaches and methodologies (see, among many other, [3, 10, 14, 22, 27]). In
the object-oriented paradigm, where development methods like the Unified Mod-
eling Language (UML) [8, 25, 23] and the Unified Process (UP) [13] are widely
used, architectural design forms a critical element of the whole design process
[1].

? partially supported by the National Natural Science Foundation of China, under
grant 60473056, and a Public Sector Research grant from the Agency of Science,
Technology and Research (A*STAR), Singapore.

?? funded by the Portuguese Foundation for Science and Technology, in the context of
the PURe project, under contract POSI/ICHS/44304/2002



2 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

The importance of software architecture for the working software engineer is
highlighted by the ubiquitous use of architectural descriptions containing inform-
ation about systems, subsystems, components and interfaces which comprise the
whole architecture. Expressions like ‘client-server organization” [7], “layered sys-
tem”, “pipeline”, etc., quite popular in the software engineering jargon, denote
in fact particular architectural styles.

The primary focus of architecture-driven software development shifted from
code organization to the definition and manipulation of coarser-grained archi-
tectural elements, their interactions, and the overall interconnection structure.
However, there still lacks a systematic approach to the architectural development
process encompassing both aggregation and refinement in a coherent way.

Previous work on specification refinement, understood as the the process
of transforming an ‘abstract’ into a more ‘concrete’ design (see, e.g., Hoare’s
landmark paper [12]), has concentrated on preservation of invariance properties.
There is, however, a wide range of ways of understanding both what substitution
means, and what such a transformation should seek for. In data refinement [9],
for example, the ‘concrete’ model is required to have enough redundancy to
represent all the elements of the ‘abstract’ one. This is captured by the definition
of a surjection from the former into the latter (the retrieve map). However, these
well established refinement approaches [11, 21] are of limited use for refinement
of component-based systems, since they are based on semantic frameworks that
consider only the relational behaviour of sequential programs.

The main contribution in this paper is a methodology for the refinement of
software architectures. Our work is based on a coalgebraic model for component
based systems [4–6] in which components can be aggregated through a number
of combinators to build hierarchical models of complex systems. Reference [19]
introduces the basic results on interface and behavioural refinement of generic
components, including a soundness result, upon which a notion of architectural
refinement is proposed in this paper. Note that, while interface-level refinement
is concerned with the manipulation and adjustment of component interfaces, and
behavioural refinement relates blackbox behaviours of components, architectural
refinement allows us to refine a component by a subsystem architecture as well
as to refine a system by another system with a different architecture.

This paper is organized as follows: The underlying coalgebraic model for
components and its calculus are briefly reviewed in sections 2 and 3, respectively.
Three kinds of refinement relations are introduced in section 4, followed by a
family of refinement rules for refinement of system architectures. The paper
closes with a brief discussion on what has been achieved in section 5.

2 Components

A software system is defined in terms of a collection of components and con-
nectors among those components. The components interact with each other by
the connectors, exchanging information in terms of messages of specified types.
Such systems may in turn be used as components in larger designs.



On Refinement of Software Architectures 3

2.1 Components as Coalgebras

We adopt a coalgebraic model for state-based components which follows closely
the “components as coalgebras” approach proposed by L. Barbosa et al in [4,
5]. This approach provides an observational semantics for software components
and a generic assembly calculus. Qualificative generic means that the proposed
constructions are parametric on a (mathematical) model of behaviour.

Components interact with their environment via interfaces. Every interface
provides a set of typed channels for receiving and sending messages, acting as
a type for the corresponding component. Let C be a set of channel identifiers.
Then a component interface is defined as follows: we can define the interface of
a component as follows:

Definition 1. Let I ⊆ C and O ⊆ C be sets of typed input and output channels,
respectively. The pair (I,O), is called an interface and any component p with
such an interface is typed as p : I → O.

In the simplest, deterministic case, the behaviour of a component p is cap-
tured by the output it produces, which is determined by the supplied input. But
reality is often more complicated, for one may have to deal with components
whose behavioural pattern is, e.g., partial or even non deterministic. Therefore,
to proceed in a generic way, the behaviour model is abstracted to a strong monad
B. Of course, B = Id retrieves the simple deterministic behaviour, whereas B = P
or B = Id + 1 would model non deterministic or partial behaviour, respectively.
Therefore, a component p : I → O can be modelled by a pointed concrete
coalgebra

〈np, Up, αp : Up → B(Up ×O)I , u0 ∈ Up〉 (1)

for the Set endo-functor TB = B(Id×O)I . In detail, np is the component’s name,
a specific value u0 is taken as its ‘initial state’ (or ‘seed’) and the dynamics is
captured by currying the state-transition function αp : Up × I → B(Up × O).
Notice that the computation of p will not simply produce an output and a
continuation state, but a B-structure of such pairs.

For a component p as given in (1), we define the operators name.p, in.p, out.p
and beh.p to return np, I, O and αp respectively. In the following sections, for
simplicity, we may sometimes omit the occurrence of np and u0, and just use the
TB-coalgebra 〈Up, αp〉 to denote component p.

Successive observations of a component p reveal its allowed behavioural pat-
terns. For each state value u ∈ Up, the behaviour of p at u (more precisely,
from u onwards) organize itself into a tree-like structure, because it depends on
the sequences of input items processed. Such trees, whose arcs are labelled with
I values and nodes with O values, can be represented by functions from non
empty sequences of I to B-structures of output items. In other words, the space
of behaviours of a component with interface (I,O) is the set (BO)I+

, which is in
fact the carrier νT of the final TB-coalgebra (νT, ωT : νT → TBνT). Therefore, by
finality, from any other TB-coalgebra p, there is a unique morphism [(αp)] making



4 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

the following diagram to commute:

νT
ωT- B(νT ×O)I

Up

[(αp)]
6

αp- B(Up ×O)I

B([(αp)]×O)I6

Applying morphism [(p)] to a state value u ∈ Up gives the observable behaviour
of a sequence of p transitions starting at u. By instantiating B with concrete
strong monads, such as P and Id + 1, it is possible to model different behaviour
patterns such as non-determinism and partial behaviour respectively.

3 Architectures

This section recalls the basic mechanisms for component aggregation along the
lines of [4–6]. A simple, but precise, notion of software architecture is introduced
as a composition pattern for a number of components.

3.1 Composing Components

In the coalgebraic framework revisited in the previous section, components be-
come arrows in a (bicategorical) universe Cp whose objects are sets, which
provide types to input/output parameters (the components’ interfaces), and
component morphisms h : p −→ q are functions relating the state spaces of
p = 〈np, Up, αp : Up → B(Up × O)I , up ∈ Up〉 and q = 〈nq, Uq, αq : Uq →
B(Uq × O)I , uq ∈ Uq〉 and satisfying the following seed preservation and homo-
morphism conditions:

h up = uq and αq · h = B (h×O)I · αp (2)

For each triple of objects 〈I,K,O〉, a composition law is given by functor ;I,K,O :
Cp(I, K)×Cp(K, O) −→ Cp(I,O) whose action on objects p and q is

p ; q = 〈np;q, Up × Uq, αp;q, 〈up, uq〉〉 with

αp;q = Up × Uq × I
∼=−−−−→ Up × I × Uq

αp×id−−−−→ B(Up ×K)× Uq

τr−−−−→ B(Up ×K × Uq)
∼=−−−−→ B(Up × (Uq ×K))

B(id×αq)−−−−−−→ B(Up × B(Uq ×O)) Bτl−−−−→ BB(Up × (Uq ×O))
∼=−−−−→ BB(Up × Uq ×O)

µ−−−−→ B(Up × Uq ×O)

Similarly, for each object K, an identity law is given by a functor copyK : 1 −→
Cp(K, K) whose action is the constant component 〈∗ ∈ 1, η1×K〉. Note that the
definitions above rely solely on the monadic structure of B.



On Refinement of Software Architectures 5

In [5, 4] a collection of component combinators was defined upon Cp in a
similar parametric way and their properties studied. In particular it was shown
that any function f : A −→ B can be lifted to Cp as

pfq = 〈npfq,1, η(1×B) · (id× f), ∗ ∈ 1〉

A wrapping mechanism p[f, g] which encodes the pre- and post-composition of a
component with Cp-lifted functions is defined as a combinator which resembles
the renaming connective found in process algebras (e.g., [20]). Let p : I −→ O be
a component and consider functions f : I ′ −→ I and g : O −→ O′. By p[f, g] we
will denote component p wrapped by f and g, typed as I ′ −→ O′ and defined
by input pre-composition with f and output post-composition with g. Formally,
the wrapping combinator is a functor

−[f, g] : Cp(I,O) −→ Cp(I ′, O′)

which is the identity on morphisms and maps a component 〈np, Up, αp, up〉 into
〈np[f,g], Up, αp[f,g], up〉, where

αp[f,g] = Up × I ′
id×f−−−−→ Up × I

αp−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

Component aggregation is catered by three generic tensors, capturing, re-
spectively, external choice (� : I +J −→ O +R), parallel (� : I ×J −→ O×R)
and concurrent (� : I + J + I × J −→ O + R + O × R) composition. When
interacting with p � q : I + J −→ O + R, the environment chooses either to
input a value of type I or one of type J , which triggers the corresponding com-
ponent (p or q, respectively), producing the relevant output. In its turn, par-
allel composition corresponds to a synchronous product: both components are
executed simultaneously when triggered by a pair of legal input values. Note,
however, that the behavioural effect, captured by monad B, propagates. For
example, if B expresses component failure and one of the arguments fails, the
product will fail as well. Concurrent composition combines choice and parallel,
in the sense that p and q can be executed independently or jointly, depend-
ing on the input supplied. Finally, generalized interaction is catered through
a sort of ‘feedback’ mechanism on a subset of the inputs. This can be defined
by a new combinator, called hook, which connects some input to some out-
put wires and, consequently, forces part of the output of a component to be
fed back as input. Formally, for each tuple of objects I, O and Z, we define
−�Z : Cp(I + Z,O + Z) −→ Cp(I + Z,O + Z). This combinator is the identity
on arrows and maps each component p : I+Z −→ O+Z to p�Z : I+Z −→ O+Z
given by

p�Z = 〈np�Z
, Up, αp�Z

, up〉



6 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

where

αp�Z
= Up × (I + Z)

αp // B(Up × (O + Z))
B((id×ι1+id×ι2)·dr)// B(Up × (O + Z) + Up × (I + Z))

B(η+ap) // B(B(Up × (O + Z)) + B(Up × (O + Z)))
µ·BO // B(Up × (O + Z))

3.2 Systems

From the architectural point of view, a software system comprises a finite set of
interconnected components. In itself such a system can be thought of as a new
component, which paves the way to hierarchical decomposition. this motivates
the following definition:

Definition 2. A system is defined as a tuple S = 〈nS , IS , OS , C, R〉, where
nS is its unique identifier, IS ⊆ C and OS ⊆ C are the sets of input and
output channels, respectively, C = {pk}1≤k≤n denotes a finite set of compon-
ents pk = 〈nk, Uk, αk : Uk → B(Uk ×Ok)Ik , uk ∈ Uk〉 for k = 1, 2, · · · , n, R =
{〈opj , Cj〉}1≤j≤m denotes a finite set of combinators together with the compon-
ents being combined by them, where Cj = {pj1 , pj2 , · · · | ∀i.pji

∈ C}.

Note that it is useful to introduce a notion of (input/output) channels IS and
OS as system’s external interfaces. Therefore, for a given system S, we define
the operators name.S, in.S, out.S, comps.S and combs.S to return nS , IS , OS ,
C and R respectively. Moreover, we have

in.C
∆=

⋃
c∈C

in.c and out.C
∆=

⋃
c∈C

out.c

as the union of input or output channels for the components in S.
In fact, we hope to decompose systems hierarchically, and regard them as

ordinary component. Therefore, we introduce the set of channels IS and OS as
the external interfaces of the system.

3.3 Black-Box and Glass-Box Views of Systems

There are two ways of interpreting a system’s specification. The first one em-
phasises its black-box behaviour and arises from the observation that a system,
being composed by component aggregation, is itself a component, actually a
(final) coalgebra over its space of behaviours. In other words, as a component
whose state space is specified as (BOS)IS

+
. Such component abstracts over all

internal structure the system may bear, and is simply defined as

pS = 〈nS , US = (BOS)IS
+
, αS : US → B(US ×OS)IS , 〈u1, u2, · · · , un〉〉



On Refinement of Software Architectures 7

For a given system S, we use the notation [[S]] to denote pS which captures only
the externally visible behaviour of the system. Thus, its internal architecture and
organization is not characterized by such an interpretation. It does not reflect,
for example, the internal structural decomposition of the system, the internal
communication between its components, its internal states, and so on. Thus, it
gives a pure black-box view of the system, which is mainly used in the early
stages of a system development.

In later stages of development, the software engineer is also concerned with
structural aspects of the design, and a glass-box view is then required. Such
a glass-box view is provided by Definition 2, on top of which a hierarchical
decomposition function ξ is defined. Formally,

Definition 3. For a given system S = 〈nS , IS , OS , C,R〉, a decomposition func-
tion ξ : C −→ P(C) is a function which satisfies:

– ∃ ! p ∈ C . p /∈
⋃

ran(ξ), denoted by ξS
root;

–
⋃

ran(ξ) = C \ {ξS
root} and ∀p ∈ C \ {ξS

root} . (∃ ! p′ ∈ C \ {p} . p ∈ ξ(p′));
– ∀C ′ ⊆ C . (C ′ 6= ∅ ⇒ (∃p ∈ C ′ . C ′ ∩ ξ(p) = ∅)).

4 Architecture Refinement

From a practical point of view, it is impossible to get a concrete architecture
of a large system from the abstract requirements in just one step. Therefore, a
stepwise development process is needed where software architectures are refined
systematically in a number of steps. In this section, we investigate three kinds of
refinement relations, namely, behavioural, interface and architectural refinement.

4.1 Behavioural Refinement

The most fundamental notion of refinement in our approach is behavioural re-
finement [19], based on a simulation preorder between components with identical
interfaces. Since morphisms between such components are in fact coalgebra ho-
momorphisms, therefore entailing bisimilarity, there is a need to seek for a weaker
notion of a morphism between components, still preserving the source component
dynamics.

We say that a component p behaviourally refines component q if the beha-
vioural patterns observed for p are a structural restriction, with respect to the
behavioural model captured by monad B, of those of q. To make such a ‘defin-
ition’ more precise we describe behavioural patterns concretely as generalized
transitions. Thus a possible (and intuitive) way of regarding component p as a
behavioural refinement of q is to consider that p transitions are preserved in q.
For non deterministic components this is understood simply as set inclusion. But
one may also want to consider additional restrictions. For example, to stipulate
that if p has no transitions from a given state, q should also have no transitions
from the corresponding state(s). Recall that a component morphism from p to q
is a seed preserving function h : Up −→ Uq such that B(h× id)·αp = αq ·(h×id).



8 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

In terms of transitions, this equation is translated into the following two require-
ments (by a straightforward generalization of an argument in [26]):

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′ (3)

h u
〈i,o〉−→q v′ ⇒ ∃u′∈U s.t. u

〈i,o〉−→p u′ ∧ v′ = h u′ (4)

which captures the fact that, not only p dynamics, as represented by the induced
transition relation, is preserved by h (3), but also q dynamics is reflected back
over the same h (4).

To define a weaker notion of coalgebra morphism, let ≤ be an order on a
Set endo-functor T [15] (concretely, mapping every set U into a collection of
preorders ≤TU ), referred to as a refinement preorder. Also assume that functor
T is stable wrt order ≤4. Then,

Definition 4. Let T be an extended polynomial functor on Set and consider
two T-coalgebras p = (U,α : U → T(U)) and q = (V, β : V → T(V )). A forward
morphism h : p → q with respect to a refinement preorder ≤, is a function from
U to V such that

T h · α ≤ β · h

The existence of a forward morphism connecting two components p and q
witnesses a refinement situation whose symmetric closure coincides, as expected,
with bisimulation. Behavioural refinement is therefore defined as the existence
of a forward morphism up to bisimulation 5. Formally,

Definition 5. Given components p and q, p is a behavioural refinement of q,
written p vB q, if there exist components r and s such that p ∼ r, q ∼ s and
r vF s, where r vF s stands for the existence of a (seed preserving) forward
morphism h from r to s.

We refer to p as the concrete or refined component and q as the abstract com-
ponent.

In [19] we have proved the soundness of simulation for behavioural refinement,
which is given in the following lemma6:

Lemma 1. To prove p vB q it is sufficient to exhibit a simulation R relating
components p and q.
4 Given a Set endofunctor T and a refinement preorder ≤, a lax relation lifting is an

operation Rel≤(T) mapping relation R to ≤ ◦Rel(T)(R) ◦ ≤, where Rel(T)(R) is
the lifting of R to T (defined, as usual, as the T-image of inclusion 〈r1, r2〉 : R −→
U × V , i.e., 〈Tr1, Tr2〉 : TR −→ TU × TV ). A functor T is stable wrt a order ≤ if
the associated lax relation lifting operation Rel≤(T) commutes with substitution.

5 In [19] the dual notion of a backwards morphism, i.e., one that satisfies β ·h ≤ T h·α,
is also studied, leading to a notion of backward refinement which do have some
applications, although the underlying intuition seems less familiar.

6 Here we adopt a generic definition of simulation due to Jacobs and Hughes in [15]:
Given T-coalgebras α and β, a simulation is a Rel≤(T)-coalgebra over α and β, i.e.,
a relation R such that, for all u ∈ U, v ∈ V , 〈u, v〉 ∈ R ⇒ 〈α u, β v〉 ∈ Rel≤(T)(R).



On Refinement of Software Architectures 9

On the other hand, for two components p and q, if p behaviourally refines
q, then we can always get a simulation R between them, which is defined as
∼ ◦Graph(h)◦ ∼. To prove the result, we first recall from [15] the following
result:

Lemma 2. Let T be a functor stable wrt order ≤. Then,

– If R is a bisimulation, then both R and Rop are simulations;
– Simulations are closed under composition.

and prove that

Lemma 3. The graph of a forward morphism h between two T-coalgebras p =
(U,α) and q = (V, β) is a simulation.

Proof. Define a relation R ⊆ U × V as 〈u, v〉 ∈ R iff h(u) = v. Because h is a
forward morphism, for all u ∈ U , the following diagram commutes:

u
h - h(u) = v

α(u)

α
?

Th- Th(α(u)) ≤TV β(v)

β
?

Since ≤ is a preorder, we have α(u) ≤TU α(u). Therefore, for any u ∈ U and
v ∈ V , if 〈u, v〉 ∈ R, then 〈α(u), β(v)〉 ∈≤ ◦Rel(T)(R)◦ ≤. That means, R is a
simulation.

Then,

Theorem 1. For two components p and q, if p behaviourally refines q, and this
is witnessed by a forward morphism h, then ∼ ◦Graph(h)◦ ∼ is a simulation
between them.

Proof. Immediate by combination of lemmas 2 and 3.

4.2 Properties of Behavioural Refinement

Behavioural refinement of components has a number of pleasant properties. First
of all it is a preorder:

p vB p

p vB q ∧ q vB r ⇒ p vB r

Proof. The reflexivity is obvious: we just need to take the identity function
id on p as the forward morphism (the graph of id is a bisimulation). For the
transitivity, we can first derive two simulations R and R′ from p vB q and
q vB r respectively, then from Lemma 2, we can know that R′ ◦ R is also a
simulation. By Lemma 1, p is a behaviour refinement of r.



10 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

In the case of a large system consisting of many components, it is not practical
to consider the whole system each time one of its components is to be refined.
On the contrary, we would like to decompose the original system, perform refine-
ment locally and reconstruct the relevant services from the refined components.
To make this possible behavioural refinement should also be a pre-congruence.
Formally,

Lemma 4. For any refinement preorder ≤, behavioural refinement vB is mono-
tonic with respect to combinators:

p[f, g] vB q[f, g]
p ; r vB q ; t

p � r vB q � t

p � r vB q � t

p � r vB q � t

p�Z vB q�Z

whenever p vB q and r vB t.

Proof. Let R1 and R2 be the simulation relations witnessing p vB q and r vB t
respectively. For wrapping and the hook combinator, we just need to define R =
R1. Let 〈u, v〉 ∈ R, then for all i ∈ I, we can easily derive 〈αp(u, i), αq(v, i)〉 ∈≤
◦Rel≤(B(Id×O))(R)◦ ≤ from p vB q. Therefore,

〈αp[f,g](u), αq[f,g](v)〉 ∈≤ ◦Rel≤(B(Id×O′)I′
)(R)◦ ≤

≡∀i′ ∈ I ′. 〈αp[f,g](u, i′), αq[f,g](v, i′)〉 ∈≤ ◦Rel≤(B(Id×O′))(R)◦ ≤
≡〈B(id× g) · αp · (id× f)(u, i′),B(id× g) · αq · (id× f)(v, i′)〉 ∈
≤ ◦Rel≤(B(Id×O′))(R)◦ ≤

≡{let f(i′) = i}
〈B(id× g) · αp(u, i),B(id× g) · αq(v, i)〉 ∈≤ ◦Rel≤(B(Id×O′))(R)◦ ≤

≡B(id× g) · 〈αp(u, i), αq(v, i)〉 ∈≤ ◦Rel≤(B(Id×O′))(R)◦ ≤
≡〈αp(u, i), αq(v, i)〉 ∈≤ ◦Rel≤(B(Id×O))(R)◦ ≤
≡TRUE

The proof for the hook combinator can be similarly obtained. Proofs for the
monotonicity of vB for other combinators can be found in [18].

4.3 Interface Refinement

Behavioural refinement characterizes the preservation of component behaviour.
But if we rely solely on behavioural refinement, the inability to change the syn-
tactic interface will force us to work at the same level of interface abstraction
throughout the whole development process. To avoid this, a more general notion
of refinement, called interface refinement is introduced, which relates compon-
ents with different interfaces.



On Refinement of Software Architectures 11

Definition 6. Let p : I → O and q : I ′ → O′ be components. If there exist
functions w1 : I ′ → I and w2 : O → O′, such that

p[w1, w2] vB q

then p is an interface refinement of q modulo the downwards function w1 and
the upwards function w2, written as p v(w1,w2) q.

Interface refinement supports the systematic construction of new components
from existing ones. Generally, for any component p, and functions w1, w2,

p v(w1,w2) p[w1, w2]

One situation where this technique is useful is when we have an already com-
pleted off-the-shelf component and want to adapt the syntactic interface of this
component to fit some context requirements. Therefore, interface refinement
provides a systematic pattern for interface adaptation of components.

As explained previously, the behavioural refinement relation on components
is both reflexive and transitive. Moreover, behavioural refinement is monotonic
with respect to the combinators defined in the component calculus. This allows
system development in a flexible top-down manner. The following properties
show that interface refinement combines nicely with behavioural refinement:

p1 vB p2 ∧ p2 v(w1,w2) p3 ⇒ p1 v(w1,w2)) p3

p1 v(w1,w2) p2 ∧ p2 vB p3 ⇒ p1 v(w1,w2)) p3

Furthermore, we have transitivity in the sense that

p1 v(w1,w2) p2 ∧ p2 v(w3,w4) p3 ⇒ p1 v(w3·w1,w2·w4) p3

4.4 Architectural Refinement

By architectural refinement we mean behavioural refinement of a complex system
regarded as a component on its own. Formally,

Definition 7. Let S = 〈nS , IS , OS , C, R〉 and S′ = 〈nS′ , IS′ , OS′ , C ′, R′〉 be two
systems. If IS = IS′ , OS = OS′ , and [[S]] vB [[S′]], then we say that S is an
architectural refinement of S′, written as S vA S′.

From the transitivity of behavioural refinement relation, one gets,

S1 vA S2 ∧ S2 vA S3 ⇒ S1 vA S3

This definition becomes really useful if it can be translated on concrete re-
finement rules concerned with structural changes in the design. A number of
them, easily derived from the definitions, are stated below in the format

precondition

refinement

where precondition is the condition to be satisfied for the refinement relation to
hold.



12 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

Behavioural refinement. A system can be refined by refining one of its com-
ponents and leaving other components unchanged. For a given system S =
〈nS , IS , OS , C,R〉, let p ∈ C be a component and p′ is a behavioural refinement
of p, then we can get a refinement of the whole system:

p ∈ C
p′ vB p

C ′ = (C \ {p}) ∪ {p′}
R′ = {〈opj , (Cj \ {p}) ∪ {p′} / p ∈ Cj . Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C ′, R′〉
S′ vA S

Adding output channels. New output channels may be added to a component p if
it is neither connected to a system component, nor part of the system interface.
For a given system S = 〈nS , IS , OS , C, R〉, let p ∈ C be a component, then

O′ ⊆ C \ (in.C ∪ out.C)
p = 〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉

p′ = 〈np, Up, αp′ : Up → B(Up × (Op + O′))Ip , up ∈ Up〉
∀u ∈ Up, i ∈ Ip . αp′(u, i) = αp(u, i)

C ′ = (C \ {p}) ∪ {p′}
R′ = {〈opj , (Cj \ {p}) ∪ {p′} / p ∈ Cj . Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C ′, R′〉
S′ vA S

Removing output channels. An output channel of component p being not used
in the system can be removed from the component. For a given system S =
〈nS , IS , OS , C,R〉, let p ∈ C be a component, then

o /∈ OS ∪ in.C
p = 〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉

O′
p = Op \ {o}

p′ = 〈np, Up, αp′ : Up → B(Up ×O′
p)

Ip , up ∈ Up〉
∀u ∈ Up, i ∈ Ip . αp′(u, i) = αp(u, i)

C ′ = (C \ {p}) ∪ {p′}
R′ = {〈opj , (Cj \ {p}) ∪ {p′} / p ∈ Cj . Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C ′, R′〉
S′ vA S

Adding input channels. An input channel can be added to a component p
provided that it is already in the output of some other component or input of the
system. For a given system S = 〈nS , IS , OS , C, R〉, let p ∈ C be a component,



On Refinement of Software Architectures 13

then
i′ ∈ IS ∪ out.C

p = 〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉
I ′p = Ip ∪ {i′}

p′ = 〈np, Up, αp′ : Up → B(Up ×Op)I′
p , up ∈ Up〉

∀u ∈ Up, i ∈ Ip . αp′(u, i) = αp(u, i)
C ′ = (C \ {p}) ∪ {p′}

R′ = {〈opj , (Cj \ {p}) ∪ {p′} / p ∈ Cj . Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C ′, R′〉
S′ vA S

Removing input channels. If the behaviour of a component p does not depend
on the input from an input channel, then the channel can be removed. For a
given system S = 〈nS , IS , OS , C,R〉, let p ∈ C be a component, then7

p = 〈np, Up, αp : Up → (B(Up ×Op) + 1)Ip , up ∈ Up〉
i′ ∈ in.p

∀u ∈ Up . αp(u, i′) = ∗
I ′p = Ip \ {i′}

p′ = 〈np, Up, αp′ : Up → B(Up ×Op)I′
p , up ∈ Up〉

∀u ∈ Up, i ∈ I ′p . αp′(u, i) = αp(u, i)
C ′ = (C \ {p}) ∪ {p′}

R′ = {〈opj , (Cj \ {p}) ∪ {p′} / p ∈ Cj . Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C ′, R′〉
S′ vA S

Adding new components. We can simply add a new component nil = pid∅q to a
system, which does not change the global system behaviour. For a given system
S = 〈nS , IS , OS , C, R〉, we have

∀p ∈ C . name.p 6= name.nil
C ′ = C ∪ {nil}

S′ = 〈nS , IS , OS , C ′, R〉
S′ vA S

Removing old components. Components may be removed from a system if it does
not have output that affects the system. For a given system S = 〈nS , IS , OS , C, R〉
and a component p ∈ C, we have

out.p = ∅
C ′ = C \ {p}

R′ = {〈opj , (Cj \ {p}) / p ∈ Cj . Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C ′, R〉
S′ vA S

7 The monad B+1 specifies the possibility of partial behaviour of components, where
∗ is the only element in the singleton set 1.



14 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

Decomposing components. Sometimes we may want to change the hierarchical
structure of a system. For example, a lift system might consist of a lift controller,
several doors and buttons. Especially, in later phases of a system development,
we might consider the glass-box view of the system, and thus need to expand
components into architectures. For a given system S = 〈nS , IS , OS , C,R〉 and
a component p ∈ C, which has the same behaviour with the architecture T =
〈nT , IT , OT , CT , RT 〉, i.e., p is behaviour equivalent to T , we have

p ∼ [[T ]]
∀q ∈ C, q′ ∈ CT . name.q 6= name.q′

out.CT ∩ out.C = out.p
C ′ = (C \ {p}) ∪ CT

R′ = {〈opj , (Cj \ {p}) ∪ {ξT
root} / p ∈ Cj . Cj〉}1≤j≤m ∪RT

S′ = 〈nS , IS , OS , C ′, R′〉
S′ vA S

Folding components. If T = 〈nT , IT , OT , CT , RT 〉 is a subarchitecture of a sys-
tem S = 〈nS , IS , OS , C,R〉, then we can fold it into a new component p =
〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉, which has the same behaviour with
T .

p ∼ [[T ]]
CT ⊆ C

∀q ∈ C \ CT . name.q 6= np

C ′ = (C \ CT ) ∪ {p}
R′′ = (R \ (RT ∪ {〈opj , Cj〉 | ∃p′ ∈ CT ∩ Cj}))

R′ = R′′ ∪ {〈opj , (Cj \ CT ) ∪ {p}〉 | ∃p′ ∈ CT ∩ Cj . 〈opj , Cj〉 ∈ R}
S′ = 〈nS , IS , OS , C ′, R′〉

S′ vA S

5 Conclusions

This paper discusses refinement of software architectures in the context of a
broader research agenda on coalgebraic semantics for componentware. From our
experience to date, the appropriateness of the coalgebraic approach for com-
ponent based systems is driven by the following two key ideas: first, the ‘black-
box’ characterization of software components favors an observational semantics;
secondly, the proposed constructions are generic in the sense that they do not
depend on a particular notion of component behaviour. This led both to the
adoption of coalgebra theory [26] to capture observational semantics and to the
abstract characterization of possible behaviour models (e.g., partiality or dif-
ferent degrees of non-determinism) by strong monads acting as parameters in
the resulting calculus [4, 5]. Our work provides three basic refinement relations,
which can be used for refinement of systems at different granularity.

A large body of work on software architectures using process algebraic ADLs
can be found in the literature (see, e.g., [10, 28]). These approaches are usually



On Refinement of Software Architectures 15

biased towards specific behavioural models and therefore less generic than the
one sketched in this paper. An approach closer to ours is that of [22], where
a refinement mapping is defined to provide a syntactical translation between
abstract and concrete architectures. However, such a mapping is required to be
faithful, which means that both the positive and the implicit negative facts in
the abstract architecture should be preserved in the concrete one. This makes
both definition and proof of refinement difficult. Yet another interesting calculus
was proposed in [24] to deal with refinement of information flow architectures.
However, it only deals with the refinement of system’s internal organization.

Our work is based on some preliminary results on behavioural refinement of
generic state-based components documented in [19]. In this paper we proved a
completeness result connecting simulation to behavioural refinement and provided
further insight on refinement at both interface and architectural levels. Both of
them can be reduced to the simple behavioural refinement relationship. A family
of refinement rules was provided for local, stepwise modification of architectural
designs. The genericity of the underlying coalgebraic model makes our approach
not limited to any sort of architecture style. Whether it scales up to more sophist-
icated architectural models, namely the ones based on component coordination
by anonymous communication and independent connectors (as in, e.g., [2] or
[17, 16]), is still an open research question.

References

1. Aynur Abdurazik. Suitability of the UML as an Architecture Description Language
with Applications to Testing. Technical Report ISE-TR-00-01, Information and
software engineering, George Mason University, 2000.

2. Farhad Arbab. Abstract Behavior Types: A Foundation Model for Components
and Their Composition. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and
Objects: First International Symposium, FMCO 2002, Leiden, The Netherlands,
November 2002, Revised Lectures, volume 2852 of LNCS, pages 33–70. Springer,
2003.

3. Farhad Arbab and Jan Rutten. A coinductive calculus of component connect-
ors. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent Trends
in Algebraic Development Techniques: 16th International Workshop, WADT
2002, Frauenchiemsee, Germany, September 24-27, 2002, Revised Selected Papers,
volume 2755 of LNCS, pages 34–55. Springer-Verlag, 2003.

4. Lúıs Soares Barbosa. Towards a Calculus of State-based Software Components.
Journal of Universal Computer Science, 9(8):891–909, August 2003.

5. Lúıs Soares Barbosa and José Nuno Fonseca de Oliveira. State-based compon-
ents made generic. In H. Peter Gumm, editor, Elect. Notes in Theor. Comp. Sci.
(CMCS’03 - Workshop on Coalgebraic Methods in Computer Science), volume 82.1,
Warsaw, April 2003.

6. Lúıs Soares Barbosa, Sun Meng, Bernhard K. Aichernig, and Nuno Rodrigues.
On the semantics of componentware: a coalgebraic perspective. In Jifeng He and
Zhiming Liu, editors, Mathematical Frameworks for Component Software.- Models
for Analysis and Synthesis, chapter 2. World Scientific, 2004. To be published.



16 Sun Meng, Lúıs S. Barbosa and Zhang Naixiao

7. Alex Berson. Client/Server Architecture. McGraw-Hill, 1992.
8. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-

guage User Guide. Addison Wesley, 1999.
9. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Cambridge University Press, 1998.
10. David Garlan. Higher-order connectors. Proceedings of Workshop on Composi-

tional Software Architectures, January 1998.
11. C. A. R. Hoare, He Jifeng, and Jeff W. Sanders. Prespecification in data refinement.

Information Processing Letters, 25:71–76, 1987.
12. Charles Antony Richard Hoare. Proof of correctness of data representations. Acta

Information, 1:271–281, 1972.
13. John Hunt. The Unified Process for Practitioners: Object Oriented Design, UML

and Java. Practitioner. Springer, 2001.
14. Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of soft-

ware architectures using the chemical abstract machine model. IEEE Transactions
on Software Engineering, 21(4), 1995.

15. Bart Jacobs and Jesse Hughes. Simulations in coalgebra. In H. Peter Gumm,
editor, Elect. Notes in Theor. Comp. Sci. (CMCS’03 - Workshop on Coalgebraic
Methods in Computer Science), volume 82, pages 245–263, Warsaw, April 2003.

16. M. A. Marco A. Barbosa and Lúıs Soares Barbosa. A Relational Model for Com-
ponent Interconnection. Journal of Universal Computer Science, 10(7):808–823,
July 2004.

17. M. A. Marco A. Barbosa and Lúıs Soares Barbosa. Specifying software connectors.
In K. Araki and Z. Liu, editors, 1st International Colloquium on Theorectical As-
pects of Computing (ICTAC’04), pages 53–68, Guiyang, China, September 2004.
Springer Lect. Notes Comp. Sci. (3407).

18. Sun Meng and Lúıs Soares Barbosa. On Refinement of Generic Components.
Technical Report 281, UNU/IIST, May 2003.

19. Sun Meng and Lúıs Soares Barbosa. On Refinement of Generic State-based Soft-
ware Components. In C. Rattray, S. Maharaj, and C. Shankland, editors, Algebraic
Methodology And Software Technology, 10th International Conference, AMAST’04,
Proceedings, volume 3116 of LNCS, pages 506–520. Springer, 2004.

20. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
21. Carroll Morgan. Programming from Specifications, Second Edition. Prentice Hall,

1994.
22. Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct architecture

refinement. IEEE Transactions on Software Engineering, 21(4):356–372, 1995.
23. OMG. OMG Unified Modeling Language Specification, Version 1.3 , 2000.
24. Jan Philipps and Bernhard Rumpe. Refinement of information flow architectures.

In M. Hinchey, editor, Proceedings of ICFEM’97. IEEE CS Press, 1997.
25. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-

guage Reference Manual. Addison Wesley Longman, 1999.
26. Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Sci-

ence, 249:3–80, 2000.
27. J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In L. Barroca,

J. Hall, and P. Hall, editors, Software Architectures - Advances and Applications,
pages 13–25. Springer-Verlag, 1999.

28. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.


