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Abstract

Here we report on the results of a survey of the yeast populations occurring on

submerged leaves (alder, eucalyptus and oak) in a natural mountain stream, during

different phases of their decomposition and through two consecutive years. Leaf

litter mass loss, total yeast counts, Shannon–Weiner index (H0), yeast community

structure and physiologic abilities were analyzed to evaluate the dynamics of yeast

communities during decay. Seventy-two yeast taxa were recorded, and in all litter

types, species of basidiomycetous affinity predominated over ascomycetous ones.

Discriminant analysis of presence/absence data (yeast species) showed significant

differences both among substrate types (Po 0.0026) and with decomposition time

(Po 0.0001). Carbon and nitrogen source utilization by yeast strains also varied

with the substrate (Po 0.0001) and decomposition time (Po 0.0001). Further

conclusions were that: (1) all litter types have in common ubiquitous yeast species,

such as Cryptococcus albidus, Debaryomyces hansenii and Rhodotorula glutinis,

among the common 20 yeast species; (2) only a few species were dominant, and

most species were rare, being recorded once or twice throughout decomposition;

and (3) the order of yeast appearance, and their substrate assimilation patterns,

strongly suggest a succession phenomenon. Finally, explanations for the distribu-

tion patterns and variations in yeast communities are discussed.

Introduction

Leaf decomposition is the major source of carbon and

energy for microbial growth in freshwater mountain streams

(Fisher & Likens, 1973) and is a complex event, involving

both abiotic and biotic processes (Vannote et al., 1980).

Whereas macroinvertebrates help to break down plant

matter, heterotrophic microorganisms – filamentous fungi,

yeasts and bacteria – are involved in the degradation of

macromolecules such as cellulose, hemicelluloses, pectin,

proteins and lignin, thus providing regeneration of

metabolites. In general, fungi (including yeasts) are more

significant as leaf-decaying agents than are bacteria, but

the relevance of these two groups depends mainly on the

duration of the decomposition process and the nutrient

levels. Nevertheless, it is widely accepted that fungi are

primary colonizers, whereas bacteria are secondary coloni-

zers (Dilly et al., 2001). The phyllosphere, in particular,

is a common niche for yeasts (Phaff & Starmer, 1987;

Lachance & Starmer, 1998; Inácio et al., 2002). In these

habitats, yeasts and yeast-like fungi dominate the leaf

surface, especially during the growing season. Several

researchers have performed significant studies on the

microbial communities in leaves of terrestrial plants,

thereby providing a considerable pool of knowledge

on aerial and phylloplane yeasts (Chand-Goyal &

Spotts, 1996) as well on decaying fruits (Morais et al.,

1995).

In contrast to phylloplane microbiology, information on

the microbiology of submerged leaves is scarce and espe-

cially focused on bacterial and mycelial fungi (Gessner &

Chauvet, 1994; Chauvet et al., 1997; Pascoal et al., 2005).

However, yeasts have also been isolated from decaying leaves

of the salt marsh macrophyte Spartina alterniflora (Buchan

et al., 2002). More recently, unexpectedly high yeast popula-

tions have been reported in submerged decaying leaf litters,
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either by culture-dependent methods (Sampaio et al., 2004)

or using molecular techniques (Nikolcheva & Bärlocher,

2004). In fact, freshwater yeast populations have been

almost ignored, despite the fact that they are common in

aquatic systems (Hagler & Ahearn, 1987; Gadanho &

Sampaio, 2004), where their distribution mainly depends

on the properties and type of water (fresh water or sea-

water), pollution level, and season (Hagler & Mendonça-

Hagler, 1981; Sláviková & Vadkertiová, 1997; Almeida,

2005).

In this article, the results of long-term studies (171 days)

carried out in two consecutive years, on the saprophytic

yeasts that colonize autochthonous and exotic leaf litters

submerged in a nonpolluted mountain stream are pre-

sented. The main aims were to: (1) identify the cultivable

yeast populations present in decaying leaves; (2) study

the structure (species composition) of the yeast commu-

nities during decomposition in an aquatic system; (3)

study the metabolic profile of yeast communities; and

(4) evaluate the relationships between leaf litter types and

yeast populations.

Materials and methods

Study area

The study site is located in the River Olo, a second-order

stream in the Alvão Natural Park, in northeastern Portugal.

The watercourse length is 40 km, and there is a catchment

basin area of 143.8 km2 with low human impact. However, in

the lower reaches of this basin, forestation with exotic species

such as pine (Pinus pinaster Ait. and Pinus sylvestris, L.) and

eucalyptus (Eucalyptus globulus Labill.) has taken place. In the

2 years of study, the minima and maxima for several physical–

chemical parameters of water quality were: pH 5.2–5.5,

conductivity 18.5 –22.8mS cm�1, temperature 9.1–12.0 1C,
dissolved oxygen 10.4 –12.9mgL�1, chemical oxygen demand

1.0–2.0mgL�1, nitrate 0.06–0.10mgL�1, nitrite 0.007– 0.0082
mgL�1, ammonium 0.003 – 0.004mgL�1, total nitrogen

3.9–4.98mgL�1, and orthophosphate 0.04–0.05mgL�1. Alder
[Alnus glutinosa (L.) Gaertn.], willow (Salix atrocinerea Brot.),

ash (Fraxinus angustifolia Vahl.) and oaks (Quercus pyrenaica

Willd and Quercus robur L.) characterize the riparian vegeta-

tion.

Litterbags

Healthy and senescent leaves of adult trees from the species

Al. glutinosa, E. globulus and Q. robur were collected, air

dried at 40 1C (48 h), to kill the phylloplane populations,

and stored until use. Dehydrated leaves were weighed

(4.0� 0.1 g per litterbag), and placed in 5-mm mesh bags

(20� 15 cm). The litterbags were attached to nylon ropes,

and firmly anchored to the streambed, at about 1.5m from

the water surface. After 1, 7, 14, 28, 56, 112 and 171 days of

immersion (from the end of January to June), seven bags of

each leaf species were collected from the water, sealed in a

sterile plastic bag, and transported to the laboratory in a

cool box.

Agar plate counts of colonizing yeasts

Three leaf litterbags of each species before stream incubation

(day 0) and those collected at the sampling periods men-

tioned above were aseptically transferred to Erlenmeyer

flasks containing 100mL of sterilized 0.1% (w/v) peptone

water. Flasks were then submitted to a three-step process:

shaking at 100 r.p.m. (Certomat H, B. Braun, Germany) for

30min, sonication in an ultrasonic bath (Sonorex Super

10P) at 35 kHz for 3min, and vortexing. To determine the

viable counts of yeasts, aliquots of 100 mL were spread onto

plates containing Wort agar (Difco, Detroit), acidified with

lactic acid to pH 3.5 (Wort-Lac agar), to prevent bacterial

growth, and the dilution plate-count technique was used.

For each dilution, we took three replicates. The plates were

incubated at 23� 2 1C for 5 days, after which colonies were

counted and expressed as CFUs per milliliter of undiluted

peptone water. In order to express the results as CFUs per

foliar residual dry weight (DW), leaves were oven dried

(104 1C) to a constant weight.

Yeast identification

The different yeast colonies were isolated and maintained on

YMA (0.3% malt extract, 0.3% yeast extract, 1.0% glucose,

0.5% peptone, and 2.0% agar) at 4 1C. Yeast identification
was performed with the standard morphologic and physio-

logic tests according to Barnett et al. (2000). Yeast isolates

that could not be properly identified were studied by

sequence analysis of the D1/D2 domains of the 26S rRNA

gene. Total DNA was extracted using the protocol of

Sampaio et al. (2001) and the modifications introduced by

Gadanho et al. (2003) after culture growth on MYP agar

(0.7% malt extract, 0.05% yeast extract, 0.25% soytone, and

1.5% agar). DNA was amplified using primers ITS5 (50-
GGA AGT AAA AGT CGT AAC AAG G-30) and LR6 (50-
CGC CAG TTC TGC TTA CC-30). Cycle sequencing of the

600–650-bp region at the 50-end of the 26S rRNA gene D1/

D2 domain employed forward primer NL1 (50-GCA TAT

CAA TAA GCG GAG GAA AAG) and reverse primer NL4

(50-GGT CCG TGT TTC AAG ACG G). The amplified DNA

was sequenced in an Amersham Pharmacia ALF express II

automated sequencing system, using standard protocols.

The sequences obtained were compared with those depos-

ited at the GenBank database (National Center for Biotech-

nology Information, NCBI) and identified them using the

Basic Local Alignment Search Tool (BLAST), also available

from the NCBI.
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In order to analyze the metabolic profiles of the isolated

yeast strains, 46 carbon and nitrogen sources traditionally

utilized on yeast identification were used (Barnett et al.,

2000).

Data analysis and statistics

In order to determine whether yeast densities varied with

leaf litter species and time of decomposition, the data were

normalized by log transformation [log (x11)] before two-

way factorial ANOVA was performed (STATVIEW 4.53). The data

was normalized after performing the Shapiro–Wilks W

normality test (STATISTICA, 1999). The test was repeated after

normalization, to ensure that the transformation satisfied

the normal distribution.

The species richness (S), the frequency of occurrence of

each species and the number of yeasts per sample were

recorded and used to calculate the Shannon–Wiener diver-

sity index (H0), using PRIMER 5.2.2 (Clarke & Gorley, 2001).

For each litter species and at each incubation period, the

number of positive records of a species per total number of

samples was scored as a single record, regardless of the

abundance of a given species, giving the percentage fre-

quency of isolation, which, in the data matrix, substitutes

the value 1 (Parente & Ricciardi, 2002). Other multivariate

data, such as those generated by carbon and nitrogen

utilization by each yeast strain, received the same treatment

as the data for species presence/absence.

To determine which substrates/yeast species (quantitative

variable) contributed to the discrimination among the

different litter types, and the sampling days (categorical

groups), the raw data by the multiple discriminant analysis

(MDA) were analyzed. For this purpose, a forward stepwise

analysis was computed with the package STATISTICA (1999).

Results

Foliar mass loss and yeast colonization of
submerged leaves

Alder leaves presented the highest mass loss values, reaching

more than 95.0% by day 112 (Fig. 1a). By contrast, oak and

eucalyptus leaves proved to be more recalcitrant than alder.

Parallel observations of yeast population densities were con-

ducted during different phases of decomposition over a 171-

day period (Fig. 1b). Day 0 was not included, because we did

not obtain any fungal growth in all litter types. However, for

alder leaves, the last sampling period was day 112. In oak

samples, variation of the yeast counts was less pronounced

throughout decomposition than for eucalyptus or alder.

Alder yeast densities, recorded in the samples of early decom-

position stages, exhibited the highest values when compared

with the other two litter types. Significant statistically

differences (F= 39.612, Po 0.0001) were found in the yeast

counts among the three litters (eucalyptus o alder ooak).

Moreover, ANOVA analysis also demonstrated significant

differences (F= 6.035, Po 0.0001) when the period of

decomposition was considered and when both factors

(litter� time) were combined (F= 11.648, Po 0.0001).

Taken together, the results clearly show that the yeast coloni-

zation densities were different between leaf litter types and

throughout the decay period.

Species richness and diversity

In total, 72 yeast species belonging to 26 genera from the

three decomposing substrates were recovered. Figure 2

provides a complete list of the species found in each leaf

litter type. ‘Black yeasts’ were also observed in the studied

plant litters, but identification down to the species level was

done only for Aureobasidium pullulans. Therefore, the

remaining ‘black yeasts’ were not included in this study.

Globally, in all samples from the three leaf litters, the results

show a clear predominance of basidiomycetous yeast iso-

lates, with values around 78%, 82% and 85% for alder, oak

and eucalyptus, respectively. Despite being less abundant,

Fig. 1. Temporal dynamics of litter mass loss and yeast density in alder,

oak and eucalyptus litters. (a) Dry mass loss in percentage (mean� SD,

eight replicates). (b) Semilogarithmic plot of yeast CFU per unit foliar dry

weight (mean� SD, six replicates).
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ascomycetous yeast species presented higher diversity than

basidiomycetous yeasts. In the case of alder leaves, yeast

species of ascomycetous affinity such as Au. pullulans,

several species of Candida, Metschnikowia bicuspidata, and

Pichia anomala, were dominant at the early decomposition

stages (days 1–7), whereas Debaryomyces hansenii, Debaryo-

myces occidentalis, Lipomyces tetrasporus, Williopsis saturnus

andWickerhamiella domercqiae dominated at the intermedi-

ate stages (days 28 and 56). In addition, the colonization

pattern of yeast species was analyzed with regard to their

order of appearance during the decomposition of alder, oak

and eucalyptus leaves (Fig. 2). Only a few species showed a

persistent presence (three or more sampling periods),

namely: Cryptococcus laurentii, Cr. albidus, Rhodotorula

colostri and Rh. glutinis for alder litter; Cr. albidus,

Cr. laurentii, Rh. colostri and Sporobolomyces roseus for oak

litter; and Cr. laurentii, Cystofilobasidium capitatum, Leucos-

poridium scottii, Trichosporon cutaneum, Rh. colostri and Cr.

albidus for eucalyptus litter. It is important to note that all

these species are of basidiomycetous affinity.

Concerning yeast species richness (S) with duration of

decomposition, the highest values were obtained for days 1

and 7 (Figs 2 and 3a). This is not surprising, as the yeasts

present in the water stream colonize the intact leaves. After

the initial colonization, and in all the leaf litter types,

S declined and recovered again, but never reached the initial

values. Shannon–Wiener diversity (H0) revealed a similar

pattern to S values (Fig. 3b), with the highest values being

reached in alder, followed by eucalyptus and oak litters. In

fact, the lowest H0 values at all sampling periods were found

in oak leaf litter.

Yeast community analysis according to duration
of decomposition and among leaf litters

The MDA of the yeast species frequency (litter as the

discriminant factor) showed distinct yeast communities

among the litter types (Wilks l= 0.00024, F= 7.445,

Po 0.0026). The first root function, explaining 98.6% of

the total discriminant power, revealed that eucalyptus

samples were clearly separated from the remaining litters

(Fig. 4a), and the yeast species responsible for this separa-

tion were Xanthophyllomyces dendrorhous, Cryptococcus ter-

reus, Le. scottii, Fellomyces polyborus, Tremella foliacea and

Pic. anomala. Species such as Sporo. roseus, Wil. saturnus,

Sterigmatosporidium polymorphum, Rh. glutinis, Rhodotoru-

la minuta, Rhodotorula crocea, Cystofilobasidium bisporidii,

Cystofilobasidium infirmo-miniatum, Sporidiobolus salmoni-

color, and Filobasidium floriforme correlated with the second

root, which is responsible for the distinction between alder

and Cystofilobasidium oak yeast communities.

The MDA using time as the discriminant factor (Fig. 4b)

showed that yeast communities changed during decomposi-

tion (Wilks l= 0.00001, F= 5.800, Po 0.0001). The first

root function contributed 72.4% of the total discriminant

power, exhibiting a temporal gradient. The species corre-

lated with the first root and responsible for the discrimina-

tion between decomposition periods were Cryptococcus

amylolentus, Cy. bisporidii,D. hansenii, Rhodotorula graminis

and X. dendrorhous.

Yeast assimilation profiles according to duration
of decomposition and among leaf litters

For the purpose of finding whether both yeast species

colonization pattern and assimilating profiles were influ-

enced by substrate modifications, we investigated the assim-

ilation profiles of 44 carbon and nitrogen sources. MDAwas

applied to the data generated by each yeast strain in order to

determine which nutritional variables contributed most to

discrimination between the different litter species (three

groups) and decomposition time (seven sampling periods).

This MDA (litter factor) clearly showed a litter-type gradient

(Fig. 4c). The model is based on 25 variables (Wilks

l= 0.4647, F= 3.287, Po 0.0001) and roots 1 and 2 account

for 53.0% and 47.0% of the discriminant power, respec-

tively. For root 1, the variables that made the most impor-

tant contribution to discriminant power were lactose,

Fig. 3. Temporal dynamics of species richness and diversity in alder, oak

and eucalyptus litters. (a) Number of yeast species (S) isolated by culture-

dependent techniques. (b) Shannon–Wiener diversity index (H0).
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galactitol, L-sorbose, salicin, cellobiose, urea hydrolysis,

L-rhamnose and D-glucuronate. For root 2, D-arabinose,

D-ribose, galactose, maltose, arbutin, trehalose, xylitol, ery-

thritol, citrate, cadaverine and creatine were the most

important. The assimilation abilities of yeast strains isolated

from alder leaf were scattered between the first and second

roots. In contrast, in the other two litters (oak and eucalyp-

tus), yeast strains were more concentrated along the second

discriminant function.

As shown in Fig. 4d, the MDA (time factor) revealed a

temporal gradient related to nutrient utilization along the

first discriminant function (day 1, days 7–171), and

along the second root from day 7 to 171. Of the 44 initial

variables, 39 contributed 60.2% of the discriminant

power (Wilks l= 0.0266, F= 3.052, Po 0.0001). Root 1

accounted for 31.7% of all discriminant power. Sucrose,

L-lysine, nitrite, nitrate and cadaverine were the variables

that made the most important contribution. Root 2 con-

tributed 28.5% to the discriminant power, and included the

contribution of variables such as ethanol, methanol, and

cellobiose.

Discussion

In this study, yeast community composition during leaf

litter decay was assessed by culture-dependent methods,

which are widely used for the enumeration of microbial

communities on leaves (Jacques & Morris, 1995; Müller

et al., 2003). Furthermore, a recent study of yeast diversity in

an estuary (Gadanho & Sampaio, 2004) revealed a better

performance of culture-dependent methods over molecular

techniques (temperature gradient gel electrophoresis).

Eucalyptus and oak leaves exhibited a lower mass loss than

alder leaf litter, as previously observed (Sampaio et al.,

2001). In oak, the most recalcitrant and stable substrate,

yeast densities reached the highest values. Nevertheless, the

numbers of yeast species isolated from the three litter types

were identical: 40, 45 and 48 for eucalyptus, alder and oak,

respectively. Eucalyptus and oak, both considered to be

substrates of low nutritional quality (Pozo, 1993; Bärlocher

et al., 1995; Canhoto & Graça, 1999), proved to be equally

appropriate for yeast colonization as alder, a substrate of

high nutritional quality (Gessner & Chauvet, 1994). Similar

Fig. 4. Diagrams for the first two roots obtained by MDA of yeast species composition (a, b) and on yeast strain profile for the utilization of carbon and

nitrogen sources (c, d). (a, c) Data labeled by litter type. (b, d) Data labeled by decomposition time.
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results, although for distinct microbial communities such as

aquatic hyphomycetes, were found for alder and eucalyptus

(Chauvet et al., 1997) and for red maple and rhododendron

(Gulis & Suberkropp, 2003).

During litter decay, both species richness (S) and Shan-

non’s diversity index (H0) declined. Apparently, the number

of species is related to the substrate complexity (Foster &

Fogleman, 1993). In the present study, both values were

higher at the beginning of the experiment. According to

Sampaio et al. (2001), a mass of leaves initially rich in

soluble sugars was rapidly colonized by yeasts, which

resulted in high diversity values. Similar results were found

in other yeast ecological successions, such as corn ensilage,

fermented sugar cane and agave, in decaying fruits, and

during decomposition of Q. rotundifolia, Q. robur, Acer

rubrum and Tilia cordata leaves (Middelhoven & van Baalen,

1988; Lachance, 1995; Morais et al., 1995; Schwan et al.,

2001; Sadaka & Ponge, 2003; Nikolcheva et al., 2005;

Cai et al., 2006). The appearance of new yeast populations

at the end of the experiment provides indirect evidence of a

new niche space, reinforcing the previous assumption

(Connell & Slatyer, 1977; Walker & Chapin, 1987). More-

over, the presence of both primary and secondary colonizer

yeast species at the later colonization stages supports a

model based on tolerance and/or competition among spe-

cies (Frankland, 1998; Sharma et al., 1998; Jackson, 2003).

Our results show a predominance of basidiomycetous

yeasts over ascomycetous yeasts, even though the composi-

tion of yeast communities was distinct among litter types.

Three groups of yeasts were isolated: those common to all

litters, those shared by two types of litter, and those that

appeared only in one particular leaf litter. In the first group

of yeasts, we find generalist species that are frequently

isolated from aquatic environments, decomposing organic

matter, phylloplane and soils such as Au. pullulans,

Cy. capitatum, Cy. infirmo-miniatum, Pic. anomala, Rh.

aurantiaca, Rh. colostri, Wil. saturnus and Le. scottii, and the

generalist species D. hansenii. Species belonging to the

complexes of Cr. albidus and Rhodot. glutinis, both with

worldwide distribution, and to the genus Trichosporon, were

also found (Phaff & Starmer, 1987; Kurtzman & Fell, 1998;

Polyakova et al., 2001; Libkind et al., 2003; Glushakova &

Chernov, 2004). For the group of yeasts shared by two types

of litter, the pairs alder–eucalyptus, oak–eucalyptus and

alder–oak share three, eight and nine yeast species, respec-

tively. Finally, there are yeast species isolated from a parti-

cular leaf type: 12, 11 and nine species in alder, oak and

eucalyptus, respectively. Rhodotorula and Rhodosporidium

species exhibited some preference for alder and oak, whereas

Cryptococcus ferigula and X. dendrorhous preferred eucalyp-

tus leaves. These results corroborate the discriminant analy-

sis, which shows differences among litter types based on

yeast frequency data.

In general, ascomycetous yeasts were isolated in the first

or in the later decomposition stages, a result also observed

by other authors (Kuter, 1986; Crawford et al., 1990). The

presence of M. bicuspidata and Wic. domercqiae suggests an

invertebrate connection (Kurtzman & Fell, 1998; Cáceres

et al., 2006).

The MDA showed that the capacity of the yeast strains to

assimilate carbon and nitrogen sources varied among the

litter species, and throughout decomposition. The differ-

ences in the assimilation abilities of the yeast strains among

the three litters are possibly related to distinct chemical

foliar compositions among them and throughout decom-

position. It is known that alder leaves have higher nutri-

tional quality than oak and eucalyptus, because they have

lower levels of molecules such as phenols, condensed

tannins, essential oils and lignin (Bärlocher et al., 1995;

Sampaio et al., 2001). The fact that some basidiomycetous

yeasts are capable of metabolizing recalcitrant aromatic

compounds (Sampaio, 1999; Middelhoven et al., 2001) may

explain why they appeared more frequently in eucalyptus

and oak leaves.

The clear differentiation of the assimilation capacities of

yeast strains throughout decomposition, which was sup-

ported by discriminant analysis, suggests that the yeast

community responds to habitat modifications. Also, com-

munity parameters such as S and H0 dynamics, which were

higher at the beginning of this experiment, could indicate

that competition for nutrients and space were initially

important, as pointed out by Walker & Chapin (1987). With

the aging of the biofilm, the competition for nutrients

decreases, as new resources (metabolic products released

from other organisms) and habitats become available (Jack-

son, 2003). For instance, D-glucosamine could be formed as

a result of peptidoglycan and quitin hydrolysis (Kuter, 1986;

Amelung et al., 2001). In the final decomposition phase,

yeasts that have broader assimilation abilities predominate,

and this may explain why unusual substances such as

cadaverine and ethylamine (biogenic amines produced by

microbial decarboxylation) are used. In fact, utilization of

amines as a sole source of nitrogen by yeasts has been

recognized for a long time (Middelhoven et al., 1986).

Conclusions

These results, in both qualitative and quantitative terms,

clearly support the proposition that yeasts, mostly basidio-

mycetous, are present in an aquatic saprophyte-type ecosys-

tem. Yeast colonization differs among decomposing leaf

litter types, and throughout the decay period. The yeast

populations respond to specific substrate changes that occur

during leaf litter decomposition. The order of species

appearance, the substrate assimilation patterns and the
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changes in species richness and diversity strongly suggest a

succession phenomenon.
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