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Abstract—This paper presents a new approach to texture defect 
detection based on a set of optimised filters. Each filter is applied 
to one wavelet sub-band and its size and shape are tuned for a 
defect type. The wavelet transform provides a very efficient way 
to decompose a complex texture into a set of base components 
(wavelet sub-bands), which are then analysed by each filter to 
detect a kind of defect. The proposed methodology has been 
successfully applied to leather inspection, achieving the detection 
rate of highly trained human operators. The process is also fast 
enough to be used for in-line inspection. 
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I.  INTRODUCTION 
Natural textures, such as sand, marble, granite and leather 

are very difficult to analyse, since texture features present a 
high variation, even among a single texture sample. Usually, in 
these texture types, texture features follow a probability 
distribution and cannot be conveniently characterised through 
first and second order statistics. 

Texture analysis through filter bank approaches [1] is based 
on a set of convolution masks. Each mask acts as a filter that 
responds to a particular frequency, producing a texture feature. 
The result from several filters can be used for texture 
classification, since different textures may have different 
responses on each frequency. These approaches can be 
interpreted as a partition of the texture power spectrum, where 
each filter is tuned for a particular frequency with a predefined 
bandwidth and orientation. 

One of the most used approaches for texture analysis is 
based on Gabor filters [2], due to its optimal join spatial and 
frequency localisation. In this approach, texture features are 
calculated based on a set of Gabor filters, performing a nearly 
uniform (dyadic) coverage of the frequency domain. 

Defect detection on textured materials usually requires 
more specific filters, since changes in the power spectrum can 
be very small, which may not be detected by generic filter 
masks. Several authors have addressed the design of optimised 
Gabor filters [3][4]. The main idea is to tune each Gabor filter 
for defect type. A Gabor filter has several parameters, namely 
the filter central frequency, the filter bandwidth among X and 
Y direction and the filter orientation. Some restrictions to these 
parameters should be introduced, since an exhaustive search in 
the solution space is not feasible. 

Gabor filters have several limitations, mainly due to their 
high computing costs. First, they generate a complex 
convolution mask, which requires two convolutions per filter. 
Second, masks are not separable and should have a medium 
size to perform an accurate power spectrum partition. Third, 
the amount of data increases with the same ratio as the number 
of the filters, since each filter output has the same size as the 
original image. The strong point of the Gabor filters is that they 
can perform a very flexible power spectrum partition. 

The wavelet decomposition [5] overcomes most of these 
performance limitations. It uses a set of real value 1D masks to 
perform a recursive power spectrum partition, down sampling 
the image after each filtering step, which keeps the data set 
constant. Wavelet decomposition imposes a predefined power 
spectrum partition, originating a logarithmic decomposition 
that performs a finer partition in the lower frequency space. 
This limitation is partially overcome by wavelet packets [6], 
which recursively decompose both low and high frequencies. 
Intermediate frequencies are particularly important in textured 
materials, since these frequencies usually carry most of the 
texture information. 

The next section describes the proposed optimised filters, 
which are based on the wavelet sub-band decomposition. The 
third section presents the methodology to obtain the optimised 
filters. The forth section presents performance results and the 
last section discuss these results and future work. 

II. OPTIMISED FILTERS 
Defect detection in textured materials can be very 

subjective, since defects can be very subtle. Defects can be 
highly localised in space, which may lead to a strong 
modification in a wide range of the power spectrum, but they 
can also be less localised in space, which may lead to a small 
modification in the power spectrum. Therefore, changes in the 
power spectrum should be detected either by highly frequency 
localised filters, or by less frequency localised filters, 
depending on the defect to be detected. The filter size also 
affects the defect detection success: less space localised defects 
usually require larger filters. 

The wavelet transform provides an excellent framework to 
deal with multi-scale defects (both in space and frequency). 
The first level of the wavelet packet decomposition divides the 
power spectrum into four square parts; the second level divides 
the same spectrum in sixteen square parts and the third in 
sixty-four parts. A filter applied in the first level of the wavelet 
covers one fourth of the entire spectrum, while one applied in 
the second level only covers one sixteen of the spectrum. 
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Therefore, filters applied in higher wavelet decomposition 
levels are more localised in the frequency domain and are tuned 
to detect defects that are easier to detect by analysing only a 
small part of the spectrum. Conversely, filters applied in the 
first levels can detect broader spectrum changes. 

Defect size and orientation can increase the complexity of 
the optimised filter design, particularly when defects are very 
subtle. Traditional approaches are based on manual image 
segmentation to identify areas of possible defects that are later 
used to obtain optimised filters. This process relies on accurate 
image segmentation since defect features are calculated over 
the entire defect area. To overcome this limitation the proposed 
optimised filters are calculated over a small area inside the 
defect that minimises or maximises the feature value. The 
minimum or maximum value calculated on that small area is 
used to represent the entire defect area. This approach removes 
the burden of accurate segmentation, since it requires only that 
the defect should be included in the segmented area. Also the 
approach allows the optimised filter selection process to search 
for the most relevant feature for each defect type. 

Each optimised filter calculates the average energy in a 
wavelet sub-band (i.e., on a specific part of the power 
spectrum), with a window size and orientation tuned for a type 
of defect. The energy is calculated by using two alternatives: 
the average value and the standard deviation. 

Overall the defect detection process first performs the 
wavelet transform and then applies a bank of filters to calculate 
the average energy on several frequency channels. Each filter 
has a predefined window size and orientation. The output of 
each filter might indicate the presence of a defect region, which 
can be a high or low value, depending of the filter. 

Initially, the image is segmented into a set of regions and 
only that set of regions is analysed to speed up the filter 
calculation. These regions correspond to areas of high/low 
intensity and contrast, which should include defect regions, as 
well as a large amount of normal regions. The calculated 
features for each filter are normalised to decrease the sensibility 
among different samples. 

III. FILTER SELECTION 
The filter selection process chooses the most appropriate 

wavelet sub-band, filter size and orientation for each defect 
type. In a training phase, a large number of predefined 
smoothing filters are applied to each wavelet sub-band and, 
afterwards, the filters that can detect more defects are selected. 

The first step applies the wavelet packet decomposition to 
each image with three levels (Figure 1). This figure also 
exemplifies the numbering used for each wavelet sub-band. 

Figure 1 – Wavelet packet decomposition 

 
Figure 2 – Smoothing masks 

Note that all the three levels are used, which allows the 
filter selection process to search masks with several frequency 
bandwidths, i.e., the filters applied the first level decomposition 
have the highest bandwidth. 

In the second step the predefined set of smoothing filters is 
applied to each wavelet sub-band. This set includes square and 
rectangular windows, from 3x3 to 13x13 pixels, as well as 45 
and 135 degrees rotated windows. Figure 2 shows these 
smoothing filters, only up to 9x9 and some small masks have 
been removed. 

The third step selects the most generic masks; these are the 
masks that can detect most of the defects. The selection 
follows a sequential forward selection, successively adding 
the mask that detects the highest number of defects that are 
not detected by the already selected masks. To avoid too much 
filter specialisation, filters that detect a small number of 
defects are not considered for selection. 

IV. RESULTS 
The proposed methodology has been applied to leather 

inspection. Each image sample was acquired with a resolution 
of 5.5 pixels per millimetre, achieving images with 2048x2048 
pixels, which are processed to have an average constant 
intensity and contrast. Tests were performed on 80 images, 
containing 129 defects. Only the largest 200 regions on each 
image were analysed (areas that have high/low intensity and 
contrast), processing a total of 16 000 regions. All the tests 
were performed using the Haar Wavelet. 

The first test uses the same set for training and test. Its main 
goal is to test the ability of the proposed masks to separate 
normal from defect areas. This test gives an idea of the optimal 
detection rate that can be achieved with this type of filters. 
Figure 3 plots the number of defects detected as a functions of 
the number of masks used. 
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Figure 3 – Number of defects detected as a function of the number of masks 
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TABLE I. FIRST TEN SELECTED MASKS 

N Mask Det. ∆J T 
1 Q0 7x7 0º 49 49 6.56 

2 Q4 13x5 0º 49 12 5.37 

3 Q4 9x13 0º 47 9 7.48 

4 Q4 5x7 45º 45 4 6.95 

5 Q5 5x7 135º 16 4 5.67 

6 Q6 7x11 45º 12 3 6.33 

7 Q4 5x3 0º 47 2 5.50 

8 Q0 7x5 135º 41 2 6.14 

9 Q8 13x9 135º 14 2 5.61 

10 Q5 13x3 0º 6 2 4.45 

 

The first 18 selected masks can detect 101 defects, 78% of 
the total, without introducing any false positive. Using more 
masks introduces false positives. The figure also includes the 
number of defects detected by each mask (Defects detected) 
and the total number of false. A total of 48 masks can detect all 
defects; however, the last 6 masks introduce a high number of 
false (from 10 and 50 false). These results indicate that the 
proposed methodology can effectively detect most leather 
defects. 

Table I shows the first 10 masks selected, the number of 
defects detected (Det.), the additional defects detected (∆J) and 
the threshold limit used for the classifier (T). When the output 
of one of the filters exceeds this value the region is considered 
a defect. The threshold limit is set to a value near of the first 
false positive. Figure 4 shows how the masks from this table are 
distributed in the wavelet sub-band decomposition. These 10 
masks can detect 89 defects, 69% of the total. 

Figure 5 illustrates inspection results. The defect in the first 
and in the second image are detected by mask “Q5 5x7 135º” 
(mask number 5). The image on the right presents the results of 
this mask, before the classifier is applied. Several masks can 
detect the defect in the third image; the figure presents the 
results of mask “Q4 9x13 0º”. 

Figure 6 presents some of the defects not detected by the 
first 20 masks selected. To detect these defects, using the 
proposed methodology, a high number of false is introduced. 

The second experiment evaluates the generality of the 
selected masks, by using a different set of samples for training 
and for inspection. Half of the samples, randomly selected, 
were used to obtain the optimised filters (55 defects) and the 
other half were used in the inspection process (74 defects). 
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Figure 4 – Wavelet sub-bands of each selected filter 

 

Figure 5 – Optimised masks results 

Figure 7 presents the percentage of detected defects as a 
function of the number of masks selected. The same figure also 
presents the percentage of false positives. 

These results show that the masks selected in the training 
process are generic: they were able to detect 60% of defects 
when using only 8 masks. Using a higher number of masks 
rapidly increases the number of false positives; as such, the 
number of masks should be relatively low. However, most of 
false positives obtained with a larger number of masks may be 
due to the small set used for training, since there were 55 
defects, which results in an average of less than 7 per mask, 
when using more than 8 masks. 

 

Figure 6 – Some defects not detected by the first 20 masks 
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Figure 7 – Number of defects detected, when using the same and a different 

set for training and for test 

Note that many leather defects are very difficult to detect 
manually; it is estimated that a highly trained human operator 
can detect about 60% to 70% of defects. Also, human operators 
can work only a small amount of time and different operators 
usually detect different defects. 

IV. CONCLUSIONS 
This article described a new methodology to detect defects 

on textured materials. The methodology is based on a recursive 
power spectrum partition, provided by a wavelet packet 
transform, and on a set of filters applied to each sub-band. Each 
filter size and shape and wavelet sub-band is tuned detected a 
type of texture defects. 

The presented results on leather inspection showed that 
these masks can detect most of the defects and that these masks 
are generic, since they achieved an acceptable detection rate 
when tested on new set of samples. Also, these results should 
receive a high improvement by using a larger data set for 
training. 

Current work includes experiments with other wavelet 
transforms, to select the best wavelet bases, which should 
improve the recognition rate but also will increase the 
processing time. 
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