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RESUMO 

Ao longo dos últimos anos, tem havido bastante interesse na aplicação de 

Nanotubos de Carbono (CNTs) devido às suas propriedades únicas, principalmente a nível 

mecânico e elétrico. Contudo, os processos de síntese, como a Deposição Química a Vapor 

(CVD), são bastante imprevisíveis e inconsistentes, levando a uma metodologia de 

tentativa-erro quando se pretende extrapolar resultados. Como alternativa, nesta tese é 

proposta e desenvolvida uma ferramenta, baseada em métodos computacionais de dinâmica 

de fluidos (CFD), de suporte à compreensão do processo e à transição entre diferentes 

setups de CVD. 

O desenvolvimento desta ferramenta começa com uma análise de sensibilidade, 

baseada em métodos CFD, a modelos computacionais de quatro setups CVD reais para a 

síntese de CNTs. Nesta análise foi pretendido avaliar que parâmetros de processo mais 

influenciam as condições de síntese. 

Tal informação permite ajustar os parâmetros de processo de forma a obter as 

condições de síntese desejadas e, consequentemente, desenvolver a ferramenta de suporte 

à transição entre diferentes setups de CVD. Definindo esta transição como o processo de 

replicar as condições de síntese medidas num dado (primeiro) setup, num outro (segundo) 

setup, a metodologia proposta é baseada num problema de otimização, onde é pretendido 

reduzir o erro percentual entre as condições de síntese de ambos os setups. Os resultados 

mostraram um erro percentual abaixo dos 2% para a maior parte dos casos testados e nunca 

superior a 7% para os restantes casos, o que valida a metodologia proposta do ponto de 

vista do modelo computacional. 

A ferramenta de transição foi ainda melhorada com a integração dos efeitos da 

temperatura do forno, parâmetro do processo CVD ainda não considerado, nas condições 

de síntese. Estes efeitos foram avaliados através de uma análise de sensibilidade. Uma vez 

validada a hipótese, a ferramenta de transição foi alterada considerando a temperatura do 

forno e foi testada para vários casos. Os resultados obtidos mostraram uma redução média 

de 63% do erro percentual anterior. 

Para explorar e entender as capacidades dos métodos CFD, foi criado um caso de 

estudo, onde reações químicas foram incluídas num modelo para resolver problemas 

existentes na síntese de CNTs quando é usado um novo catalisador. Através do estudo das 
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reações químicas e interações existentes entre os vários componentes, é possível analisar 

outras dependências existentes no processo de síntese, permitindo ultrapassar as limitações 

encontradas no setup experimental. 

Por último, a inclusão das reações químicas no modelo foi proposta como forma de 

estudar a transição entre setups de CVD, onde o processo de síntese de CNTs é feito com 

diferentes hidrocarbonetos. A integração destas capacidades possibilitaria a análise de 

condições de síntese, resultantes da interação química dos diversos gases. Adicionalmente, 

é espectável a validação experimental da metodologia de transição desenvolvida. Tal 

validação, quer seja feita em dois setups existentes no mesmo grupo de investigação ou 

entre diferentes grupos, potenciaria a metodologia como uma ferramenta robusta na 

transferência de conhecimento e resultados, como ainda em técnicas de scale up da síntese 

de nanotubos de carbono. 

O desenvolvimento deste trabalho de investigação resultou numa melhor 

compreensão acerca da dinâmica de fluidos in das interações entre gases que ocorrem 

durante a fase de crescimento da síntese de CNTs por CVD. Esta compreensão foi usada 

para o desenvolvimento duma metodologia de transição, baseada em mimica de condições, 

para suporte à transferência de conhecimento entre diferentes setups de CVD. Foi ainda 

analisada a integração de reações químicas nos modelos CFD, que potenciariam a 

metodologia proposta para abordar a transição entre setups CVD que usem diferentes gases. 

No entanto, este trabalho computacional deve ser validado, uma vez que ainda existem 

questões cientificas a abordar. Por exemplo, que reações químicas ocorrem, quando usados 

diferentes gases? Ou, que condições de síntese devem ser replicadas entre estes setups? 

Estas e outras questões devem ser abordadas em trabalho futuro. 
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ABSTRACT 

Over the last years, there has been a high interest in Carbon Nanotubes' (CNTs) 

applications due to their unique properties, mainly at mechanical and electrical levels. 

However, current synthesis processes, such as Chemical Vapor Deposition (CVD), are 

highly unpredictable and inconsistent, which leads to an exhaustive trial-and-error 

methodology when extrapolating results. Alternatively, a Computational Fluid Dynamics 

(CFD) based tool to support the transition process between two distinct CVD setups is here 

proposed and developed. 

For the correct development of such tool, a CFD-based sensitivity analysis was first 

performed to the models of four distinct and real CVD processes to synthesize CNTs. Such 

analysis intended to give a better understanding of the whole process by evaluating which 

process parameters affect the most the synthesis conditions. Such understanding of the 

process’ fluid dynamics would enable the targeting of specific synthesis conditions by 

adjusting the process parameters. 

With such insights of the process’ fluid dynamics, the model to support the 

transition between two different CVD setups was designed. Defining this transition as the 

act of mimicking the synthesis conditions obtained in one tube in the other, the proposed 

methodology was based in an optimization problem, intended to minimize the percentual 

error between the conditions measured in both setups. Results have shown a total percentual 

error less than 2% for most of the tested cases and never higher than 7% for the remaining 

ones, which validates the proposed methodology. 

The transition model was then improved with the integration of the furnace 

temperature effects on the synthesis conditions. These effects were evaluated by a 

sensitivity analysis. Once the proposed hypothesis was validated, the transition model was 

altered considering the furnace temperature. The obtained results showed an average 

reduction of 63% of the previously achieved percentual error. 

Further capabilities of the CVD setups modelling via CFD tools were assessed by 

a case study, where chemical reactions kinetics were included in the model in order to solve 

a few uniformity issues in the CNT synthesis process, when addressing the usage of a 

different catalyst. Including the interactions between the compounds, the chemical 

reactions kinetics enable the analysis of further dependencies existent in the CVD process, 
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which gave some insights to be considered for overcoming the encountered issues in the 

experimental work. 

Finally, the inclusion of the chemical reactions kinetics in the transition model was 

proposed as a way for it to tackle transition between CVD setups, whose CNT synthesis is 

based in different hydrocarbons. The inclusion of such capabilities would enable the 

analysis of other synthesis conditions, resulted from the interaction between the different 

compounds. Moreover, experimental validation of the designed transition methodology is 

envisioned. Such validation, either within the same research group or between different 

groups, would potentiate the methodology as a robust tool to support knowledge transfer 

as well as scale-up techniques in the carbon nanotubes synthesis. 

The development of this research work resulted in a better understanding of the 

fluid dynamics and compounds interactions occurring during the growth phase of the CNT 

synthesis by CVD. Such understanding was used to develop a conditions mimicking based 

transition methodology to support knowledge transfer between different CVD setups. It 

was also analyzed the integration of chemical reactions in the CFD model, which would 

potentiate the proposed methodology to tackle the transition between CVD setups using 

different compounds. Nonetheless, this computational work should be validated, as there 

are still research questions to be addressed. For instance, what chemical reactions occur 

when using different compounds? Or, what would be a suitable synthesis condition to be 

mimicked between these setups? These and other issues should be tackled in future research 

work. 

 



 

xi/xxx 

TABLE OF CONTENTS 

1. Introduction ................................................................................................................ 1 

1.1. Carbon Nanotubes ................................................................................................. 1 

1.1.1. Carbon Nanotubes’ Applications ................................................................... 2 
1.1.2. Carbon Nanotube Synthesis ........................................................................... 9 

1.2. Problem Statement and Hypothesis..................................................................... 10 

1.3. Motivation ........................................................................................................... 10 

1.4. Research Questions and Objectives .................................................................... 11 

1.5. Methodology ....................................................................................................... 11 

1.6. Thesis Overview and Structure ........................................................................... 13 

1.7. Contributions ....................................................................................................... 14 

1.8. Publications ......................................................................................................... 15 

References ...................................................................................................................... 16 

2. State of the Art ......................................................................................................... 19 

2.1. CNT Synthesis Processes .................................................................................... 20 

2.1.1. Arc-discharge ............................................................................................... 20 
2.1.2. Laser-ablation .............................................................................................. 21 

2.1.3. Chemical Vapor Deposition ......................................................................... 22 
2.1.4. Comparison .................................................................................................. 23 

2.2. CNTs Synthesis by Chemical Vapor Deposition ................................................ 25 

2.2.1. The CVD Process Phases ............................................................................. 25 

2.2.2. The CVD Process Parameters ...................................................................... 27 

2.3. CFD Fundamentals .............................................................................................. 29 

2.3.1. Phases of a CFD simulation ......................................................................... 30 
2.3.2. Components of a CFD simulation ............................................................... 31 

2.4. Usage of CFD Tools ............................................................................................ 36 

2.4.1. CFD Tools Applications .............................................................................. 36 
2.4.2. CFD Applied to CNT Synthesis .................................................................. 39 

2.5. Thesis Framework ............................................................................................... 41 

2.6. Final Considerations ............................................................................................ 42 

References ...................................................................................................................... 43 

3. CFD Models .............................................................................................................. 49 



Table of Contents 

xii/xxx 

3.1. Initial Conditions Definition ............................................................................... 54 

3.2. Simulation Scenarios Selection ........................................................................... 61 

3.3. Post-Processing ................................................................................................... 62 

3.4. Variables selection .............................................................................................. 64 

3.5. Final Considerations ............................................................................................ 65 

References ...................................................................................................................... 66 

4. Sensitivity Analysis .................................................................................................. 67 

4.1. Methodology ....................................................................................................... 67 

4.2. Results and Discussion ........................................................................................ 69 

4.2.1. Gases Concentrations ................................................................................... 69 
4.2.2. Mixture’s Velocity ....................................................................................... 72 
4.2.3. Mixture’s Temperature ................................................................................ 78 

4.2.4. Percentual Rankings..................................................................................... 81 

4.1. Final Considerations ............................................................................................ 82 

References ...................................................................................................................... 83 

5. Transition Model ...................................................................................................... 85 

5.1. Conditions Measurement..................................................................................... 85 

5.2. Methodology ....................................................................................................... 91 

5.3. Results and Discussion ........................................................................................ 93 

5.3.1. Fixed Height Search ..................................................................................... 93 

5.3.2. Non-fixed Height Search ............................................................................. 98 

5.4. Transition Improvement by Temperature Effects ............................................. 100 

5.4.1. Furnace Temperature Effects ..................................................................... 100 

5.4.2. Transition Considering the Temperature Effects ....................................... 106 

5.5. Final Considerations .......................................................................................... 112 

References .................................................................................................................... 113 

6. CFD with Chemical Reactions .............................................................................. 115 

6.1. Case Study Description ..................................................................................... 116 

6.2. Methodology ..................................................................................................... 118 

6.2.1. Previously Designed Model ....................................................................... 119 
6.2.2. Analysis of New Hypothesis: Reduction Phase ......................................... 120 
6.2.3. Reduction Phase Model ............................................................................. 123 

6.2.4. Chemical Reactions’ Sensitivity Analysis ................................................. 125 

6.3. Results and Discussion ...................................................................................... 130 



Table of Contents 

xiii/xxx 

6.4. Final Considerations .......................................................................................... 132 

References .................................................................................................................... 133 

7. Conclusions ............................................................................................................. 135 





 

xv/xxx 

LIST OF FIGURES 

Figure 1.1: (a) Single and Multi-walled CNTs; (b) CNTs configuration based on 

its geometric arrangement. (Reprinted from [6] and [7], respectively. 

Licensed under a Creative Commons Attribution License). .......................... 2 

Figure 1.2: (a) Someya's sensor's cross-section and (b) its current response. 

(Adapted with permission from [17], Copyright 2003 American 

Chemical Society). ......................................................................................... 4 

Figure 1.3: (a) CNTs embedding process used to construct a flexible pressure 

sensor; (b) image of the constructed sensor. (Adapted from [25], 

Copyright 2012, with permission from Elsevier). .......................................... 5 

Figure 1.4: Staii's sensor's schematic. (Adapted with permission from [28], 

Copyright 2005 American Chemical Society). .............................................. 5 

Figure 1.5: (a) Microfluidic device constructed by Yost et al. to coat CNTs; (b) 

Graphical representation of a coated CNT. (Adapted from [29], 

licensed under a Creative Commons Attribution 4.0 License). ..................... 6 

Figure 1.6: Cantilever with two sheets of CNTs (grey) and one layer of adhesive 

(white). Depending on the applied voltage, it can bend to the left or 

the right. (From [32], reprinted with permission from AAAS). ..................... 7 

Figure 1.7: (a) Schematic diagram of the transparent CNT layer sandwiched 

between two glass layers; (b) Infrared thermal image obtained with 

a thermal camera (temperature in Celsius). (Reprinted from [34], 

licensed under a Creative Commons Attribution 4.0 License). ..................... 7 

Figure 1.8: Comparison between the conventional autoclave and the Out-of-

Oven techniques. (Adapted with permission from [35], Copyright 

2015 American Chemical Society). ............................................................... 8 

Figure 1.9: Graphical representation of the CVD process to synthesize CNTs. 

After a sample, consisting of a substrate and catalyst, is placed in a 

chamber, a reducer gas, hydrogen, is used to reduce the catalyst into 

smaller particles, upon which, the carbon, resulted from the 

decomposition of a hydrocarbon, is deposited. .............................................. 9 

Figure 1.10: Graphical schematic of the followed methodology throughout this 

work. ............................................................................................................. 12 

Figure 2.1: Schematic of a typical setup to synthesize CNTs via the Arc-

discharge technique. ..................................................................................... 20 

Figure 2.2: Schematic of a typical setup to synthesize CNTs via the Laser-

ablation technique. ....................................................................................... 22 

Figure 2.3: Schematic of a typical setup to synthesize CNTs via the Chemical 

Vapor Deposition technique. ........................................................................ 22 

Figure 2.4: Graphical representation of all five phases the CVD process to 

synthesize CNTs: (1) cleaning; (2) reduction; (3) synthesis; (4) 

delamination; and (5) cooling. ..................................................................... 26 

Figure 2.5:  Images of a copper catalyst (a) before and (b) after its reduction from 



List of Figures 

xvi/xxx 

film into nanoparticles. (Adapted from [58,59], licensed under a 

Creative Commons Attribution 3.0 License). .............................................. 26 

Figure 2.6: Model of the cylindrical shape to be used in the CFD simulation 

example. ....................................................................................................... 31 

Figure 2.7: A (a) coarse and (b) finer mesh of the cylindrical shape to be used in 

the CFD simulation example. ....................................................................... 32 

Figure 2.8: The specified boundary conditions for the CFD simulation example: 

an inlet, an outlet and a fixed-wall. .............................................................. 33 

Figure 2.9: Results obtained by Roth et al. when measuring the oxygen partial 

pressure in the respiratory zone (left), blood capillaries (middle), and 

pulmonary veins (right) of the healthy (top) and diseased (bottom). 

(Reprinted from [48], Copyright (2017), with permission from 

Elsevier). ...................................................................................................... 37 

Figure 2.10: Simulation of the effects of a fluid in a rotating system performed by 

Yang et al. It is presented the evolution of magnitude of velocity 

with time. (Reprinted from [49], Copyright (2016), with permission 

from Elsevier). .............................................................................................. 38 

Figure 2.11: Simulation setup used to characterize LEDs when attached to a 

heatsink. (Reprinted from [52], Copyright (2015), with permission 

from ASME). ................................................................................................ 39 

Figure 2.12: (a) Compounds concentrations throughout the tube, measured by 

simulation; (b) comparison between the CNTs production rate 

predicted by the CFD model and experimentally measured. 

(Reprinted from [1], Copyright (2004), with permission from 

Elsevier). ...................................................................................................... 39 

Figure 2.13: Distribution of temperature throughout the tube, measured by 

simulation. (Reprinted from [3], Copyright (2012), with permission 

by Cambridge University Press). ................................................................. 40 

Figure 3.1: Designed computational models of the simulated CVD process 

tubes: (a) “30 mm”, (b) “80 mm”, (c) “1 Inch”, and (d) “2 Inches” 

tubes. ............................................................................................................ 50 

Figure 3.2: Graphical representation of the simulated CVD process tubes: (a) 

“30 mm”, (b) “80 mm”, (c) “1 Inch”, and (d) “2 Inches” tubes. The 

shaded areas represent the tube sections where the heating furnace 

was placed. ................................................................................................... 51 

Figure 3.3: Photos of the simulated physical setups: (a) “30 mm”, (b) “80 mm”, 

(c) “1 Inch”, and (d) “2 Inches” tubes. ......................................................... 52 

Figure 3.4:  Typical temperature and gases flows profile during the various CVD 

Process phases. ............................................................................................. 54 

Figure 3.5:  Evolution of the percentual errors of the variables addressed in the 

iterations analysis for the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” 

and (d) “2 Inches” models. ........................................................................... 57 

Figure 3.6:  Evolution of the percentual errors of the variables addressed in the 

iterations analysis, for the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” 



List of Figures 

xvii/xxx 

and (d) “2 Inches” models, zoomed into the section where a 98% 

convergence occurs: 750, 3000, 1100 and 1300, respectively. .................... 58 

Figure 3.7:  Evolution of the mixture's temperature throughout the concentric 

center line of the tube, while simulating the "30 mm" setup for 

different mesh sizes. ..................................................................................... 59 

Figure 3.8:  Comparison of a (a) 3 and a (b) 30 cells per gap meshes of the same 

geometry. ...................................................................................................... 59 

Figure 3.9:  Typical curve of the mixture’s (a) temperature and (b) velocity 

evolutions throughout the tube, depicting the convergence 

parameters used in the sensitivity analysis. .................................................. 65 

Figure 4.1:  Graphical representation of the tube's center line, where 

measurements were made. ........................................................................... 69 

Figure 4.2:  Sensitivity analysis of the ethylene concentration, for the (a) 

“30 mm”, (b) “80 mm”, (c) “1 Inch” and (d) “2 Inches” tubes. ................... 70 

Figure 4.3:  Sensitivity analysis of the hydrogen concentration, for the (a) 

“30 mm”, (b) “80 mm”, (c) “1 Inch” and (d) “2 Inches” tubes. ................... 71 

Figure 4.4:  Sensitivity analysis of the helium concentration, for the (a) 

“30 mm”, (b) “80 mm”, (c) “1 Inch” and (d) “2 Inches” tubes. ................... 72 

Figure 4.5:  Velocity profile throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 250-250-500 sccm, in the 

“30 mm” setup. ............................................................................................. 73 

Figure 4.6:  Sensitivity analysis, while varying the C2H4 flow, of the velocity's 

convergence (a) value and (b) point, for all setups. ..................................... 73 

Figure 4.7:  Comparison of the gases mixture’s velocity streamlines across the 

“30 mm” tube for experiments with ethylene, hydrogen and helium 

flows of (a) 50-50-50 and (b) 1000-250-50 sccm. ....................................... 74 

Figure 4.8:  Velocity profile throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 250-250-500 sccm, in the 

“30 mm” and the “80 mm” setups. ............................................................... 75 

Figure 4.9:  Velocity profile throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 1000-50-1000 sccm, in the 

“80 mm” setup. ............................................................................................. 75 

Figure 4.10:  Velocity profile throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 250-250-500 sccm, in the 

“30 mm”, the “80 mm” and the “1 inch” setups. ......................................... 76 

Figure 4.11:  Mixture’s velocity streamlines across the “2 Inches” setup for the 

experiment with ethylene, hydrogen and helium flows of 250-250-

500 sccm. ...................................................................................................... 77 

Figure 4.12:  Velocity profile throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 250-250-500 sccm, in all 

setups. ........................................................................................................... 77 

Figure 4.13:  Temperature profile throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 250-250-500 sccm, in the 



List of Figures 

xviii/xxx 

“30 mm” setup. ............................................................................................. 78 

Figure 4.14:  Sensitivity analysis, while varying the C2H4 flow, of the 

temperature's convergence (a) value and (b) point, for all setups. ............... 78 

Figure 4.15:  Temperature profiles throughout the tube for the experiment with 

ethylene, hydrogen and helium flows of 50-50-50 and 250-250-500 

sccm, in the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and 

(d) “2 Inches” tubes. ..................................................................................... 79 

Figure 4.16:  Comparison of the gases mixture’s temperature streamlines across 

the “30 mm” setup for experiments with ethylene, hydrogen and 

helium flows of (a) 50-50-50 and (b) 1000-250-50 sccm. ........................... 80 

Figure 4.17:  Percentual ranking of each gas’ effect in each variable, for all setups. 

Variables: ethylene (C2H4), hydrogen (H2) and helium (He) 

concentrations, temperature convergence point (TP) and value (TV), 

velocity convergence point (VP) and value (VV) ........................................ 82 

Figure 5.1:  Typical vertical cross-section of a cylindrical tube, perpendicular to 

the flow’s direction. ..................................................................................... 86 

Figure 5.2:  Velocity profiles, for various distances from the tube center, 

throughout the (a) 30 mm and the (b) 80 mm tubes. .................................... 87 

Figure 5.3:  Temperature profiles, for various distances from the tube center, 

throughout the (a) 30 mm and the (b) 80 mm tubes. .................................... 88 

Figure 5.4:  Typical horizontal cross-section of a cylindrical tube, depicting the 

variables that define the substrate position. ................................................. 89 

Figure 5.5:  Scheme to compute the height at which the substrate is placed. ................. 89 

Figure 5.6:  Profiles of the (a) ethylene concentration, (b) mixture's temperature 

and (c) velocity throughout both tubes at the tube center (ctr) and at 

a height, at which a 10 mm square substrate would be according to 

Eq. 5.1 (sbs). ................................................................................................. 90 

Figure 5.7:  Evolution of the velocity convergence value, for both tubes, when 

varying the ethylene flow and considering a substrate positioning 

height when it is placed in the bottom of the tubes. ..................................... 92 

Figure 5.8:  Evolution of the velocity convergence value, varying the ethylene 

flow, for the desired 30 mm tube conditions and various heights in 

the 80 mm tube. ............................................................................................ 92 

Figure 5.9:  Relation of all three dimensions when searching, in the 80 mm tube, 

for the conditions obtained in the 30 mm tube. ............................................ 94 

Figure 5.10:  Obtained metric when transitioning from the 30 mm tube to the 80 

mm one. Here the synthesis conditions to mimic are measured in a 

10 mm square substrate positioned 60 cm from the tube entrance and 

the search in the 80 mm is fixed to a height of 16 mm below the tube 

center. ........................................................................................................... 95 

Figure 5.11:  Relation between the flows in the 30 and the 80 mm tubes. ........................ 96 

Figure 5.12:  Temperature's convergence value for various ethylene flows at the 

evaluated substrate heights. .......................................................................... 97 



List of Figures 

xix/xxx 

Figure 5.13:  Velocity’s convergence point for various ethylene flows at the 

evaluated substrate heights. .......................................................................... 97 

Figure 5.14:  Obtained metric when transitioning between the tubes, following a 

fixed height (at 16 mm below the tube center) and a non-fixed height 

search. ........................................................................................................... 98 

Figure 5.15:  Comparison between the metrics achieved while following a non-

fixed height search and the ones achieved when fixing the searching 

height at the 80 mm tube at other values. ..................................................... 99 

Figure 5.16:  Sensitivity analysis of the ethylene concentration, for the 30 and 80 

mm tubes, depending on the (a) ethylene flow and the (b) tube 

temperature. ................................................................................................ 102 

Figure 5.17:  Sensitivity analysis of the temperature’s convergence value, for the 

30 and 80 mm tubes, depending on the (a) ethylene flow and the (b) 

tube temperature. ........................................................................................ 102 

Figure 5.18:  Sensitivity analysis of the velocity’s convergence value, for the 30 

and 80 mm tubes, depending on the (a) ethylene flow and the (b) 

tube temperature. ........................................................................................ 103 

Figure 5.19:  Sensitivity analysis of the temperature’s convergence point, for the 

30 and 80 mm tubes, depending on the (a) ethylene flow and the (b) 

tube temperature. ........................................................................................ 103 

Figure 5.20:  Sensitivity analysis of the dynamic viscosity, for the 30 and 80 mm 

tubes, depending on the (a) ethylene flow and the (b) tube 

temperature. ................................................................................................ 104 

Figure 5.21:  Sensitivity analysis of the velocity’s convergence point, for the 30 

and 80 mm tubes, depending on the (a) ethylene flow and the (b) 

tube temperature. ........................................................................................ 104 

Figure 5.22:  Typical velocity profiles throughout the 30 mm tube when C2H4 = 

500 sccm. .................................................................................................... 105 

Figure 5.23:  Velocity profiles throughout the 80 mm tube for an ethylene flow of 

(a) 500 and (b) 1000 sccm. ......................................................................... 106 

Figure 5.24:  Comparison between the percentual errors, i.e. metric, obtained for 

a fixed height search at 16 mm below the tube center, with and 

without the suggested domain improvement. ............................................. 107 

Figure 5.25:  Comparison between the percentual errors, i.e. metric, obtained for 

a fixed height search, with and without the suggested improvement, 

for a substrate positioning height of (a) 4 mm, (b) 8 mm, (c) 16 mm, 

and (d) 32 mm below the tube center. ........................................................ 110 

Figure 5.26:  Comparison between the percentual errors, i.e. metric, obtained for 

a non-fixed height search, with and without the suggested 

improvement. ............................................................................................. 111 

Figure 6.1:  Experimental setup (a) schematic and (b) photo. ....................................... 117 

Figure 6.2:  Schematic of the CVD setup to synthesize CNTs in a Carbon Fiber 

(CF) weave, depicting the noticed uniformity issues: (1) throughout 

the weave; (2) inside the weave; and (3) throughout the growths 



List of Figures 

xx/xxx 

performed during the day. .......................................................................... 118 

Figure 6.3:  Graphical representation of the case study CVD tube. .............................. 119 

Figure 6.4:  Illustration of the CVD tube and substrate previously designed and 

analyzed (taken from [3]). .......................................................................... 119 

Figure 6.5:  Weave’s (a) leading and (b) trailing edges after the reduction phase. 

More particles were formatted in the leading edge than in the trailing 

one. ............................................................................................................. 122 

Figure 6.6:  Weave’s (a) surface and (b) interior. Although catalyst particles 

were generated in the weave’s inside, they are smaller than the ones 

in its surface, which may lead to a poorer growth inside the weave. ......... 122 

Figure 6.7:  (a) 1st and (b) 3rd experiments of the same day. The lack of particles 

in the latter pertain the previously described growth of the day 

dependency issue. ....................................................................................... 122 

Figure 6.8:  Designed model, focused in the reduction phase of the CNT 

synthesis process (taken from [3]). ............................................................ 123 

Figure 6.9:  Screenshot of the generated mesh for the weave in the CVD setup. ......... 124 

Figure 6.10:  Planes in the weave's width and height, whose combinations were 

used to measure the kinetic rate of the 2nd reaction.................................... 128 

Figure 6.11:  Typical evolution of the kinetic rate of 2nd reaction throughout the 

weave. ......................................................................................................... 129 

Figure 6.12:  Results obtained for the flow-driven sensitivity analysis. ......................... 130 

Figure 6.13:  Results obtained for the ratio-driven sensitivity analysis. ......................... 132 

 



 

xxi/xxx 

LIST OF TABLES 

Table 2.1:  Comparison between the Arc-discharge, the Laser-ablation and the 

CVD techniques to synthesize CNTs (adapted from [10,11,14]). ............... 24 

Table 2.2:  Compilation of various compounds, catalysts and temperatures used 

in the literature to synthesize CNTs via the CVD process. .......................... 28 

Table 3.1:  Maker and model of the components of the addressed setups. .................... 53 

Table 3.2:  Physical properties and features of the addressed setups. ............................ 53 

Table 3.3:  Simulation scenario used to define the simulation conditions to use. .......... 54 

Table 3.4:  Gases properties used in the simulations. .................................................... 55 

Table 3.5:  Configuration parameters used in the mesh sizing. ..................................... 56 

Table 3.6:  Minimum and maximum iterations, as well as the increment, used in 

the simulations to define the number of iterations to perform for each 

model. ........................................................................................................... 56 

Table 3.7:  Time duration of each simulation and average distance between 

mesh elements, for different mesh sizes, in the "30 mm" setup. .................. 60 

Table 3.8:  Distance reduction between mesh elements per additional simulation 

time. .............................................................................................................. 60 

Table 3.9:  Obtained simulation conditions to be used in the research study. ............... 60 

Table 3.10:  Taguchi orthogonal array, depicting the scenarios to simulate in a 4 

parameter (a, b, c and d) and 2 levels (1 and 2) example. ............................ 61 

Table 3.11:  Number of simulations to run, depending of the number of 

parameters and levels, when following the Taguchi orthogonal 

arrays, as well as its percentual representation when compared to the 

total number of simulations if the Taguchi method was not 

considered. ................................................................................................... 62 

Table 3.12:  Scenarios to simulate in a 4 parameter (a, b, c and d) - 2 (1 and 2) 

levels example with an output variable. ....................................................... 63 

Table 4.1:  Gas flows, presented in sccm, used in the simulation scenarios that 

constitute the sensitivity analysis. ................................................................ 68 

Table 4.2:  Mean and standard deviation values of the overall percentual 

rankings for each addressed parameter. ....................................................... 82 

Table 5.1:  Simulated scenario used to compare both setups. ........................................ 86 

Table 5.2:  Relation between the 30 mm and the 80 mm tubes' area and velocity 

ratios. ............................................................................................................ 91 

Table 5.3:  Conditions measured at the substrate position on the 30 mm tube for 

the simulated scenario. ................................................................................. 94 

Table 5.4:  Recipe which mimics best, in the 80 mm tube, the conditions 

obtained in the 30 mm tube. ......................................................................... 94 

Table 5.5:  Results obtained when transitioning between both tubes, by 



List of Tables 

xxii/xxx 

searching on a fixed height methodology. ................................................... 96 

Table 5.6:  Results obtained when transitioning between both tubes, by 

searching on a non-fixed height methodology. ............................................ 99 

Table 5.7:  Simulations scenarios considered in the sensitivity analysis. .................... 101 

Table 5.8:  Obtained results - ethylene flow, furnace temperature and substrate 

position - in the 80 mm setup for the fixed height search, at 16 mm 

below the tube center, with the suggested improvement and the 

comparison between the percentual errors, i.e. metric, obtained with 

and without the improvement. .................................................................... 107 

Table 5.9:  Comparison between the flows, errors and metrics, obtained for the 

fixed height search, at 16 mm below the tube center, with and 

without the furnace temperature based improvement. The 

improvement errors are shaded in green or red if they were reduced 

or increased, respectively. .......................................................................... 108 

Table 5.10:  Comparison between searches performed in different heights when 

considering the furnace temperature based improvement, depicting 

which synthesis conditions were improved or not, shaded in green 

or red, respectively. .................................................................................... 109 

Table 5.11:  Obtained results - ethylene flow, furnace temperature and substrate 

position - in the 80 mm setup for the non-fixed height search with 

the suggested improvement and the comparison between the 

percentual errors, i.e. metric, obtained with and without the 

improvement. ............................................................................................. 111 

Table 5.12:  Comparison between the flows, errors and metrics, obtained for the 

non-fixed height search, with and without the furnace temperature 

based improvement. The improvement errors are shaded in green or 

red if they were reduced or increased, respectively. .................................. 112 

Table 6.1:  Maker and model of the components of the CVD setup. ........................... 117 

Table 6.2:  Gas flows and reduction time used in the experiments used to access 

the catalyst reduction phase. ...................................................................... 121 

Table 6.3:  Configuration parameters used in the mesh of the chemical reactions 

model. ......................................................................................................... 124 

Table 6.4:  Used parameters for reactions’ Arrhenius equations, taken from the 

National Institute of Standards and Technology. ....................................... 125 

Table 6.5:  Gases properties. ........................................................................................ 126 

Table 6.6:  Flows and furnace temperature used in the performed flows-driven 

sensitivity analysis. .................................................................................... 127 

Table 6.7:  Hydrogen ratio, flow and furnace temperature used in the ratio-

driven sensitivity analysis. ......................................................................... 128 

Table 6.8:  Percentual dependencies of the kinetic rate of 2nd reaction on the 

process parameters addressed in the flow-driven sensitivity analysis.

 .................................................................................................................... 131 

Table 6.9:  Percentual dependencies of the kinetic rate of 2nd reaction on the 



List of Tables 

xxiii/xxx 

process parameters addressed in the ratio-driven sensitivity analysis.

 .................................................................................................................... 132 





 

xxv/xxx 

LIST OF SYMBOLS 

 

Symbol Description SI Units 

𝒂𝟏~𝒂𝟕 Gases’ Interval Coefficients - 

𝑨 Pre-exponential factor s-1 

𝑪 Carbon - 

𝑪𝒑 Gases’ Specific Heat Capacity at Constant Pressure J.kg-1.K-1 

𝑪𝟐𝑯𝟐 Acetylene - 

𝑪𝟐𝑯𝟒 Ethylene - 

𝒄𝒕𝒓 Height of tube center (𝐷𝑖𝑠𝑡 𝐵 = 0) m 

𝑪𝑶 Carbon monoxide - 

𝑪𝑶𝟐 Carbon dioxide - 

𝑬 Total energy of an analyzed system J 

𝑬𝒂 Activation energy J 

𝑬𝒊𝒏 Energy entering the system J 

𝑬𝒐𝒖𝒕 Energy leaving the system J 

𝑬𝒓𝒓𝒐𝒓𝑪𝟐𝑯𝟒 
Percentual error of a certain 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in the second tube 

domain, in relation to the desired ethylene concentration 
% 

𝑬𝒓𝒓𝒐𝒓𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 
Percentual error of a certain 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in the second tube 

domain, in relation to the desired synthesis conditions 
% 

𝑬𝒓𝒓𝒐𝒓𝑻𝒆𝒎𝒑 
Percentual error of a certain 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in the second tube 

domain, in relation to the desired mixture’s temperature 
% 

𝑬𝒓𝒓𝒐𝒓𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 
Percentual error of a certain 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 for a certain 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in the second tube domain 
% 

𝑬𝒓𝒓𝒐𝒓𝑽𝒆𝒍𝒐𝒄 
Percentual error of a certain 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in the second tube 

domain, in relation to the desired mixture’s velocity 
% 

𝑫𝑷
𝑽 Percentual dependency of variable 𝑉 on parameter 𝑃 - 

𝑫𝑷
𝑽

𝑺
 

Percentual dependency of variable 𝑉 on parameter 𝑃 in 

setup 𝑆 
- 

𝑫𝒆𝒔𝒊𝒓𝒆𝒅𝑽𝒂𝒍𝒖𝒆 Desired value for any given synthesis condition - 

𝑫𝒊𝒔𝒕 𝑨 Distance between tube entrance and substrate m 

𝑫𝒊𝒔𝒕 𝑩 Distance between tube center and substrate m 

𝒇 External forces N 

𝒇𝒊
𝒆𝒏𝒅 Vector with values of function 𝑓 for indexes ≥ 𝑖 - 



List of Symbols 

xxvi/xxx 

𝑯𝒆 Helium - 

𝑯 Hydrogen (atom) - 

𝑯𝟐 Hydrogen (molecule) - 

𝑯𝟐𝑶 Water - 

𝒌 Reaction’s constant rate mol.l-1.s-1 

𝒌𝒓𝑺𝒆𝒄𝒕𝒊𝒐𝒏 𝑨𝒊
 Set of values of the kinetic rate across the weave’s center 

kg.mol.m-

3.s-1 
𝒌𝒓𝒊 Kinetic rate of a given line 

𝑲𝑹𝒔 Overall kinetic rate across the weave for each simulation 

𝑳 Substrate’s width m 

𝒎 Mass kg 

𝒎𝒗 Momentum kg.m.s-1 

𝒏 Unit vector - 

𝑵𝒂 Sodium - 

𝑵𝒂𝑶𝑯 Sodium hydroxide - 

𝑷𝑬𝒊 
Percentual Error between consecutive pair of iterations 

𝑖 − 1 and 𝑖 
% 

𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝑽𝒂𝒍𝒖𝒆 
Value of a given synthesis condition for a certain 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in the second tube domain 
- 

𝒓 Tube radius m 

𝑹 Universal Gas Constant J.K-1.mol-1 

𝑹𝒔 Specific Gas Constant J.K-1.mol-1 

𝑹𝑷
𝑽 Overall percentual ranking of variable 𝑉 on parameter 𝑃 % 

𝒔𝒃𝒔 
Height at which a 10 mm square substrate is when 

positioned at the bottom of the tube 
m 

𝑺 Surface of the control volume - 

𝒕 Time s 

𝑻 Temperature K 

𝒗 Velocity m.s-1 

𝑽𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓
𝒍𝒆𝒗𝒆𝒍  

Value of variable 𝑉 for a given 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 − 𝑙𝑒𝑣𝑒𝑙 
combination 

- 

𝑽𝒔𝑷
𝑳

 
Value of variable 𝑉, obtained in a simulation containing 

the 𝑃 − 𝐿 combination 
- 

𝑽𝒂𝒓𝒊 A variable’s average for iterations 𝑖 - 

𝑿𝑷
𝑽 

Set containing all values of variable 𝑉 calculated for 

parameter 𝑃 
- 

𝝆 Density kg.m-3 



List of Symbols 

xxvii/xxx 

𝛀 Volume of the control volume - 

∆𝑷
𝑽 Variation caused by parameter 𝑃 in variable 𝑉 - 





 

xxix/xxx 

LIST OF TERMS 

CAD Computer-Aided Design 

CFD Computational Fluid Dynamics 

CNTs Carbon Nanotubes 

CV Control Volume 

CVD Chemical Vapor Deposition 

FDM Finite Differences Method 

FEM Finite Elements Method 

FVM Finite Volumes Method 

MWCNT Multi-Walled Carbon Nanotube 

SWCNT Single-Walled Carbon Nanotube 





 

1/142 

Chapter 1 

1. INTRODUCTION 

1.1. Carbon Nanotubes 

A Carbon Nanotube (CNT) is a cylinder-shaped structure with a diameter in the 

nanometer range but with a length in micrometer range. A CNT is composed by one or 

more concentric cylinders, made up of a hexagonal lattice of carbon atoms [1–5]. Thus, a 

CNT can be Single- (SWCNT) or Multi-walled (MWCNT), depending on the number of 

concentric tubes it has (see Figure 1.1a). Moreover, the orientation of these walls with 

respect to the hexagonal lattice - the CNTs’ chiral vector - affects the CNTs properties. For 

instance, depending on this orientation, the CNT can have metallic or semiconducting 

properties (see Figure 1.1b) [2,4]. 

After Iijima’s analysis in 1991 [8], research around CNTs and nanotechnology 

expanded tremendously, especially on the investigation of their properties and how to take 

advantage of them in technological applications [1–3,5]. At molecular level, the carbon 

bonds in the hexagon lattice grant CNTs superb strength in the axial direction. Compared 

to steel, CNTs have a Young’s modulus and a tensile strength over 8 and 50 times greater, 

respectively [1–3,5]. Simultaneously, having a low density (6 times lower than that of 
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steel), CNTs have a tensile strength over 300 times greater than steel, which pertains their 

potential as structural materials. From an electrical point of view, depending on its chiral 

vector, CNTs can be either metallic or semiconductor. Thus, they can be used as transistors 

or current-carrying wires in nanoscale circuits [1,2]. In both these applications, CNTs 

outperform currently used materials such as copper and silicon. For instance, they can 

sustain current densities 1000 times greater than silicon [1,2]. 

The usage of CNTs in technological applications, especially in electronics, is further 

enhanced by outstanding thermal properties. CNTs are stable at temperatures higher (up to 

3 times) than that of metal wires used in microchips [1,2]. They also display better thermal 

conductivity than diamond and copper. Such thermal properties enable CNTs to be used in 

much denser, i.e. faster, circuits than the present edge of microtechnology. 

The CNTs’ unique mechanical, electrical and thermal properties have encouraged 

research envisioning their technological application in innumerous fields, such as media, 

entertainment, health, communication, transport and environment [1,2,4,5]. However, 

current CNT synthesis using CVD techniques is not fully understood and it is poorly 

controlled and not easy on a large scale [1,2]. 

1.1.1. Carbon Nanotubes’ Applications 

The aforementioned CNTs’ outstanding properties enable them to be used as 

structural or active elements. When used as a structural element, CNTs can be added to 

other materials, usually polymers, in order to enhance their mechanical properties [4,9]. 

 
 

(a) (b) 

Figure 1.1: (a) Single and Multi-walled CNTs; (b) CNTs configuration based on its geometric arrangement. 

(Reprinted from [6] and [7], respectively. Licensed under a Creative Commons Attribution License). 

 



CFD-based tool to support CNT synthesis via CVD Chapter 1 

3/142 

For example, authors have increased a polymer’s Young’s Module by embedding CNTs 

[10]. On the other hand, CNTs can be used as an active component, i.e. in ways where other 

properties, such as conductivity and piezo-resistivity, are more interesting [4,11]. For 

instance, CNT-based films characterized in [11] are reported to have improved electrical 

properties, which pertains CNT usage in nano- and micro-scaled devices. Such devices are 

the ones which can most benefit with CNT integration, in the sense that both CNTs’ 

electrical and mechanical characteristics would improve them. 

For better understanding of this subsection, it is essential to distinguish some terms. 

A transducer is a device that converts a signal in one form of energy to another form of 

energy. For instance, a sensor is used to detect a parameter in one form of energy and report 

it in another, often an electrical signal. On the contrary, an actuator accepts energy and 

produces movement (action) [12]. Thus, transducers include, but are not limited to, both 

sensors and actuators, i.e. some transducers, for example, only convert signals, without 

detecting parameters nor producing movement. 

CNT-based Sensors 

The transducers with detection capabilities - sensors - continue to make significant 

impact in everyday life with applications in several areas, such as automotive, biomedical, 

food and security [4,13]. Regardless of the targeted application, there has been a strong 

demand for producing highly selective, sensitive, responsive and cost effective sensors. 

Moreover, the advent of nanotechnology have led researchers to foster the creation of 

miniaturized sensors, leading to reduced weight, power consumption and cost. The 

discovery of CNTs and their distinct properties has triggered interest among researchers to 

develop CNT-based sensors. These have the potential of revolutionizing the sensor 

industry, being considered a next generation of sensors technology [4]. 

According to the literature, CNTs have been used, as the sensing element, in 

pressure, flow, thermal, gas, optical, mass, position, stress, strain, chemical and biological 

sensors. Such variety of sensing elements is possible with distinct CNTs’ properties, 

achieved by changing the conditions of the CNTs’ synthesis, i.e. growth; and, in some 

cases, performing some post-synthesis processes (as functionalization). In order to sense a 

certain parameter, CNTs can either: (i) be used per se, i.e. without any post-processing 

[4,14–17]; (ii) be combined with other material, creating a nanocomposite [4,18–26]; or 

(iii) serve as a read-out component, which electrically transmits the reaction of a specific 
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element, with whom the CNTs were previously coated, to a certain condition in the 

environment, normally another element [27,28]. 

In the first case, i.e. when CNTs are used independently, it is easier to construct 

functional sensors, as no post-processing is required. For instance, by densely compacting 

CNTs between two metal electrodes, Ghosh et al. [14] have constructed a flow sensor, 

where the CNTs produce an electrical voltage response directly related with the fluid flow. 

Also taking advantage of CNTs’ electrical responses, Someya et al. [17] reported current 

spike occurring when a CNT-based transistor is in contact with alcoholic vapors, such as 

ethanol (Figure 1.2). 

The integration of CNTs with other material, forming a nanocomposite, has been 

used not only to alter the sensorial element’s properties, but also to simplify its usage in 

certain scenarios [9]. The inclusion of such materials in CNTs is performed by covalent or 

non-covalent bonding techniques, e.g. adsorption, attachment, embedment, electro-

polymerization, encapsulation, etc. [13]. By filtering and drying a mixture of CNTs and a 

liquid compound, Dharap et al. [18] developed a CNT film sensor capable of sensing strain 

in multiple locations and in different directions, and reacting via voltage changes. Inspired 

by typical configurations of capacitive pressure sensors, authors in [25] have constructed 

and characterized a flexible pressure sensor based in CNTs embedded in a flexible 

polymeric substrate, and achieved a linear response over a large pressure range (see Figure 

1.3). Envisioning ammonia detection, Chopra et al. [23] have coated a circular copper disk 

with CNTs, whose resonant frequency shifts in relation to the sensed ammonia. Moreover, 

the system is considered “suitable for apps that prohibit physical connections or require 

non-destructive testing” [4]. 

  

(a) (b) 

Figure 1.2: (a) Someya's sensor's cross-section and (b) its current response. (Adapted with permission from [17], 

Copyright 2003 American Chemical Society). 
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Coating CNTs with other element results in altered sensing capabilities and CNTs’ 

properties, such as their solubility and biocompatibility [13]. This methodology has become 

highly promising due to CNTs’ unique properties, specially their high surface-to-volume 

ratio and fast electron-transfer kinetics. The environment conditions, to whom the CNTs 

react can be altered by properly selecting the element to coat the nanotubes. For instance, 

following such methodology, Snow et al. [27] have constructed a chemical vapor sensor, 

where the CNTs’ capacitance is highly sensitive to a wide range of vapors. Similarly, Staii 

et al. [28] have proposed the usage of CNTs coated with single-stranded DNA to detect a 

wide variety of gases (see Figure 1.4). 

In order to analyze the CNTs’ potential to filter, capture and detect low levels of 

biological markers of disease, authors in [29] developed a microfluidic device to 

 
(a) (b) 

Figure 1.3: (a) CNTs embedding process used to construct a flexible pressure sensor; (b) image of the constructed 

sensor. (Adapted from [25], Copyright 2012, with permission from Elsevier). 

 

Figure 1.4: Staii's sensor's schematic. (Adapted with permission from [28], Copyright 2005 American Chemical 

Society). 
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controllably functionalize individual CNTs throughout the CNT array (see Figure 1.5). 

Using this device, Yost et al. have coated CNTs, which were successfully used to capture 

prostate-specific antigen. Moreover, due to the device’s high controllability, the resulting 

CNTs have the potential to isolate nano-sized bioparticles, such as viruses or DNA. 

CNT-based Actuators 

Similar to sensors, transducers with actuation capabilities, i.e. actuators, are also 

receiving high interest for applications, such as robotics, optical displays, micro-switches 

and medical prosthetic devices, especially the polymeric based ones, due to their large 

displacement and rapid response for a reasonably applied voltage [30,31]. Moreover, 

CNTs’ unique physiochemical properties have triggered their potential usage in 

electrochemical actuation systems, where they have shown comparable or superior 

performances than other alternatives in various types of macro, micro and nanoscopic 

applications [30,31]. 

One way of achieving actuation based in CNTs is through the deflection of a 

macroscopic sheet made of billions of CNTs, which occurs when a voltage is applied [30–

32]. The deflection reverses when the voltage potential is reversed. Moreover, it has been 

shown that, if a square wave is applied, oscillations up to at least 15 Hz are observable [32]. 

These sheets are formed by filtering, rinsing and drying a polymer-CNT mixture, resulting 

in randomly entangled structures of several hundred CNTs. CNT-based actuation can be 

achieved in cantilevers with one [30] or various sheets [31] (see Figure 1.6). In both these 

approaches, displacements of several millimeters have been reported, which, although 

appearing small, is considered large in comparison with other transducers excited with 

similar voltages [31]. 

 
 

(a) (b) 

Figure 1.5: (a) Microfluidic device constructed by Yost et al. to coat CNTs; (b) Graphical representation of a coated 

CNT. (Adapted from [29], licensed under a Creative Commons Attribution 4.0 License). 
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Taking advantage of the CNTs’ optical, thermal and electrical properties, authors 

have constructed a transparent conductive film which heats up when a voltage is applied 

[33,34]. Such transparent heater was considered ideal to construct defrosting or deicing 

windshields. In this work, transparent CNT layers were spin coated, one by one, and 

sandwiched between two glass layers. A voltage was then applied using two electrodes and 

a thermal camera was used to capture the film temperature (see Figure 1.7). Authors have 

constructed and tested films with various number of layers, which affects the film thermal 

properties, and achieved temperatures in the order of 100 oC. Further characterization tests, 

such as stability, repeatability and transmittance, were performed to these film heaters and 

authors have identified their potential application in car/aircraft windshields, deicers of 

 

Figure 1.6: Cantilever with two sheets of CNTs (grey) and one layer of adhesive (white). Depending on the applied 

voltage, it can bend to the left or the right. (From [32], reprinted with permission from AAAS). 

  

(a) (b) 

Figure 1.7: (a) Schematic diagram of the transparent CNT layer sandwiched between two glass layers; (b) Infrared 

thermal image obtained with a thermal camera (temperature in Celsius). (Reprinted from [34], licensed 

under a Creative Commons Attribution 4.0 License). 
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aircraft wings or wind turbine blades [33,34]. 

Also exploiting CNTs thermal properties, Jeonyoon et al. have developed a 

methodology to cure polymeric composites more efficiently [35–39]. In their work, a 

resistive heating film of CNTs is placed in the outer surface of the polymeric composite, 

and is heated by application of a controlled voltage. Such methodology enables the 

composite to be cured in a more efficient way than the conventional autoclave procedure. 

Moreover, since it does not require the composite to be placed inside the autoclave for 

curing, this “Out-of-Oven” technique (as the authors call it) allows a higher volume to be 

cured simultaneously, resulting in a reduction of the curing energy, which has great 

advantage in the aeronautics industry (see Figure 1.8). 

It is undoubtable that CNT-related areas of research have suffered a phenomenal 

growth in the last decades [4]. The exceptional properties, which have allowed CNTs to be 

used in transducers and other devices, have also pertained their potential to increase the 

devices’ characteristics, such as sensitivity and dynamic range. These specifications are of 

most importance for the technological world, as fields of micro- and nano-electronics are 

gaining popularity year after year.  

Thus, it is expected that, in the near future, CNT-based transducers will trigger 

investigation of their usage in many applications, such as biomedical, automotive, food, 

monitoring, agriculture, manufacturing, etc. However, there are hurdles and obstacles in 

the CNTs synthesis which must be successfully tackled in order to fulfill the CNTs’ 

potential in sensorial and actuation applications [4].  

 

Figure 1.8: Comparison between the conventional autoclave and the Out-of-Oven techniques. (Adapted with 

permission from [35], Copyright 2015 American Chemical Society). 
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1.1.2. Carbon Nanotube Synthesis 

As aforementioned, the CNTs unique properties have triggered research interest in 

their application in various fields, ranging from sensors and actuators to enhanced 

polymeric composites. Nonetheless, the potential of these applications relies in the 

production of CNTs.  

Among the methods for CNT synthesis, such as Arc-discharge [40], Laser-ablation 

[41], and Low-pressure Flames [42], Chemical Vapor Deposition (CVD) is the most widely 

used, mainly due to its low setup cost, simplicity and high production yield [1,2,5,43,44]. 

The CVD process is based on the chemical reaction that occurs inside a chamber and 

depends on the combination of different compounds and conditions, such as pressure and 

temperature. 

Figure 1.9 depicts a graphical representation of the CVD process to synthesize 

CNTs. For this specific case, the process takes a hydrocarbon gas, which serves as a 

precursor, and decomposes it in order for the Carbon atoms to precipitate on top of the 

substrate, and thus synthetize the CNTs. The decomposition of the precursors is performed 

inside a tube furnace at high temperatures (400-1200 oC) so that the hydrocarbon gas 

undergoes pyrolysis [1,5,44]. As a local pyrolysis is targeted, in order to ensure that the 

CNTs grow on top of a surface, a catalyst coats the substrate surface, pin-pointing the gas 

decomposition. 

Besides the hydrocarbon, other compounds are present in the process, namely a 

reducer and an inert gas. The reducer, usually hydrogen, is crucial to reduce the iron oxide 

formed on the catalyst thin film, and to perform the dewetting of catalyst to enable the 

carbon atom adsorption. On the other hand, the inert gas, generally helium or argon, is 

 

Figure 1.9: Graphical representation of the CVD process to synthesize CNTs. After a sample, consisting of a 

substrate and catalyst, is placed in a chamber, a reducer gas, hydrogen, is used to reduce the catalyst 

into smaller particles, upon which, the carbon, resulted from the decomposition of a hydrocarbon, is 

deposited. 
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mainly used to ensure total pressure control and heat transfer during the whole process. 

This section only presents a brief description of the CVD synthesis process. Further 

analysis of this technique, as well as a comparison between the three processes, are 

presented in more detail in chapter 2. 

1.2. Problem Statement and Hypothesis 

Although CNTs’ unique properties have triggered interest in their application in 

innumerous fields [1,2,4,5,45], current CNT synthesis is highly influenced by a wide range 

of parameters, such as temperature, pressure and concentrations of the used compounds 

[46,47]. Consequently, it is difficult to predict and to tune the final result, the CNTs' 

properties.Moreover, controlling how each parameter influences the result will, most likely, 

lead to an extensive trial-and-error tuning process rather than a systematic approach [46–

49]. Oliver, C et al. [48] have performed a statistical analysis on the CNT growth process 

and verified the process' variability and how time demanding the tunning process is. Such 

results' inconsistency hinders the understanding and the extrapolation of research findings 

and, as a consequence, limits knowledge transfer between different setups and CNT's 

application in different fields. 

In order to tackle such bottleneck, the hypothesis of developing a reliable 

computational model to support the transition between different CVD setups to synthesize 

CNTs is here proposed and analyzed. By enabling a better fundamental understanding of 

the synthesis process, such model would permit a systematic approach, when transitioning 

between setups rather than following a time-consuming trial-and-error methodology. 

Moreover, it could also be used to implement scale-up principles and to synthesize CNTs 

in a more efficient way to achieve optimal performance for targeted applications [46–49]. 

1.3. Motivation 

As aforementioned, it is envisioned the development of a computational model of 

the CVD process as a way to tackle its inconsistencies, which limit the extrapolation of 

research findings. Overcoming such issue would enable the design and the implementation 

of robust methodologies to scale up the CNT synthesis, leading to higher production yields. 

Moreover, if such computational model is used to develop methodologies to transition 
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between different setups, research findings and knowledge could be more easily 

transferred, which would strengthen and improve the process’s worldwide research goals. 

Being such a complex work, it comprises various technological areas. In order to 

design the envisioned model, it is required an understanding of concepts related with the 

CNT synthesis, the CVD process, computational modelling and analysis, within others. It 

is this described importance of the research work, as well as this broad scope of 

technological areas comprised by it, that motivates the author to perform such work. 

1.4. Research Questions and Objectives 

Envisioning the development of a computational tool to support the transition 

between different CVD setups, there are some research questions, which represent the 

project’s main plan. The proper investigation of this research plan should answer the 

proposed questions: 

 Which conditions affect the CNTs’ synthesis in the CVD process? 

 How are these synthesis conditions affected by the process parameters? 

 How can CVD process setups be different? 

 How should the transition between setups be defined? 

 Which synthesis conditions are considered critical? 

 How can these synthesis conditions be changed? 

 Are there any other parameters relevant to the setups’ transition? 

In order to tackle these research questions, and thus develop the envisioned 

computational tool, several intermediate objectives should be fulfilled: 

 Proper understanding of the CVD process to synthesize CNTs, focusing of 

the process parameters effects on the synthesis conditions; 

 Robust methodology for the transition between setups, depending on the 

various process parameters; 

 Analysis of further potentials of the CFD tools. 

1.5. Methodology 

Figure 1.10 depicts a graphical representation of the various steps followed 
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throughout this work alongside with the respective outputs of each step. 

Firstly, prior to any analysis or transition model development, the computational 

models of the various CVD setups must be performed. These computational models are 

used in every one of the upcoming steps. Thus, their correct design and the definition of 

the simulations are crucial.  

Envisioning the development of such reliable transition model, a better 

understanding of the synthesis process should be firstly accessed. Thus, a Computational 

Fluid Dynamics (CFD) based sensitivity analysis is here applied to the Chemical Vapor 

Deposition (CVD) synthesis process of CNTs to understand the fluid dynamics, which 

occur inside the tube reactor. The presented sensitivity analysis addresses the effects of 

each process parameter in the inner tube synthesis conditions. By identifying and 

understanding these effects through numerical tools, it becomes then possible to target and 

achieve specific synthesis conditions by adjusting the process parameters. 

Such CFD analysis was then used to support the transition between two distinct 

setups by mimicking the conditions obtained in one setup in the other. The proposed 

methodology is based in an optimization problem, where the metric to minimize is the error 

between the conditions at a certain point and the desired ones. 

The transition methodology was then improved by also considering the tube’s 

 

Figure 1.10: Graphical schematic of the followed methodology throughout this work. 
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temperature as a process parameter, whose variation would affect the addressed synthesis 

conditions by influencing the heat transferred to the mixture. These effects were validated 

by a sensitivity analysis and results have shown that the improved transition methodology 

would have more impact, in relation to the non-improved one, when the substrate in the 

second setup already has an envisioned site to be positioned. 

Finally, chemical reactions kinetics were included in the CFD modelling of CVD 

setups in order to support experimental work, which envisioned to solve certain uniformity 

issues of the CNT synthesis process, when addressing the usage of a new catalyst. By also 

consider the compounds interactions during the reduction phase of the CVD process, a 

sensitivity analysis, addressing the dependencies that some process parameters have in the 

catalyst particles formation, was performed. Such analysis gave some insights on the next 

steps that should be followed in the experimental work in order to overcome the 

encountered issues. 

Additionally, results obtained when including chemical reactions kinetics in the 

CFD modelling have triggered the hypothesis that further study on their integration could 

enable the design and development of a transition methodology focused in CVD setups, 

whose CNT synthesis is based in different hydrocarbons. 

1.6. Thesis Overview and Structure 

Considering the previously defined methodology, this thesis is structured as follow. 

The current chapter depicts an introduction to the proposed research. It briefly 

describes CNTs, the most used synthesis process (CVD) and some of their potential 

applications. Next, the research hypothesis proposed in this thesis is stated, as well as what 

research questions should be answered and which objectives should be met in order to 

achieve the envisioned goal. Lastly, it presents the methodology followed in this thesis as 

well as its final contributions. 

As aforementioned, the main goal is to develop a CFD-based methodology to 

support the transition between different CVD setups to synthesize CNTs. Thus, in chapter 

2, an overview of the existent state of the art is presented. Such overview includes a 

comparison between different methods to synthesize CNTs; various process parameters 

used in the literature to synthesize CNTs via the CVD process; and an overview of several 
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applications of CFD techniques, not only regarding the CVD process, but also in other 

technological fields. 

Next, in chapter 3, a description of the designed CFD models is presented. It starts 

by depicting the addressed setups, followed by each simulated compound’s properties and 

the procedure to select simulation conditions such as the mesh size and the number of 

iterations to perform in each simulation. 

In chapter 4, in order to evaluate the synthesis conditions dependency on the process 

parameters, a sensitivity analysis was performed, which resulted in a better understanding 

on the CVD process and on which process parameter most affects the synthesis conditions 

inside the tube during the growth phase. 

Such understanding was then used to design a methodology to support the transition 

between different setups (detailed in chapter 5). As previously described, the transition was 

addressed as an optimization problem that envisioned to minimize the percentual error 

when comparing the defined synthesis conditions measured in both tubes. Due to its effects 

on the compounds’ flow throughout the tube, the furnace temperature was posteriorly 

included in the transition methodology as a way to improve the obtained results. 

Then, in chapter 6, a case study addressing the capabilities of CFD modelling was 

proposed. It envisioned the addition of chemical reactions kinetics to the CFD models to 

tackle growth uniformity issues encountered when studying CNT synthesis based in a 

sodium-based catalyst. Validating that these issues are due to a poor catalyst particles 

formation, a CFD model, addressing the compounds interactions during this phase, was 

designed and analyzed. Such case study gave some insights that chemical reactions kinetics 

could be added to the previously proposed transition methodology in order to address the 

transition between CVD setups, whose synthesis is based in different hydrocarbons. 

Finally, chapter 7 sums up the conclusions and contributions of the performed work 

and proposes some guidelines to be followed as future work. 

1.7. Contributions 

The research work developed throughout this thesis is supported by the Leaders for 

Technical Industries (LTI) PhD program, within the Engineering Design and Advanced 

Manufacturing (EDAM) focus area of the MIT Portugal Program. The LTI PhD program 
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focus on product and process innovation, as well as decision-making, taking into account 

economics, management and social aspects. 

This perspective is evident in the developed research work. The work regards the 

understanding and the consistency improvement of a widely used process to synthesize 

CNTs. As previously referred, the CNTs’ unique properties have triggered high interest in 

their application in several industrial sectors, such as automotive, aeronautics and 

electronics. Since their synthesis processes are still unpredictable and unreliable, such 

industrial applications are highly limited. Moreover, although there is a lot of researchers 

tackling the CNTs synthesis and applications, these also find limitations while learning 

from each other. Such knowledge transfer is also hindered by the synthesis processes’ 

inconsistency and unpredictability. 

Focused in applying a CFD-based approach to foster a better understanding of the 

synthesis process, this thesis proposes a more methodic transition process between different 

setups for synthesizing CNTs. Such understanding of the synthesis process has the potential 

to be used to transfer knowledge between researchers, which can lead to a faster application 

of the CNTs’ potential in the envisioned industrial sectors.  

1.8. Publications 

The development of this research work resulted in the writing and submission of a 

few scientific papers, listed below. 

 C Teixeira, A. Ferreira da Silva, L. A. Rocha, “Computational Fluid 

Dynamics Sensitivity Analysis of Carbon Nanotubes Synthesis”, 

International Nano Letters (2018) [waiting for peer-revision; submitted in 25-

10-2018]; 

 C Teixeira, A. Ferreira da Silva, L. A. Rocha, “A Computational Fluid 

Dynamics based tool to support Carbon Nanotubes synthesis by Chemical 

Vapor Deposition”, Materials Research Express (2019) [waiting for peer-

revision; submitted in 02-01-2019]; 

 C Teixeira, A. Ferreira da Silva, L. A. Rocha, “Review on Carbon Nanotubes 

synthesis by Chemical Vapor Deposition”, Journal of Engineering Physics 

and Thermophysics (2018) [waiting for peer-revision; submitted in 08-10-
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2018]; 

 C Teixeira, A. Ferreira da Silva, L. A. Rocha, “A Computational Fluid 

Dynamics based Sensitivity Analysis of the Chemical Vapor Analysis process 

to synthesize Carbon Nanotubes”, Journal of Thermal Science and 

Engineering Applications (2018) [waiting for peer-revision; submitted in 09-

10-2018]; 

 C Teixeira, A. Ferreira da Silva, L. A. Rocha, “Carbon Nanotubes Synthesis: 

Targeting Optimal Growing Conditions via Computational Fluid Dynamics 

tools”, Poster presented at 5th Nano Today Conference, 6-10 December 2017, 

Hawaii USA. 
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Chapter 2 

2. STATE OF THE ART 

The main goal of this research work is to design a tool, based in Computational Fluid 

Dynamics (CFD), to support the transition process between different setups to synthesize 

Carbon Nanotubes (CNTs). This transition process is currently performed by following a 

trial-and-error methodology, which, due to the synthesis processes’ inconsistency, is a time 

consuming task [1–4]. Alternatively, a more systematic approach is envisioned. 

In this chapter a comprehensive literature review is performed. Firstly, three 

processes to synthesize CNTs are presented: (i) Arc-discharge; (ii) Laser-ablation; and (iii) 

Chemical Vapor Deposition (CVD). Although the latter is the most widely used, a 

comparison between these processes is also presented, giving a better understanding of 

their operation principle as well as their advantages and disadvantages. 

Secondly, a more in-depth study of the CVD process is presented. Here, the critical 

components in each different phase of the process are described. Moreover, a review of 

various works found in the literature is performed, depicting several possible compounds 

combinations which resulted in CNT growth. This analysis demonstrates the CVD process’ 

wide range of possibilities. 
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Lastly, a description of the working principle of CFD tools is presented, followed by 

a review on several works, where the CFD capabilities were applied. This review starts by 

enumerating applications in a broader perspective, narrowing then to CNT synthesis. 

Performing this review, gives a better understanding on how to take advantage of the CFD 

capabilities as well as which issues could be encountered. 

2.1. CNT Synthesis Processes 

Since their discovery in 1991 [5], Carbon Nanotubes (CNTs) have been gaining 

research interest on the study of their extraordinary properties and applications in various 

technological fields [6–9]. The three main techniques to synthesize CNTs are: (i) Arc-

discharge; (ii) Laser-ablation; and (iii) Chemical Vapor Deposition [10,11]. In this section, 

these methods are briefly described, depicting their capabilities, and posteriorly compared 

by analyzing their advantages and disadvantages. 

2.1.1. Arc-discharge 

In 1991, fine threads of pure carbon were reported by Sumio Iijima when using the 

arc-discharge technique [5]. Later, in 1993, CNTs were synthesized using a metal catalyst 

in this method [12,13]. Thus arc-discharge is the oldest method to synthesize CNTs [14]. 

A typical setup of the arc-discharge technique to synthesize CNTs is illustrated in Figure 

2.1. 

 

Figure 2.1: Schematic of a typical setup to synthesize CNTs via the Arc-discharge technique. 

 



CFD-based tool to support CNT synthesis via CVD Chapter 2 

21/142 

This method uses a DC-current supply to generate an electrical arc discharge between 

two electrodes to rapidly produce the high temperature (> 3000 oC) required to evaporate 

carbon atoms from a graphite-based precursor, which are then deposited, forming CNTs 

[10,14–17]. The electrodes are initially kept independently in a vacuum chamber. An inert 

gas, usually helium or argon, is flown through the chamber to increase the carbon 

deposition rate. Once the chamber pressure is stabilized, the arc can be generated. Thus, 

the power supply (20 V and 100 A) is turned on, and the positive electrode (anode) is 

gradually brought closer to the negative one to strike the electric arc. The arc rapidly 

increases the temperature at the end of the anode, forming a carbon-based plasma, which 

is then deposited onto the negative electrode (cathode). In order to boost the deposition, 

besides graphite, the anode is also packed with a catalyst, such as iron, cobalt or nickel, 

whose atoms are also evaporated into the plasma. The electrodes are kept about one 

millimeter apart to keep the CNT deposition in the cathode constant until the desired length 

is reached. The power supply is then turned off and the setup is left for cooling. 

Although the electrical arc is a suitable technique to rapidly generate the required 

temperature to evaporate the carbon atoms into a plasma, its control plays an important role 

when synthesizing CNTs by the arc-discharge process [14,15]. Moreover, the resulting 

yield and purity of the CNTs also depend on the inert gas atmosphere pressure. If proper 

precaution is not taken, the carbon-based plasma would be unstable and carbon soot 

materials are formed in the chamber walls. 

2.1.2. Laser-ablation 

The laser-ablation technique was first used to synthesize CNTs by Thess et al. in 1996 

[18]. Similar to the arc-discharge process, laser-ablation relies in the vaporization of carbon 

atoms, which are then deposited into a substrate [14]. A graphical representation of a typical 

setup of the laser-ablation method is depicted in Figure 2.2. 

The laser-ablation method uses a laser to rapidly heat up (> 3000 oC) and vaporize a 

graphite-based precursor, placed inside a quartz tube, filed with an inert gas [10,19–21]. 

Moreover, similar to the arc-discharge method, the precursor is doped with a metallic 

catalyst, such as iron, nickel or cobalt, which eases the carbon atoms deposition. The inert 

gas, usually argon or helium, serves as an atmosphere, through which the carbon-metal 

plasma is carried out until the deposition site, where it cools down and condense into CNTs 
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[21]. This process goes on by changing the laser’s focus point across the precursor’s 

surface. 

When compared to the arc-discharge technique, the laser-ablation produces purer 

CNTs due to the evaporation stability [22]. However, it also has control issues related with 

the evaporation process. For instance, the laser is a critical parameter to tune and control. 

Not only can the laser configuration (continuous, single or double pulsed) be changed but 

also its wavelength [21,22]. Moreover, similar to what occurs in the arc-discharge method, 

the plasma-atmosphere interaction also plays a role in the CNTs yield. Thus, proper 

attention should be taken when tunning the inert gas pressure and flow [14]. 

2.1.3. Chemical Vapor Deposition 

On the contrary to the arc-discharge and laser ablation techniques, which use 

localized high temperatures to decompose a solid precursor, the Chemical Vapor 

Deposition (CVD) is essentially a thermal dehydrogenation reaction of a hydrocarbon gas 

[11,14]. CNT synthesis by the CVD method was first achieved by Yacaman et al. in 1993 

[23]. Figure 2.3 graphically depicts a typical CVD setup to synthesize CNTs. 

As aforementioned, this technique is based in the temperature-driven breakdown of 

a hydrocarbon gas, such as ethylene and acetylene, into hydrogen and carbon atoms 

 

Figure 2.2: Schematic of a typical setup to synthesize CNTs via the Laser-ablation technique. 

 

 

Figure 2.3: Schematic of a typical setup to synthesize CNTs via the Chemical Vapor Deposition technique. 
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[6,10,11]. This dehydrogenation reaction occurs inside a quartz tube, heated by a furnace 

(400-1200 oC), through which the hydrocarbon is flown. Once decomposed, the carbon 

atoms are deposited in a substrate, previously coated with a metallic catalyst, such as iron, 

nickel and cobalt. Similarly to the other methods to synthesize CNTs, this catalyst eases 

the carbon atoms deposition into CNTs [14]. In order to control the pressure inside the tube 

without affecting the compounds reactions, an inert gas, such as argon and helium, is also 

flown through the tube, creating an inert atmosphere. Moreover, this gas is also used to 

clean the tube prior to the synthesis process. 

When compared to the arc-discharge and laser ablation processes, the type of 

precursor is in gaseous form, instead of solid, which considerably reduces the required 

temperature to isolate the carbon atoms (400-1200 oC instead of > 3000 oC) [11,14]. In 

addition, it does not require as complex equipment, facilitating the CVD usability. 

Furthermore, the major process parameter to control is the gases flows. Not only the 

hydrocarbon, which affects the generated carbon atoms, but also the inert gas, which affects 

the pressure inside the tube. 

2.1.4. Comparison 

Previously, three different techniques to synthesize CNTs were presented and briefly 

described: (i) arc-discharge; (ii) laser-ablation; and (iii) chemical vapor deposition (CVD). 

On recap, they have some similarities. For instance, all three rely on a thermal breakdown 

of a carbon-based precursor in order to individualize the carbon atoms. Moreover, a 

metallic catalyst, such as iron, nickel or cobalt, is used to reduce the breakdown temperature 

and thus boost this process. In addition, an inert gas, such as argon or helium, is used to 

control the process pressure as well as to create an inert atmosphere for the breakdown 

reaction to occur. 

As for these techniques’ differences, these are related with the physical mechanisms 

used to achieve the thermal breakdown. Using a carbon-based precursor in a solid state, 

such as graphite, in both the arc-discharge and laser ablation methods a higher temperature 

is necessary to achieve the carbon atoms evaporation (>3000 oC), when compared to the 

CVD, which uses temperatures in the 400-1200 oC range. Another difference between the 

techniques is where the catalyst is positioned. In the CVD technique, it is usually positioned 

in the deposition site, targeting a localized dehydrogenation of the hydrocarbon gas. On the 
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other two processes, the precursor is doped with catalyst particles, being both of them 

heated up into a plasma plume, which travels through the inert atmosphere until the 

deposition site. 

The similarities and differences between the three different techniques, previously 

presented and described, induce some dependencies of the result, i.e. the synthesized CNTs, 

on a few process parameters [10,11,14]. Table 2.1 presents these dependencies as well as 

each synthesis process advantages and disadvantages. 

Due to its complexity, Laser-ablation is the CNT production technique with most 

variables to control. Besides the aforementioned laser’s wavelength and power, the 

atmosphere should be controlled. It can be altered by the inert gas flow and pressure, as 

well as by the furnace temperature. On the other hand, arc-discharge is the process with 

less dependencies on individual variables. Although also having an inert atmosphere, which 

affects the plasma-plume behavior, and having an arc discharge to control instead of a laser, 

Table 2.1:  Comparison between the Arc-discharge, the Laser-ablation and the CVD techniques to synthesize 

CNTs (adapted from [10,11,14]). 

Technique Arc-discharge Laser-ablation CVD 

Variables to control  Arc current 

 Inert gas 

 Pressure 

 Amount of catalyst 

 Laser (power and 

wavelength) 

 Temperature 

 Pressure 

 Inert gas 

 

 Hydrocarbon gas 

 Flow 

 Temperature 

 Catalyst 

 

Yield Low Low High 

Operating Temp. > 3000 oC > 3000 oC 400-1200 oC 

Purity Low Medium Medium to High 

Cost High High Low 

Advantages  Controlled 

atmosphere not 

required (open-air 

synthesis has been 

achieved [57]) 

 Not as expensive as 

Laser-ablation 

 

 Higher quality and 

yield than Arc-

discharge 

 

 More controlled 

synthesis 

 Ideal for scale-up 

 High production 

yield [6] 

Disadvantages  Produced CNTs are 

tangled (limited 

applications) 

 Rely on carbon 

atoms evaporation 

(>3000 oC) 

 Produced CNTs are 

tangled (limited 

applications) 

 Rely on carbon 

atoms evaporation 

(>3000 oC) 

 May have graphite 

layers in the CNTs 

caps, not ideal for 

certain applications 

[10] 
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it does not use an external furnace, thus reducing the number of variables to control. As for 

the CVD technique, its simplicity makes the materials selection the only control variables. 

Furthermore, operating at lower synthesis temperature increases the process stability and, 

thus, its controllability. Due to these physical differences, the CVD process has a lower 

setup cost than the others [10,11,14]. 

As for the produced CNTs, in the arc-discharge and the laser-ablation techniques the 

CNTs’ purity is compromised by their high operation temperature, which leads to the 

formation of unwanted carbon soot materials [14]. Moreover, the produced CNTs are 

tangled and may have structural defects, hindering their applications. This instability, 

resulted from the processes’ complexity, reduces the CNTs production rate.  

Besides being the synthesis process with the highest production yield, the Chemical 

Vapor Deposition is the technique with the most controlled synthesis, mainly due to its 

targeted hydrocarbon decomposition and deposition. Moreover, it requires lower 

temperatures than the Arc-discharge and Laser-ablation (400-1200 oC compared to 

>3000 oC) and achieves untangled growth, which eases the CNTs application [6,7,9,24]. 

This advantages pertain the process’ scalability [11,14]. 

2.2. CNTs Synthesis by Chemical Vapor Deposition 

As aforementioned, CVD is the most popular process to synthesize CNTs, due to its 

simplicity, low-cost and high controllability of the synthesis [6,10]. This technique is based 

on the thermal decomposition of a hydrocarbon gas - precursor - and posterior precipitation 

and deposition of the resulting carbon atoms in a catalyst sample, placed inside a quartz 

tube. Besides the precursor, the CVD process usually involves a reducer and an inert gas 

as well. While the former is used to reduce the catalyst into small particles, where the 

carbon atoms will be deposited, the inert gas is mainly used to ensure pressure control and 

heat transfer during the whole process. This section, describes in more detail the CVD 

process to synthesize CNTs, starting with a brief overview of all its different phases, 

followed by an overview of the process parameters found in the literature, namely the used 

compounds and the furnace temperature. 

2.2.1. The CVD Process Phases 

As previously stated, the two main phases of the CVD process to synthesize CNTs 
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are the reduction and the synthesis phases. However, there are a total of common five 

distinct phases in the whole process (see Figure 2.4): (1) cleaning; (2) reduction; (3) 

synthesis; (4) delamination; and (5) cooling. 

During the cleaning phase, both the tube is cleaned by flowing the inert gas through 

it. The goal is to reset the tube inner conditions in terms of gas composition, being mainly 

composed of the inert gas. 

The second phase - reduction - is important by two reasons. Firstly, it is in this phase 

that the furnace is heated until the desired temperature (400 - 1200 oC), necessary for the 

CNT synthesis. Secondly, it is in this phase that the catalyst film is decomposed into 

nanoparticles. Example images taken before and after such phenomenon are presented in 

Figure 2.5. Such nanoparticles define the density and vertical alignment of the CNTs. 

Basically, sets where the carbon atoms are going to aggregate during the growth phase. 

As suggested by its name, it is in the synthesis phase (number 3) when the CNTs' 

growth occurs, which is a result of the local decomposition of the hydrocarbon gas pyrolysis 

 

Figure 2.4: Graphical representation of all five phases the CVD process to synthesize CNTs: (1) cleaning; (2) 

reduction; (3) synthesis; (4) delamination; and (5) cooling. 

  

(a) (b) 

Figure 2.5:  Images of a copper catalyst (a) before and (b) after its reduction from film into nanoparticles. (Adapted 

from [58,59], licensed under a Creative Commons Attribution 3.0 License). 
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and the aggregation of its carbon atoms onto the catalyst nanoparticles. Moreover, it is 

possible to add a carrier gas to support the CNT growth. This process is highly dependent 

on the temperature throughout the tube, the gas flows, pressure, and the substrate position 

inside the tube, among others. 

The fourth phase - delamination - is an optional one. Its main goal is to delaminate 

the CNTs from the catalyst base. This is achieved with a dewetting phase, where the high 

temperatures and the presence of H2 increases the catalyst particles mobility, which aids 

the CNTs' releasing. 

Lastly, the cooling phase is used to prepare the tube for its opening and the CNTs 

removal. In this phase, only the inert gas is passing through the tube to enhance the heat 

transfer. It also removes other gases from the tube to ensure the user's safety when opening 

the tube. 

As suggested by this five-phase procedure, the CNT synthesis by CVD involves 

many process parameters, which have influence in the final result. Being a process, which 

relies in the thermal decomposition of compounds, it highly depends on the temperature 

and the compounds as well as catalyst selection. The following section depict a brief 

overview of these parameters. 

2.2.2. The CVD Process Parameters 

Table 2.2 compiles the process parameters used in several studies from the literature 

to synthesize CNTs. The depicted parameters are: (i) the hydrocarbon precursor; (ii) the 

carrier gas; (iii) the reducer; (iv) the inert gas; (v) the catalyst; and (vi) the process 

temperature. 

The hydrocarbon’s molecular structure affects the morphology of the produced 

CNTs. Various types of hydrocarbons have been successfully used to synthesize CNTs 

[6,11,14], and the most commonly used are acetylene (C2H2) [25], methane (CH4) [26], 

xylene (C8H10) [27], ethanol (C2H5OH) [28], benzene (C6H6) [29], ethylene (C2H4) [30] 

and carbon monoxide (CO) [31]. Thus, properly selecting the used precursor can increase 

the CNT growth rate [11]. For instance, linear hydrocarbons, such as methane, ethylene 

and acetylene, thermally decompose into atomic carbon atoms (pyrolysis), leading to 

straight CNTs. On the other hand, cyclic hydrocarbons like benzene and xylene produce 

relatively tangled CNTs.  
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Besides the hydrocarbon-based precursor, a carrier gas, such as nitrogen (N2) and 

ferrocene (C10H10Fe), can also be injected into the tube during the synthesis phase. Such 

inclusion can be done as a way to inject catalyst particles into the tube, as an alternative to 

priory placing it in the tube. Authors in [27,32] mixed the hydrocarbon precursor with 

Table 2.2:  Compilation of various compounds, catalysts and temperatures used in the literature to synthesize 

CNTs via the CVD process. 

Ref. Precursors Carrier Reducer Inert Catalyst Temp. [oC] 

[25] Acetylene 

Ethylene 

Nitrogen Hydrogen - Iron 650-800 

[26] Methane - - Argon Cobalt 

Nickel 

Iron 

1000 

[27] Acetylene 

Xylene 

Ferrocene Hydrogen Argon - 550-800 

[60] Acetylene Nitrogen Hydrogen - Iron 700 

[28] Methane 

Ethane 

Ethanol 

- Hydrogen Argon Iron 

Cobalt 

Molybdenum 

700-800 

[29] Benzene - Hydrogen Argon Ferrocene 

Cobaltocene 

Nickelocene 

900 

[30] Methane 

Ethane 

Ethylene 

- Hydrogen - Cobalt 

Nickel 

Iron 

500-700 

[35] Cyclohexanol 

Xylene 

Nitrogen - - Ferrocene 750 

[61] Xylene Ferrocene Hydrogen Argon Nickel 700-850 

[32] Xylene Ferrocene - - - 800 

[62] Butane - Hydrogen Helium Iron 500-700 

[36] Ethanol - - Argon Iron 800 

[63] Benzene - Hydrogen Argon Iron 1060 

[23] Acetylene Nitrogen Hydrogen - Iron 700 

[31] Carbon 

Monoxide 

- - Argon Molybdenum 

Nickel 

Cobalt 

1200 

[38] Carbon 

monoxide 

Ethylene 

- Hydrogen Argon Iron 

Molybdenum 

800 

[64] Methane - Hydrogen - Iron 

Cobalt 

Nickel 

1070 

[65] Benzene Thiophene Hydrogen - Ferrocene 1200 

[33] Fullerene Ethanol - Argon Iron 

Cobalt 

850 

[66] Methane 

Alcohol 

Ethylene 

Cyclohexane 

- Hydrogen - Nickel 

Iron 

Cobalt 

Molybdenum 

400 

[34] Methanol Ethanol - Argon Iron 

Cobalt 

550-800 

[67] Ethylene - Hydrogen Argon Aluminum 750 

[68] Acetylene Nitrogen Hydrogen - Nickel 900 

[69] Xylene - Hydrogen Argon Ferrocene 780-860 

[37] Acetone Thiophene - Argon Ferrocene 1170 
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ferrocene, which would thermally decompose, leading the iron particles to interact directly 

with the precursor, synthesizing CNTs. On the other hand, the carrier gas can be included 

in the synthesis phase to help the precursor decomposition and carbon’s aggregation to the 

catalyst particles. For instance, ethanol can be used to ease the hydrocarbon decomposition 

[33,34]. 

As aforementioned, the reducer is used to reduce the catalyst into smaller particles, 

which would serve as base to synthesize CNTs. The dominant selection for the reducer is 

hydrogen (H2). The only exceptions are when: (i) the catalyst is inserted inside the tube as 

a powder [26,31,35]; (ii) the hydrocarbon precursor is also used as the reducer [36]; or (iii) 

all compounds are injected simultaneous, being the CNTs collected in a structure placed 

inside the tube [37]. 

As a way to control the pressure and the compounds flow inside the tube, as well as 

to maintain the heat transfer, an inert gas can be used in the CVD process. Argon (Ar) and 

helium (He) are the most commonly used ones (see Table 2.2). In the cases where there is 

no inert gas involved in the process, the conditions inside the tube are controlled using the 

reducer and/or the carrier gas, usually hydrogen (H2) and nitrogen (N2), respectively. 

Alongside with the hydrocarbon precursor, the catalyst is also considered one of the 

process parameters, whose selection most influences the CNT synthesis [6,11,14]. Properly 

selection of the used catalyst can improve the CNTs yield and quality. As previously stated, 

catalyst particles serve as nucleation sites for the CNT growth. Various options were found 

in the literature, and the most common are metallic catalysts, such as iron (Fe) [25], nickel 

(Ni) [26], cobalt (Co) [30] and molybdenum (Mo) [38].  

Finally, CNT synthesis by CVD has been achieved in various temperatures (see Table 

2.2). Being based in the thermal decomposition of compounds, the CVD process only 

requires temperatures within a certain range (400-1200 oC) to be used. The fact that certain 

CNT growth can be achieved at smaller temperatures than others only depends on the 

compounds and catalyst used. 

2.3. CFD Fundamentals 

Computational Fluid Dynamics (CFD) is a branch of the fluid mechanics field, 

developed in the late 1920s, which uses mathematical modeling and numerical algorithms 
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to analyze problems involving fluid flows and heat transfer [39–43]. Advances in numerical 

description of all types of fluid flows have matured CFD into a powerful numerical tool in 

many industries, considered as “the traditional method for experimentation and analytical 

modelling to solve fluid flow problems” [39]. These problems are described by partial 

differential equations, which cannot be analytically solved. Alternatively, CFD simulations 

use discretization methods to approximate those differential equations into a system of 

algebraic equations, which can then be computationally solved via numerical algorithms 

[42]. Such usage of CFD methods has been triggered by the associated low costs and 

reduced time consumption, when compared to trial-and-error experimentation processes. 

However, these advantages rely on solving the equations accurately. Since the numerical 

algorithms used in CFD simulations are an iterative process, if enough iterations are not 

performed, the exact solution is not produced [42]. 

2.3.1. Phases of a CFD simulation 

In order to tackle such fluid flow problems, typical CFD simulations consist of three 

main phases: (1) the pre-processing; (2) the solver; and (3) the post-processing. Each one 

deals with crucial components of the CFD methodology. 

The first phase - the pre-processing - consists in the introduction and description of 

all relevant data for the problem solving [42]. Such data is formulated as: 

 Definition of the computational domain, i.e. geometry, to be modelled; 

 Discretization of the computational domain into a mesh; 

 Definition of the fluid properties, such as density, viscosity, modal mass, etc; 

 Definition of the variables to be analyzed; 

 Definition of domain’s boundary conditions. 

The solver is the phase responsible for the numerical algorithms implementation. 

Since it is in this phase that the final solution is computed, the solver is the main phase of 

a CFD simulation [40]. During this phase, the following steps are executed: 

 Integration of the fluid related differential equations; 

 Approximation of the differential equations into a system of algebraic 

equations; 

 Iteratively solve the algebraic equations until a convergence criterion is meet.  
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After the numerical algorithms are performed, the computed solution can be analyzed 

in the post-processing phase. Most CFD simulations are equipped with data visualization 

tools to support this phase. Typical visualization tools are plots, flow streamlines and 

surfaces graphics. 

2.3.2. Components of a CFD simulation 

As previously described, each one of the three phases (pre-processing, solver, and 

post-processing) has its own steps, which, when combined, comprise the components of a 

CFD simulation. These will be briefly described in this section. Since the pre-processing 

phase is the one mostly defined by the user, an example of a CFD simulation setup was 

thought and a figure depicting each of its components is presented. 

Geometry 

Usually described by a Computer-Aided Design (CAD) model, the geometry is a 3D 

representation of the physical system to be analyzed in the CFD simulation. Figure 2.6 

depicts the CAD model, used in the CFD simulation example. The used shape was a 

cylindrical tube, with 10 mm radius and 10 cm length. 

Mesh 

Discretizing the simulation domain into a mesh consists in dividing it in smaller 

volumes (also referred as cells or elements). This set of elements physically describe the 

geometry points into which the differential equations will be later discretized [40,42]. A 

 

Figure 2.6: Model of the cylindrical shape to be used in the CFD simulation example. 
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finer mesh, containing more elements, leads to a solution where more points are being 

computed per iteration. This not only increases the solution resolution but also the 

computational demands and the simulation time, since more points are being computed. 

Figure 2.7 depicts two possible meshes for the CFD simulation example. As shown, a finer 

mesh results into more elements.  

Boundary conditions 

These conditions complement the model geometry by representing a set of constraints 

to be taken into account in the CFD simulation. They can express any constant flow, 

pressure, temperature, initial conditions, etc. These boundary conditions are later used by 

the solver as parameters for the equations to be solved. 

For the CFD example, it was thought a simulation where gases would flow through 

the designed cylindrical tube. Thus, its ends were set as the inlet and outlet, whereas the 

lateral surface was set as a fixed-wall. These conditions are shown in Figure 2.8. The inlet 

defines which gases enter the tube, at what temperature and velocity. The temperature of 

the wall can also be defined.  

Mathematical model 

As aforementioned, CFD tools are used to solve fluid flows problems expressed by a 

set of differential equations. This mathematical model is the starting point of the numerical 

method used by the CFD solver. The behavior of a fluid is determined by a set of 

conservation laws, which describe the variation of a given property, such as mass, 

  

(a) (b) 

Figure 2.7: A (a) coarse and (b) finer mesh of the cylindrical shape to be used in the CFD simulation example. 
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momentum or energy, for a given quantity of matter [40,42]. In this quantity of matter, the 

law of conservation of mass states that the variation of mass (𝑚) with time (𝑡) is zero (see 

Eq. 2.1). As for momentum (𝑚𝑣), which can only be changed by external forces (𝑓), the 

conservation law is expressed by Eq. 2.2, where 𝑣 stands for velocity. Eq. 2.3 expresses the 

law of conservation of energy (𝐸), which depends on the total energy entering or leaving 

the addressed quantity of matter (𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡, respectively). 

𝑑𝑚

𝑑𝑡
= 0 Eq. 2.1 

𝑑(𝑚𝑣)

𝑑𝑡
= ∑ 𝑓 Eq. 2.2 

𝑑(𝐸)

𝑑𝑡
= ∑ 𝐸𝑖𝑛 − ∑ 𝐸𝑜𝑢𝑡  Eq. 2.3 

In fluids, however, since following a specific parcel of matter is difficult, it is more 

convenient to apply these laws to a spatial region, referred as the control volume (CV) [42]. 

In this region, the law of conservation of mass of a fluid with density 𝜌 can be written as in 

Eq. 2.4, where the first parcel denotes variation of mass within the volume itself (Ω) and 

the second parcel represents changes of mass due to fluid entering or leaving the region, 

through its surface 𝑆, with a given velocity 𝑣. The unit vector 𝑛 only denotes if the fluid is 

entering or leaving the control volume. 

 

Figure 2.8: The specified boundary conditions for the CFD simulation example: an inlet, an outlet and a fixed-

wall. 
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𝜕

𝜕𝑡
∫ 𝜌 𝑑Ω

Ω

+ ∫ 𝜌𝑣 ∙ 𝑛 𝑑S
S

= 0 Eq. 2.4 

As for the law of conservation of momentum, it can be expressed by Eq. 2.5, where 

the external forces 𝑓 can be surface forces (pressure, stresses or surface tensions) or body 

forces (gravity or centrifugal forces) [42]. The first parcel of the equation is the time rate 

change of the momentum in the volume itself (Ω), whereas the second parcel represents 

variations of momentum due to fluid entering or leaving the volume, through its surface 𝑆, 

with a given velocity 𝑣. 

𝜕

𝜕𝑡
∫ 𝜌𝑣 𝑑Ω

Ω

+ ∫ 𝜌𝑣𝑣 ∙ 𝑛 𝑑S
S

= ∑ 𝑓 Eq. 2.5 

The law of conservation of energy is expressed by Eq. 2.6. As before, the first parcel 

represents the time rate change of energy (𝑒) in the volume (Ω) and the second one denotes 

variations of energy due to fluid flows through its surface 𝑆. 

𝜕

𝜕𝑡
∫ 𝑒𝜌 𝑑Ω

Ω

+ ∫ 𝑒𝜌𝑣 ∙ 𝑛 𝑑S
S

= ∑ 𝐸𝑖𝑛 − ∑ 𝐸𝑜𝑢𝑡  Eq. 2.6 

These laws of conservation are combined into a mathematical model of differential 

equations, which describe the behavior of any fluid in a given system. They are used by the 

CFD tool to tackle any fluid related problem and to produce a solution to it. 

Discretization method 

In order to solve the mathematical model, the differential equations must be 

approximated into a system of algebraic equations, which can then be computationally 

solved. This approximation is performed using a suitable discretization method [42]. The 

mostly used approaches are the Finite Differences, Finite Volume and Finite Elements 

Methods. 

The Finite Differences Method (FDM) is the easiest method to use for simple 

geometries. Using the conservation equations in differential form as its starting point, FDM 

uses polynomial fitting algorithms to approximate the differential equations for each node 

of the mesh. This results in one algebraic equation per node, at which the value of a certain 

variable is unknown. The variable values are then calculated using those algebraic 

equations and not taking into account the values in neighbor nodes. Its disadvantages are 
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the usage restriction in less complex geometries, and it does not ensure the conservation 

laws, requiring more attention [42]. 

The Finite Volumes Method (FVM) uses the integral form of the conservation 

equations as its starting point. Using the domain’s mesh, it divides the geometry into a finite 

number of contiguous CVs. The conservation equations are applied to each CV and 

interpolation is used to generate a value of a certain variable at its center. This results in an 

algebraic equation for each CV center, which depends on the neighbor CVs. Since the 

geometry mesh only defines the CVs limits, and not the nodes for discretization, FVM can 

be used in any type of mesh, regardless of its complexity.  

Similar to FVM, the Finite Elements Method (FEM) breaks the domain into a set of 

discrete volumes, which are generally triangular or quadrilateral based. The differential 

equations are approximated by a linear function, constructed from the variable’s values at 

the corners of each element, ensuring the solution continuity. Since it uses triangular or 

quadrilateral based discretization, FEM is suitable to any arbitrary geometry, regardless of 

its complexity, and are relatively easy to analyze mathematically. However, its application 

is compromised if the geometry mesh is not well structured [42].  

Solver method 

The discretization process results in a system of algebraic equation, whose solution 

describe how fluids behave throughout the analyzed geometry. There are two types of 

methods to compute this solution: direct and indirect methods [40]. 

Direct methods, such as the Gaussian Elimination, use algebraic operations to 

simplify and solve the equations system. Their efficiency decreases with the system size, 

since more operations are required. In order to achieve a reliable solution to the fluid 

problem, a denser mesh, with more elements, is required, which increases the equation 

system size and, consequently, decreases the efficiency of the direct methods. For such 

reason, typical CFD tools rarely use direct methods to solve the algebraic system [40,42]. 

Instead of mathematically solving the algebraic equation system, indirect methods, 

also referred as iterative methods, tackle the problem by guessing a solution for the system. 

The algebraic equations are then used to evaluate this solution by its residual error. This 

residual error is then used to support the guessing process of a new solution. This process 

is repeated iteratively until a convergence criterion is met [42]. 
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Convergence criterion 

As aforementioned, typical CFD tools use iterative methods to solve the system of 

algebraic equations. These methods are constantly guessing a solution to the system and 

use the residual errors to improve the generated solution. Since they are not mathematically 

solving the system, this iterative procedure can be continuously performed [40,42]. Thus a 

previously specified convergence criterion is used to stop it. Usually it is defined as a 

maximum residual error when evaluating the current solution. Moreover, typical CFD tools 

also allow the specification of a maximum number of iterations to perform, after which the 

iterative method stops, regardless of whether the convergence criterion was met.  

2.4. Usage of CFD Tools 

CFD has proven to be a powerful low-cost and faster tool to numerically solve fluid 

flow problems in many industries [39–43]. Thus, there are several companies which have 

invested in the development and distribution of CFD codes [44]. These commercial codes 

have been widely used in various fields, such as aerospace, automotive, healthcare, 

construction, etc [45]. Amongst others, the most commonly used FEM/FVM codes are 

ANSYS FLUENT, ANSYS CFX, ANSYS FLOTRAN, ADINA, STAR-CD, COMSOL, 

FLOW3D, FIDAP and CFD-ACE. The choice on one commercial code over the others 

depend on their computational capabilities and specifications, the used discretization 

method and, perhaps most importantly, price. These software are licensed commercially or 

educationally, permanently or yearly and their licenses can range up to a few tens of 

thousands of US Dollars [44–46].  

In the literature, CFD tools have been used to model and understand various systems, 

such as the avascular tumor growth [47], the respiratory system [48], interactions between 

fluids and moving objects [49]. Regarding CNTs, the usage of such numerical tools has 

been reported to assist their production [4], interpreting the synthesis process [1] and 

predict its performance [3]. This section presents a few works where CFD tools have been 

used, not only applied to CNT synthesis but also in other fields. 

2.4.1. CFD Tools Applications 

The CFD capabilities have been used to analyze and understand systems in a wide 

range of technological fields. From medical applications to more technical ones, CFD tools 
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can be used to analyze fluid-fluid and fluid-solid interactions in any system. 

For example, Collis et al. have validated the usage of CFD tools to analyze drug- and 

nutrient-limited tumor growth [47]. With the intention to obtain a better understanding of 

a drug treatment efficacy, the cancer was studied as a multiscale system and the correct 

discretization of its microstructure and microvasculature was accessed. 

Also in the medical field, authors used CFD tools to analyze flow-tissue interactions 

present in the respiratory system [48]. More specifically, they focused in the lung 

deformation due to airflow. Combining different types of airways and lung parenchyma, 

they constructed a robust model, which was posteriorly validated by clinical measurements. 

Figure 2.9 depicts their results when measuring the oxygen partial pressure in various 

sections of a healthy and diseased lungs. On the latter, the unhealthy section was the bottom 

one, which was not oxygenated. 

In a more technical-themed application, Yang et al. have developed a CFD-based 

model to study interactions between a fluid and a rotating structure [49]. The understanding 

of these interactions is considered critical to the design and evaluation of hydro-turbines, 

jet-engines and heart pumps. In fact, the model was applied to a hydro-turbine under a 

prescribed angular velocity, which was used to numerically validate the model’s accuracy. 

Figure 2.10 shows the effects of the fluid in the rotating system. Due to the fluid impact, 

the system starts spinning in a clockwise motion, which also has an effect in the fluid 

behavior. 

In his paper, Blocken performed a review on the CFD application in urban physics 

[50]. Referring to the heat and mass transfer in urban environments and its interactions, 

urban physics are usually modelled by CFD tools. In his review, the author lists various 

 

Figure 2.9: Results obtained by Roth et al. when measuring the oxygen partial pressure in the respiratory zone 

(left), blood capillaries (middle), and pulmonary veins (right) of the healthy (top) and diseased 

(bottom). (Reprinted from [48], Copyright (2017), with permission from Elsevier). 
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examples where CFD has been applied to this field, pertaining its capabilities and potential: 

urbanization, climate change, energy, health, security, etc. 

In [51], Xiang et al. also addressed the CFD capabilities, more specifically, in the 

evaluation of intracranial aneurysms. After proposing that both high and low wall shear 

stress drive the aneurysm growth, authors delineated different wall shear stress parameter 

to be analyzed via CFD tools. Although being promising, the application of CFD in 

aneurysm still requires further research regarding the comparison between the CFD results 

and their clinical utility. 

CFD tools were also used to simulate a Light Emitting Diode (LED) luminaire as a 

way to complement its characterization [52]. Due to existing regulations regarding the 

illumination field of view in the automotive industry, the thermal resistance of a LED is a 

critical parameter when designing an efficient cooling package. Thus, authors have 

combine characterization with CFD simulation to more accurately analyze the LED 

luminaires, when attached on a heatsink (see Figure 2.11). 

All these studies pertain the CFD capabilities and potential on analyzing and 

 

Figure 2.10: Simulation of the effects of a fluid in a rotating system performed by Yang et al. It is presented the 

evolution of magnitude of velocity with time. (Reprinted from [49], Copyright (2016), with permission 

from Elsevier). 
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understanding systems from a wide range of fields. Moreover, since it combines heat 

transfer and gas flows, the CVD process seems a great example where CFD can be applied. 

2.4.2. CFD Applied to CNT Synthesis 

For the specific case of CNTs, various authors have used CFD analysis to understand 

their synthesis via the CVD process. As aforementioned, combining heat transfers and gas 

flows, this process is a great example, which can take advantage of the CFD capabilities. 

For instance, Endo et al. have successfully used CFD tools to mathematically predict 

the production rate of CNTs in a xylene-based CVD method [1]. In their setup, the tube 

had two distinct furnaces: one preheater, at 240 oC; and the main furnace, at 700 oC. The 

former only serves to preheat the compounds before they reach the main reaction site, 

 

Figure 2.11: Simulation setup used to characterize LEDs when attached to a heatsink. (Reprinted from [52], 

Copyright (2015), with permission from ASME). 

  

(a) (b) 

Figure 2.12: (a) Compounds concentrations throughout the tube, measured by simulation; (b) comparison between 

the CNTs production rate predicted by the CFD model and experimentally measured. (Reprinted from 

[1], Copyright (2004), with permission from Elsevier). 
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which eases the hydrocarbon breakdown. Their model considered various gas reactions and 

the production rate was accessed by measuring the compounds concentrations throughout 

the tube. The model was then validated by comparing the obtained results with 

experimental data. The achieved results are achieved in Figure 2.12.  

Envisioning the implementation of scale-up techniques, authors in [4] have 

constructed a 3D model of a CVD setup to synthesize CNTs. The model was then analyzed 

via CFD tools as a way to understand the gases streamlines and the temperature profile 

throughout the tube. Such understanding of the various interactions inside the tube gave the 

authors insights on how to explain several experimental observations, hence being 

considered crucial to implement the desired scale-up techniques.  

Similarly, Sanchez et al. constructed a CFD model of an experimental benzene-

based CVD setup and, which was then analyzed to observe the influences the gas flows on 

the CNTs growth [3]. The model was simulated for various gas flows and authors have 

accessed their effects on the temperature (see example in Figure 2.13), velocity, turbulence 

and concentrations profiles throughout the tube. Such analysis was then experimentally 

validated, which pertain its usage to optimize the process parameters and achieve better 

control of the CNT deposition patterns. 

Addressing the prediction of the CNTs diameter, authors have combined 

mathematical equations and CFD simulations to construct a model to predict the formation 

of catalyst particles in an xylene-ferrocene based CVD synthesis [53,54]. The mathematical 

equations, used to simulate the formation of catalyst particles from ferrocene, were 

combined with the CFD model of the authors’ CVD setup in order to address the 

dependencies of this phenomenon on other process parameters, such as the reaction 

 

Figure 2.13: Distribution of temperature throughout the tube, measured by simulation. (Reprinted from [3], 

Copyright (2012), with permission by Cambridge University Press). 
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temperature throughout the tube. 

Also addressing catalyst particles formation, Hinkov et al. have used CFD to analyze 

the various interactions and reactions between compounds in a plasma reactor CVD process 

based in the methane decomposition in a Nickel catalyst [24]. Here, authors used plasma 

activation as a route to ease particles formation to synthesize Multi-Walled CNTs 

(MWCNTs). The Plasma Enhanced CVD process was modelled via CFD techniques to 

analyze the particles formation dependencies in the process parameters. Such dependencies 

were also confirmed by experimental results, which validate the proposed model. 

The effects of gas flows in MWCNTs synthesis were analyzed by CFD tools in [55]. 

Here, an acetylene-nitrogen synthesis in a nickel catalyst CVD process was modelled to 

address the gas flows impact on the CNT synthesis on two substrate positions inside the 

tube. Results enable authors to select which position would lead to more constant CNT 

growth, which was validated by experimental work. 

2.5. Thesis Framework 

As aforementioned, this research work envisions to develop a CFD-based tool to 

support the transition between different CVD setups to synthesize CNTs. Due to the 

process’ influence by various parameters, it is difficult to predict the final result, leading to 

an extensive trial-and-error process when tuning the CNT synthesis [1–4]. For instance, a 

statistical analysis of the CVD process verified its variability and how time demanding the 

tunning process is [2]. This results inconsistency hinders the understanding and the 

extrapolation of research findings. 

In order to understand the CVD process, the performance of a CFD-based sensitivity 

analysis was thought (see section 1.5). As referred in the previous section, several authors 

have used CFD tools to better understand the CNT synthesis process by CVD, either 

focusing on the gases streamlines inside the tube [4] or on the CNT growth itself [1,3,55]. 

For instance, White et al. used CFD to analyze the gases streamlines and temperature 

profile, without changing the process parameters [4]. Also without varying the process 

parameters, Li et al. analyzed the profiles of several conditions, such as temperature, 

velocity and pressure, throughout the tube for a single set of gas flows [55]. 

However, performing a study on the CVD process without changing process 
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parameters only allows the analysis of a specific case, resulting in a very narrow 

understanding of the whole process. Alternatively, Sanchez et al. varied the gas flows and 

analyzed their effects in the temperature, velocity and concentration profiles [3]. Endo et 

al. focused on measuring the compounds concentrations throughout the tube for various 

gases flows [1]. Nonetheless, these studies were performed for a small set of cases (3 and 

4, respectively). Moreover, in these sets of cases, only one gas flow was altered (Sanchez 

et al. varied the inert gas, whereas Endo et al. changed the hydrocarbon gas flow).  

In the performed sensitivity analysis (see chapter 4), every gas flow was tested for 

various possible values, resulting in a wider set of scenarios. Measuring the conditions 

inside the tube, such as temperature, velocity and concentrations, for each case allows the 

analysis of how these conditions are affected by the gas flows. 

Regarding the development of a transition methodology, when envisioning to achieve 

CNT synthesis in a given setup, this is usually performed by a trial-and-error tuning where 

the process parameters are constantly being changed while attempting CNT synthesis [1–

4]. On the other hand, if CNTs are already being grown in a given setup, physical 

measurements can be collected from both setups in order to mimic and tune the synthesis 

conditions inside the tube [56]. However, this methodology cannot be followed for every 

synthesis condition, as some measurements require the tube to be opened, which alter the 

conditions. 

Alternatively, in this thesis (see chapter 5), performing these measurements via CFD 

tools allows an easier comparison between conditions in different setups, as each set of 

measurements can be performed without physically performing the CVD process, resulting 

in a faster tuning process. Moreover, since these measurements are made computationally, 

comparison algorithms can be followed for various synthesis scenarios in order to 

automatize the selection of process parameters which result in the same synthesis 

conditions between different setups. 

2.6. Final Considerations 

In this chapter, a comprehensive literature review regarding the various aspects of 

this research main goal was presented. Such review enabled the understanding of the 

research main keywords as well as of the existent works in the scientific world. 
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A comparison between three different techniques to synthesize CNTs was performed. 

Taking into account their advantages and disadvantages, it was possible to understand why 

the CVD process is the most widely used one. Thus, a more in-depth study of its operation 

principle was performed by analyzing the critical components of its phases. Moreover, this 

in-depth study was complemented by a review of various works using different CVD 

configurations to synthesize CNTs. This analysis resulted in a better understanding of the 

process principle of operation and the importance of each one of its phases. 

Regarding the usage of CFD tools, their fundamentals were presented, by 

describing each one of its components and phases. This understanding of concepts enabled 

the performance of a literature review considering various CFD-based works. This review 

started by enumerating applications in various fields, narrowing them to CNT synthesis. 

By analyzing the existent works, enabled the development of a perspective on the CFD 

capabilities and how to take advantage of them. 
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Chapter 3 

3. CFD MODELS 

The CVD process is highly complex and dependent on various parameters. In order 

to properly understand how the various components interact inside the tube during the 

synthesis phase, several computational models of the CVD process were set up, simulated 

and analyzed. As aforementioned in section 2.4, the most commonly used FEM/FVM codes 

are ANSYS FLUENT, ANSYS CFX, ANSYS FLOTRAN, ADINA, STAR-CD, 

COMSOL, FLOW3D, FIDAP and CFD-ACE. Within these software, the CFD code used 

in the study was ANSYS 15.0 CFX for being well-established [1–3], and for its technical 

specifications and modeling capabilities, namely laminar and turbulent flows, steady-state 

and transient simulations, ideal and real gases usage and heat transfer [4]. Moreover, results 

from comparisons to several CFD codes have shown that ANSYS CFX is less influenced 

by the generated mesh type and are faster at solving the same problem [5,6]. Figure 3.1 

shows the designed computational models, which were based in physical setups used to 

synthesize CNTs and existent in both the IPC laboratory of the Polymer Engineer 

Department at the University of Minho and in the NECSTLab research group’s main 

laboratory at the Massachusetts Institute of Technology (see Table 3.1, Figure 3.2 and 

Figure 3.3). 
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These setups differ in various physical properties, depicted in Table 3.2: 

 The tubes’ length and inner diameter; 

 The position of the tube’s inlet in relation to its orientation; 

 The existence or not of a pre-heater, i.e. a heating chamber prior to the main 

tube. 

Moreover, the geometries depicted in Figure 3.2 represent the inner volumes of the 

tubes used for CNTs synthesis. Thus, there is no material allocated to each body, but instead 

a gas mixture, further detailed later, as a representation of the inner volume. The shaded 

areas depicted in these representations are the sections of the tubes which are heated by the 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.1: Designed computational models of the simulated CVD process tubes: (a) “30 mm”, (b) “80 mm”, 

(c) “1 Inch”, and (d) “2 Inches” tubes. 

 



CFD-based tool to support CNT synthesis via CVD Chapter 3 

51/142 

external furnace. They are positioned in the central section of the tubes.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.2: Graphical representation of the simulated CVD process tubes: (a) “30 mm”, (b) “80 mm”, (c) “1 Inch”, 

and (d) “2 Inches” tubes. The shaded areas represent the tube sections where the heating furnace was 

placed. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.3: Photos of the simulated physical setups: (a) “30 mm”, (b) “80 mm”, (c) “1 Inch”, and (d) “2 Inches” 

tubes. 
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In order to model these CVD setups, the whole process used to synthesize CNTs was 

analyzed. Figure 3.4 illustrates typical temperature and gases flows profile during the 

previously described phases of the whole process to synthesize CNTs (see section 2.2.1): 

(1) cleaning; (2) reduction; (3) synthesis; (4) delamination; and (5) cooling. This data was 

collected from the “30 mm” setup used by the author at the University of Minho, where the 

used hydrocarbon, reducer and inert gases were ethylene (C2H4), hydrogen (H2) and helium 

(He), respectively. 

As aforementioned, the goal of the first analysis step - the sensitivity analysis - is to 

understand how the process parameters affect the synthesis conditions inside the tube. 

These conditions depend on how the various components interact inside the tube during the 

synthesis phase. Thus, despite the entire process chain illustrated, the simulations were set 

to model the synthesis phase (phase 3 in Figure 3.4). Since the process parameters do not 

change during each phase, the simulations were set as steady-state, enabling the analysis of 

how each set of process parameters would affect the synthesis conditions. 

Table 3.1:  Maker and model of the components of the addressed setups. 

Name Mass Flow Controllers Furnace 
Pre-heater 

Furnace 

“30 mm” 
MKS Instruments 

1179  

Nabertherm 

RS 80/750/11 
- 

“80 mm” 
MKS Instruments 

1179 

Nabertherm 

RS 80/750/11 
- 

“1 Inch” 
Aalborg Instruments & Controls, Inc. 

GFC17 

Lindberg/Blue M 

HTF55122A 

Lindberg/Blue M 

TF55035C1 

“2 Inches” 
Aalborg Instruments & Controls, Inc. 

GFC17 

Lindberg/Blue M 

HTF55347C 
- 

 

Table 3.2:  Physical properties and features of the addressed setups. 

Setup Tube dimensions [mm] Setup features 

Name Location Length 
Inner 

diameter 

Entrance 

position 

Pre-heater 

existence 

“30 mm” UM 1100 30 Concentric No 

“80 mm” UM 1100 80 Concentric No 

“1 Inch” MIT 460 22 Concentric Yes 

“2 Inches” MIT 1279 50 Lateral No 
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3.1. Initial Conditions Definition 

As known, one critical aspect about using computational tools is the correct setup of 

the simulation itself, namely the proper definition of the simulation conditions. Within the 

simulation conditions, it is critical: (i) the definition of the number of iterations to perform; 

and (ii) the mesh to use. The proper definition of these conditions ensures results' reliability 

with minimum computational effort and consumed time. In order to setup the simulation 

conditions, a simulation (see Table 3.3) was initially set. The gases were considered to be 

ideal and were imported from the Ansys “Gas Phase Combustion” library, where the gases 

specific heat property is defined by the National Aeronautics and Space Administration 

(NASA) format via Eq. 3.1. The used gases properties are presented in Table 3.4 [7]. 

𝐶𝑝

𝑅𝑠
= 𝑎1 + 𝑎2𝑇 + 𝑎3𝑇2 + 𝑎4𝑇3 + 𝑎5𝑇4 Eq. 3.1 

Table 3.3:  Simulation scenario used to define the simulation conditions to use. 

Gas Inlets [sccm
1
] 

Tube temperature [oC] 

Gas mixture initially inside 

the tube
2
 [%] 

C2H4 H2 He H2 He 

150 200 55 750 78.4 21.6 

                                                 

1 Standard Cubic Centimeter per Minute. 
2 Based on the gases flows experimentally used during the second phase (see Figure 3.4). 

 

Figure 3.4:  Typical temperature and gases flows profile during the various CVD Process phases. 
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In order to run the presented simulation, an initial mesh was required. The mesh 

targets the discretization of the model in triangular and quadrilateral elements. Table 3.5 

shows the values used in the configuration parameters for the mesh sizing. In the CFX-

Solver, the mesh size is mainly defined by the “Num. Cell Across Gap” parameter, which 

“specifies the number of element layers to be generated in the gap sections (i.e. between 

features)” [8]. Setting this parameter to a higher value results in more mesh elements in the 

same volume (gap), i.e. a denser mesh. Since the mesh size only interferes with the model 

discretization into individual elements and not with their value, it was initially set with 3 

elements across a gap between model's features, which is the default value given by the 

CFX-Solver [8]. Other configuration parameters were set so that the mesh is dependent on 

the geometric key features, such as curves and sharp angles, with a smooth and slow 

transition between elements. 

 

Table 3.4:  Gases properties used in the simulations. 

  C2H4 H2 He 

Temp. [K] 

Lower 300 300 300 

Midpoint 1,000 1,000 1,000 

Upper 5,000 5,000 5,000 

     

Molar Mass [kg.k.mol-1] 28.05 2.016 4 

𝑹𝒔 [k.J.kg-1.K-1] 0.296 4.12 2.08 

    

Upper coef. 

a1 [] 3.52842 2.99142 2.5 

a2 [K-1] 0.0114852 0.000700064 0 

a3 [K-2] -4.41838e-06 -5.63383e-08 0 

a4 [K-3] 7.8446e-10 -9.23158e-12 0 

a5 [K-4] -5.26685e-14 1.58275e-15 0 

a6 [K] 4,428.29 -835.034 -745.375 

a7 [] 2.23039 -1.35511 0.915349 

     

Lower coef. 

a1 [] -0.861488 3.29812 2.5 

a2 [K-1] 0.0279616 0.000824944 0 

a3 [K-2] -3.38868e-05 -8.14301e-07 0 

a4 [K-3] 2.78515e-08 -9.47543e-11 0 

a5 [K-4] -9.73788e-12 4.13487e-13 0 

a6 [K] 5,573.05 -1,012.52 -745.375 

a7 [] 24.2115 -3.29409 0.915349 
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The CFX-Solver is an iterative process, which repeatedly solves a set of fluid 

dynamics equations until a maximum number of iterations is achieved [3]. In order to 

quantitatively assess the maximum number of iterations to perform for each model, the 

previously described scenario (Table 3.3) was simulated with different number of 

iterations. Table 3.6 depicts the minimum and maximum number of iterations, as well as 

the increment, used to define these simulations. Since the “30 mm” model was firstly 

assessed, a smaller increment, which defined the starting number of iterations, was used. 

Being based in the “30 mm” model, the “80 mm” model was thought to require more 

iterations, thus the higher starting point and increment. Lastly, since the same thought could 

not be inferred for the “1 Inch” and “2 Inches” models, these were simulated with a smaller 

increment. 

These simulations were then evaluated by the percentual errors of certain variables 

inside the tube. The selected variables were the compounds concentrations and the 

temperature. The individual average of these variables throughout the concentric center line 

of the tube were computed for each simulation. Then, the percentual error (𝑃𝐸𝑖), between 

the consecutive pair of iterations 𝑖 − 1 and 𝑖, was computed using Eq. 3.2, where 𝑉𝑎𝑟𝑖 and 

Table 3.5:  Configuration parameters used in the mesh sizing. 

Parameter Value 

Use Advanced Size Function On: Proximity and Curvature 

Relevance Center Fine 

Initial Size Seed Active Assembly 

Smoothing High 

Transition Slow 

Span Angle Center Fine 

Num. of Cells Across Gap 3 

 

 

 

Table 3.6:  Minimum and maximum iterations, as well as the increment, used in the simulations to define the 

number of iterations to perform for each model. 

Name Minimum Increment Maximum 

“30 mm” 50 50 1300 

“80 mm” 1000 500 3500 

“1 Inch” 100 100 1400 

“2 Inches” 100 100 2000 
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𝑉𝑎𝑟𝑖−1 are the values of each previously calculated average for each corresponding 

iteration. The evolution of the computed percentual errors for each model are presented in 

Figure 3.5. 

𝑃𝐸𝑖 = 100 ∗
|𝑉𝑎𝑟𝑖 − 𝑉𝑎𝑟𝑖−1|

𝑉𝑎𝑟𝑖−1
 Eq. 3.2 

From these trends, considering a convergence of 98% (percentual error of 2%) to be 

the selection criteria, the maximum number of iterations for each model was selected as the 

minimum simulated point, where this criteria was fulfilled. Figure 3.6 depicts the zoomed 

sections, of the previously presented evolutions, where a 98% convergence occurs: 750, 

3000, 1100 and 1300 iterations for the “30 mm”, “80 mm”, “1 Inch” and “2 Inches”, 

respectively. 

As for the mesh sizing, an analysis was performed to tune it in order to properly 

model the envisioned process. For such analysis, the “30 mm” setup was simulated for 750 

iterations while using different mesh sizes. These differed from each other by the “Num. 

Cells Across Gap” parameter (see Table 3.5), which defines the number of elements to 

  

(a) (b) 

  

(c) (d) 

Figure 3.5:  Evolution of the percentual errors of the variables addressed in the iterations analysis for the 

(a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and (d) “2 Inches” models. 
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generate between geometric features. The setup was simulated using 10, 15, 20, 25 and 30 

cells across gap. The performed analysis addressed the evolution of the compounds 

concentrations and temperature throughout the concentric center line of the tube. When 

compared, these evolutions did not differ from each other. For instance, Figure 3.7 depicts 

the temperature evolutions throughout the tube for the simulated mesh sizes. Since the mesh 

sizing only affects the model discretization into individual elements (see Figure 3.8), no 

difference exists between the depicted curves.  Thus an approach independent of the 

variables’ value needed to be used for this analysis. 

Since varying the mesh size only affects the total number of elements, in which the 

model is discretize, an approach based in the distance between them was followed. Table 

3.7 shows the time each simulation takes and the resulting average distance between mesh 

elements, for the addressed mesh sizes on the “30 mm” setup. As depicted, increasing the 

number of elements in the mesh, i.e. the number of cells across gap, not only reduces the 

average distance between elements, but also increases the computational time of each 

simulation. Thus, in order to select the mesh size, a trade-off methodology was followed.  

  

(a) (b) 

  

(c) (d) 

Figure 3.6:  Evolution of the percentual errors of the variables addressed in the iterations analysis, for the 

(a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and (d) “2 Inches” models, zoomed into the section where a 

98% convergence occurs: 750, 3000, 1100 and 1300, respectively. 
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Such trade-off methodology was performed by comparing consecutive mesh sizes, 

based on the additional simulation time (how many additional hours does it take to 

simulate) and the deducted distance between elements (how much closer consecutive 

elements are in the mesh). The analysis was performed by addressing the distance between 

elements won per additional computational time. From the results (see Table 3.8) a mesh 

 

Figure 3.7:  Evolution of the mixture's temperature throughout the concentric center line of the tube, while 

simulating the "30 mm" setup for different mesh sizes. 

 

  

(a) (b) 

Figure 3.8:  Comparison of a (a) 3 and a (b) 30 cells per gap meshes of the same geometry. 
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with 20 cells across gap was selected, since with an additional 1.38 hours still subtracts 0.5 

mm to the distance between elements, which was considered valuable as such mesh results 

in a distance less than 1.5 mm (see Table 3.7). Moreover, the 0.08 mm/h achieved by 

selecting the 25 cells across gap mesh size was considered insufficient. 

The same 20 cells across gap was considered for the other setups, since they will all 

be compared with each other in the following sensitivity analysis. Thus, Table 3.9 depicts 

the simulation conditions used in the presented research study. 

Table 3.7:  Time duration of each simulation and average distance between mesh elements, for different mesh 

sizes, in the "30 mm" setup. 

Num. Cells 

Across Gap 

Duration of each 

simulation [h] 

Average distance between 

elements [mm] 

10 6.80 2.6 

15 7.80 1.8 

20 9.18 1.3 

25 12.98 1 

30 24.34 0.9 

 

Table 3.8:  Distance reduction between mesh elements per additional simulation time. 

Num. Cells 

Across Gap 

Additional 

simulation 

time [h] 

Deducted distance 

between elements 

[mm] 

Deducted distance per 

additional time 

[mm/h] 

10 - - - 

15 0.99 0.8 0.8 

20 1.38 0.5 0.36 

25 3.79 0.3 0.08 

30 11.36 0.1 0.01 

 

Table 3.9:  Obtained simulation conditions to be used in the research study. 

Tube Num. of Cells Num. of Iterations 

“30 mm” 20 750 

“80 mm” 20 3000 

“1 Inch” 20 1100 

“2 Inches” 20 1300 
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3.2. Simulation Scenarios Selection 

After defining the simulation conditions, a CFD-based sensitivity analysis was 

performed to understand the fluid dynamics that occur inside the tube reactor. Such 

sensitivity analysis addressed the effects of each process parameter in the inner tube 

synthesis conditions, and thus consists in a parameterization study. 

As previously referred, the CVD synthesis process has various parameters. In the 

specific case of the setups addressed in this research, these process parameters are the three 

gas flows and the furnace temperature. In the most simple sensitivity analysis, where each 

parameter is tested for the maximum and minimum values allowed in the setups, a total of 

16 simulations would be required. However, such simplified analysis would result in a low-

detail comprehension of the process. Thus, each parameter should be tested for more 

values. However, increasing the number of tested values increases the total number of 

simulations to perform by a power of four, which would increase the sensitivity analysis’ 

computational time. 

Alternatively, the Taguchi method [9,10] was used to set the simulations scenarios to 

be considered in the study. It uses orthogonal arrays to stipulate a minimum number of 

experiments, which could give the complete information of all the factors affecting the 

performance parameter, saving time and resources. These arrays are selected given the 

number of parameters and levels, i.e. values. For the previously described case of 4 

parameters and 2 levels, only a total of 8 simulation scenarios would be required (see Table 

3.10). 

Table 3.10:  Taguchi orthogonal array, depicting the scenarios to simulate in a 4 parameter (a, b, c and d) and 2 

levels (1 and 2) example. 

 Parameter 

Run a b c d 

1 1 1 1 1 

2 1 1 1 2 

3 1 2 2 1 

4 1 2 2 2 

5 2 1 2 1 

6 2 1 2 2 

7 2 2 1 1 

8 2 2 1 2 
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Moreover, Table 3.11 depicts the total number of simulations to perform, according 

to the Taguchi orthogonal arrays, for various combinations of parameters and levels. It also 

shows a percentual comparison between these values with the corresponding total number 

of simulations, which would be performed if the Taguchi method was not considered. For 

instance, for 5 parameters evaluated for 2 levels each, the total number of combinations 

is 25 = 32. Thus, if the Taguchi method is considered, the resulting 8 simulations represent 

25% of that number. Through this comparison, it is deductible that the Taguchi method 

always result in less simulations (except when there are only 2 parameters), and its 

efficiency is proportional to the number of levels or parameters. Thus, the Taguchi method 

was applied to select the scenarios for simulation. 

In the following chapters, a description of the Taguchi orthogonal array, used in each 

performed sensitivity analysis, depicting the number or parameters and levels to be 

considered, is presented. 

3.3. Post-Processing 

The Taguchi orthogonal arrays significantly reduce the number of scenarios to be 

considered in each analysis. In order to obtain complete information about the analyzed 

system, a few mathematical equations must be followed. Such procedure is described in 

this section. 

Once all values were obtained for each simulation, the analysis was performed 

addressing individual levels of each parameter. Since each parameter-level combination 

appears multiple times throughout the experiments, the value of a certain variable for such 

combination was computed as the average of the values of that variable for those scenarios. 

This procedure is represented by Eq. 3.3, where 𝑉𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑙𝑒𝑣𝑒𝑙  is the value of variable 𝑉 for a 

Table 3.11:  Number of simulations to run, depending of the number of parameters and levels, when following the 

Taguchi orthogonal arrays, as well as its percentual representation when compared to the total number 

of simulations if the Taguchi method was not considered. 

  Number of Parameters 

  2 3 4 5 

Number of 

Levels 

2 4 (100%) 4 (50%) 8 (50%) 8 (25%) 

3 9 (100%) 9 (33%) 9 (11%) 18 (7%) 

4 16 (100%) 16 (25%) 16 (6%) 16 (1.5%) 

5 25 (100%) 25 (20%) 25 (4%) 25 (0.8%) 
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given parameter-level combination, and 𝑉𝑠𝑃
𝐿  is the value of variable 𝑉, obtained in a 

simulation which scenario contains the 𝑃 − 𝐿 combination. 

𝑉𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑙𝑒𝑣𝑒𝑙 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (∀ 𝑉𝑠𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑙𝑒𝑣𝑒𝑙 |
𝑃=𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟;𝐿=𝑙𝑒𝑣𝑒𝑙

) Eq. 3.3 

Considering a 4 parameters and 2 levels example, whose output of each run 𝑖 is 

represented by 𝑉𝑖 (see Table 3.12), the value of this variable when, for example, the 

parameter b has the value 2, 𝑉𝑏
2, is computed as the average of the set [𝑉3, 𝑉4, 𝑉7, 𝑉8]. 

Similarly, when the parameter d has the value 1, 𝑉𝑑
1 is the average of the set [𝑉1, 𝑉3, 𝑉5, 𝑉7]. 

Moreover, in order to have a better perception on each gas influence in a certain 

variable, the maximum and minimum values for each combination were also computed and 

presented in the results for each variable. For example, Eq. 3.4 and Eq. 3.5 depict how the 

maximum and minimum values were calculated for the parameter-level combination, 

respectively. 

𝑚𝑎𝑥𝑉𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑙𝑒𝑣𝑒𝑙 = 𝑚𝑎𝑥 (∀ 𝑉𝑠𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑙𝑒𝑣𝑒𝑙 |
𝑃=𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟;𝐿=𝑙𝑒𝑣𝑒𝑙

) Eq. 3.4 

 

𝑚𝑖𝑛𝑉𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑙𝑒𝑣𝑒𝑙 = 𝑚𝑖𝑛 (∀ 𝑉𝑠𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑙𝑒𝑣𝑒𝑙 |
𝑃=𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟;𝐿=𝑙𝑒𝑣𝑒𝑙

) Eq. 3.5 

Posteriorly, envisioning the analysis of how each parameter affects each variable, a 

ranking vector was computed for each variable. Since every parameter-level combination 

was tested the same amount of times, the computed means, i.e. the 𝑉𝑃
𝐿 values, were used to 

Table 3.12:  Scenarios to simulate in a 4 parameter (a, b, c and d) - 2 (1 and 2) levels example with an output 

variable. 

 Parameter 
Output 

Run a b c d 

1 1 1 1 1 𝑉1 

2 1 1 1 2 𝑉2 

3 1 2 2 1 𝑉3 

4 1 2 2 2 𝑉4 

5 2 1 2 1 𝑉5 

6 2 1 2 2 𝑉6 

7 2 2 1 1 𝑉7 

8 2 2 1 2 𝑉8 
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create this ranking. Considering 𝑋𝑃
𝑉 as the set containing all values of variable 𝑉 calculated 

for parameter 𝑃, the variation caused by 𝑃 in 𝑉, ∆𝑃
𝑉, can be calculated by Eq. 3.6. 

∆𝑃
𝑉= max(𝑋𝑃

𝑉) − 𝑚𝑖𝑛(𝑋𝑃
𝑉) Eq. 3.6 

Considering the previous example (see Table 3.12), 𝑋𝑏
𝑉 is the set which includes all 

values of the variable 𝑉 for the parameter b, i.e. [𝑉𝑏
1, 𝑉𝑏

2]. This is the set used to calculate 

the variation ∆𝑏
𝑉 via Eq. 3.6. 

Finally, the effects of how each parameter affect each variable were addressed as a 

percentual ranking, where the parameter with the highest percentage would be the one, 

which produces the highest variation in each variable. Thus, the percentual dependency of 

variable 𝑉 on parameter 𝑃, 𝐷𝑃
𝑉 , can be calculated by Eq. 3.7. 

𝐷𝑃
𝑉 =

∆𝑃
𝑉

∑ ∆𝑖
𝑉 Eq. 3.7 

In the example, to calculate the dependency of the variable 𝑉 on parameter 𝑏, 𝐷𝑏
𝑉 , Eq. 

3.7 is re-written as follow. 

𝐷𝑏
𝑉 =

∆𝑏
𝑉

∆𝑎
𝑉 + ∆𝑏

𝑉 + ∆𝑐
𝑉 + ∆𝑑

𝑉 Eq. 3.8 

Following this methodology, it is possible to analyze which process parameter has 

higher impact in the process conditions inside the tube. Since the conditions’ dependency 

on each parameter is calculated as a fraction of all the variations, a higher percentual 

dependency is related with a higher impact that a parameter has in a specific variable. 

3.4. Variables selection 

Since the Taguchi method only allows the analysis of certain process characteristics 

[9,10], these were selected taking into account previous observations on typical variables' 

curves throughout the tube. For instance, Figure 3.9 depicts typical evolutions of the 

mixture’s temperature and velocity throughout the tube. The selected process 

characteristics to be analyzed are related with the variables’ convergence point (point A in 

Figure 3.9), which was defined as the smallest distance from the tube entrance (𝑖) that 

ensures a convergence of 98% (see Eq. 3.9, where 𝑓𝑖
𝑒𝑛𝑑 is the vector containing all values 

of a certain variable for indexes greater or equal to index 𝑖). 
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𝑚𝑎𝑥(‖𝑓𝑖
𝑒𝑛𝑑 − 𝑓𝑖

𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ‖)

𝑓𝑖
𝑒𝑛𝑑̅̅ ̅̅ ̅̅

< 0.02 Eq. 3.9 

The process characteristics addressed in this sensitivity analysis were selected by 

evaluating how each variable’s evolution changes for different gas flows. For variables 

which tend to converge, at different rates, to the same value (the mixture’s temperature, for 

instance), the distance from the tube entrance where it reaches the convergence value was 

selected (Dist. C in Figure 3.9). On the other hand, for variables which converge towards 

different values (such as the mixture’s velocity), the mean value of convergence was 

evaluated (Dist. B in Figure 3.9). Finally, if the variable's profile throughout the tube is 

uniform, i.e. it does not converges to a specific value, the mean value of the variable 

throughout the tube was used. 

3.5. Final Considerations 

The methodology here described is followed throughout the following chapters to 

perform several sensitivity analysis of the CVD setups. However, each sensitivity analysis 

is performed with a different purpose. Thus, each one has its own sets of simulation 

scenarios and of selected variables to analyze, which are described individually in detail 

for each sensitivity analysis. 

 

  

(a) (b) 

Figure 3.9:  Typical curve of the mixture’s (a) temperature and (b) velocity evolutions throughout the tube, 

depicting the convergence parameters used in the sensitivity analysis. 
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Chapter 4 

4. SENSITIVITY ANALYSIS 

A CFD-based sensitivity analysis was the starting point, and aimed at understanding 

the fluid dynamics which occur inside the tube reactor. Such sensitivity analysis addresses 

the effects of each process parameter in the inner tube synthesis conditions. By identifying 

and understanding these effects through numerical tools, it becomes then possible to target 

and achieve specific synthesis conditions by adjusting the process parameters. 

4.1. Methodology 

The presented analysis consisted in a parametrization study, where the addressed 

process parameters were the gases flows. In the analysis, each gas was tested for various 

flows and their effects on several process characteristics was evaluated. As mentioned in 

chapter 3, the Taguchi method was used to set the simulations scenarios to be considered 

in the study. 

The sensitivity analysis addressed all three gases (ethylene, hydrogen and helium), 

tested for five different flows (50, 250, 500, 750 and 1000 sccm), resulting in detailed 

information on the synthesis conditions’ dependency on the process parameters. These flow 
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values were selected taking into account the Mass Flow Controllers’ maximum flow 

available in the lab (1000 sccm), and the equidistance between them. Since a non-zero flow 

is always intended, the lower value (50 sccm) is the only non-equidistant one. For this 

sensitivity analysis with 3 parameters and 5 levels, a total of 25 simulation scenarios should 

be performed according to the Taguchi method (see Table 4.1). 

In this sensitivity analysis, the studied variables were: 

 Mean of each gas concentration throughout the tube; 

 Convergence value of the mixture's, temperature and velocity; 

Table 4.1:  Gas flows, presented in sccm, used in the simulation scenarios that constitute the sensitivity analysis. 

Exp. C2H4 H2 He 

1 50 50 50 

2 50 250 250 

3 50 500 500 

4 50 750 750 

5 50 1,000 1,000 

6 250 50 250 

7 250 250 500 

8 250 500 750 

9 250 750 1,000 

10 250 1,000 50 

11 500 50 500 

12 500 250 750 

13 500 500 1,000 

14 500 750 50 

15 500 1,000 250 

16 750 50 750 

17 750 250 1,000 

18 750 500 50 

19 750 750 250 

20 750 1,000 500 

21 1,000 50 1,000 

22 1,000 250 50 

23 1,000 500 250 

24 1,000 750 500 

25 1,000 1,000 750 
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 Distance to tube entrance (convergence point) where the mixture's 

temperature and velocity reach convergence. 

These variables were measured throughout the tube’s center line, coaxial to the 

mixture’s flow (see Figure 4.1). Once all values were obtained for each simulation, the 

analysis was performed by following the methodology presented in section 3.3, where the 

percentual dependencies of each synthesis condition on each process parameter are 

calculated. These dependencies reflect the impact of each parameter in each variable and 

thus, can be used as a metric to determine the parameter which influence most of the 

variables. 

4.2. Results and Discussion 

The sensitivity results for the addressed variables are presented in this section, which 

is organized based on the variables' nature. The various subsections are: (i) gases 

concentrations; (ii) mixture's velocity; (iii) mixture's temperature; (iv) temperature 

dependent properties; and (v) comparison between tubes. 

4.2.1. Gases Concentrations 

Since the varied parameters are the compounds flows, the most directly affected 

variables are their concentrations. Figure 4.2, Figure 4.3 and Figure 4.4 depict the 

sensitivity analysis results for the C2H4, H2 and He concentrations, respectively, for all 

 

Figure 4.1:  Graphical representation of the tube's center line, where measurements were made. 
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addressed tubes. As stated in section 3.3, for each gas-flow combination, in addition to the 

mean value (𝑉𝑃
𝐿), the maximum and minimum points were also computed and are presented 

as error bars. As expected, each compound concentration increases with its own flow and 

decreases with the increase of the other gases' flows. 

Nonetheless, the ethylene gas flow is the parameter which causes more variation in 

the compounds’ concentrations’ mean values. Having a higher molar mass (see Table 3.4), 

ethylene is the compound which most affect the mixture’s behavior inside the tube, leading 

to its higher concentration and, consequently, a lower concentration of the other gases. For 

the same reason, ethylene also has influence in the difference between the maximum and 

minimum points of other gases concentrations. The simulations where the ethylene flow is 

maximum (or minimum), are the ones which result in the maximum (or minimum points) 

for the other compound curves. This means that simulations that limit the H2 and He 

concentration values, for any given tested flow, are the ones where the ethylene flow is the 

highest or the lowest. Thus, although data was collected for the other gases, only the 

  

(a) (b) 

  

(c) (d) 

Figure 4.2:  Sensitivity analysis of the ethylene concentration, for the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and 

(d) “2 Inches” tubes. 
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ethylene’s effects on the addressed variables are presented this point onward. 

Moreover, these results are consistent for the different setups, assessed in this 

analysis. In fact, the obtained error bars are equal for all four setups, meaning that the 

setups’ distinguishable features do not affect the concentrations inside the tube. These are 

only affected by the gases flows. 

  

(a) (b) 

  

(c) (d) 

Figure 4.3:  Sensitivity analysis of the hydrogen concentration, for the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and 

(d) “2 Inches” tubes. 
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4.2.2. Mixture’s Velocity 

The variable which most directly depends on the total flow is the mixture’s velocity 

profile throughout the tubes. Figure 4.5 depicts a typical velocity profile throughout the 

tube in the 30 mm setup. After entering the tube, the mixture’s velocity decreases due to 

the difference between the diameters of the setup lines and tube. Inside the tube, the mixture 

has a greater area to flow and, in order to maintain the same volumetric flow, its velocity 

is reduced. The mixture’s velocity is also influenced by its viscosity, which defines the 

mixture’s resistance to its own flow. Due to this property, the particles nearer the tube walls 

slow down and, to maintain the volumetric flow, particles nearer the tube center have to 

speed up. Moreover, in gases, the viscosity increases with temperature [1–3]. Compared to 

liquids, gases have a weaker intermolecular force and, the increase of temperature causes 

  

(a) (b) 

  

(c) (d) 

Figure 4.4:  Sensitivity analysis of the helium concentration, for the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and 

(d) “2 Inches” tubes. 
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the molecules to travel more freely and randomly, causing more collisions between them, 

increasing the viscosity and intensifying the referred velocity increase. 

Both these phenomenon affect the mixture’s velocity. Closer to the tube entrance, the 

velocity reduction effects are greater, and, further away, the velocity increase is still 

occurring until a constant velocity is achieved and maintained throughout the tube. Thus 

the mixture’s velocity is a parameter whose evolution converges to a certain value, being 

defined by its convergence value and point. These variables were assessed in the sensitivity 

analysis and the results are shown in Figure 4.6. As expected, a higher flow induces a higher 

mixture velocity (see Figure 4.6a). Such phenomenon can be seen when comparing the 

gases’ streamlines and velocity throughout the 30 mm tube in experiments with a low and 

 

Figure 4.5:  Velocity profile throughout the tube for the experiment with ethylene, hydrogen and helium flows of 

250-250-500 sccm, in the “30 mm” setup. 

 

  

(a) (b) 

Figure 4.6:  Sensitivity analysis, while varying the C2H4 flow, of the velocity's convergence (a) value and (b) point, 

for all setups. 
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a high ethylene flow (see Figure 4.7). Moreover, in the later scenario, since the total flow 

is greater, it requires more time for the velocity to stabilize. Thus a higher ethylene flow 

also increases the distance from the tube entrance where the mixture's velocity converges 

at (see Figure 4.6b). 

In the 80 mm setup, due to its higher radius, the mixture is more dispersed than in the 

30 mm tube, for the same flow, leading to a smaller converge values. Such phenomenon 

can be seen in Figure 4.8, which depicts the velocity profiles, for the same experiment, in 

(a) 

 

(b) 

 

Figure 4.7:  Comparison of the gases mixture’s velocity streamlines across the “30 mm” tube for experiments with 

ethylene, hydrogen and helium flows of (a) 50-50-50 and (b) 1000-250-50 sccm. 
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both setups. Thus in the 80 mm setup, for the same flow, the mixture’s velocity converges 

to a smaller value and also requires more tube distance to reach that convergence (see 

Figure 4.6). Moreover, for ethylene flows higher than 500 sccm, the tube length is not 

sufficient for the mixture to converge properly (see Figure 4.9), resulting in a convergence 

point saturation and convergence values which do not follow the trend of the experiments 

with lower flows (see Figure 4.6).  

 

 

Figure 4.8:  Velocity profile throughout the tube for the experiment with ethylene, hydrogen and helium flows of 

250-250-500 sccm, in the “30 mm” and the “80 mm” setups. 

 

Figure 4.9:  Velocity profile throughout the tube for the experiment with ethylene, hydrogen and helium flows of 

1000-50-1000 sccm, in the “80 mm” setup. 
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In the 1 inch setup, on the contrary to the previous setups, the furnace is not placed 

directly at the tube entrance (see Figure 3.2). Thus, when entering the tube, the mixture’s 

velocity is only affected by the reduction caused by the tube’s bigger radius. Figure 4.10 

depicts a comparison between the velocity profiles, for the same experiment, in these three 

setups. In the 1 inch tube, since the mixture is not being heated right after entering tube, the 

previously referred velocity increase due to the increased dynamic viscosity does not occur. 

Thus, the velocity reduction effects due to the different radius are more noticeable. The 

velocity increase effects due to the increased viscosity only occur later in the tube, when 

the mixture enters the tube section heated by the furnace, resulting in a velocity 

convergence value between the 30 mm and the 80 mm curves (see Figure 4.6). 

The fact that the 2 Inches setup’s entrance is positioned sideways in relation to the 

main tube alters the gases’ diffusion through it. The particles collide with the tube wall, 

directly opposite to the tube entrance (see Figure 4.11). Such collision causes the mixture 

particles to slow down abruptly, stabilizing before flowing through the tube (see Figure 

4.12). It is this phenomenon that causes the velocity convergence value to be smaller than 

in the other setups and to suffer almost no alteration when varying the ethylene flow (see 

Figure 4.6a). 

 

 

Figure 4.10:  Velocity profile throughout the tube for the experiment with ethylene, hydrogen and helium flows of 

250-250-500 sccm, in the “30 mm”, the “80 mm” and the “1 inch” setups. 
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Moreover, since the furnace is placed in the middle of the tube, when the mixture 

reaches the heated section, it is already flowing at a uniform velocity, and, as in the 1 inch 

setup, it speeds up a bit (see Figure 4.12). As for the velocity convergence point, it increases 

with the ethylene flow, as in the other setups (see Figure 4.6a). 

The physical features and differences between setups play a significant role in the 

mixture’s velocity profile throughout the tubes. For instance, only by increasing the tube 

radius or even by changing the tube entrance result in a completely different velocity profile 

 

Figure 4.11:  Mixture’s velocity streamlines across the “2 Inches” setup for the experiment with ethylene, hydrogen 

and helium flows of 250-250-500 sccm. 

 

Figure 4.12:  Velocity profile throughout the tube for the experiment with ethylene, hydrogen and helium flows of 

250-250-500 sccm, in all setups. 
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throughout the tube, for the same gases flows. Moreover, such effects also alter how the 

velocity-related variables are affected by different gas flows. Such profiles affect other 

mixture’s properties, which are presented in the next sections. 

4.2.3. Mixture’s Temperature 

The CVD process consists on compounds flowing through a heated tube, thus, the 

mixture's temperature profile depends on the amount of heat transferred from the tube walls 

to the mixture. Such heat transfer rate is mainly influenced by the mixture’s velocity and 

by the tube temperature, which was constant in this sensitivity analysis. Figure 4.13 depicts 

a typical temperature profile in the 30 mm setup. As the mixture enters the tube, it starts 

 

Figure 4.13:  Temperature profile throughout the tube for the experiment with ethylene, hydrogen and helium flows 

of 250-250-500 sccm, in the “30 mm” setup. 

  

(a) (b) 

Figure 4.14:  Sensitivity analysis, while varying the C2H4 flow, of the temperature's convergence (a) value and (b) 

point, for all setups. 
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heating up and, as it travels throughout the tube, its temperature keeps increasing 

converging to the same value as the tube walls temperature (750 ºC, in this case). Thus, the 

mixture’s temperature profile throughout the tube can be expressed by its convergence 

value and point (see Figure 4.14). 

As previously stated, the mixture’s temperature is influenced by the heat transferred 

to its particles. If the mixture is travelling at a bigger velocity, these particles require less 

time to travel the whole tube length, and consequently, more tube distance to reach the 

same temperature as the tube. This can be seen in Figure 4.15, where the temperature profile 

of the simulation with greater flows required more tube distance to reach the temperature 

of 750 ºC. Thus, it is conclusive that the temperature convergence point increases with the 

gas flows (see Figure 4.14b). As shown in Figure 4.15, such relation is transversal to all 

setups, as it is a consequence of the velocity at which the mixture travels throughout the 

tube. In this figure, it is also noticeable the furnace position in relation to the tubes, in the 

  

(a) (b) 

  

(c) (d) 

Figure 4.15:  Temperature profiles throughout the tube for the experiment with ethylene, hydrogen and helium flows 

of 50-50-50 and 250-250-500 sccm, in the (a) “30 mm”, (b) “80 mm”, (c) “1 Inch” and (d) “2 Inches” 

tubes. 
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1 inch and 2 inches setups. 

As the mixture’s velocity increases, more tube length is required for its temperature 

to reach the desired one. Consequently, if the mixture is travelling too fast, it might occur 

that the existent tube total length is no sufficient for the desired temperature to be reached. 

Comparing the streamlines and temperature throughout the 30 mm tube in experiments 

with a low and a high ethylene flow (see Figure 4.16), it is noticeable that, in the latter, the 

mixture’s velocity is too big for the temperature to reach the desired value. This means that, 

(a) 

 

(b) 

 

Figure 4.16:  Comparison of the gases mixture’s temperature streamlines across the “30 mm” setup for experiments 

with ethylene, hydrogen and helium flows of (a) 50-50-50 and (b) 1000-250-50 sccm. 
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as the flow is increased, the temperature convergence value is reduced (see Figure 4.14a). 

However, when comparing results for different setups, there is not a direct relation 

between their velocity and temperature convergence values (see Figure 4.6a and Figure 

4.14a). For instance, the 30 mm setup is the one which achieved higher velocity values, but 

is not the one with the lowest temperature values. This is due to the total length of the 

setups’ heated section. For instance, the 30 mm tube has a longer heated section (110 cm) 

than the 1 inch’s one (46 cm). Thus, the 30 mm tube has more length for the mixture’s 

temperature to evolve and converge to the desired value. 

In the case of the 80 mm tube, although having the same heating section as the 30 

mm one, it has a bigger radius, meaning that it takes more time for the heat transferred to 

reach the particles travelling in the tube center line, where the measurements were 

performed. This results in a smaller temperature convergence value than the other setups. 

As for the 2 inches setup, the mixture’s velocity is always smaller than the other 

setups due to its lateral entrance. Consequently, the obtained temperature convergence 

value, although also suffering a reduction with bigger flows, such reduction is small, when 

compared to the other setups (see Figure 4.14a). 

4.2.4. Percentual Rankings 

As stated in the methodology, following Eq. 3.6 and Eq. 3.7, it is possible to compute 

the percentual dependency of a given variable 𝑉 on a given parameter 𝑃, 𝐷𝑃
𝑉. Such 

procedure was followed for every addressed setup and, posteriorly, an overall percentual 

ranking of the addressed variables was constructed based on the average of each individual 

dependency. In other words, considering 𝐷𝑃
𝑉

𝑆
 the percentual dependency of the variable 𝑉 

on the parameter 𝑃 in setup 𝑆, the overall percentual ranking, 𝑅𝑃
𝑉, can be computed 

following Eq. 4.1. Following such methodology, the overall percentual rankings were 

computed and are presented in Figure 4.17, which depicts how each addressed variable is 

influenced by each parameter. 

𝑅𝑃
𝑉 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(∀𝐷𝑃

𝑉
𝑆

) Eq. 4.1 

Table 4.2 shows the mean and standard deviation of each gas’ overall ranking, across 

all addressed variables and, with an overall mean and standard deviation of 61.76% and 

14.11%, respectively, ethylene is the gas whose flow most influences the addressed 
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variables, being only surpassed by both the other flows in the helium’s concentration and 

in the mixture’s dynamic viscosity. Such results suggest that, when envisioning a transition 

methodology between different setups, ethylene is the gas, whose flow requires more 

attention. 

4.1. Final Considerations 

In this chapter, a sensitivity analysis, based on a parameterization study, was 

performed. Each gas was tested for various flow values and several characteristics of the 

CVD process to synthesize CNTs were evaluated. Measuring such characteristics for 

various gas flows allowed the analysis of each gas’ effects on the address characteristics, 

resulting in a better understanding of the fluid dynamics, occurring inside the tube reactor 

during the synthesis phase of the CVD process. 

Since each gas was intended to be tested for various flows, resulting in a high number 

of simulation scenarios, the Taguchi orthogonal arrays were used to select the set of 

scenarios, which would still result in relevant information regarding the CVD process 

sensitivity to changes in the gases’ flows. 

 

Figure 4.17:  Percentual ranking of each gas’ effect in each variable, for all setups. Variables: ethylene (C2H4), 

hydrogen (H2) and helium (He) concentrations, temperature convergence point (TP) and value (TV), 

velocity convergence point (VP) and value (VV) 

Table 4.2:  Mean and standard deviation values of the overall percentual rankings for each addressed parameter. 

 C2H4 H2 He 

Mean [%] 61.76 18.67 19.57 

Std. [%] 14.11 10.59 12.08 
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After performing the scenarios, several process characteristics, such as gas 

concentrations and velocity, were measured and then analyzed for variation of the inlet 

gases. Such analysis resulted in a percentual ranking for each address characteristic, 

depicting the gas flow which most influence each variable. With a mean percentual ranking 

of 55%, ethylene was the gas, whose flow most influence most characteristics. These 

findings suggest that, when envisioning certain process characteristics, ethylene is the gas, 

whose flow requires more attention. 
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Chapter 5 

5. TRANSITION MODEL 

A CFD-based analysis was applied to the CVD synthesis process of CNTs to 

understand the fluid dynamics, which occur inside the tube reactor, and to evaluate the 

effect of each parameter in the inner tube conditions. Such CFD analysis was then explored 

to support the transition between two distinct setups. The development of a transition 

methodology is crucial to ease knowledge transfer between labs, and is proposed as an 

alternative to the time-consuming trial-and-error process when addressing yield scale-up. 

This transition was defined as the process of mimicking the conditions obtained in one 

setup in the other. The proposed methodology was based in an optimization problem, where 

the metric to minimize is the error between the conditions at a certain point and the desired 

ones. 

5.1. Conditions Measurement 

This section envisions the design and validation of a CFD-based methodology to 

support the transition between two different CVD setups to synthesize CNTs. Such 

transition consists on achieving the same synthesis conditions, i.e. C2H4 concentration and 

both mixture’s temperature and velocity, in both setups. As a first approach, in order to 
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have a better understanding on how different are these conditions between both setups, they 

were measured and compared for the same scenario (see Table 5.1). 

However, due to the mixture’s viscosity, the evolution of certain variables throughout 

the tube varies with the measurement distance to its center. In other words, considering a 

vertical cross-section of a cylindrical tube (see Figure 5.1), the value of some variables, 

measured in a certain point (Point A), varies with its distance to the tube center (Point C) - 

Dist. B. For instance, due to the mixture’s viscosity, particles nearer the tube walls (a higher 

Dist. B) travel slower than the ones further away (see Figure 5.2). When entering the tube, 

particles within the tube entrance radius (in both cases 3 mm), have much higher velocity 

than the ones at higher distances from the tube center. Then, the overall velocity starts being 

more well distributed, meaning that the particles closer to the tube center start losing 

velocity, which is transferred to the ones outside the tube entrance radius. However, due to 

the mixture’s viscosity, the closer a particle is to the tube walls, the harder it is for it to gain 

velocity, since it is also being slowing down by friction. This leads to a smaller convergence 

velocity than the one achieved by the particles nearer to the tube center.  

Moreover, the way each particle travels throughout the tube has influence in its own 

temperature. For instance, since they are traveling more slowly, particles nearer the walls 

Table 5.1:  Simulated scenario used to compare both setups. 

Gas Inlets [sccm] 
Tube temperature [oC] 

Gas mixture initially inside 

the tube [%] 

C2H4 H2 He H2 He 

150 200 55 750 78.4 21.6 

 

 

Figure 5.1:  Typical vertical cross-section of a cylindrical tube, perpendicular to the flow’s direction. 
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suffer a higher heat transfer than the others, leading to a temperature’s profile whose 

convergence is achieved nearer to the tube entrance (see Figure 5.3). On the other hand, 

particles closer to the tube center are travelling faster, achieving temperature convergence 

further away from the tube entrance. 

Both these phenomenon suggest that the distance to the center, at which the substrate 

is positioned, should be taken into consideration when measuring the conditions to mimic. 

Furthermore, these effects of the mixture’s viscosity on its velocity and temperature profiles 

are more noticeable in a tube with a smaller diameter. For instance, in the 80 mm tube, 

although the mixture’s velocity is smaller than in the 30 mm tube, it takes more time to 

(a) 

 

(b) 

 

Figure 5.2:  Velocity profiles, for various distances from the tube center, throughout the (a) 30 mm and the (b) 80 

mm tubes. 
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stabilize, i.e. farther convergence point (see Figure 5.2). As a consequence, the mixture’s 

temperature’s convergence point also increases for tubes with higher diameter (see Figure 

5.3). 

As suggested by Figure 5.2 and Figure 5.3, certain variables, namely the mixture’s 

velocity and temperature, have different evolutions throughout the tube. Particles closer to 

the walls have lower temperature’s convergence point and velocity’s convergence value 

than the ones nearer to the tube center. Thus, envisioning the transition between two tubes, 

the substrate position in relation to the tube center should be taken into consideration when 

measuring, in one tube, the conditions (i.e. ethylene concentration and mixture’s 

(a) 

 

(b) 

 

Figure 5.3:  Temperature profiles, for various distances from the tube center, throughout the (a) 30 mm and the (b) 

80 mm tubes. 
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temperature and velocity) to mimic in the second tube. 

As depicted in Figure 5.4, the substrate position is defined by its distance to the tube 

entrance (Dist. A), and by the distance to the tube center (Dist. B). In previous synthesis 

performed in the 30 mm tube (see [1]), the substrate was positioned without additional 

structures, being its distance to the tube center (Dist. B) defined only by its wafer piece 

size. Moreover, considering a vertical cross-section of a typical cylindrical tube (Figure 

5.5), it is possible to define the relationship between the width of the substrate (𝐿) and its 

distance to the tube center (𝐷𝑖𝑠𝑡 𝐵) by Eq. 5.1, where 𝑟 is the radius of the tube and ℎ2 is 

the distance between the substrate and the tube center. 

𝐷𝑖𝑠𝑡 𝐵 = |√𝑟2 − (𝐿 2⁄ )2| Eq. 5.1 

Since previous CNTs synthesis were performed in 10 mm square substrates [1], it is 

possible to evaluate the evolutions of each condition (ethylene concentration and mixture’s 

temperature and velocity) throughout the tubes, when considering or not the substrate’s 

distance to the tube center. A comparison between these profiles is depicted in Figure 5.6. 

 

Figure 5.4:  Typical horizontal cross-section of a cylindrical tube, depicting the variables that define the substrate 

position. 

 

Figure 5.5:  Scheme to compute the height at which the substrate is placed. 
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Firstly, the ethylene concentration’s variation with the height of measurement is 

(a) 

 

(b) 

 

(c) 

 

Figure 5.6:  Profiles of the (a) ethylene concentration, (b) mixture's temperature and (c) velocity throughout both 

tubes at the tube center (ctr) and at a height, at which a 10 mm square substrate would be according to 

Eq. 5.1 (sbs). 
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negligible (see Figure 5.6a). As depicted, nearer the tube entrance, there is a higher 

concentration of ethylene in the center of the tube than nearer its walls, for both tubes. This 

occurs since the inlet lines have a smaller diameter than the tube and are positioned 

concentrically with it, making the center of the tube nearer its entrance the tube section 

which more directly receives the ethylene inlet. 

Secondly, as for the mixture’s temperature, a few conclusions are noticeable from 

Figure 5.6b. As aforementioned, the particles nearer the walls absorb more heat from them, 

leading to a faster temperature convergence at the substrate height. Due to their distance to 

the tube center, where the mixture’s velocity is higher (see Figure 5.2), the temperature at 

the substrate height converges farther in the 30 mm tube (see Figure 5.6b). Moreover, due 

to the greater tube radius, the temperature increase nearer the center is slower in the 80 mm 

tube. 

Lastly, the mixture’s velocity in the 80 mm tube is always smaller than in the 30 mm 

tube (see Figure 5.6c). In fact, the ratio between the velocities at the tubes’ center is equal 

to their area ratio (see Table 5.2).  

5.2. Methodology 

From Figure 5.6, it is conclusive that the mixture’s velocity is the condition which 

most differs when comparing both tubes. As previously referred, the variation of the 

ethylene concentration is negligible (see Figure 5.6a), and the mixture’s temperature always 

converges to the same value (750 oC), nearer or further away from the tube entrance (see 

Figure 5.6b). As for its velocity, it converges to different values, depending of the tube and 

the substrate position (see Figure 5.6c). In fact, without changing the height at which the 

substrate is positioned, the desired mixture’s velocity is not achievable in the 80 mm tube. 

Moreover, such achievement is still not possible while varying only the ethylene flow from 

50 to 500 sccm (see Figure 5.7). Nevertheless, as depicted in Figure 5.2, one way to 

Table 5.2:  Relation between the 30 mm and the 80 mm tubes' area and velocity ratios. 

 Area [mm3] Velocity [m-1] 

30 mm tube 706.8583 0.2571 

80 mm tube 5026.5 0.0362 

30 mm / 80 mm ratio 0.1406 0.1408 
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overcome this issue is to place the substrate at a higher height. Figure 5.8 depicts how the 

velocity convergence value varies for various positioning heights in the 80 mm tube, and 

pertains the hypothesis to achieve the desired velocity by changing the substrate’s position. 

Summing up, the transition from the 30 mm to the 80 mm tube can be seen as a third 

order system with three inputs (ethylene concentration and both mixture’s temperature and 

 

Figure 5.7:  Evolution of the velocity convergence value, for both tubes, when varying the ethylene flow and 

considering a substrate positioning height when it is placed in the bottom of the tubes. 

 

Figure 5.8:  Evolution of the velocity convergence value, varying the ethylene flow, for the desired 30 mm tube 

conditions and various heights in the 80 mm tube. 
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velocity) and three output variables (ethylene flow, and the height and distance from the 

tube entrance at which the substrate should be positioned). 

In fact, the described problem can be seen as an optimization one, where the objective 

function to minimize (i.e. metric) is the error between the conditions at a certain point and 

the desired ones. Considering the error of each addressed variable as a vector, the total error 

is the norm of the sum of those vectors (see Eq. 5.2). Moreover, Eq. 5.3 depicts how the 

percentual error was computed. 

𝐸𝑟𝑟𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = √𝐸𝑟𝑟𝑜𝑟𝐶2𝐻4
2 + 𝐸𝑟𝑟𝑜𝑟𝑇𝑒𝑚𝑝

2 + 𝐸𝑟𝑟𝑜𝑟𝑉𝑒𝑙𝑜𝑐
2 Eq. 5.2 

 

𝐸𝑟𝑟𝑜𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =
|𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒|

𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑉𝑎𝑙𝑢𝑒
 Eq. 5.3 

However, as a first approach to this problem, the substrate’s positioning height in the 

second setup is defined a priori to 16 mm below the tube center. This height was selected 

since it was the one with least error when compared to the value measured at the substrate 

height, in the 30 mm tube (depicted as the target in Figure 5.8). A previously defined height 

in the second setup narrows the search to only two variables: the C2H4 flow and the 

substrate position in relation to the tube entrance (Dist. A in Figure 5.4).  

Thus, it is possible to map the described problem with three dimensions: (i) ethylene 

flow; (ii) distance from the tube entrance; and (iii) the value of 𝐸𝑟𝑟𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 at that specific 

point. With such configuration, the transition process can be described as finding the 

minimum point of 𝐸𝑟𝑟𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 and return the synthesis process parameters, i.e. ethylene 

flow and distance from the entrance, which result in such value. 

5.3. Results and Discussion 

5.3.1. Fixed Height Search 

As aforementioned, the first approach to the described transitioning problem was to 

mimic in the 80 mm tube the conditions obtained in the 30 mm tube during the synthesis 

phase of the recipe depicted in Table 5.1. In the author’s experimental setup, when 

synthesizing CNTs in the 30 mm tube, a 1 cm squared substrate is positioned at 60 cm from 



Chapter 5 CFD-based tool to support CNT synthesis via CVD 

94/142 

the tube entrance. Taking this substrate position into account, as well as its height according 

to Eq. 5.1, the scenario described in Table 5.1 was simulated and the synthesis conditions, 

which should be achieved in the 80 mm tube, where measured and are presented in Table 

5.3. 

With such conditions, it is possible to apply the proposed methodology to target the 

process parameters and substrate position which would minimize described metric, i.e. 

better mimic these synthesis conditions in the 80 mm tube. As aforementioned, the search 

in the 80 mm tube was firstly performed at a single substrate positioning height (𝐷𝑖𝑠𝑡 𝐵) 

of 16 mm. Moreover, the search was performed using data collected in the simulations 

Table 5.3:  Conditions measured at the substrate position on the 30 mm tube for the simulated scenario. 

Variable C2H4 Con. [ % ] Temp. [ oC ] Vel. [ m s -1 ] 

Value 86.934 750.05 0.036752 

 

 

Figure 5.9:  Relation of all three dimensions when searching, in the 80 mm tube, for the conditions obtained in the 

30 mm tube. 

Table 5.4:  Recipe which mimics best, in the 80 mm tube, the conditions obtained in the 30 mm tube. 

Variable C2H4 

Flow 

[sccm] 

Distance from 

entrance [cm] 

C2H4 Con. 

[ % ] 

Temp. 

[ ºC ] 

Vel. 

[ m s -1 ] 

Value 200 69.258 89.961 749.55 0.034955 

Desired - - 86.934 750.05 0.036752 

Error [ % ] - - 3.48 0.05 4.89 

Metric [ % ] - -  6.00  

 

 

 



CFD-based tool to support CNT synthesis via CVD Chapter 5 

95/142 

where the C2H4 flow was varied from 50 to 500 sccm in 50 sccm steps, while keeping the 

H2 and He flows at 200 and 55 sccm, respectively. Using this simulation domain, it is 

possible to map the relation between all three dimensions, i.e. ethylene flow, distance from 

the tube entrance; and the value of 𝐸𝑟𝑟𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (see Figure 5.9). Using the proposed 

methodology, this domain was searched for the process parameters, which result in the 

minimum metric. These are shown in Table 5.4, which, resulting in a total percentual error 

of 6%, are validated to mimic the desired conditions. 

For any given set of desired synthesis conditions, measured in the 30 mm tube, the 

80 mm tube simulations’ domain can be scanned and searched for the conditions, which 

better mimic the desired ones, i.e. the ones with the lowest percentual error (metric). 

Since the desired conditions can be measured for any simulation scenario on the 30 

mm tube, this fixed-height search methodology was followed for every simulated scenario1. 

For each scenario, the desired conditions were measured and compared with the 80 mm 

tube’s simulations domain, thus resulting in the minimum percentual error for each scenario 

in the 30 mm tube (presented in Figure 5.10). Moreover, the obtained process parameters, 

substrate positioning and individual percentual errors are presented in Table 5.5. 

                                                 

1 Defined by varying the ethylene flow from 50 to 500 sccm, in steps of 50 sccm. 

 

Figure 5.10:  Obtained metric when transitioning from the 30 mm tube to the 80 mm one. Here the synthesis 

conditions to mimic are measured in a 10 mm square substrate positioned 60 cm from the tube entrance 

and the search in the 80 mm is fixed to a height of 16 mm below the tube center. 
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Due to the tube diameter increase, the obtained ethylene flow in the 80 mm tube is 

always greater than the one used in the 30 mm tube (see Figure 5.11). As depicted, the 

relation between the ethylene flows on both tubes is quasi-linear until a 30 mm tube 

ethylene flow of 400 sccm. Beyond this point, the increasing trend stops at an 80 mm 

ethylene flow of 500 sccm since no simulation was performed with a higher value. Such 

relation comes in accordance with the results depicted in Figure 5.8, where a linear relation 

was obtained between the 30 mm tube at substrate height and the 80 mm tube at the tested 

substrate height. Moreover, the result’s saturation also occurs in the substrate position, 

Table 5.5:  Results obtained when transitioning between both tubes, by searching on a fixed height methodology. 

C2H4 Flow [sccm] Position 

[m] 

Errors [%] Metric 

[%] 30 mm 80 mm C2H4 Temp. Vel. 

50 50 0.107742 7.21 11.96 8.22 16.21 

100 150 0.994037 6.97 0.20 5.93 9.16 

150 200 0.692581 3.48 0.05 4.89 6.00 

200 300 0.74828 3.50 0.93 2.56 4.43 

250 350 0.899463 2.40 0.78 1.03 2.73 

300 400 0.998925 1.75 0.91 0.37 2.01 

350 450 0.998925 1.34 2.08 2.13 3.26 

400 500 0.998925 1.06 4.17 3.08 5.29 

450 500 0.891506 0.47 7.96 1.84 8.19 

500 500 0.859678 0.01 9.20 1.20 9.27 

 

 

Figure 5.11:  Relation between the flows in the 30 and the 80 mm tubes. 
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which result in an increase of the metric for flows higher than 300 sccm (see Figure 5.10). 

Such saturation is due to two phenomenon: 

1. With the flow increase, the mixture is less affected by the heat transfer from 

the tube walls, thus reducing the temperature’s convergence value (see Figure 

5.12); 

2. With a higher flow, the mixture requires more time to reach a constant 

velocity, increasing its convergence point (see Figure 5.13). 

 

Figure 5.12:  Temperature's convergence value for various ethylene flows at the evaluated substrate heights. 

 

Figure 5.13:  Velocity’s convergence point for various ethylene flows at the evaluated substrate heights. 
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Both these phenomenon lead to an increase of the metric for higher ethylene flows. 

One hypothesis to tackle both these issues would be extending the search for other substrate 

heights. Moreover, the former one could also be tackled by increasing the temperature at 

which the tube is heated, resulting in a higher heat transfer. Thus, widening the search for 

other height, as well as performing a sensitivity analysis tackling the tube temperature’s 

effects on the conditions were the next steps to achieve transition between both tubes. 

5.3.2. Non-fixed Height Search 

Results previously presented addressed the search problem by narrowing it to a single 

substrate positioning height. This was considered as one of the issues, which could lead to 

higher error when transitioning between both tubes. Thus, the proposed methodology was 

extended to a four dimensions searching problem. Besides the three previously presented 

variables (ethylene flow, substrate distance to the tube entrance, and the total error between 

the measured conditions), the height at which the substrate could be positioned in the 

second tube was also taken into account. 

This non-fixed height search methodology was followed for the same simulations as 

previously, and the resulting metric is depicted in Figure 5.14. Table 5.6 depicts the 

obtained process parameters, substrate positioning in the 80 mm tube and the individual 

percentual errors. As expected, following a non-fixed height methodology leads to smaller 

 

Figure 5.14:  Obtained metric when transitioning between the tubes, following a fixed height (at 16 mm below the 

tube center) and a non-fixed height search. 
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percentual errors and, consequently, metric values (see Figure 5.14), which were obtained 

for a wider range of simulation scenarios, being lower than 2% for 30 mm ethylene flows 

between 100 and 400 sccm (see Table 5.6). Moreover, for other flows, the percentual error 

was never greater than 7%. Such findings are also true when comparing the non-fixed 

height search results with percentual errors achieved, when fixing the search in the 80 mm 

tube at other substrate positioning heights (see Figure 5.15).  

Moreover, analyzing Table 5.6, the mixture’s temperature’s individual percentual 

error increases with the ethylene flow, reaching a final value of 5%. This comes in 

Table 5.6:  Results obtained when transitioning between both tubes, by searching on a non-fixed height 

methodology. 

C2H4 Flow [sccm] Position 

[m] 

Height 

[m] 

Errors [%] Metric 

[%] 30 mm 80 mm C2H4  Temp. Vel. 

50 50 0.998925 1.71E-04 2.80 0.22 5.84 6.48 

100 100 0.994947 1.71E-04 0.11 0.20 1.78 1.79 

150 150 0.991394 -3.69E-04 0.00 0.20 1.10 1.11 

200 200 0.688603 -1.11E-04 0.03 0.07 1.16 1.17 

250 250 0.994947 1.71E-04 0.01 0.19 1.17 1.19 

300 300 0.983011 1.71E-04 0.01 0.23 1.06 1.08 

350 350 0.998925 1.71E-04 0.01 0.41 0.97 1.05 

400 400 0.998925 1.71E-04 0.01 1.04 0.95 1.41 

450 450 0.998925 1.71E-04 0.01 2.53 0.82 2.66 

500 500 0.998925 -6.10E-03 0.01 5.07 0.31 5.08 

 

 

Figure 5.15:  Comparison between the metrics achieved while following a non-fixed height search and the ones 

achieved when fixing the searching height at the 80 mm tube at other values. 
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accordance with the fact that heat transfer between the tube and the mixture reduces with 

the flow increase, and emphasizes the previously referred hypothesis to improve the 

methodology by also considering changes in the furnace temperature. 

5.4. Transition Improvement by Temperature Effects 

An error-minimization based methodology was proposed to search the synthesis 

parameters, which would better mimic, in the 80 mm tube setup, certain conditions 

measured in the 30 mm tube. This procedure resulted in a percentual error below 2% for 

most of the considered simulated scenarios in the 30 mm tube. Nonetheless, one synthesis 

condition, whose error can be improved, is the mixture’s temperature, especially for higher 

ethylene flows, where the mixture does not have time to absorb sufficient heat to reach the 

desired temperature. Thus, a hypothesis to increase the heat transfer between the tube walls 

and the mixture by varying the furnace’s temperature, and thus reduce the overall 

percentual error, was suggested. This section describes the methodology followed to 

validate such hypothesis. First, a sensitivity analysis regarding both the tube’s temperature 

and the ethylene flow effects on the synthesis conditions was performed. Since this analysis 

validated the proposed hypothesis, the previously defined simulations’ domain was 

increased by simulating more scenarios, where both the ethylene flow and the furnace 

temperature were varied. Lastly, the previously defined search methodology was followed 

for such domain, and results showed that the implementation of such improvement leads to 

higher percentual reductions when the search is fixed to a certain height.  

5.4.1. Furnace Temperature Effects 

Methodology 

Similarly to the previously performed sensitivity analysis (see section 4.1), the study 

presented here consisted in a parameterization one, where each addressed parameter was 

tested for various values. As aforementioned, such analysis comprised changes in the 

ethylene flow and in the tube’s temperature. These were tested for 50, 500 and 1000 sccm; 

and 750, 975 and 1200 oC, respectively. The ethylene values were selected based on the 

minimum, middle and maximum flow values previously tested (see Chapter 4). As for the 

tube’s temperature, the values were the one typically used experimentally (750 oC), the 

maximum temperature allowed by the setup’s furnace (1200 oC) and a middle point 
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(975 oC). The Taguchi method’s orthogonal arrays were used to set up the simulations 

scenarios to be considered in the study, which are presented in Table 5.7. 

Since this sensitivity analysis is comprised in the improvement of a previously 

performed transition methodology, the assessed variables were the same synthesis 

conditions addressed by it: 

 Ethylene’s mean concentration throughout the tube; 

 Value of convergence of the mixture’s temperature and velocity; 

 Distance to the tube entrance where the convergence values are reached. 

After measuring these variables for each simulation, the sensitivity analysis was 

performed by following the methodology presented in section 3.3, allowing the evaluation 

of how each parameter affects each variable. Since this analysis is performed to 

complement and improve the methodology to transition between the 30 and the 80 mm 

tubes, it was performed for both cases and the results are shown as follow. 

Results and Discussion 

Figure 5.16 depicts how the ethylene concentration is affected by each parameter, for 

both tubes. As expected, it is majorly affected by the ethylene flow, being the values from 

the ethylene flow line that impose the variance in the temperature line. For example, the 

simulations where the ethylene flow is 50 sccm are the ones which give the minimum 

values in the temperature line variance, and vice-versa. Thus there is no significant effect 

of the tube temperature in the ethylene concentration. 

Table 5.7:  Simulations scenarios considered in the sensitivity analysis. 

Ethylene 

Flow [sccm] 

Tube 

Temperature [oC] 

50 750 

50 975 

50 1,200 

500 750 

500 975 

500 1,200 

1,000 750 

1,000 975 

1,000 1,200 
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On the other hand, the tube’s temperature is the parameter which most influences the 

mixture’s temperature’s convergence value (see Figure 5.17). Increasing the tube 

temperature induces a higher heat transfer between the tube walls and the mixture, leading 

to greater temperature increases and, consequently, higher convergence values. 

Alternatively, increasing the ethylene flow increases the mixture’s velocity (see Figure 

5.18), which decreases the time during which the mixture receives heat from the tube walls, 

leading to a smaller temperature convergence value (see Figure 5.17). 

As for the temperature’s convergence point, it merely depends on the heat transfer 

rate from the tube walls to the mixture. As previously stated, a higher ethylene flow 

decreases the time where the mixture receives heat, thus increasing the temperature’s 

convergence point (see Figure 5.19). On the other hand, increasing the tube temperature 

leads to a higher heat transfer rate, thus reducing the temperature’s convergence point. 

  

(a) (b) 

Figure 5.16:  Sensitivity analysis of the ethylene concentration, for the 30 and 80 mm tubes, depending on the 

(a) ethylene flow and the (b) tube temperature. 

  

(a) (b) 

Figure 5.17:  Sensitivity analysis of the temperature’s convergence value, for the 30 and 80 mm tubes, depending on 

the (a) ethylene flow and the (b) tube temperature. 
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However, as depicted in Figure 5.19, the temperature’s convergence point effects by the 

tube temperature are minimal, when compared to the ones caused by the ethylene flow. 

In order to analyze the furnace temperature effects on the mixture’s velocity, it is 

crucial to understand how a mixture’s temperature affects its motion. This effect is 

expressed as a relation between the mixture’s temperature and its dynamic viscosity, which 

defines the mixture’s resistance to its own flow. In gaseous fluids, on the contrary to liquid 

ones, their dynamic viscosity increases with their temperature [2]. This difference between 

gases and liquids is related with the space between molecules. Being more spacious, gases’ 

molecules have a weaker intermolecular force. With the increase of temperature, molecules 

travel more freely and randomly causing more collisions between them, and thus increasing 

the gas dynamic viscosity. In liquids, the intermolecular forces are stronger and thus the 

molecules tend to stick together, which results in less collisions and thus a smaller viscosity.  

  

(a) (b) 

Figure 5.18:  Sensitivity analysis of the velocity’s convergence value, for the 30 and 80 mm tubes, depending on the 

(a) ethylene flow and the (b) tube temperature. 

  

(a) (b) 

Figure 5.19:  Sensitivity analysis of the temperature’s convergence point, for the 30 and 80 mm tubes, depending on 

the (a) ethylene flow and the (b) tube temperature. 

 



Chapter 5 CFD-based tool to support CNT synthesis via CVD 

104/142 

After entering the tube, the mixture slows down, not only due to its transition to a 

bigger tube, but also due to being heated up. Such phenomenon increases the mixture’s 

dynamic viscosity, which defines the mixture’s resistance to its own flow, dampening its 

velocity. Since a lower temperature’s convergence point is induced, both higher tube 

temperatures and smaller ethylene flows lead to higher dynamic viscosity (see Figure 5.20). 

This produces more resistance to the mixture’s flow, leading to a smaller velocity’s 

convergence point. Thus, both convergence points are related, in the sense that the 

velocity’s convergence point also increases with the ethylene flow increase or with the tube 

temperature decrease (see Figure 5.21). 

Although the velocity’s decrease ceases with the dynamic viscosity increase 

stopping, there is another viscosity-related phenomenon that induces variation in the 

  

(a) (b) 

Figure 5.20:  Sensitivity analysis of the dynamic viscosity, for the 30 and 80 mm tubes, depending on the (a) ethylene 

flow and the (b) tube temperature. 

  

(a) (b) 

Figure 5.21:  Sensitivity analysis of the velocity’s convergence point, for the 30 and 80 mm tubes, depending on the 

(a) ethylene flow and the (b) tube temperature. 
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velocity’s evolution. Just for being a viscous fluid, the mixture’s particles slow down, 

starting from the ones nearer the tube walls and continuing to the adjacent ones in a 

continuous process. However, to make up for this effect and maintaining the average 

velocity, the particles further away from the tube walls, in its mid-section, start accelerating 

[3]. Moreover, the distance required for this phenomenon to stabilize (cease the velocity 

increase) is proportional to the mixture’s velocity and the tube diameter, and inversely 

proportional to the mixture’s dynamic viscosity. As referred, higher tube temperatures 

makes the mixture more viscous, which, consequently, leads to shorter stabilizing distance, 

which comes in accordance with the results depicted in Figure 5.21. 

In order to compare the tube temperature effects on the velocity’s convergence value, 

several typical velocity profiles throughout the tube, whose simulation scenarios only vary 

on the tube temperature, were analyzed (see Figure 5.22). Since the mixture’s velocity and 

temperature, at the tube entrance, are the same in the analyzed scenarios, the depicted 

velocity profiles are not affected by the ethylene flow. As aforementioned, as the mixture 

heats up, it slows down. However this velocity decrease only happens during the heating 

phase, which is smaller for higher tube temperatures (shorter velocity’s convergence point). 

In those scenarios, the velocity stabilizing phase starts and, consequently, ends at higher 

velocity values. Thus, the velocity convergence value increases with the tube temperature 

(see Figure 5.18). 

However, the results obtained for the 80 mm are not coherent with this relation 

between the tube temperature and the velocity’s convergence value (see Figure 5.18). As 

 

Figure 5.22:  Typical velocity profiles throughout the 30 mm tube when C2H4 = 500 sccm. 
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previously stated, the velocity’s stabilizing distance increases with the tube’s diameter. 

Thus, for the 80 mm tube, the velocity’s convergence point occurs later in the tube and, for 

higher ethylene flows, it does not fully stabilizes within the tube length (see Figure 5.23). 

Such phenomenon is depicted in the velocity’s convergence point (Figure 5.21), where the 

results for the simulation scenarios, whose ethylene flow is of 1000 sccm, are maximum. 

5.4.2. Transition Considering the Temperature Effects 

In the previous section, a sensitivity analysis addressing the effects of both the 

ethylene flow and the furnace temperature was performed. The achieved results have 

validated the hypothesis to improve the previously described transition model by also 

considering changes to the furnace temperature. This section describes the methodology 

followed to implement such improvement, as well as the obtained results. 

Methodology 

The improvement of the transition model was implemented upon the previously 

described methodology. Since the improvement is based on considering another tunable 

process parameter of the second setup, it only affects its simulation domain, being the 

synthesis conditions to mimic and the search methodology the same as before. 

Previously, the search domain was defined as a set of simulation scenarios, where 

only the ethylene flow varied, from 50 to 500 sccm in steps of 50 sccm, while maintaining 

the hydrogen and helium flows as 200 and 55 sccm, respectively. These simulations were 

performed for a furnace temperature of 750 oC. For the envisioned improvement, the 

domain was increased by including scenarios where the same ethylene flows were also 

  

(a) (b) 

Figure 5.23:  Velocity profiles throughout the 80 mm tube for an ethylene flow of (a) 500 and (b) 1000 sccm. 
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simulated for furnace temperatures of 975 oC and 1200 oC. Considering this set of 

simulation scenarios as the new domain, the previously described search methodology (see 

section 5.2) was followed and the obtained results are presented in the next section. 

Results and Discussion 

As previously, the fixed height search was first performed for a substrate positioned 

16 mm below the tube center, and results are presented in Figure 5.24 and Table 5.8. In this 

 

Figure 5.24:  Comparison between the percentual errors, i.e. metric, obtained for a fixed height search at 16 mm 

below the tube center, with and without the suggested domain improvement. 

Table 5.8:  Obtained results - ethylene flow, furnace temperature and substrate position - in the 80 mm setup for 

the fixed height search, at 16 mm below the tube center, with the suggested improvement and the 

comparison between the percentual errors, i.e. metric, obtained with and without the improvement. 

30 mm 80 mm Metric [%] 

C2H4 

Flow 

[sccm] 

C2H4 

Flow 

[sccm] 

Furnace 

Temp. 

[oC] 

Substrate 

Position 

[m] 

Without 

Improv. 

With 

Improv. 

50 50 1200 0.0441 16.21 8.95 

100 100 975 0.0640 9.16 6.27 

150 150 975 0.0799 6.00 4.56 

200 250 975 0.0998 4.43 3.40 

250 300 975 0.1117 2.73 2.29 

300 350 975 0.1237 2.01 1.75 

350 400 975 0.1356 3.26 1.48 

400 450 975 0.1396 5.29 1.02 

450 450 975 0.1515 8.19 0.55 

500 500 975 0.1555 9.27 0.60 
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case, considering the furnace temperature in the performed search leads to smaller metric 

values, especially for higher ethylene flows where the improvement is higher (see Figure 

5.24). 

Table 5.9 presents a comparison between the ethylene flows and the individual 

percentual errors obtained while considering or not the improvement. Moreover, the errors 

obtained with the improvement are shaded in green or red if they were decreased or 

increased, respectively. These values suggest that most error reductions occurred in the 

ethylene concentration and the mixture’s velocity, especially for scenarios in the 30 mm 

tube with smaller ethylene flows, whereas the mixture’s temperature error was mostly 

improved for higher ethylene flows in the 30 mm tube (≥ 350 sccm). 

The previously performed sensitivity analysis concluded that the furnace temperature 

has direct effects on the mixture’s temperature, by increasing the heat transfer (see section 

5.4.1). For scenarios with higher ethylene flows, this heat transfer increase leads to a higher 

mixture temperature, being the desired one achieved. 

A higher furnace temperature also affects the mixture’s velocity profile, by increasing 

its viscosity (see section 5.4.1). These effects are more noticeable for scenarios with smaller 

ethylene flows. With a higher furnace temperature, similar temperature as the ones without 

improvement can be achieved with smaller ethylene flows in the 80 mm, which allows the 

Table 5.9:  Comparison between the flows, errors and metrics, obtained for the fixed height search, at 16 mm 

below the tube center, with and without the furnace temperature based improvement. The improvement 

errors are shaded in green or red if they were reduced or increased, respectively. 

C2H4 

Flow 

 

[sccm] 

Without Improvement With Improvement 

Flow 

[sccm] 

Errors [%] Metric 

[%] 

Flow 

[sccm] 

Errors [%] Metric 

[%] C2H4 Temp. Veloc. C2H4 Temp. Veloc. 

50 50 7.21 11.96 8.22 16.21 50 7.34 5.13 0.10 8.95 

100 150 6.97 0.20 5.93 9.16 100 0.68 6.06 1.48 6.27 

150 200 3.48 0.05 4.89 6.00 150 0.19 4.47 0.87 4.56 

200 300 3.50 0.93 2.56 4.43 250 2.11 2.24 1.45 3.40 

250 350 2.40 0.78 1.03 2.73 300 1.41 1.56 0.90 2.29 

300 400 1.75 0.91 0.37 2.01 350 1.01 1.07 0.93 1.75 

350 450 1.34 2.08 2.13 3.26 400 0.76 0.7 1.05 1.48 

400 500 1.06 4.17 3.08 5.29 450 0.59 0.13 0.82 1.02 

450 500 0.47 7.96 1.84 8.19 450 0.005 0.43 0.33 0.55 

500 500 0.01 9.20 1.20 9.27 500 0.005 0.13 0.59 0.60 

 

 

 



CFD-based tool to support CNT synthesis via CVD Chapter 5 

109/142 

search methodology to explore other combinations of synthesis conditions with a better 

overall percentual error (see Table 5.9). 

The same methodology was followed for different substrate positioning heights and 

results are presented in Figure 5.25. For each height, it is depicted the obtained minimum 

metric, for each 30 mm simulation scenario, when considering or not the temperature based 

improvement. It is clear that the effects of the improvement depend on the searching height. 

For instance, for substrate positioning nearer the tube walls, there is no improvement at all. 

At these heights, there is more heat transferred than nearer the tube center, thus the effects 

of changing the furnace temperature in the mixture’s temperature are none. Moreover 

increasing the furnace temperature would increase the mixture’s viscosity and thus its 

velocity profile. So, although not having effects on the mixture’s temperature, performing 

the suggested improvement would alter the other synthesis conditions, and thus the overall 

metric. In order to understand what occurs in the other heights, Table 5.10 was constructed, 

depicting which conditions’ percentual errors are improved or not in each addressed height. 

From this table, it is conclusive that the main effect of altering the furnace 

temperature is in the mixture’s temperature, especially for scenarios in the 30 mm tube with 

higher ethylene flows. As aforementioned, this is due to the increased heat transferred to 

the mixture. As for the other synthesis conditions, when searching at heights near the tube 

center, altering the furnace temperature would mostly affect the mixture’s velocity profile, 

Table 5.10:  Comparison between searches performed in different heights when considering the furnace temperature based 

improvement, depicting which synthesis conditions were improved or not, shaded in green or red, respectively. 

C2H4 

Flow 

[sccm] 

Searched Height 

4 mm 8 mm 16 mm 32 mm 

C2H4 Temp Veloc C2H4 Temp Veloc C2H4 Temp Veloc C2H4 Temp Veloc 

50             

100             

150             

200             

250             

300             

350             

400             

450             

500             
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due to the increase of its viscosity. Moreover, the transferred heat takes longer to reach the 

particles traveling at this heights, resulting in a combination of effects which will not 

improve the overall percentual error. 

In conclusion, nearer the tube center, only the scenarios with higher ethylene flow 

are improved, due to a reduced temperature percentual error. As the analysis is performed 

further away from the tube center, this effect starts occurring for scenarios with smaller 

ethylene flows. On the other hand, when nearer the tube walls, the effects of the temperature 

are no longer noticeable and, due to the mixture’s viscosity, effects on its velocity start 

occurring, which is translated in no improvements at all. Nonetheless, for searching heights 

between these cases, altering the furnace temperature has positive effects in all addressed 

synthesis conditions. As previously described, the temperature ones occur for scenarios 

with higher ethylene flows, whereas the other effects occur for lower ethylene flows. 

  

(a) (b) 

  

(c) (d) 

Figure 5.25:  Comparison between the percentual errors, i.e. metric, obtained for a fixed height search, with and 

without the suggested improvement, for a substrate positioning height of (a) 4 mm, (b) 8 mm, (c) 16 

mm, and (d) 32 mm below the tube center. 
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Finally, an analysis of the furnace temperature based improvement was performed 

when the positioning height is not fixed, and results are presented in Figure 5.26 and Table 

5.11. In this case, since there is no height constraints to the searches, the percentual error 

is reduced for scenarios with higher ethylene flow, due to the effects on the mixture’s 

temperature. 

Table 5.11:  Obtained results - ethylene flow, furnace temperature and substrate position - in the 80 mm setup for 

the non-fixed height search with the suggested improvement and the comparison between the 

percentual errors, i.e. metric, obtained with and without the improvement. 

30 mm 80 mm Metric [%] 

C2H4 

Flow 

[sccm] 

C2H4 

Flow 

[sccm] 

Furnace 

Temp. 

[oC] 

Substrate 
Without 

Improv. 

With 

Improv. Position 

[m] 

Height 

[m] 

50 50 750 0.9989 2E-4 6.48 6.48 

100 100 750 0.9949 2E-4 1.79 1.79 

150 150 750 0.9914 -4E-4 1.11 1.11 

200 200 750 0.6886 -1E-4 1.17 1.17 

250 250 975 0.2072 -0.02 1.19 0.93 

300 300 975 0.2390 -0.02 1.08 0.54 

350 350 975 0.2589 -0.02 1.05 0.34 

400 400 975 0.2708 -0.02 1.41 0.62 

450 450 975 0.0719 -0.01 2.66 0.32 

500 500 975 0.2868 -0.02 5.08 0.27 

 

 

 

 

Figure 5.26:  Comparison between the percentual errors, i.e. metric, obtained for a non-fixed height search, with and 

without the suggested improvement. 
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The furnace temperature increase effects are depicted with more detail in Table 5.12. 

Similar to the previous analyzed searches (see Figure 5.25), the improvements occur in 

scenarios of the 30 mm tube with a higher ethylene flow. As before, this is due to the effects 

of an increased heat transferred to the mixture, which increases its temperature and alters 

its velocity profile. Moreover, this later effect is also responsible for the improvements in 

both the 250 and 300 sccm scenarios. As before, for the other scenarios, the increase in the 

furnace temperature affects the mixture’s viscosity, which alters its velocity profile and, 

thus, the gases dispersion through the tube. Consequently, in these cases, the suggested 

improvement does not reduce the overall metric. Overall, considering the temperature-

based improvement to the transition methodology resulted in total percentual errors lower 

than 1%, for scenarios with an ethylene flows higher than 250 sccm. For scenarios with an 

ethylene flow lower than 250 sccm, considering the furnace temperature in the transition 

methodology did not resulted in any improvement. 

5.5. Final Considerations 

In this chapter, a methodology to support the transition between different CVD setups 

to synthesize CNTs was designed and evaluated. After measuring the desired synthesis 

conditions in the 30 mm tube, various simulations performed in the 80 mm tube were 

Table 5.12:  Comparison between the flows, errors and metrics, obtained for the non-fixed height search, with and 

without the furnace temperature based improvement. The improvement errors are shaded in green or red 

if they were reduced or increased, respectively. 

C2H4 

Flow 

[sccm] 

Without Improvement With Improvement 

Flow 

[sccm] 

Errors [%] Metric 

[%] 

Flow 

[sccm] 

Errors [%] Metric 

[%] C2H4 Temp. Veloc. C2H4 Temp. Veloc. 

50 50 2.80 0.22 5.84 6.48 50 2.80 0.22 5.84 6.48 

100 100 0.11 0.20 1.78 1.79 100 0.11 0.20 1.78 1.79 

150 150 0.00 0.20 1.10 1.11 150 0.00 0.20 1.10 1.11 

200 200 0.03 0.07 1.16 1.17 200 0.03 0.07 1.16 1.17 

250 250 0.01 0.19 1.17 1.19 250 0.03 0.60 0.71 0.93 

300 300 0.01 0.23 1.06 1.08 300 0.02 0.38 0.39 0.54 

350 350 0.01 0.41 0.97 1.05 350 0.01 0.28 0.19 0.34 

400 400 0.01 1.04 0.95 1.41 400 0.006 0.16 0.60 0.62 

450 450 0.01 2.53 0.82 2.66 450 0.005 0.06 0.32 0.32 

500 500 0.01 5.07 0.31 5.08 500 0.005 0.26 0.08 0.27 
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searched for the process parameters whose conditions would better mimic the desired ones. 

This mimicking was evaluated by calculating a percentual error. 

The search was performed while considering or not a pre-defined fixed height to 

position the substrate and better results were achieved when not narrowing the search to a 

specific height, where a percentual error less than 2% was achieved for most of the 

considered scenarios. 

Posteriorly, the methodology was improved by considering variations to the furnace 

temperature. Such changes have effect in the mixture’s temperature, by increasing the heat 

transfer rate, and in the mixture’s velocity, by affecting its viscosity. This temperature-

based search was followed for various fixed heights and without fixing the searching 

height. As before, the un-fixed height search was the one which achieved the lowest 

percentual errors, being less than 1% for more than half of the analyzed 30 mm simulation 

scenarios. When fixing the search to a specific height, the results depend on the selected 

one, being better for heights further away from both the tube center and the tube walls. 

The results presented in this chapter were an evaluation of the designed transition 

methodology. Achieving percentual errors between both setups inferior to 2% or 1%, 

depending on whether the furnace temperature is considered, pertains the usage of the 

methodology as a support tool to experimentally transition between setups. 
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Chapter 6 

6. CFD WITH CHEMICAL 

REACTIONS 

Throughout the previous sections, the development of a CFD-based tool to support 

the transition between different CVD processes to synthesize CNTs was performed. Such 

tool took advantage of the CFD capabilities to analyze how different compounds would 

flow through a specific tube to estimate how the synthesis conditions would vary for 

different process parameters. However, such transition tool has its limitations. Since one of 

the synthesis conditions to mimic between setups is the concentration of the used 

hydrocarbon, the transition methodology is only applicable if the addressed setups use the 

same gases. As depicted in section 2.2, there are various possible compounds combinations 

that result in CNT synthesis. Thus, how could the transition tool be adapted in order to 

tackle transition between setups, which use different compounds? Further CFD capabilities 

can be used to tackle these and other issues related with the CNTs synthesis. For instance, 

chemical reactions can be included in the designed model to evaluate how those compounds 

react and interact with each other [1]. 
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Therefore, with the intention to study how these capabilities could help solving 

experimental issues, a model of a CVD process including chemical reactions, which occur 

during the CNTs synthesis, was designed and assessed. The model was based on an 

experimental CVD setup to synthesize CNTs, existent in the Institute for Soldier 

Nanotechnology (ISN) at the Massachusetts Institute of Technology (MIT), mainly 

operated by the NECSTLab research group. 

The issues tackled in this case study were related with CNT growth uniformity in a 

carbon fiber weave, when using a sodium-based catalyst. The usage of CFD tools to address 

such issues had already been attempted by modeling the synthesis phase of the CVD 

process. Nonetheless, further experimental work suggested that the issues were due to poor 

catalyst particles formation during the reduction phase. Thus, the CFD model was altered 

to address the chemical reactions occurring in that phase. Posteriorly, a sensitivity analysis, 

assessing the growth uniformity inside the weave, was performed, and the results gave 

some insights on the next steps to perform experimentally in order to solve the addressed 

issues. 

Moreover, considering the main objective of this thesis work is to develop a CFD-

based model to support the transition between CVD setups, it was thought that the chemical 

reactions kinetics could be an add-on feature of the model in order to extend the transition 

between setups, whose synthesis is based in different hydrocarbons, and not limited to 

different equipment geometries. 

6.1. Case Study Description 

As aforementioned, in order to analyze the CFD chemical reactions capabilities in 

tackling experimental issues, these reactions were included in the design of the 

computational model of a CVD setup, existent in the ISN at the MIT (see Figure 6.1 and 

Table 6.1). 

In this setup, CNTs are synthesized using acetylene (C2H2) and carbon dioxide (CO2) 

as the precursors, hydrogen (H2) as the reducer, and argon (Ar) as the inert gas. Each gas 

flow is controlled by a mass flow controller, which can flow them directly to the quartz 

tube (blue line) or through a water bubbler, used to flow water molecules into the tube, in 

order to increase the process humidity (yellow line). The quartz tube is 762 mm long, has 

an inner diameter of 22 mm, and is placed inside a furnace. The pressure inside the tube is 
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maintained by an output bubbler, containing medium viscosity mineral oil. After passing 

through this bubbler, the gases flow through a pressurized outlet to the building’s 

exhaustion system. 

Over the last years, the group has been focusing in the CNT inter and intra-laminar 

growth on carbon fibers [2,3]. Lately, the possibility to synthesize CNTs by following an 

acetylene-based protocol in a sodium-based catalyst has been studied, due to the protocol’s 

capability of growing CNTs at lower temperatures (480 oC), as well as the catalyst even 

adhesion in the carbon fibers [4–6]. However, the on-going study of this catalyst had 

revealed some uniformity issues on the CNT synthesis [3]. 

Figure 6.2 shows a graphical representation of the Carbon Fiber (CF) weave placed 

(a) 

 

(b) 

 

Figure 6.1:  Experimental setup (a) schematic and (b) photo. 

Table 6.1:  Maker and model of the components of the CVD setup. 

Mass Flow Controllers Furnace 

Aalborg Instruments & Controls, Inc. 

GFC17 

Lindberg/Blue M 

TF55035C1 
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in respect to the gas flow direction, depicting its leading and trailing edges. Figure 6.2 also 

shows the three main uniformity issues, depicted through adimensional representations of 

typical curves of the CNTs synthesis throughout the weave. These three issues are: 

(1) Throughout the weave: CNTs grow more in the CF leading edge than in 

the rest of the weave; 

(2) Inside the weave: CNTs grow more at the surface of the CF, when 

compared to its inside; 

(3) Throughout the day: if the same experiment is repeated throughout the 

day, it has been shown that the synthesis quality reduces from growth to 

growth. 

In order to tackle the first two of these issues, a chemical reaction based CFD model 

of the case study CVD setup was designed and analyzed. 

6.2. Methodology 

The main goal of this case study was to use chemical reactions based CFD models to 

 

Figure 6.2:  Schematic of the CVD setup to synthesize CNTs in a Carbon Fiber (CF) weave, depicting the noticed 

uniformity issues: (1) throughout the weave; (2) inside the weave; and (3) throughout the growths 

performed during the day. 
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support the experimental work to solve uniformity issues when synthesizing CNTs in a 

carbon fiber weave. Prior to the analysis presented in this section, a model of the chemical 

reactions which occur during the growth phase of the CNT synthesis was designed and 

analyzed by a researcher in the NECSTLab group [3]. Such model was used as a starting 

point to the work presented here. 

6.2.1.  Previously Designed Model 

As aforementioned, the NECSTLab research group has previously designed a 

chemical reaction based CFD model to analyze the growth phase in the synthesis of CNTs 

in a carbon fiber weave [3]. Such model was designed and analyzed using the ANSYS 

FLUENT CFD software. Figure 6.3 shows a graphical representation of the tube, and 

Figure 6.4 illustrates its previously designed model, which only included the quartz tube, 

neglecting the end caps, which resulted in a length of 660 mm [3]. Moreover, in order to 

reduce the number of mesh elements and, consequently, the simulation time, the tube is 

modeled as a half-tube with a symmetry wall. The weave was modeled as rectangle with a 

width of 19 mm, length of 51 mm, and a thickness of 0.5 mm. 

 

Figure 6.3:  Graphical representation of the case study CVD tube. 

 

Figure 6.4:  Illustration of the CVD tube and substrate previously designed and analyzed (taken from [3]). 
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Since this model addresses the growth phase of an acetylene-based CNT synthesis, 

the implemented chemical reaction (see Eq. 6.1) reflects the acetylene and carbon dioxide 

breakdown into carbon atoms, which create bonds with other carbon atoms existent in the 

CNTs’ structure, and both carbon monoxide and water vapor, which exits the tube. 

𝐶 + 𝐶2𝐻2 + 𝐶𝑂2 → 𝐶𝑂 + 𝐻2𝑂 + 3𝐶 Eq. 6.1 

 

This model was used to perform a sensitivity analysis on how the compounds’ 

dispersion at the surface and inside the weave vary with process parameters, such as the 

output pressure and the weave structure, during the growth phase. Results have shown that 

the weave structure, more specifically, its surface area to volume ratio, had great influence 

on the gases concentrations throughout the weave. The resulting higher concentrations in 

the weave’s leading edge compared to the rest of the weave were considered to be a 

potential cause for the decrease of CNTs throughout the weave. Moreover, when addressing 

the weave’s interior, inconstant concentrations suggested that the weave structure might 

not allow the gas depletion through it.  More insights on the whole analysis and results can 

be found in [3]. 

6.2.2. Analysis of New Hypothesis: Reduction Phase 

The previously constructed reaction model of the case study CVD setup was focused 

in the growth phase of the CNT synthesis process, being independent of the used catalyst 

[3]. 

In the work presented in this chapter, envisioning to synthesize CNTs using a sodium-

based catalyst, the first approach was to evaluate if the reduction phase was properly done 

- premise upon which the previously model was constructed - by analyzing if the catalyst 

was properly reduced into particles. If the reduction phase is not properly done, i.e. if the 

particles are not properly created, the uniformity issues existent with the CNT synthesis are 

no longer due to the growth phase, but instead due to the reduction phase. 

In order to perform such analysis of the reduction phase, a set of experiments, where 

the synthesis process would stop immediately before the growth phase, were performed. 

Posteriorly, the resulting carbon fiber samples were analyzed via Scanning Electron 

Microscope (SEM) in search for the catalyst particles. 
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Samples preparation 

To prepare the samples for the reduction phase analysis, the following steps were 

performed: 

 The carbon fiber was cut in 20 x 25 mm samples; 

 The samples were cleaned via submersion in distilled water; 

 The samples were cured in a vacuum oven at 120 oC for 20 min; 

 The samples were submerged in a 125 g distilled water and 0.9 g sodium 

hydroxide (NaOH) solution for 5 min; 

 The samples were then dried in ambient conditions for a minimum of 5 hours. 

Performed experiments 

As stated before, in order to evaluate the catalyst reduction into particles, a set of 

experiments were thought. Being the CNT synthesis process composed of 5 main phases - 

(1) cleaning; (2) heating/reduction; (3) synthesis; (4) delamination; and (5) cooling (see 

section 2.2.1) - in these experiments, the whole process was stopped immediately after the 

reduction phase. Table 6.2 show the process parameters used in these experiments: the gas 

flows that flow during the reduction phase; and the reduction time, measured after the tube 

is heated to the desired temperature (480 oC). 

SEM analysis 

Scanning Electron Microscope (SEM) was performed in order to evaluate the catalyst 

formation in the carbon fiber samples generated by the described experiments, and results 

have shown that the formerly enumerated issues were also found. First, when comparing 

Table 6.2:  Gas flows and reduction time used in the experiments used to access the catalyst reduction phase. 

Exp. 
Gas flows [sccm] Reduction Time 

[min] Hydrogen Argon 

1 50 200 0 

2 50 200 5 

3 50 200 10 

4 100 400 0 

5 100 400 5 

6 100 400 10 

7 200 800 0 

8 200 800 5 

9 200 800 10 
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the weave’s edge closer to the tube entrance (leading edge) and the one further away 

(trailing edge), it was found that the former had more generated catalyst particles. This is 

  

(a) (b) 

Figure 6.5:  Weave’s (a) leading and (b) trailing edges after the reduction phase. More particles were formatted in 

the leading edge than in the trailing one. 

  

(a) (b) 

Figure 6.6:  Weave’s (a) surface and (b) interior. Although catalyst particles were generated in the weave’s inside, 

they are smaller than the ones in its surface, which may lead to a poorer growth inside the weave. 

  

(a) (b) 

Figure 6.7:  (a) 1st and (b) 3rd experiments of the same day. The lack of particles in the latter pertain the previously 

described growth of the day dependency issue. 
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noticeable in Figure 6.5, where the carbon fibers at the trailing edge have a smoother 

surface, i.e. without the little dots, than the ones at the leading edge. 

Secondly, it was found that, although particles were created in the weave’s interior, 

these were different than the ones encountered in its surface (see Figure 6.6). The generated 

particles inside the weave have smaller diameter than the ones at its surface. This difference 

may, posteriorly, lead to different CNTs growth, pertaining the aforementioned lack of 

uniformity. 

Finally, when comparing samples generated in different experiments of the same day, 

the particle’s generation’s dependency on this factor was also noted (see Figure 6.7). The 

smoother surface of carbon fibers at the 3rd experiment of the day and the spots noticeable 

on the 1st experiment are indicators that these experiments result in different catalyst 

particles formation.   

All these results validate the proposed hypothesis that the aforementioned issues are 

due to the reduction phase and not to the growth phase. Thus, in order to properly use CFD 

modelling with chemical reactions to support the process of tackling these issues, a new 

model, focused on the reduction phase of the CVD process, was designed. 

6.2.3. Reduction Phase Model 

With the validation of the proposed hypothesis that the growth uniformity issues were 

due to a poorly catalyst particles formation, a CFD-based model with chemical reactions, 

focused on the reduction phase, was designed and simulated using the ANSYS FLUENT 

solver. As depicted in Figure 6.8, only half of both the quartz tube and the carbon fiber 

 

Figure 6.8:  Designed model, focused in the reduction phase of the CNT synthesis process (taken from [3]). 
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weave was modeled, having a symmetry wall in the center. Since the focus of the performed 

analysis was the compounds dispersion as well as interaction on the weave’s surface and 

in its interior, only the central section of the quartz tube, which is embraced by the furnace, 

was modeled. This section has a total length of 350 mm. Moreover, the weave’s 

dimensions, used in this “half model” were 10 mm width, 25 mm length and 1 mm thick. 

Table 6.3 shows the configuration parameters for the used mesh, which is depicted 

in Figure 6.9. Being this a primarily analysis to the effects of the process parameters in the 

catalyst particles formation inside the CF weave, simulations with a reduced computational 

time were envisioned. Thus a mesh of 3 cells across gap was defined, which would reduce 

the simulation time without compromising the results (see section 2.3.2). Each simulation 

Table 6.3:  Configuration parameters used in the mesh of the chemical reactions model. 

Parameter Value 

Use Advanced Size Function On: Proximity and Curvature 

Relevance Center Coarse 

Mesh Defeaturing Yes 

Transition Fast 

Span Angle Center Coarse 

Num. of Cells Across Gap 3 

 

 

Figure 6.9:  Screenshot of the generated mesh for the weave in the CVD setup. 

 



CFD-based tool to support CNT synthesis via CVD Chapter 6 

125/142 

had a total number of 1000 iterations, which had guaranteed the models’ convergence via 

the software’s criteria of achieving a residual less than 1e-6. 

Being focused in the reduction phase, the occurring chemical reactions are only 

dependent on the catalyst, which was sodium hydroxide (NaOH), and the inlet gases that 

flow during this phase: hydrogen (H2) and argon (Ar). Since the latter is an inert gas, only 

the other two are considered in the modeled reactions. The first reaction (Eq. 6.2) is the 

hydrogen’s breakdown into radicals and the second reaction (Eq. 6.3) is the hydrogen 

radical reaction with sodium hydroxide, forming sodium and water vapor. Table 6.4 depicts 

the values for the pre-exponential factor and activation energy parameters used by the 

Arrhenius equation for the kinetics of the simulated chemical reactions. The Arrhenius 

equation (see Eq. 6.4) relates the reaction’s rate constant, 𝑘, with its pre-exponential factor, 

𝐴, and activation energy, 𝐸𝑎, as well as the temperature, 𝑇, and the universal gas 

constant, 𝑅. Moreover, Table 6.5 shows the compounds’ properties used in these 

simulations. 

𝐻2 → 2𝐻 Eq. 6.2 

𝑁𝑎𝑂𝐻 + 𝐻 → 𝑁𝑎 + 𝐻2𝑂 Eq. 6.3 

 

Table 6.4:  Used parameters for reactions’ Arrhenius equations, taken from the National Institute of Standards and 

Technology1. 

Reaction 
Pre-exponential 

Factor 

Activation Energy 

[j/kg.mol] 

𝑯𝟐 → 𝟐𝑯 3.68e-9 425,000 

𝑵𝒂𝑶𝑯 + 𝑯 → 𝑵𝒂 + 𝑯𝟐𝑶 5.97e-12 1,900 

 

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇  

Eq. 6.4 

6.2.4. Chemical Reactions’ Sensitivity Analysis 

The designed model was used to support the experimental work in overcoming two 

of the CNT synthesis issues: lack of growth uniformity throughout and inside the weave. 

Such model was used to analyze which parameters of the reduction phase have more 

                                                 

1 URL: http://kinetics.nist.gov/kinetics/welcome.jsp 
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influence in the formation of the catalyst particles. Considering the modeled chemical 

reactions (Eq. 6.2 and Eq. 6.3), the formation of these particles can be measured by the 

kinetics of the 2nd reaction. In other words, considering a uniform catalyst deposition in the 

carbon fiber samples, the greater the kinetic rate of the 2nd reaction is related with more 

particles being formatted. 

In order to evaluate the catalyst particles’ formation dependency in the process 

parameters, two sensitivity analysis were performed. One where the gas flows are 

expressed as the flows itself, and other where they are expressed as a ratio between them. 

In the first one, the gas flows are based in the existent mass flow controllers’ maximum and 

minimum flows. As for the second one, they are based in the hydrogen ratio, when 

compared to the total flow. 

In addition to the hydrogen and argon flows (or the ratio between them), the analysis 

also considered variations to the furnace temperature, which, as demonstrated by previously 

performed sensitivity analysis (see section 5.4.1), it also has influence on the compounds’ 

behavior inside the tube. 

Table 6.5:  Gases properties. 

Variable 
Argon 

(Ar) 

Atomic 

Hydrogen 

(H) 

Hydrogen 

(H2) 

Sodium 

(Na) 

Sodium 

Hydroxide 

(NaOH) 

Water 

Vapor 

(H2O) 

Density 

[kg/m3] 
1.6228 0.040948 0.08189 970 2,100 0.5542 

Specific Heat 

[j/kg.K] 
520.64 20,621 14,283 1,230 1,491.61 2,014 

Thermal 

Cond. 

[w/m.K] 

0.0158 0.2316 0.1672 0.7517 0.688 0.0261 

Viscosity 

[kg/m.s] 
2.125e-5 7.49e-6 8.411e-6 6.8e-4 4e-3 1.34e-5 

Mol. Weight 

[kg/kmol] 
39.948 1.00797 2.01594 22.99 39.997 18.01534 

Enthalpy 

[j/kg.mol] 
-3,117.711 2.18e8 0 2,410 -197.76 -2.42e8 

Entropy 

[j/kg.mol.K] 
154,719.3 114,593.4 130,579.1 57.86 228.47 188,696.4 

Ref. Temp. 

[K] 
298.15 298.15 298.15 300 300 298.15 
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In both analysis, the furnace temperature was simulated for values of 480, 500 and 

550 oC. These values were selected taking into account the experimentally used furnace 

temperature (480 oC) and the temperature, above which, the carbon fiber starts 

disintegrating (550 oC). 

In the first sensitivity analysis - the flow-driven one - each gas (hydrogen and argon) 

was simulated for 50, 500 and 1000 sccm. As in Chapter 4, these values were selected 

equidistantly, taking into account the range of possible flows by the mass flow controllers 

(0 to 1000 sccm), and the minimum flow was substituted for a non-zero value (50 sccm). 

Through this analysis, it is envisioned to have an overview of the setup’s behavior. More 

specifically, to evaluate which gas flow has more influence in the nanoparticles formation 

throughout the CF weave. 

 On the other hand, in the ratio-driven sensitivity analysis, the relation between both 

gas flows was taking into account when selecting the simulation scenarios to perform. Since 

hydrogen is the compound affecting the chemical reactions (Eq. 6.2 and Eq. 6.3), its flow 

was selected first, being the argon’s flow computed by the hydrogen-ratio. This ratio is 

defined as the percentual relation between the hydrogen’s flow and the total flow (Eq. 6.5). 

For instance, if a 200 sccm is used for both the hydrogen and argon flows, the ratio is 50%. 

In the sensitivity analysis, the hydrogen flow was tested for 200, 400 and 800 sccm, and 

the ratio was tested for 60% (60% Hydrogen - 40% Argon), 80% and 100%. 

𝑟𝑎𝑡𝑖𝑜 =
ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑓𝑙𝑜𝑤

ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑓𝑙𝑜𝑤 + 𝑎𝑟𝑔𝑜𝑛 𝑓𝑙𝑜𝑤
 Eq. 6.5 

 

Table 6.6:  Flows and furnace temperature used in the performed flows-driven sensitivity analysis. 

Exp. 
H2 flow 

[sccm] 

Ar flow 

[sccm] 

Furnace 

Temp. [oC] 

1 50 50 480 

2 50 500 500 

3 50 1,000 550 

4 500 50 500 

5 500 500 550 

6 500 1,000 480 

7 1,000 50 550 

8 1,000 500 480 

9 1,000 1,000 500 

 



Chapter 6 CFD-based tool to support CNT synthesis via CVD 

128/142 

The Taguchi Orthogonal Arrays were used to select the sets of simulations to 

perform, presented in Table 6.6 and Table 6.7 for the first and second sensitivity analysis. 

As aforementioned, these sensitivity analysis intend to evaluate which process 

parameter has more influence in the catalyst nanoparticles formation throughout the CF 

weave. Such phenomenon was numerically measured by the kinetic rate of the 2nd reaction 

(Eq. 6.3). Taking into account the synthesis issues, the analysis should address this rate at 

both the top and inside the CF weave. Thus, in each simulation, a total of five different 

planes (two across the weave’s width and three across the weave’s height) were created 

(see Figure 6.10). The kinetic rate was measured at the intersections of these planes, 

resulting in a total of six lines, at different heights and widths, throughout the CF weave: 

Table 6.7:  Hydrogen ratio, flow and furnace temperature used in the ratio-driven sensitivity analysis. 

Exp. 
H2 flow 

[sccm] 
H2 Ratio [%] 

Furnace Temp. 

[oC] 

1 200 60 480 

2 400 60 500 

3 800 60 550 

4 200 80 500 

5 400 80 550 

6 800 80 480 

7 200 100 550 

8 400 100 480 

9 800 100 500 

 

 

Figure 6.10:  Planes in the weave's width and height, whose combinations were used to measure the kinetic rate of 

the 2nd reaction. 
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top plane with mid plane, top plane with symmetry plane, 2/3 height plane with top plane, 

etc. 

Figure 6.11 depicts a typical evolution of the kinetic rate of the 2nd reaction 

throughout the CF weave. There is a spike on the reaction kinetics at both edges of the 

weave, which comes in accordance with results obtained in the previous model [3]. Being 

the weave a solid placed inside the tube, it affects the gases dispersion nearby, leading to 

higher concentrations at its edges and, consequently, higher kinetic rate. 

An evolution of the reaction’s kinetic rate throughout the CF weave can be measured 

for each one of the six possible lines. However, using the Taguchi orthogonal arrays to 

perform the sensitivity analysis requires the simulations’ output variable to be expressed as 

a number (see sections 3.3 and 3.4). Thus the kinetic rate throughout these lines should be 

combined into a single number. 

For a given line, 𝑖, resulting from the intersection of the previously referred planes 

(see Figure 6.10), the average value of the kinetic rate across the center section of the weave 

(Section A in Figure 6.11), 𝑘𝑟𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑖
, was computed in order to obtain the kinetic rate of 

that given line, 𝑘𝑟𝑖 (Eq. 6.6). Then the average of all six individual values of the kinetic 

rate were used to calculate an overall kinetic rate across the weave for each simulation, 𝐾𝑅𝑠 

(Eq. 6.7). Finally, following the same methodology as in the previously performed 

sensitivity analysis (see section 3.3), the dependencies of the addressed variable were 

 

Figure 6.11:  Typical evolution of the kinetic rate of 2nd reaction throughout the weave. 
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analyzed. 

𝑘𝑟𝑖 = 𝑘𝑟𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Eq. 6.6 

𝐾𝑅𝑠 =
∑ 𝑘𝑟𝑖

6
 Eq. 6.7 

6.3. Results and Discussion 

Both the flow-driven and the ratio-driven sensitivity analysis were performed to 

address the process parameters’ effects in the catalyst nanoparticles formation throughout 

the weave and the results are shown in this section. Moreover, following the same 

methodology as before (see section 3.3), a percentual ranking was computed for each case. 

Since each gas is tested for a wider range of values, the flow-driven sensitivity 

analysis gives a broader view of the compounds’ effects of the nanoparticles formation. Its 

results are presented in Figure 6.12. The kinetic rate of the 2nd reaction decreases with the 

increase of both the gas flows and the temperature. Being the CF weave a porous structure, 

with very small gaps for the gases to get through, the gas mixture must have a specific 

conditions to reach the weaves inside. For instance, if the compounds have a higher velocity 

(flow), their particles cannot get through the weaves porous surface and reach its inside, 

leading to a lower kinetic rate and thus a lower nanoparticles formation. Moreover, the 

 

Figure 6.12:  Results obtained for the flow-driven sensitivity analysis. 

 



CFD-based tool to support CNT synthesis via CVD Chapter 6 

131/142 

uncertainty, expressed by the error bars, is higher if the flow of one gas is small. Since each 

gas flow is simulated for all gas flows of the other gas, including the 1000 sccm one, there 

is more variation on the results. For instance, the minimum value with an argon flow of 50 

sccm corresponds to the simulation where the hydrogen flow is 1000 sccm (scenario 

number 07 in Table 6.6). The temperature effects on the addressed variable are more 

indirect. As shown in section 4.2.2, the mixture’s dynamic viscosity increases with its 

temperature. Although having a lower velocity, it is harder for this more viscous mixture 

to get through the CF weave’s narrow gaps, leading to less compounds concentration inside 

it and hence a lower reaction’s kinetic rate. 

The percentual dependencies of this sensitivity analysis were computed and are 

presented in Table 6.8. Even though it is the main compound used in the 2nd chemical 

reaction (Eq. 6.3), hydrogen is the parameter with less percentual dependency. This is 

explained by comparing the hydrogen and argon curves for both 50 and 1,000 sccm. For 

the later, having a higher flow of hydrogen is better than having a higher flow of argon, 

since it is ensured a higher hydrogen concentration throughout the tube, which leads to a 

higher kinetic rate. On the contrary, having a 50 sccm flow of hydrogen is worse than 

having the same flow for argon, because it is not ensured a high hydrogen concentration 

and thus leads to a lower kinetic rate. 

Having a higher kinetic rate for 1000 sccm, and a lower kinetic rate for 50 sccm, than 

the argon trend line, hydrogen has a smaller variation than argon for the same flow 

variation, which leads to a smaller percentual dependency (see formula in section 3.3). It is 

this duality when comparing a high and low flow that reduces hydrogen’s percentual 

dependency and, consequently, increases the argon and temperature ones. 

Moreover, this duality is confirmed by the ratio-driven sensitivity analysis, whose 

results are presented in Figure 6.13 and Table 6.9. Because the model is not being tested 

for scenarios where the argon flow is greater than the hydrogen’s, a sufficiently high 

hydrogen concentration in ensured, reducing the argon’s effects on the 2nd reaction kinetic 

Table 6.8:  Percentual dependencies of the kinetic rate of 2nd reaction on the process parameters addressed in the 

flow-driven sensitivity analysis. 

Flow-driven sensitivity analysis 

H2 flow Ar flow Furnace Temp. 

28% 41% 31% 
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rate and increasing the hydrogen ones (see Table 6.9). In fact, both argon and the furnace 

temperature do not have significant effect on the addressed variable. This makes more sense 

than the previous results, since hydrogen is the only compound which affects the catalyst 

particles formation (Eq. 6.3), being the formation higher for smaller hydrogen flows (see 

Figure 6.13). In fact, the scenarios which lead to the maximum points in the argon and 

temperature error bars are the ones, where the hydrogen flow was smaller.  

These sensitivity analysis present a better understanding of the system, which can be 

used to plan the experiments to perform in the CVD setup in order to tackle the previously 

described synthesis issues. 

6.4. Final Considerations 

In this case study, chemical reactions kinetics were added to computational fluid 

 

Figure 6.13:  Results obtained for the ratio-driven sensitivity analysis. 

Table 6.9:  Percentual dependencies of the kinetic rate of 2nd reaction on the process parameters addressed in the 

ratio-driven sensitivity analysis. 

Ratio-driven sensitivity analysis 

H2 flow H2 ratio Furnace Temp. 

69% 25% 6% 
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dynamics to design a model capable of analyzing aspects of the CVD process, which could 

not be possible with the previously designed models. These kinetics enable the possibility 

of evaluating how compounds present in the synthesis process can interact with each other 

in order to create other substances, not initially present in the model. 

For this specific case study, the reactions, which occur in the CVD process reduction 

phase, were analyzed in order to evaluate how each process parameter affect the catalyst 

particle formation, which has been proven to have influence in some uniformity issues 

present in the experimental setup. 

In the scope of the main goal of this thesis work - develop a CFD-based tool to support 

the transition between different setups to synthesize CNTs - it is believed that the same 

chemical reaction kinetics capabilities can be added to the previously designed transition 

methodology in order to tackle the transition between setups, whose CNT synthesis is based 

in different hydrocarbons. Because each hydrocarbon has a distinct set of thermal reactions, 

the formation of compounds, which have an impact in the CNTs synthesis, is also different. 

Such differences can only be modeled by a chemical reactions approach where each set of 

reactions is simulated and the compounds’ concentrations are measured. For instance, such 

transition methodology could be used to support the transition between a setup based in 

ethylene synthesis and a second setup based in acetylene. 
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Chapter 7 

7. CONCLUSIONS 

The main goal of this thesis was to develop a methodology, based in CFD tools, to 

support the transition process between different CVD setups to synthesize CNTs. Such 

objective was thought as a more methodic way to overcome the process’ inconsistency 

issues than a commonly used trial-and-error practice. These inconsistencies not only hinder 

the knowledge and research findings transfer within the scientific community, but also 

impose limits when a synthesis scale up is envisioned. 

Sensitivity Analysis 

In order to design such transition model, a sensitivity analysis was initially performed 

to four different CVD setups to evaluate which process parameter had more influences in 

several conditions inside the setup during the growth phase. The setups were 

computationally designed and modelled in various synthesis scenarios, differed by the gas 

flows used in the process. Due to the huge number of possible combinations of gas flows, 

the selection of the set of simulations to be performed was defined by following the Taguchi 

orthogonal arrays, which reduced the number of combinations to take into account, while 

still being possible to take conclusions regarding the whole system’s behavior. Several 

synthesis conditions, such as compounds’ concentrations, temperature and velocity, were 
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measured for each simulated scenario. Posteriorly, trend lines depicting the relation 

between each synthesis condition to each process parameter were constructed, resulting in 

a graphical representation of which parameter most affects each addressed condition. For 

proper comparison, these effects were quantitatively computed as percentual dependencies, 

from which was concluded that the hydrocarbon, in this case ethylene, was the gas whose 

flow most affects the assessed conditions. This sensitivity analysis not only resulted in a 

better understanding of the CVD process and the interactions between different conditions 

which occur inside the setup, but also identified which process parameter should be taken 

more into account when designing the envisioned transition methodology. 

Transition Model 

With such understanding of the CVD synthesis process, it was then possible to design 

the transition methodology. Being based in CFD tools, the transition between different 

CVD setups was defined as the act of mimicking synthesis conditions inside the setups’ 

tubes during the growth phase. Thus, the proposed methodology was based in a comparison 

between the conditions measured in both setups, resulting in an optimization problem, 

whose goal was to seek the set of process parameters in the second setup, which would 

mimic the most the synthesis conditions previously measured in the first setup. Being the 

CNTs’ synthesis by CVD based in the thermal breakdown of the used hydrocarbon, the 

conditions to be considered in the transition methodology were its concentration, 

temperature and velocity. Moreover, due to the effects of the compounds’ viscosity on their 

velocity throughout the tube, which affects their temperature, the defined synthesis 

conditions were measured taking into account the substrate position inside the tube, which 

is defined by its distance to the tube entrance and to the tube center. Considering insights 

from the performed sensitivity analysis, the set of simulations to be used in the transition 

methodology was defined by only varying the ethylene flow, while maintaining the 

hydrogen and helium flows constant. For a given simulation scenario in the first setup, after 

measuring the synthesis conditions, the simulations domain of the second setup was 

searched for the parameters, i.e. gas flows and substrate position, which would result in 

synthesis conditions most similar to the previously measured ones. The comparison 

between these two sets of conditions was computed as the percentual error between them. 

Following such methodology resulted in percentual errors less than 2% for most of the 

tested cases and never higher than 7% for the remaining ones. After evaluating the 

individual percentual errors of each synthesis condition, it was hypothesized that the 
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achieved results could be improved by considering the furnace temperature effects on the 

synthesis conditions inside the tube. For instance, increasing the furnace temperature would 

increase the heat transfer between the tube walls the compounds and thus enabling them to 

reach temperatures closer to the desired ones. This hypothesis was validated by performing 

a sensitivity analysis addressing the effects of the furnace temperature on the synthesis 

conditions. Once validated, the hypothesis was tested by including simulation scenarios, 

where the furnace temperature was also varied, in the search domain of the second setup 

and by performing the same previously followed transition methodology. This temperature 

based methodology was followed for various substrate positioning heights, as well as 

without fixing the searching height to a pre-defined value. Results showed that the inclusion 

of the temperature effects would reduce the achieved percentual error, especially for higher 

ethylene flows where, due to the compounds’ higher velocity, increasing the furnace 

temperature would have more influence in the heat transferred to the mixture. Since 

increasing the furnace temperature also affects the velocity profile, its improvement was 

reduced for searching heights nearer the tube center or walls, being them more noticeable 

for heights between them. As before, performing this methodology without fixing the 

searching height, would result in a percentual error inferior to 1% for more than half the 

evaluated scenarios. The designed transition methodology was considered a viable tool to 

support the transition process between different CVD setups. Such methodology not only 

can be used to transmit knowledge and research findings within the scientific community, 

but would also ease scale-up processes of certain results. 

CFD with Chemical Reactions 

However, such transition tool has its limitations. Since one of the synthesis conditions 

to mimic between setups is the concentration of the used hydrocarbon, the transition 

methodology is only applicable if the addressed setups use the same gases. As depicted in 

section 2.2.2, there are various possible compounds combinations that result in CNT 

synthesis. Thus, how could the transition tool be adapted in order to tackle transition 

between setups, which use different compounds? In order to evaluate other capabilities of 

the CFD modelling of the CVD process, a case study was performed in collaboration with 

the NECSTLab research group of the AeroAstro Department in the Massachusetts Institute 

of Technology. The main objective of this case study was to minimize uniformity issues 

occurring in an acetylene-based synthesis of CNTs in carbon fiber weaves, with sodium-

based catalyst: growth uniformity (i) throughout the weave; (ii) inside the weave; and (iii) 



Chapter 7 CFD-based tool to support CNT synthesis via CVD 

138/142 

throughout the day. To tackle these issues it was defined that both experimental and 

computational work should be performed. A CFD model of the setup, integrated with 

chemical reactions kinetics, had been previously designed to analyze the growth phase. 

However, experiments showed that the same uniformity issues were happening in the 

reduction phase, since the catalyst particles, upon which CNTs should grow, were not 

correctly formed. Consequently, in the performed case study, the CFD model of the setup 

was re-designed to assess the chemical reactions, occurring in the reduction phase. Such 

reactions were based in the sodium-based catalyst breakdown when in presence with 

hydrogen. A sensitivity analysis of the model was performed in order to understand the 

effects of certain process parameters during the reduction phase on the formation of catalyst 

particles inside the weave. This analysis involved the simulation of various scenarios, 

where the furnace temperature as well as the flows of both hydrogen and argon. As 

previously, this set of scenarios was selected based on the Taguchi orthogonal arrays and 

both the trend lines and the effects of the process parameters in the assessed variable were 

analyzed. The catalyst particles formation was measured by the reaction’s kinetic rate, to 

whom it is directly proportional. The performed analysis concluded that a higher particles 

formation could be achieved by fixing the hydrogen flow to smaller values. Thus 

experimental validation these findings is required. 

Final Considerations 

For the development of the computational tool to support the transition between 

different CVD setups, some research questions were previously defined (see section 1.4), 

whose answers would lead the proper investigation of the proposed research work. These 

answers were addressed throughout this thesis and are briefly stated as follow. 

Which conditions affect the CNTs’ synthesis in the CVD process? 

Being the CVD process solely based in thermochemical reactions, the main 

conditions that affect the CNTs’ synthesis are the gases temperature, the 

compounds dispersion rate throughout the tube and the catalyst sample 

position inside the tube. The synthesis phase of the CVD technique is based 

in the thermal decomposition of a hydrocarbon gas, such as ethylene and 

acetylene, into hydrogen and carbon atoms. These later are then deposited in 

a catalyst sample. Being thermochemical reactions, both the decomposition 

and deposition occur at a specific temperature range (400-1200 ºC). The 

compounds dispersion rate affects their concentration throughout the tube, 
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altering the rate at which these reactions occur and, thus, the CNT synthesis 

rate. Lastly, the catalyst sample position inside the tube affects the carbon 

atoms deposition in it. Since the hydrocarbon gas is flowing through the tube, 

its pyrolysis occurs at a certain distance from the tube entrance, which 

influences the catalyst sample position where the carbon atoms deposition is 

optimal (see section 2.2.1). 

How can CVD process setups be different? 

CVD setups can differ by the used compounds, but also in their physical 

configuration. As aforementioned, the CNT synthesis by CVD is based in the 

thermal decomposition of a hydrocarbon gas, such as ethylene or acetylene. 

The resulting carbon atoms are then adhered to catalyst particles which can 

be injected into the tube by a carrier gas, such as ferrocene, or by priory 

placing a metal based compound, such as iron or nickel, inside the tube. The 

CVD process can also use a reducer gas, usually hydrogen, to reduce the 

catalyst into smaller particles, where CNTs will then be synthesized. An inert 

gas, such as argon or helium, can also be used to control the pressure and 

compounds flow inside the tube (see section 2.2.2).  

The CVD process can also differ in its physical configuration. In this thesis 

four distinct setups were considered and analyzed. These differed by the 

tube’s dimensions - radius and length, the tube’s entrance configuration - 

concentric or lateral - and by the existence or not of a pre-heater. These 

physical features affect the compounds dispersion throughout the tube and, 

consequently, the synthesis conditions inside it. All these elements and their 

different configuration make the entire synthesis process more complex to 

control and tune (see chapters 3 and 4).  

How are these synthesis conditions affected by the process parameters? 

The variable with most effect on the synthesis conditions is the heat transfer 

rate between the furnace and the compounds inside the tube. This depends on 

the compounds’ flow rates and furnace temperature itself. Reducing the first 

one, or increasing the second one, leads to a higher heat transfer rate, which 

results in thermochemical reactions earlier in the tube (closer to its entrance) 

and thus different synthesis conditions (see chapter 4 and section 5.4.1). 
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How should the transition between setups be defined? 

In this thesis, the transition between setups was defined as the ability to 

achieve the same synthesis conditions in different setups. Such transition was 

performed by measuring the desired synthesis conditions in the first setup and 

comparing them with the conditions measured in the second setup by varying 

the used ethylene gas flow and furnace temperature. Thus, the transition was 

tackled as a minimization problem, where the variable to minimize was the 

percentual error between the desired synthesis conditions and the ones 

measured in the second setup. Through this comparison and measurement of 

the percentual error, the second setup is searched for the process parameters, 

i.e. ethylene flow, furnace temperature and substrate position, which result in 

the set of synthesis conditions which better mimic the desired ones, 

previously measured in the first setup (see section 5.2). 

Which synthesis conditions are considered critical? 

Since the synthesis is based in a thermochemical reaction, the synthesis 

conditions considered critical were the ethylene concentration and the 

mixture’s velocity and temperature. The reaction rate of the hydrocarbon’s 

decomposition is directly affected by its dispersion throughout the tube and 

by the heat transferred to the hydrocarbon. The ethylene dispersion 

throughout the tube is reflected by its concentration and by the mixture’s 

velocity. Moreover, the mixture’s temperature is a direct measurement of the 

heat transferred to the compounds (see section 5.2). 

How can these synthesis conditions be changed? 

Given the results from the performed sensitivity analyses, the process 

parameters which can most directly change the defined synthesis conditions 

are the ethylene flow and the furnace temperature. Having a higher molar 

mass, ethylene has more influence in several conditions occurring inside the 

tube than the other compounds. Following the proposed transition 

methodology by only considering simulation scenarios in the second setup, 

which differ by the ethylene flow, percentual errors less than 2% were 

achieved for most of the tested cases. Such findings come in accordance with 

the results of the sensitivity analysis in chapter 4, suggesting the ethylene flow 
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as the one which most affects several conditions inside the tube (see section 

5.2). 

Later, it was hypothesized if these percentual errors could be improved by 

also considering the furnace temperature in the scenarios of the second setup. 

The same transition methodology was followed for this set of scenarios and 

results have shown improvements to the percentual error, especially if a 

specific positioning height was considered. As aforementioned the CNT 

synthesis via CVD is based in a thermochemical reaction. Thus, varying the 

furnace temperature has a direct effect in the heat transfer between the tube 

walls and the mixture, increasing its temperature, considered a synthesis 

condition which defines the transition between setups (see section 5.4).  

Are there any other parameters relevant to the setups’ transition? 

The CNT synthesis via CVD can also be analyzed in terms of the reactions’ 

kinetics, i.e. which reactions occur and at what rate. Since CVD setups can 

also differ from the used compounds (hence the occurring reactions), 

considering chemical reactions capabilities in the transition method enables 

the transition between setups with different compounds. For instance, 

between ethylene and acetylene based CVD setups (see chapter 6). 

Future Work 

The future work within the scope of this research project consists of both 

experimental and computational work. Regarding the latter, it was thought that the 

inclusion of chemical reactions kinetics could potentiate the adaptation of the previously 

developed transition methodology in order for it to tackle the transition between CVD 

setups, whose synthesis is based in different hydrocarbons. The inclusion of the reactions 

kinetics capabilities in the model enable the analysis of other synthesis conditions, resulted 

from the interaction between the different compounds. 

On the other hand, within the envisioned experimental work, it is thought the 

validation of the designed transition methodology as well as of its future adaptation with 

chemical reactions. In either case, experimental validation of the achieved results should 

be achieved. Such validation should be first be assessed within the same research group 

(for instance, between the 30 mm and the 80 mm setups) and, if successful, it should be 

tackled with the transition between CVD setups existent in distinct research groups (for 
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example, between the University of Minho and the MIT CNTs synthesis setups). 

In order to lead proper development of this future work, several research questions 

were thought, and are present as follow. As before, further research should address their 

answers. 

 How to properly validate the proposed transition methodology? 

 What chemical reactions are presented in synthesis with different 

hydrocarbons? 

 When addressing a transition methodology between these setups, what are the 

synthesis conditions that should be mimicked between them? 

 

 

 




