
Path Integral Learning of Multidimensional Movement
Trajectories

João André∗,†, Cristina Santos∗,† and Lino Costa∗∗,†

∗Departamento de Electrónica Industrial
†Universidade do Minho

∗∗Departamento de Produção e Sistemas

Abstract. This paper explores the use of Path Integral Methods, particularly several variants of the recent Path Integral Policy
Improvement (PI2) algorithm in multidimensional movement parametrized policy learning. We rely on Dynamic Movement
Primitives (DMPs) to codify discrete and rhythmic trajectories, and apply the PI2-CMA and PIBB methods in the learning
of optimal policy parameters, according to different cost functions that inherently encode movement objectives. Additionally
we merge both of these variants and propose the PIBB-CMA algorithm, comparing all of them with the vanilla version of
PI2. From the obtained results we conclude that PIBB-CMA surpasses all other methods in terms of convergence speed and
iterative final cost, which leads to an increased interest in its application to more complex robotic problems.

Keywords: Path Integral, Dynamic Movement Primitives, Parametrized Policies, Reinforcement Learning, Robotics, Black Box Optimiza-
tion
PACS: 87.85.St

INTRODUCTION

The application of traditional Reinforcement Learning (RL) methods to continuous high-dimensional state spaces
(more than 5-10 dimensions, e. g. humanoid robotics) remains problematic [1, 2, 3]. Despite the variety of RL
algorithms available for relatively small state-spaces, where state discretization is possible [4], only recently have
alternative methods been proposed that escape this curse of dimensionality, e. g. algorithms based on policy learning
through stochastic trajectory sampling - although still associated with a high number of tuning parameters [1, 3].

A recent algorithm with already impressive and promising results was suggested in [3], derived from the framework
of Stochastic Optimal Control (SOC) and its application to parametrized policies, known as Path Integral Policy
Improvement (PI2). This approach is further reviewed and analysed in [5, 6], where the authors conduct a step-by-step
comparison with similar RL methods, and, following two separate lines of work, implement significant changes,
arriving at two distinct variants of the same algorithm: PI2-CMA, which introduces iterative Covariance Matrix
Adaptation, and PIBB, inspired by Black-Box Optimization (BBO) methods.

Generically, RL problems can be described by the expression u = π(x, t,w) [2] , where π represents a certain
control policy that assigns a motor command u to a state x at instant t, dependent on the parameter vector w. The
learning goals is thus to find the optimal policy π∗ that optimizes the performance of the agent/robot in a certain
task - which directly entails finding the optimal parameter vector w∗ [2]. When there is a relatively small number of
states, the discretization of the state space is possible and π becomes a simple mapping between states and actions [4].
However, with large state spaces this is not feasible, which leads to π being often represented by dynamical systems.

A framework that proved to fit very well with this approach are Dynamical Movement Primitives (DMPs), non-linear
dynamical systems that make use of second order attractor dynamics to design complex parametrized trajectories,
which makes them robust against external perturbations and easily modulated, adaptable to both discrete and rhythmic
movements by means of both point and limit cycle attractors [2, 7]. By including a modular non-linear term in the
form of a weighted sum of D Gaussian kernels, the DMP system becomes modifiable through a set of D inputs that
express the weights of each Gaussian kernel.

Applying the generic formulation of RL problems to this concrete DMP structure, we will use several variations
of the PI2 algorithm to find the optimal weight vector (for now on referred to as θ ) for the D Gaussian kernels that
minimizes several cost functions. Because it is our belief than both PI2-CMA and PIBB present relevant evolutions
to the initial algorithm, we additionally propose a new variant of PI2, PIBB-CMA, that merges both of these trends,
keeping the BBO structure PIBB and appending the CMA step of PI2-CMA. Our purpose is to understand up to what

11th International Conference of Numerical Analysis and Applied Mathematics 2013
AIP Conf. Proc. 1558, 1025-1028 (2013); doi: 10.1063/1.4825679

©   2013 AIP Publishing LLC 978-0-7354-1184-5/$30.00

1025



point are both of these trends compatible with each other, and what advantages could the combined use of their features
bring. We explore the learning process of both discrete and rhythmic multidimensional trajectories, particularly in the
case of two and three degrees of freedom (DOF) systems. The results are then characterized in terms of convergence
speed and final cost obtained, and compared to the PI2 algorithm initially proposed by Theodorou et al. in [3].

PATH INTEGRAL POLICY IMPROVEMENT

As initially proposed, the PI2 algorithm involves injecting stochastic Gaussian noise directly into the policy parameters
on a instant-basis. This noise is sampled from a multivariate normal distribution N (θ ,Σ) where θ is the mean vector
(the expected values) and Σ is the covariance matrix (dispersion between the samples). Considering a robotic task
with fixed duration, K parameter vectors θk are generated which, through the use of DMPs, result in K different
time-indexed trajectories τk,i (rollouts). While executing all the τk,i, an instantaneous cost is assigned to each rollout,
according to a cost functionC(τk,i), where the learning objective is indirectly expressed. Each rollout is then evaluated

based on the cost-to-go Sk,i = ∑N
j=iC(τk, j) that yields the aggregated future cost at instant i, and a probability value Pk,i

value is calculated, that represents the desirability of the rollout (a form of inverse cost probability-weighted averaging,
where high costs lead to lower probabilities and are thus less desirable). The mean vector θ is then iteratively updated
according to the probability of each rollout - with lower cost rollouts having a larger contribution - until it converges
to a solution, which can either be a global or local minimum.

By combining different exploration strategies and temporal weighting schemes, Stulp et al. [5, 6] arrived at two
different forms of PI2 algorithm: a BBO version of PI2, PIBB, that involves constant exploration and an exponential
decay of its magnitude [6], while relying only on the total cost of the rollouts to perform a parameter update, and PI2-
CMA [5], which also uses constant exploration but iteratively adapts the covariance matrix. Here we also implement
CMA to PIBB, resulting in the PIBB-CMA algorithm, merging both variants of PI2. The vanilla PI2 version, on the
other hand, adopts time-varying exploration and keeps the amount of exploration permanent during all iterations.

The use of DMP as the parametrized policy representation implies that the parameter vector θ ∈ ℜJ∗D×1 contains
the D weights that characterize the trajectory shape, for each of the J DOFs of the movement, while the covariance
matrix Σ ∈ℜJ∗D×J∗D expresses the variance of the parameters, initially assumed to be independent (Σ = λinitI on the
first iteration, where λinit is the initial exploration magnitude). The DMP internal parameters are chosen so that the
dynamical system is critically damped, as suggested in [7], and are fixed for all the trials conducted. This leads to λinit
being the only open parameter of the algorithm, which presents one of the main advantages of PI2 [3].

EVALUATION TASKS AND RESULTS

A crucial step in a proper implementation of the PI2 algorithm is the correct design of the cost function C(τk,i). In
our case, we opted to create two distinct cost functions for discrete and rhythmic trajectories, that were ultimately
dependent on the learning objective. In the case of 2D/3D discrete movements, the learning goal was to force the
movement to pass through a viapoint at a specific time. For that purpose we assign a high cost at the relevant time step,
proportional to the distance to the desired viapoint:

⎧⎨
⎩

C(τk,i) = 0.5Qeq̈Tt q̈t +0.5ReθTθ when t �= tv
C(τk,i) = 0.5Qeq̈Tt q̈t +0.5ReθTθ +Pviapoint when t = tv

Pviapoint = 1010(qt −qviapoint)T (qt −qviapoint)
(1)

while trying to minimize both the norm of the parameter vector and movement acceleration in order to avoid extreme
position changes (as used in [8]).

In the rhythmic case, our objective is to control the movement amplitude. For that we use a similar approach to the
one used on discrete movement, but instead of creating time-indexed viapoints, we use phase-indexed viapoints spread
in space according to the movement amplitude. Additionally, we also impose upper and lower limits to the movement
position, to ensure that the viapoints represent the maximum and minimum of the oscillatory motion:

⎧⎪⎪⎨
⎪⎪⎩

C(τk,i) = 0.5Qeq̈Tt q̈t +0.5ReθTθ when qmin < q< qmax or φ �= 0 or φ �= π
C(τk,i) = 0.5Qeq̈Tt q̈t +0.5ReθTθ +Pmax when q> qmax or φ = 0

C(τk,i) = 0.5Qeq̈Tt q̈t +0.5ReθTθ +Pmin when q< qmin or φ = π
Pmax = 1010(qt −qmax)

T (qt −qmax) and Pmin = 1010(qt −qmin)
T (qt −qmin)

(2)

1026



100 101 102 103
0

0.5

1

1.5

·1013

3

4

5

8

Iterations

C
o
st

Discrete 2D

997 998 9991,000
0

2

4

6

8

·109

Iterations
×2

0
0
0

100 101 102 103
0

2

4

6

8

·1014

21

22

51

54

Iterations

C
o
st

Rhythmic 2D

997 998 9991,000
0

0.5

1

1.5

·1013

Iterations

×5
0

FIGURE 1. Cost evolution when learning 2D discrete and rhythmic trajectories (PI2 (− ·−);PI2-CMA (—); PIBB (· · ·); PIBB-
CMA (—)); Convergence speed is illustrated by the number of iterations necessary to verify convergence criteria;

100 101 102 103
0

2

4

6

8

·1012

3

6

6

9

Iterations

C
o
st

Discrete 3D

997 998 9991,000
0

1

2

·1010

Iterations

×4
0
0

100 101 102 103
0

0.5

1

·1015

24

30

105

106

Iterations

C
o
st

Rhythmic 3D

997 998 9991,000
0

0.5

1

1.5

·1013

Iterations
×8

0

FIGURE 2. Cost evolution when learning 3D discrete and rhythmic trajectories (PI2 (− ·−);PI2-CMA (—); PIBB (· · ·); PIBB-
CMA (—)); Convergence speed is illustrated by the number of iterations necessary to verify convergence criteria;

In eq. 1, qviapoint ∈ ℜJ×1 is the viapoint (at instant tv), and in eq. 2 qmax = g+ 0.5A with qmax,g,A ∈ ℜJ×1 being,
respectively, the upper limit for the movement position, the goal position (baseline of the oscillation) and the desired
movement amplitude. Similarly, qmin = g− 0.5A, with qmin,g,A ∈ ℜJ×1. In both these expressions, q̈t ∈ ℜJ×1 and
qt ∈ ℜJ×1 are respectively the acceleration and position at instant t. The dimension of all these terms is therefore
dependent on the number of DOFs J in the problem (e.g. a 3D trajectory implies that q̈Tt = [ẍ ÿ z̈] and qTt = [x y z]).

The first and second terms of eqs. 1 and 2 illustrate the squared acceleration of τk,i and squared norm of θ , with
factors Qe and Re in C(τk,i) (as used in [8], with Qe = 1000 and Re = 1). The third and last term in both cost functions
(Pviapoint , Pmax and Pmin) represent the forcing terms "punishing" undesirable trajectories. In all learning trials executed
we used 10 DMP kernels (D = 10) and 100 rollouts per iteration (K = 100), with unitary temporal scaling (τ = 1)
and 100 time steps (N = 100), and movement duration of 1 second. The internal DMP parameters were kept constant
during all experiments: in the discrete case we chose αx = 25/3, αy = 25 and β = 25/4; and in the rhythmic case
ω = 6π ,αy = 25/3 and β = 25/4. On each iteration, one out of the K rollouts is noiseless (with mean θ as policy input
parameters), and illustrates the iteration cost (value of Si=1). We performed 1000 updates in all situations, and derive
our conclusions from the cost evolution during these 1000 updates, as well as the cost of the final update.

1027



The plot of the iteration cost over all the 1000 iterations performed are presented in Figures 1 and 2 for the 4 types of
movement (discrete 2D/3D, rhythmic 2D/3D). The convergence criteria adopted was either a 95% or greater decrease
from the initial value, or a less than 1% difference between consecutive iterations. We opted to extend the criteria used
in [5, 6] due to the fact that rhythmic movements showed a cost increase in the early stages of learning.

Overall, learning was successful in all learning problems, with trajectories being able to properly adjust their path
to travel through the viapoint (discrete movements), and keeping the amplitude constraints (rhythmic movements).
Looking only at PIBB and PI2-CMA, we see that the latter achieves a lower cost in all cases, despite showing slower
convergence speed in discrete problems. Moreover, the PIBB variant showed particularly poor results in rhythmic
movement learning, which can be explained by the lack of specificity of the cost function (eq. 2 only imposes maximum
and minimum values, regardless of movement shape), suggested by the large cost oscillations visible in the results.

PIBB-CMA and PI2-CMA, on the other hand, exhibit not only a very fast convergence, but also a lower cost in
all cases, with the gap to both PIBB and vanilla PI2 increasing significantly in rhythmic movements. The CMA step,
that drastically reduces exploration magnitude when an optimal solution is found, is thus directly related to a higher
convergence speed. In addition, the proposed PIBB-CMA algorithm outperforms all of the other variants of the PI2

method in all the learning trials conducted, in terms of both convergence speed and final cost, which offers proof of
the potential advantages of merging the two earlier variants of PI2.

CONCLUSION AND FUTURE WORK

In this work, we asserted the usefulness of two recent variants of the PI2 algorithm in the design of multidimensional
movements, and proposed a novel hybrid form that combines features from both algorithms: the PIBB-CMA algorithm,
which, as the results demonstrate, exhibits both faster convergence and higher quality solutions. This shows that PI2-
CMA and PIBB are not in any way mutually exclusive, but rather convergent algorithms that improve path integral
learning through parallel lines of work. Furthermore, the tasks used to benchmark PI2 methods are, to our knowledge,
usually based only on simple discrete movements. Here we try to extend this approach to their rhythmic counterparts,
providing a structure to control motion amplitude, and using both movement types as basis for learning evaluation. The
promising results obtained encourage the application of Path Integral approaches to more complex robotic problems.
We are particularly interested in their application towards biped locomotion - the possibility of using Central Pattern
Generators (CPGs) as a starting point of the learning process, and recurring to PI2 variants for additional tuning and
self-improvement of a locomotion system looks a very attractive solution, and should be further pursued.

ACKNOWLEDGMENTS

This work is funded by FEDER Funding supported by the Operational Program Competitive Factors - COMPETE and
National Funding supported by the FCT - Portuguese Science Foundation through scholarship UMINHO/BI/40/2012
inserted in project PTDC/EEACRO/100655/2008 and also project FCOMP-01-0124-FEDER-022674.

REFERENCES

1. E. Theodorou, J. Buchli, and S. Schaal, “Learning Policy Improvements with Path Integrals,” in Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics, 2010, pp. 828–835.

2. S. Schaal, P. Mohajerian, and A. Ijspeert, Progress in Brain Research 165, 425–45 (2007), ISSN 0079-6123.
3. E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement Learning of Motor Skills in High Dimensions: A Path Integral

Approach,” in 2010 IEEE International Conference on Robotics and Automation, 3, IEEE, 2010, pp. 2397–2403, ISBN
978-1-4244-5038-1.

4. R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
5. F. Stulp, and O. Sigaud, “Path Integral Policy Improvement with Covariance Matrix Adaptation,” in Proceedings of the 29th

International Conference on Machine Learning, Edinburgh, Scotland, 2012.
6. F. Stulp, and O. Sigaud, “Policy Improvement Methods: Between Black-Box Optimization and Episodic Reinforcement

Learning,” in Journée Francophones de Planification, Decision et Apprentissage, 2013.
7. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, Neural Computation 25, 328–73 (2013), ISSN 1530-888X.
8. S. Schaal, E. Theodorou, J. Buchli, and F. Stulp, “An Example Application of Policy Improvement with Path Integrals (PI²),”

2010, vol. 1.

1028




