
1 
 

Fragility functions for tall URM buildings around early 20th century in Lisbon.  
Part 1: methodology and application at building level 

 
 

Ana G. Simões1, Rita Bento1*, Sergio Lagomarsino2, Serena Cattari2, Paulo B. Lourenço3 
1CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal) 

2DICCA, Università Degli Studi di Genova, Genoa (Italy) 
3ISISE, Universidade do Minho, Campus de Azurém, Guimarães (Portugal) 

*Corresponding Author: Address: Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal; 
Email: rita.bento@tecnico.ulisboa.pt; Tel: +351 218 418 210 

 
 
Abstract 
The article proposes a procedure for the derivation of fragility functions for unreinforced masonry buildings 
considering the in-plane and out-of-plane response. Different approaches are considered for the generation of the 
corresponding fragility functions and for the evaluation of the propagation of uncertainties. The contributions for 
the dispersion of the fragility functions account for the variability in the definition of the capacity, the aleatory 
uncertainty in the definition of the seismic demand and the aleatory uncertainty in the definition of the 
modified/floor response spectrum, when the local mechanisms are located in the upper level of the building. In 
the end, the individual fragility curves are properly combined in order to define a single fragility curve for the 
class of buildings. As a case study, the procedure is applied to the assessment of one of the most vulnerable 
unreinforced masonry buildings constructed in the early 20th century in Lisbon, considering a typical prototype 
building with five storeys high. Results for a seismic event, as defined in the earthquake-resistant code for Lisbon, 
indicate that the typical building has about 50% probability of having heavy damage and about 30% probability 
of collapse. 
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1. Introduction 
 
It is known that, in case of an earthquake, the victims and economic losses are mainly related to the seismic 
behaviour of structures. Previous studies regarding seismic risk analysis in mainland Portugal indicated that 
masonry buildings are the most seismically vulnerable and also the most common building typology (Silva et al. 
2015). Lisbon area has the highest seismic hazard in Portugal and particular attention should be given to the 
residential unreinforced masonry (URM) buildings constructed in the transition between the 19th and 20th 
centuries. These buildings characterize a period of low construction quality in Lisbon with relatively tall buildings 
(between four and six storeys), particularly in comparison with the preceding earthquake-resistant masonry 
buildings constructed after the 1755 earthquake (Simões et al. 2015). They are commonly referred to as “gaioleiro” 
buildings, meaning “bird cage”, as they seem more adequate for birds than people (Appleton, 2005; Simões et al., 
2017). The main objective of this work is to present a procedure for the derivation of fragility functions and to 
evaluate the seismic vulnerability of such tall URM buildings in Lisbon.  
Seismic vulnerability addresses the susceptibility to suffer damage or loss due to an earthquake. It can be defined 
using fragility functions, providing the probability of reaching or exceeding a specified limit state as a function of 
the intensity of a seismic event, or using vulnerability functions, providing the expected value of loss. There are 
several methods available for the derivation of fragility functions, classified into four categories (Porter et al. 
2007; Pitilakis, 2014): empirical, expert elicitation/judgement, analytical and hybrid. Erberik (2008) proposed 
fragility functions for masonry typologies in Turkey, taking into account structural variations within each building 
typology (e.g. number of stories, load-bearing wall material, regularity in plan and arrangement of walls). The 
buildings capacity curves were obtained through non-linear static (pushover) analyses. Rota et al. (2010) proposed 
fragility functions for masonry buildings based on the convolution between the probability density function of a 
specific limit state, determined based on non-linear static (pushover) analyses, and the probability distribution of 
the seismic demand, obtained from non-linear dynamic time-history analyses. In both cases, the mechanical 
properties of masonry were analysed as aleatory variables and only the in-plane response of the buildings was 
considered. 
This article proposes a procedure to derive fragility functions for URM buildings based on non-linear analyses 
but considering the in-plane and out-of-plane response of the buildings and the propagation of uncertainties 
(Figure 1). The in-plane response refers to the global (box-type) behaviour controlled by the in-plane capacity of 
walls and stiffness of floors. The out-of-plane response refers to the activation of local mechanisms, typically 
consisting on the overturning of parts of the building insufficiently connected to the rest of the structure. The 
capacity curves are obtained, for the in-plane response, through non-linear static (pushover) analyses, and, for the 
out-of-plane response, through non-linear kinematic analyses. The aleatory variables associated with the analyses 
are, respectively, treated by the Monte Carlo Method (Rubinstein, 2011) and by the Response Surface Technique 
(Liel et al. 2009; Ottonelli, 2015). The limit states (LS) are defined according to the criteria proposed by Cattari 
and Lagomarsino (2013a) that correlates the behaviour of the structure at three scales: element, macro-element 
and global. A new formulation for the macro-element scale is applied to detect the activation of soft storey 
mechanisms (Marino et al.; 2018). The intensity measure (IM) that produces the attainment of the limit state is 
obtained from the application of the Capacity-Spectrum Method with overdamped spectrum and without any 
iterative procedure, as proposed in (Lagomarsino et al., 2015). The final dispersion of the fragility curves results 
from the contribution of the dispersion in the capacity and the dispersion in the seismic demand. The approach 
adopted for the derivation of fragility functions is described in detail in the following sections. The procedure is 
after applied to the determination of the seismic vulnerability of a typical class of URM “gaioleiro” buildings. In 
a companion article (Simões et al., 2019a) the procedure is applied to different classes of buildings aiming at the 
overall assessment of the seismic vulnerability of this class of buildings in Lisbon. 
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Figure 1 – Procedure for the definition of fragility functions for URM buildings 

2. Approach adopted for the derivation of fragility functions 
 
Fragility functions provide the probability of reaching or exceeding a certain limit state (LS) as a function of a 
selected seismic intensity measure (IM). The seismic behaviour of URM buildings is usually divided between in-
plane and out-of-plane response. The common approach is to neglect the mutual interaction between these 
responses and to analyse them independently. Accordingly, to such approach, in this work, the fragility functions 
are firstly obtained numerically, based on non-linear analysis and detailed models, for both the global and local 
behaviour, and then they are combined to define a single final fragility curve. 
Fragility functions are herein described by a lognormal cumulative distribution function, as: 
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where: d is a displacement representative of the seismic behaviour, DLS is the displacement limit state threshold, 
Φ is the standard cumulative distribution function, IMLS is the median value of the lognormal distribution of the 
intensity measure that produces the attainment of the limit state threshold LS, and LS is the dispersion.  
Among other possible choices (Douglas et al. 2015), the intensity measure adopted is the peak ground acceleration 
(PGA), which is a common choice in case of URM buildings. This option, despite being unable to represent the 
full contents of the seismic signal, is also quite effective for a direct interpretation of results and for the comparison 
with other studies available in the literature. 
The intensity measure compatible with LS, IMLS, is obtained from the application of the Capacity-Spectrum 
Method with overdamped spectrum and without any iterative procedure, as proposed in (Lagomarsino et al., 
2015). The procedure is based on the comparison between the displacement capacity of the structure for a limit 
state threshold (DLS) and the seismic demand, in an acceleration-displacement coordinates system. The 
displacement capacity of the structure is defined on its capacity curve, which gives the acceleration of an 
equivalent non-linear single-degree-of-freedom (SDOF) system as a function of its displacement. The seismic 
demand is expressed by an acceleration-displacement response spectrum (ADRS), which gives the spectral 
acceleration Sa as a function of the spectral displacement Sd, for an equivalent viscous damping =el=5%, 
considered valid in the initial elastic range. Finally, the intensity measure IMLS is determined from: 
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where: Sd1 is the displacement response spectrum, TLS is the linear equivalent period corresponding to the limit 
state threshold, defined by Equation (3) and, (LS) is the damping correction factor, defined by Equation (4). 
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The overdamped spectrum is obtained by multiplying the normalized response spectrum by (LS). The equivalent 
viscous damping (LS) takes into account the contribution of the initial elastic viscous damping (el) and the 
hysteretic damping (h,LS), as defined by: 

0 ,LS h LS     (5) 

The dispersion of the fragility curve (LS) takes into account two different contributions: 1) the aleatory variability 
in the definition of the capacity (C) and, 2) the aleatory uncertainty in the definition of the seismic demand (D). 
Other contributions may be considered (Lagomarsino, 2014). Under the hypothesis that these contributions are 
statistically independent, dispersion LS reads: 

2 2
LS C D     (6) 

The variability in the definition of the capacity (C) is related to random/aleatory variables. These aim to account 
for the uncertainties in the quantification of specific parameters and the intrinsic variations between buildings. 
Different parameters are assumed as aleatory variables for the analysis of the global and local behaviour and then 
included in the evaluation of the propagation of uncertainties. The aleatory uncertainty in the definition of the 
seismic demand (D) is related to the variability of the seismic input described by the intensity measure, as: 

,84 ,160.5 log( ) log( )D LS LSIM IM    (7) 

where IMLS,84 and IMLS,16 are the IMLS values that produce the attainment of the limit state threshold LS by 
considering as input the 84% and 16% percentiles (Sa,16 and Sa,84, respectively) of the elastic response spectrum. 
The IMLS values are determined by considering the median capacity curve, whereas the referred response spectra 
are determined starting from a selection of a set of real ground-motion records compatible with the geophysical 
characteristics of the reference code seismic action. 
Figure 2 plots the response spectra corresponding to these 84% and 16% percentiles and compares the response 
spectrum corresponding to the 50% percentile (Sa,50) with the code response spectrum (Sa,Code) defined for Lisbon 
according to Part 1 of Eurocode 8, EC8-1 (IPQ, 2010). In particular, the latter has been obtained by assuming 
seismic action type 1 (intra-plate earthquake), zone 3 (PGA=1.50 m/s2) and soil type B (S=1.29). The real ground-
motion records were selected with SelEQ tool (Macedo and Castro 2017), a software application that features a 
wide variety of filtering criteria. A total of 30 records was considered. 

 

Figure 2 – Response spectra considered to be compatible with seismic action type 1 

Finally, the discrete probability associated with the damage states are determined. The damage states (DSk with 
k=1,…,5) are defined to be conceptually compatible with the European Macroseismic Scale (EMS-98 (Grünthal, 
1998)): DS0 – no damage, DS1 – slight damage, DS2 – moderate damage, DS3 – heavy damage, DS4 – very 
heavy damage, and DS5 – collapse. The discrete probability pDSk for k=1,2 and 3, considering a given value of im, 
is defined by: 
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pDS4 is generically named “complete” damage, including DS4 – very heavy damage and DS5 – collapse, resulting 
that pDS4=pLS4. This occurs because LS5 cannot be correctly capture by numerical models. However, assuming 
that the discrete probability distribution (pDS) is represented by a binomial distribution, it is possible to obtain: 
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Finally, the discrete probability pDS0 is calculated: 
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Next, the criteria adopted for the analysis and derivation of the fragility functions associated with the global and 
local behaviour are described in detail in §3 and §4, respectively. As aforementioned, the fragility functions are 
evaluated individually and are then combined in order to define a single representative fragility curve, as defined 
in §6. 
 
3. Analysis of the global behaviour 
 
3.1 Modelling strategy  
The global behaviour of URM buildings is based on the assumption that the connection between walls and the 
connection between walls and floors/roof are effective to prevent the occurrence of local mechanisms associated 
to the out-of-plane response and overturning of parts of the building. In this work, the global behaviour is analysed 
my means of three-dimensional models defined in TREMURI program (Lagomarsino, 2013). The commercial 
version of the program – 3Muri release 5.5.110 (http://www.stadata.com/) – is used to generate the equivalent 
frame idealization of URM walls while the research version – TREMURI (Lagomarsino, 2012) – is used to 
perform the non-linear analyses. The three-dimensional models are obtained by assembling: 1) the walls, modelled 
as an equivalent frame, and 2) the horizontal diaphragms (floors and roof), modelled as membrane elements. 
 
Walls: equivalent frame model 
The equivalent frame model approach comprehends the discretization of masonry walls with openings into a set 
of panels: 1) piers – vertical elements carrying both vertical and horizontal loads, 2) spandrels – horizontal 
elements coupling piers and limiting their end-rotations in case of horizontal loads, and 3) rigid nodes – 
undamaged elements confined between piers and spandrels. 
The behaviour of the masonry panels (piers and spandrels) is modelled by non-linear beams characterized by a 
linear piecewise force-deformation constitutive law (Cattari and Lagomarsino, 2013a). This constitutive law is 
based on a phenomenological approach that aims to describe the non-linear response of masonry panels for 
increasing damage levels (DLi, with i=1,…,5) by assuming a progressive strength degradation (i) at 
predetermined drift levels (i); these values can be easily defined basis on experimental data on URM panels and 
they can be properly differentiated in case of pier and spandrel elements. Each DLi represents the point after 
which the element experiences a damage state (DSk). 
The response of the elements is determined from the comparison between the acting shear force (V) and the 
ultimate shear force (Vu) considering the occurrence of flexural or shear failure modes. The flexural behaviour of 
piers is defined according to the beam theory as proposed in EC8-1 (CEN, 2004) and Italian Code – NTC08 
(2008). The flexural behaviour of spandrels is defined according to the criterion proposed by Cattari and 
Lagomarsino (2008) assuming an equivalent tensile strength on the elements due to the interlocking of the 
masonry units at the end section of spandrels. The shear behaviour of both piers and spandrels is governed by the 
diagonal cracking failure mode defined according to Turnšek and Čačovič (1970) and Turnšek and Sheppard 
(1980) Mixed failure modes are also possible, when the prediction between flexural and shear modes is close one 
to each other. 
The linear piecewise constitutive law describes, in addition, the initial stiffness degradation of the panel by two 
parameters: 1) kin which gives the ratio between the elastic (kel) and the secant (ksec) stiffness at the point where 
Vu is reached, and 2) k0 which gives the ratio between the shear force at the end of the elastic phase and the ultimate 
shear force (Vu). 
According to the equivalent frame idealization provided as default by 3Muri program, the connection between 
walls is defined by default as good quality. However, it is known that one of the main vulnerabilities of URM 
buildings are the connections between walls. To analyse the effect of the connections in the global behaviour of 
the buildings, the interface between walls has been modelled through link beams at the floor level, as exemplified 
in Figure 3 by properly modifying the automatic mesh resulting from the commercial version of the program. In 
this case, the properties of the link beams, namely the area (A) and inertia (I), are defined through an iterative 
procedure that aims to simulate the behaviour of connections. This procedure compares the global behaviour of 
the buildings in terms of pushover curves and maximum base shear force by considering as target reference the 
two limit cases of perfectly coupled and completely uncoupled walls. 
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(a)  

 

 
(b)                                    (c) 

Figure 3 – Example of connection between walls: (a) identification of connections (plan view) and mesh of 
elements for the connection between exterior and interior walls (b) without and (c) with link beams 

Horizontal diaphragms: membrane elements 
Horizontal diaphragms are modelled as 3- or 4-nodes orthotropic membrane finite (plane stress) elements. These 
elements are characterized by the following equivalent parameters: thickness (teq), modulus of elasticity in the 
principal direction of the floor (spanning orientation) and in the perpendicular direction, respectively denoted as 
E1 and E2, and shear modulus (G12). The modulus of elasticity represents the in-plane stiffness of the membrane 
along the two perpendicular directions and accounts, in addition, for the degree of connection between walls and 
horizontal diaphragms. The shear modulus determines the tangential stiffness of the diaphragm and the horizontal 
force distribution between walls. 
 
3.2. Definition of the capacity by non-linear static analyses 
Pushover analysis is a non-linear static analysis method where the structure is subjected to constant gravity loads 
and monotonically varying horizontal loads aiming to simulate the effect of the seismic action on the structure 
(CEN, 2004). The behaviour of the structure (multi-degree-of-freedom, MDOF, system) is described by the 
pushover curve that relates the base shear force (Vb) and the horizontal displacement of a control node or that 
assumed as representative of the structural response of the system (d), providing information about the stiffness, 
strength and displacement capacity. 
The EC8-1 (CEN, 2004) recommends applying at least two distributions of lateral loads: uniform – proportional 
to the mass, and modal – proportional to the fundamental mode shape. Several authors do not recommend the use 
of a modal distribution for the analysis of URM buildings with flexible diaphragms, mainly due to the low mass 
participation involved in the first modes of vibration of the structure (Marino et al., 2018; Lourenço et al., 2011; 
Endo et al., 2017). A possible alternative is the use of the inverse-triangular load distribution – proportional to the 
product between the mass and the height of the node – because it assures that the seismic masses in all parts of 
the building are involved in the pushover analysis (Lagomarsino and Cattari, 2015; Cattari et al., 2015). Therefore, 
this work proposes to perform the non-linear static (pushover) analyses by considering a uniform and an inverse-
triangular (named triangular for simplicity) load distributions. The analyses are performed in the two main 
directions of the building, including negative and positive orientation. The horizontal displacement represented in 
the pushover curve has been assumed as the average of the displacement of nodes located at the top floor, weighted 
on their corresponding mass. This is a heuristic approach useful to define a curve representative of the whole 
structure in case of buildings with flexible diaphragms and/or in plan irregularities (Lagomarsino and Cattari, 
2015). 
 
3.3. Definition of limit states thresholds  
The EC8-3 (IPQ, 2017) recommends three limit states – damage limitation, significant damage and near collapse 
– which are directly defined on the pushover curve based on conventional displacement limits. Cattari and 
Lagomarsino (2013a) proposed, as an alternative, to define limit states, based on a multi-scale approach that 
correlates the damage level in the structure at three scales: 1) elements (piers and spandrels), 2) macro-elements 
(walls and horizontal diaphragms) and 3) global (represented by the pushover curve). The multi-scale approach is 
a heuristic procedure that aims to monitor the occurrence of significant damage in parts of the structure that may 
not be evident in the pushover curve in terms of strength degradation. A comparison between these approaches 
(IPQ, 2017; Cattari and Lagomarsino, 2013a) was carried out in (Simões et al., 2014). The difference between 
both criteria was particularly evident for the near collapse limit state. It was concluded that the thresholds were 
better defined by the second criterion (Cattari and Lagomarsino, 2013a), which is adopted here.  
The damage levels in the structure (DLk, with k=1,…,4) are computed from the numerical models through the 
monitoring of proper engineering demand parameters. According to the multi-scale approach, the position of the 
DLk in the pushover curve is defined by the minimum displacement threshold obtained from the verification of 
conventional limits at the three scales. The following criteria are adopted in this work: 



7 
 

1. Element Scale – verification of the cumulative rate of damage in piers (ΛP,DLk). This is defined as the 
percentage of piers that reached or exceeded given drift limits DLi, weighted on the corresponding cross 
section (Ap), as: 

,

1p
pp

DLi
P DLk

pp

A H

A




 
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
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       with i = k + 1 (13) 

where the sum ∑P is extended to the total number of piers in the building, Np (p=1,…,Np), and H is the 
Heaviside function (equal to 0 until the demand δp in the s-th pier does not reach the capacity δDLi and 
equal to 1 after). The final threshold ΛP is defined by Equation (14). This allows the spread of damage in 
a limited percentage of elements and avoids that threshold DLk is reached due to a single element (Cattari 
and Lagomarsino, 2013a). In particular, the proposed threshold takes into account the damage induced 
by the application of gravity loads (ΛP,DLk,0) and the number of piers in the building (Np). 

, ,0

2
0.04P P DLk

PN
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2. Macro-Element Scale – verification of the cumulative damage of piers in a given wall and level 
(ΛP,WL,DLk). This is defined as the maximum value of the minimum DLi attained in piers located in a given 
wall and level (WL), as proposed in Marino et al. (2018). The criterion is useful to detect when piers 
from a given level reached a DLi. Allowing for checking the occurrence of a soft-storey mechanism. 

3. Global Scale – verification of the rate kG of the total base shear over the maximum base shear force of 
the pushover curve (kG=V/Vmax). Rate kG is assumed equal to 1.0 for DL2, 0.8 for DL3 and 0.6 for DL4. 
An additional verification avoids the positioning of PL1 and PL2 in the very beginning of the pushover 
curve: It is assumed that kG should not be lower than 0.50 and 0.75, respectively. 

The damage levels in the structure (DLk, with k=1,…,4) are considered to be coincident with the limit states (LSk, 
with k=1,…,4), which in turn are defined in terms of performance levels (PLk, with k=1,…,4). The three limit 
states in EC8-3 (IPQ, 2017) are assumed to correspond to performance levels PL2 to PL4, while PL1 is assumed 
to correspond to the operational limit state. 
 
3.4. Computation of IMLS 
The intensity measure IMLS is defined by the PGA that produces the attainment of the limit states LS (or PL). As 
stated, the Capacity-Spectrum Method with overdamped spectrum and without any iterative procedure 
(Lagomarsino and Cattari, 2015), is adopted. The computation of the intensity measure for the global behaviour 
IMLS is based on the following steps: 

1. Definition of the capacity curve by converting the pushover curve (MDOF system) into an equivalent 
SDOF system. The conversion is based on a transformation factor (Γ) computed as a function of a 
displacement shape vector, assumed to be consistent with the fundamental mode shape of the system, as 
proposed by Fajfar (2000). The transformation factor (Γ) is calculated according to Equation (15) where 
mi and Φi are, respectively, the mass and modal displacement (normalized to the roof level) in each node 
i of the structure and m* is the mass of the equivalent SDOF system. The base shear force (V*) and the 
displacement (d*) of the equivalent SDOF system are computed according to Equation (16). The capacity 
curve is plotted in spectral coordinates, i.e. spectral acceleration (Sa) as a function of spectral 
displacement (Sd), assuming the equivalences presented in Equation (17). 
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i i
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 (15) 

/bV V       and    /d d    (16) 

/aS V m      and    dS d   (17) 

2. Determination of the equivalent viscous damping (PL) and period (TPL) in the capacity curve, according 
to Equation (5) and (3), respectively. The hysteretic damping (h) is estimated based on cyclic pushover 
analyses by considering as target the displacement limit state threshold DPL, and is related to the area 
enclosed by the full hysteresis loops as: 

02
D

h

E

E



  (18) 

where ED is the energy dissipated by the structure during the cyclic response and E0 is the total strain 
energy. According to (Cattari and Lagomarsino, 2013a) this estimation of the equivalent viscous damping 
allows to take into account the seismic behaviour, being a better estimation than analytical expressions 
proposed in literature, since is targeted on the specific building under investigation. 
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3. Definition of the seismic demand in an acceleration-displacement response spectrum (ADRS) format. 
The elastic response spectrum is normalized, Sd1, so that Sa(Sd=0)=1, and reduced by the damping 
correction factor (), given by Equation (4). 

4. Computation of the PGA for which the seismic displacement demand (Sd) is equal to the displacement 
capacity of the equivalent SDOF (d*) for a specified PL, according to Equation (2). 

Figure 4 exemplifies the capacity curve and the overdamped response spectra, in spectral coordinates, used for 
the computation of the PGA values compatible with the four performance levels. 

 
Figure 4 – Computation of the PGA values compatible with the four performance levels 

4. Analysis of the local behaviour 
 
4.1. Modelling strategy 
URM buildings under seismic actions are particular prone to local failure modes related to the out-of-plane 
response and overturning of façade walls insufficiently connected to the rest of the structure and standing out 
elements, such as gable walls, parapets and chimneys. The identification of possible local mechanisms is 
supported on damage observation of URM buildings after past earthquakes (D’Ayala and Paganoni, 2009; Penna 
et al., 2014) and from experimental tests (Lourenço et al., 2011; Candeias, 2008). The activation of local 
mechanisms depends of the quality and strength of the connections between the façade walls and elements such 
as side walls, partition walls, floors and roof structure. In case specific measures have been implemented to prevent 
the overturning of the façade walls, for example with the introduction of tie-rods or ring beams at the floor level, 
out-of-plane mechanisms relying on arch effect (flexural mechanisms) may also occur. Standing out elements 
(e.g. gable walls, parapets and chimneys) are very vulnerable to overturning even for low intensity seismic actions. 
More than one mechanism can occur and sometimes it is not easy to select in advance the most dangerous; in 
these cases, all possible mechanisms must be investigated (Lagomarsino, 2015). 
 
4.2. Definition of the capacity by non-linear kinematic analyses 
Non-linear kinematic analyses are based on the assessment of the work done by equilibrated forces applied to a 
set of compatible generalized virtual displacements (Lagomarsino, 2015). The response of the mechanism is 
described by a curve that relates the static seismic multiplier () with the incremental horizontal displacement of 
a control node (dC). This curve may be regarded as equivalent to the pushover curve obtained for the global seismic 
behaviour. 
 
4.3. Definition of limit state thresholds 
The displacement thresholds proposed in (Lagomarsino, 2015) are adopted in this work and defined directly on 
the capacity curve of the mechanism. The displacement thresholds associated with DL1 and DL2 are coincident, 
respectively, with the limit of the elastic behaviour (dDL1 = de) and the point of rocking activation (dDL2 = ds). DL3 
and DL4 are defined as a function of displacement where the capacity curve is zero (d0), point in which overturning 
occurs. The displacement associated with DL4 (dDL4) is assumed equal to 0.4d0, in order to be coherent with the 
definition of near collapse limit state. As to DL3, it is assumed before DL4 (dDL3 = 0.25d0) and after checking that 
no failure of important connections occurs (e.g. unthreading of rafters or beams). 
 
 
4.4. Computation of IMLS 
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The Capacity-Spectrum Method with overdamped spectrum is adopted with an iterative procedure (Degli Abbati, 
2014). The latter is necessary in case the local mechanism is located in the upper level of the building to properly 
consider the dynamic filtering effect of the main structure that produces an amplification of the seismic demand. 
This depends on the non-linear behaviour of the main structure, as illustrated more in detail in the following. The 
computation of the intensity measure for the local behaviour IMLS is based on the following: 

1. Definition of the capacity curve by converting the curve that relates the static seismic multiplier () with 
the incremental horizontal displacement of a control node (dC). The conversion is based on a 
transformation factor (Γ) and assuming that each block is defined by lumped masses at their barycentre. 
Equation (19) provides the definition of the capacity curve in spectral acceleration (Sa) and displacement 
(Sd) coordinates. 
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where e* is the rate of total mass that participates in the mechanism, given by Equation (20), and  is the 
transformation factor given by Equation (21). 
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Here, nb is the number of blocks (with k=1,…,nb), Wk is the weight of block k plus the masses it carries 
during the activation of the kinematism, Qk is the total weight of masses that are not carried by block k 
but are connected to it during the activation of the kinematism (e.g. the weight of the roof), δQx,k is the 
virtual horizontal displacement of the barycentre of weights Wk and Qk, assumed positive in the direction 
of the seismic action that activates the kinematism and δCx is the horizontal component of the virtual 
displacement of the control node. 

2. Definition of an initial pseudo-elastic branch in the capacity curve to describe the dynamic response of 
the considered part of the structure before the activation of the kinematism, in accordance to the 
formulation of the bi-linear model (Lagomarsino, 2015; Doherty et al., 2002), which produces 
overturning conditions similar to the Housner model (Housner, 1963). The bi-linear model is defined by 
two distinct periods: the elastic period (Te) and the secant period (Ts). The capacity curve is expressed 
by: 
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where, de and ds are, respectively, the displacements corresponding to Te and Ts. In this work, the elastic 
period (Te) is calculated by approximation to the period of a cantilever beam. The secant period (Ts) is 
estimated assuming that the secant stiffness is 50% of the elastic stiffness. The secant displacement is 
obtained by the intersection with the descending branch of the capacity curve (rocking activation). 

3. Determination of the equivalent viscous damping (PL) and period (TPL) in the capacity curve, according 
to Equation (23) and (3), respectively. The hysteretic damping (h) is assumed equal to 7% following the 
experimental results in (Lagomarsino 2015; Degli Abbati and Lagomarsino, 2017). 
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 (23) 

4. Definition of the seismic demand in an acceleration-displacement response spectrum (ADRS) format. In 
case the local mechanism is located in the upper level of the building, it is necessary to adopt a floor 
response spectrum that takes into account the dynamic filtering effect of the structure. It is proposed to 
define the floor response spectrum according to the formulation in (Degli Abbati, 2016; Degli Abbati et 
al., 2018) which takes into account the dynamic parameters of all the relevant modes of the main 
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structure. The computation of the acceleration response spectrum at position Z of the main structure 
(Sa,Z), where the mechanism of period T and equivalent viscous damping  is located, is given by: 

2
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where  is the damping correction factor defined by Equation (4), SaZ,k(T,) is the acceleration response 
spectrum at position Z due to kth mode of the N modes of the main structure considered, defined according 
to: 
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where AMPk is the factor of amplification, defined by Equation Erro! A origem da referência não foi 
encontrada., while PFAZ,k is the peak floor acceleration, defined by Equation Erro! A origem da 
referência não foi encontrada.: 

k k sAMP f f  (26) 
2

, ( ) ( ) 1 4Z k a k k k k kPFA S T        (27) 

 
The amplification factor AMPk in Equation (26) collects two contributions: fk that depends on the viscous 
damping of the main structure, and fs that depends on the viscous damping of the mechanism. In Equation 
(27), Sa(Tk) is the acceleration of the ground motion at period Tk of the main structure, k is the equivalent 
viscous damping of the main structure, k and k are the modal participation coefficient and the modal 
shape of mode k. The modal participation coefficient (k) is calculated according to Equation (28), 
considering the modal mass (mi) and displacement (i) mobilized in the kth mode in each node i of the 
main structure. The modal shape (k) of mode k is evaluated after the normalization to the maximum 
horizontal displacement of the main structure. As it is indicated by the condition in brackets in Equation 
(24), for long periods, the floor spectrum has to be taken always greater than the response spectrum of 
the ground motion. 
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5. Development of an iterative procedure to compute the overdamped floor response spectrum associated 
with PL. This aims to guarantee coherence between the damping properties at the global and local scales 
and to establish a limit for the seismic verification at the local scale taking into account the progression 
of damage at the global scale. The following steps are considered: 

i. Definition of the period of the main structure (Tk,PL) based on the results from the non-linear static 
(pushover) analyses of the building in the direction of the out-of-plane mechanisms and 
corresponding equivalent viscous damping (ξk,PL). 

ii. Definition of the floor response spectrum. 
iii. Determination of the maximum PGA compatible with PL from the comparison between the 

capacity curve of the mechanism and the floor response spectrum. 
iv. Comparison of the maximum PGA compatible with PL at the local scale with the corresponding 

PGA at the global scale: a) if PGAPL,L > PGAPL,G, then the seismic verification at the global scale 
prevails (i.e. the building is no longer usable, even if the mechanism is verified), b) if PGAPL,L ≤ 
PGAPL,G, then update Tk,PL and ξk,PL and repeat steps ii) to iv) until the process converges. 

As an example, Figure 5 compares a ground response spectrum (Sa) with the floor response spectrum at the base 
of the last floor of a building (SaZ) considering the filtering effect of the structure and the contribution of higher 
modes: SaZ,2a and SaZ,2b. These modes correspond to the translation of the structure in the direction of the out-of-
plane mechanism (Simões et al. 2019b). It is visible that, in this case, mode 2a has the main contribution to the 
floor response spectrum. 
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Figure 5 – Comparison between the ground response spectrum (Sa) and the floor response spectrum at the base 
of the last floor of the building (SaZ) considering the filtering effect of the structure and the contribution of 

higher modes: SaZ,2a and SaZ,2b 

5. The URM “gaioleiro” buildings 
 
5.1. Main features 
The buildings constructed in the area of “Avenidas Novas” represent the core of the urban development of Lisbon 
in the transition between the 19th and 20th centuries. The main architectonical and structural features of these 
buildings are described in Simões et al. (2017). The buildings have between four and six stories, façade walls 
made of rubble masonry, side and interior walls made of brick masonry. Floors and roof are made of timber 
elements. The “gaioleiro” buildings may be subdivided into different types as a function of the dimension of the 
lot and the position of the building in the aggregate (Appleton, 2015). Previous works compared the seismic 
behaviour of the building types identifying the most vulnerable and most common type (Simões et al., 2014; 
Simões et al. 2018), which is adopted in this work. 
 
5.2. Definition of a prototype building 
The main geometric features of these buildings are identified based on the information available in the literature 
and on a detailed survey (Simões et al., 2016). The plan and front view of this prototype building are presented in 
Figure 6. 

(a)  (b)  (c)  

Figure 6 – Typical prototype building: (a) plan of the regular floors with dimensions in meters (1 – stone 
balcony in the street façade and 2 – jack arch balcony with steel profiles in the rear façade), (b) street façade and 

(c) rear façade 

The typical building is five storeys high, characterized by small size façade walls and one flat per floor. The 
building structure is regular in elevation and irregular in plan due to the presence of a vertical airshaft close to one 
of the side walls. The ceiling height and the ventilation box height adopted follow (RSEU, 1903): the ventilation 
box has 0.60 m height, the ground floor and the first floor have 3.25 m, the second floor has 3.00 m, the third floor 
has 2.85 m and the fourth floor has 2.75 m. The prototype has 17 m total height. 
The façade walls are made of rubble stone masonry and lime mortar, with 0.60 m of thickness at the ground floor 
and the thickness decreases 0.05 m in each floor. The wall below the windows is made of clay brick masonry and 
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lime mortar with 0.27 m of thickness. Above the windows there are clay brick relieving arches and lintels. The 
side walls and the airshaft walls are made of clay brick masonry and lime mortar with 0.27 m of thickness. 
The interior walls are made of clay brick masonry or have a timber structure (walls made of vertical timber boards 
and horizontal laths filled in the gaps by rubble masonry). The main load-bearing walls are placed parallel to the 
façades to support the floor timber beams. Other walls are partition walls. The thickness of the interior clay brick 
masonry walls is: 0.15 m for main walls and 0.10 m for partition walls. 
The floors and roof are made of timber elements: Pinus pinaster Ait. wood type. The main joists are set 
perpendicular to the façades with a distance of 0.40 m between each other. The joists have 0.18 m of height and 
0.07 m of width, while the floor boards have 0.022 m of thickness. The pitched roof structure is supported on 
purlins disposed parallel to the façade walls.  
The typical building is located in the middle or in the end of a row of buildings. A group of three equal buildings 
is considered to evaluate the effect of the aggregate in the seismic behaviour. 
 
5.3. Involved uncertainties 
Different classes of buildings have been identified in previous works (Simões et al., 2018; Simões, 2018). The 
differences are related to specific features that may affect the seismic behaviour of the buildings, such as geometry 
variations at the ground floor level, constructive details and materials attributed to the structural elements. In this 
work, these variations are considered as epistemic uncertainties (related to the incomplete knowledge). The 
counterpart article (Simões et al., 2019a) presents the main features of the classes of buildings, compares their 
seismic behaviour and provides the final fragility curves for this class of tall URM buildings. Whereas, this section 
addresses one class of buildings aiming to illustrate the procedure for the derivation of the fragility functions 
associated with the in-plane and out-of-plane behaviour. 
The class of buildings is characterized by: 1) ground floor level used as house, meaning that the structure is regular 
in elevation as all floors have the same configuration, 2) the side walls are shared between adjacent buildings, 3) 
the side walls are made of solid clay brick masonry, 4) the main interior walls are made of solid brick masonry, 
and 5) the partition walls are made of hollow brick masonry. A three-dimensional model of the building is defined 
in TREMURI program (Figure 7) starting from the prototype building (§5.2). As stated, a group of three buildings 
is adopted to consider: 1) the effect of the adjacent buildings and, 2) the fact that the side walls are shared between 
buildings, filled walls as shown in Figure 7 (b). Thus, the uncertainties associated are related to: 1) the 
identification of possible local mechanisms, and 2) to the variability in the definition of the capacity (C) for the 
global and local behaviour and consequently to the definition of the individual fragility functions. 

(a)  (b)  

Figure 7 – Adopted building for analysis: (a) three-dimensional model and (b) plan view 

5.3.1. Identification of local mechanism and epistemic uncertainties 
The analysis comprehends the identification of possible the out-of-plane mechanisms. These are defined based on 
the geometry of the building, layout of openings, constructive details and restraints given by the structure. It is 
reasonable to consider the collapse involving only the upper level of the façade walls, as proposed in (Simões et 
al., 2014). The façade is very slender (17 m height with decreasing thickness) but there are restraints that prevent 
the global overturning of the street façade wall, namely the connection to the side walls and the orientation of the 
timber floors perpendicular to the façade walls. This hypothesis is also supported by experimental results from 
shaking table tests on reduced scale building models (Lourenço et al., 2011; Candeias, 2008). These local 
mechanisms are also more likely to occur on the street façade than on the rear façade due to the presence of the 
jack arch balconies with steel profiles. 
After analysing the constructive details of the last floor (Figure 8), three out-of-plane mechanisms are considered 
(Figure 9): the overturning of the central pier, with a plastic hinge at the base (Mech. 1), the flexural mechanism 
of the central pier, with a plastic hinge at the base and a plastic hinge separating the pier in two blocks (Mech. 2), 
and the overturning of the parapet, with a plastic hinge at the base (Mech. 3).  
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Concerning Mech. 1, the two central piers are more vulnerable to overturning than the lateral piers, as they are 
connected to the side walls. The lintels that link lateral and central piers are very slender and prone to rotate around 
a vertical axis with torsional sliding on the masonry joints (the friction contribution is close to zero because the 
vertical loads are low at this level). From the configuration of the street façade wall (Figure 8 (a)), the central piers 
have a door on one side and a window on the other; the possible restraint provided by the masonry panel below 
the window is neglected due to its lower thickness (0.27 m). The roof timber structure is placed perpendicular to 
the façade walls and aligned with the central piers (Figure 8). Assuming that the timber roof structure is connected 
to the interior walls and simply supported on the façade walls, in case of the overturning of the central piers, the 
timber elements will slide and unthread, transmitting a stabilizing horizontal force to the piers due to the friction 
originated in the contact surface. This force is equivalent to the vertical load transmitted by the roof to the piers 
(PR) multiplied by the coefficient of friction (). 

(a)  (b)  

Figure 8 – View from the last floor of the buildings: (a) street façade wall and (b) section cut 

 
Figure 9 – Configuration and actions involved in the mechanisms: Mech. 1 – overturning of the central pier, 

Mech. 2 – flexural mechanism of the central pier and Mech. 3 – overturning of the parapet 

The development of Mech. 2 is supported on the hypothesis that the horizontal displacement on top of the central 
piers is restrained due to the effect of strengthening, due to the insertion of tie-rods connecting the central piers to 
the interior walls or the introduction of a beam at the top of the wall. Then, flexural mechanism of the central piers 
is determinant (Griffith et al., 2004; Mendes et al., 2014). Overturning of the parapet may also occur (Mech. 3), 
unless these elements are restrained. 
Figure 9 identifies the actions involved on the three mechanisms: P1, P2 and P3 are, respectively, the parapet and 
central pier self-weight, PR is the weight of the roof transmitted to the pier (determined according to Figure 8),  
is the coefficient proportional to the vertical loads that induces the loss of equilibrium of the system and activates 
the kinematism, denoted as the static seismic multiplier. This multiplier is determined by evaluating the work 
done by equilibrated forces on a set of compatible generalized virtual displacements. 
The occurrence of one or more mechanisms depends on the condition of the building, possible strengthening 
interventions to prevent the simple overturning of the central piers and parapets. In this regard, the local behaviour 
of the buildings may be analysed by considering two different scenarios: 

1. The last floor of the buildings, with the hypothesis of: i) simple overturning of the central piers (Mech. 1) 
or ii) flexural mechanism of the central piers (Mech. 2). 

2. The parapet, with the hypothesis of: i) simple overturning (Mech. 3) or ii) no problem, in case a 
strengthening solution has been implemented or in case the building has no parapet. 

Each scenario is assumed as an epistemic uncertainty and treated by the logic-tree approach, as presented in Figure 
10. An expert judgement probability is attributed to each branch of the tree to quantify the reliability of the 
different options. In what concerns the first scenario, a lower probability is defined for Mech. 2 considering that 
the flexural mechanism only occurs in case a strengthening solution has been implemented. Thus, it is assumed 
that in 70% of the cases Mech. 1 may occur, while only in 30% of the cases Mech. 2 may occur. In what concerns 
the second scenario, it is assumed that in 60% of the cases Mech. 3 may occur, while in 40% there is no problem 
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(meaning that either the parapet does not exist or has been strengthened and will not collapse). In this point, it is 
important to note that the overturning of the parapet to the street is relevant from the point of view of life safety, 
however from the point of view of the performance limit state of the main building, it represents the possible 
damage of a non-structural element. 

(a)  

 

(b)  

Figure 10 – Local behaviour scenarios: (a) last floor of the building and (b) parapet 

5.3.2. Identification of aleatory uncertainties 
The variability in the definition of the capacity (C) aims to account for the uncertainties in the quantification of 
the variables and the intrinsic scatter, as stated in §2. Different aleatory variables are considered for the analysis 
of the global and local behaviour. Each aleatory variable is defined within a plausible interval of values, based on 
the information available in the literature and results from tests. 
 
Global behaviour 
The aleatory variables are treated by the Monte Carlo Method (Rubinstein, 2011). Each aleatory variable is 
described by an appropriate continuous probability density function (fX(x)) characterized by median value (Xk,med) 
and dispersion () so that the 16% and 84% percentiles of the distribution correspond, respectively, to the lower 
(Xk,low) and upper (Xk,up) values of the range of variation. An alternative procedure to the 16% and 84% percentiles 
is to consider the coefficient of variation, as suggested in the Probabilistic Model Code (JCSS, 2011). 
Monte Carlo simulations are used to define possible outcome values for each aleatory variables Xk. If M is the 
number of Monte Carlo simulations, M models are defined in which each aleatory variable Xk assumes the M 
outcome value. The number of simulations is defined in order to have a sufficient number of results to reach a 
good estimation of the parameters that define fragility functions for the building class (see (Simões et al., 2019a) 
for additional details). 
The variability in the definition of the capacity for the global behaviour (C) is defined as follows: 

1. For each model M, determination of the intensity measure IMLS,G that produces the attainment of limit 
state threshold LS according to Equation (2). 

2. Sort the IMLS values in ascending order. 
3. Attribution of an equal probability p to each IMLS,G values, with p=1/M. 
4. Calculation of the median value IMLS and dispersion C assuming that the IMLS values are lognormal 

distributed. 
The aleatory variables for the analysis of the global behaviour account for variations on the mechanical properties 
of masonry, strength and deformability characteristics of masonry piers and spandrels, mechanical properties of 
interior timber walls, quality of connections between walls and in-plane stiffness of timber floors. Table 1 
characterizes the aleatory variables considered in terms of probability density function, median value (Xk,med) and 
dispersion (). A total of 50 aleatory variables are considered, divided in 17 groups. Lognormal distributions are 
attributed to the aleatory variables varying between ]0,+[, while beta distributions are attributed for those varying 
between [0,1] or having, from a physical point of view, a range of variation equal to one. 
Group 1 and 2 (rubble stone masonry), Group 3 and 4 (solid brick masonry) and Group 6 and 7 (hollow brick 
masonry) define the mechanical properties of masonry. The interval of values is defined from the application of 
the Bayesian update approach (Bracchi et al., 2016; Franchin and Pagnoni, 2018). The Bayes’ Theorem is used to 
update the probability of a priori distribution given that new evidences are available. In this case, the a priori 
distribution is defined by the interval of values proposed in the commentary to the NTC08 (MIT, 2009) for the 
relevant masonry types, whereas the new evidences are defined by the experimental test results carried out in 
Lisbon, including in situ and laboratory tests (Simões et al., 2017; Simões, 2018). 
Group 5, 8 and 11 refer to the modelling of the flexural behaviour of spandrels according to the criterion proposed 
in (Cattari and Lagomarsino, 2008) assuming an equivalent tensile strength on the elements due to the interlocking 
of the masonry units at the end section of spandrels (Int – ratio between length and height of the masonry unit). 
For brick masonry, Int is equal to 2 (deterministic value). For rubble stone masonry, lower values are expected 
due to the masonry irregularity (Group 11). Another input is the coefficient of friction in the mortar joints in the 
end section of spandrels (loc – Group 5, 8 and 11). 
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Groups 9 and 10 characterize the mechanical properties of spandrels in the façade walls. Considering that these 
panels may be made of rubble stone masonry or clay brick masonry, the properties attributed, range between the 
mechanical properties of the two types of materials. 
Groups 12, 13 and 14 are related to the formulation of the linear piecewise constitutive law associated with the 
initial stiffness degradation (kin and k0) and the progressive degradation of strength (i and i) of the panels. 
The values for Groups 12 and 13 are defined based on experimental test results (Kržan et al., 2015; Haddad et al., 
2017; Vanin et al., 2017) and expert judgement. For instance, in case of piers, the ultimate drift levels (DL4) 
reflect the recommendations from structural codes (NTC, 2008; IPQ, 2017): between 0.4% and 0.6% in case of 
shear failure and between 0.8% and 1.2% in case of flexural failure. In case of spandrels, the experimental results 
from (Beyer and Mangalathu, 2014) are taken into account to characterize the behaviour of the shallow brick 
arches present in the façade walls (faç) and of the timber elements in the clay brick masonry walls. For spandrels 
with shallow brick arches, DL3 threshold is not defined in terms of drift, but in terms of ductility (), considering 
the greater deformation capacity of the elements observed during the experimental tests (Beyer and Mangalathu, 
2014). Due to the limited information available, the same intervals of values are adopted for the different types of 
masonry. 
In what concerns Group 14, structural codes (IPQ, 2010; NTC, 2008) recommend adopting a 50% reduction of 
the elastic stiffness properties (corresponding to kin = 2), unless more detailed information is available. Previous 
parametrical studies have indicated this level of reduction leads to conservative estimate of the non-linear 
behaviour of the panels (Cattari and Lagomarsino, 2013b; Calderini et al., 2009). Therefore, it is proposed to vary 
kin between 1.00 and 1.50, in order to simulate the extreme cases in which there is no stiffness degradation and 
the case in which this reduction is approximately 67% due to the expected cracked state of the buildings. As to k0, 
it is proposed to consider a range between 0.50 and 0.80. 

Table 1 – Characterization of aleatory variables in terms of distribution of probability, median value and 
dispersion 

Description Group Xk Distribution Xk,med  
Rubble stone 
masonry 

1 E-G-fc [MPa] Lognormal 736.50-245.50-0.95 0.18-0.18-0.12 
2 0 [MPa] Lognormal 0.022 0.18 

Solid clay brick 
masonry 

3 E-G-fc [MPa] Lognormal 840.65-280.22-1.07 0.16-0.16-0.11 
4 0 [MPa] Lognormal 0.074 0.21 
5 loc Lognormal 0.53 0.28 

Hollow clay brick 
masonry 

6 E-G-fc [MPa] Lognormal 840.65-280.22-0.87 0.16-0.16-0.14 
7 0 [MPa] Lognormal 0.074 0.21 
8 loc Lognormal 0.53 0.28 

Spandrels in façade 
walls 

9 E-G-fc [MPa] Lognormal 779.10-259.70-1.00 0.24-0.24-0.17 
10 0 [MPa] Lognormal 0.041 0.82 
11 Int-loc Lognormal 1.00-0.53 0.69-0.28 

Drift and residual 
strength thresholds 
for piers 

12 
F3-F4-F5 Lognormal 0.0058-0.0098-0.0147 0.24-0.22-0.20 
S3-S4-S5 Lognormal 0.0029-0.0049-0.0069 0.24-0.22-0.20 
F4-S3-S4 Beta 0.85-0.70-0.40 0.05-0.10-0.15 

Drift, residual 
strength and ductility 
thresholds for 
spandrels 

13 

F3-F4-F5 Lognormal 0.0019-0.0058-0.0194 0.24-0.25-0.25 
S3-S4-S5 Lognormal 0.0019-0.0058-0.0194 0.24-0.25-0.25 
F4-S3-S4 Beta 0.55-0.55-0.55 0.15-0.15-0.15 
F4-S3-S4 
|faç 

Beta 0.40-0.40-0.40 0.20-0.20-0.20 

 |faç Beta 4.20 0.99 
Stiffness degradation 
of masonry panels 

14 kin-k0 Beta 0.65-0.50 0.15-0.25 

Timber walls 15 E-G-fc [MPa] Lognormal 109.54-1.73-0.54 0.60-0.55-0.29 
Link beams 17 A-I [m2-m4] Lognormal 0.0004-0.0002 0.81-0.81 
Stiffness of timber 
floors 

16 G [MPa] Lognormal 9.88 0.48 

E – modulus of elasticity, G – shear modulus, fc – compressive strength, 0 – equivalent shear strength, loc – coefficient of 
friction on the mortar joints in the end section of spandrels, Int – interlocking of the masonry units in the end section of 
spandrels, Si – drift limit for the shear behaviour at damage level i, Fi – drift limit for the flexural behaviour at damage level 
i, Si – residual strength for the shear behaviour at damage level i, Fi – residual strength for the flexural behaviour at damage 
level i,  – ductility of the brick arch for damage level 3, kin – ratio between the initial and the secant stiffness, k0 – ratio 
between the elastic strength and the ultimate strength, A – area of the link beams and I – inertia of the link beams 
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Group 15 quantifies the mechanical properties of the interior timber “walls. The mechanical properties of these 
walls are determined based on the experimental results from compression and shear tests performed by Rebelo et 
al. (2015). Group 16 defines the area (A) and inertia (I) of the link beams that set the connection between 
perpendicular exterior walls (Figure 3). These connections are defined as medium quality connections justified 
by the use of different materials between façade walls (rubble stone masonry) and side walls (brick masonry). The 
connection between exterior walls and interior clay brick masonry walls are defined as weak quality connections 
taking into account that the interior walls were constructed after exterior walls. The properties of the link beams 
representative of the weak quality connections are assumed as deterministic. Group 17 characterizes the flexible 
behaviour of timber floors, represented by the shear modulus (G) of an equivalent finite membrane element with 
0.022 m of thickness, corresponding to the thickness of the timber boards. The range of variation is defined in 
(NZSEE, 2017), which proposes reference values as a function of the floor system and state of conservation, based 
on (Giongo et al., 2013). 
The Monte Carlo simulations are defined for each variable starting from the continuous probability density 
function attributed and considering additional correlations between variables, as described in the following. It is 
assumed that within the 17 groups, the aleatory variables are fully correlated in order to guarantee a positive linear 
relationship between the variables attributed to the same model (correlation coefficient, R = +1). A negative linear 
correlation (R = –1) is considered for Group 14 related to the initial stiffness degradation of the masonry panels. 
This aims to define two extreme behaviours for the transition between elastic and plastic phases. Thus, for higher 
initial stiffness degradation (higher value of kin) a lower value of k0 is expected, so to have a longer interval 
between the first cracks and the reaching of the ultimate strength capacity (the opposite relation is also valid). It 
is also proposed to assume a correlation coefficient of 0.5 between Group 1 and 2, Group 3 and 4, Group 6 and 7 
and Group 9 and 10, taking into account that the modulus of elasticity (E), the shear modulus (G) and the 
compressive strength (fc) are not fully correlated nor uncorrelated with the equivalent shear strength (0).  
 
Local behaviour 
The aleatory variables are treated by the Response Surface Method (Liel et al. 2009; Ottonelli et al., 2015). Each 
aleatory variable is described by a lower (Xk,low), median (Xk,med) and upper (Xk,up) values. This method is based on 
the approximation of the hyperplane that fits the response surface of the variable log(IMLS) in the hyperspace of 
the normalized variables representing the aleatory variables considered. The angular coefficients (Ci) defining 
the hyperplane are determined according to: 

1( )T T
Ci Z Z Z Y   (29) 

where, Z is a matrix, with M rows x N columns (where M=2N is the number of models defined by the full factorial 
combination and N is the number of aleatory variables), which collects the corresponding normalized variables 
(equal to –1 for Xk,low and +1 for Xk,up) and Y is a vector, with M rows, which collects the corresponding log(IMLS) 
values. The variability in the definition of the capacity of the local mechanism (C) is given by: 

T
C C i C i    (30) 

The aleatory variables for the analysis of the local behaviour account for the geometry of the blocks involved in 
the mechanisms and the value of the external forces applied. Although the geometry of the building is considered 
deterministic, for the analysis of the local behaviour, the thickness of the parapet (tparapet) and the thickness of the 
central pier (tpier) are considered aleatory variables as the behaviour of the mechanisms is mainly influenced by 
the geometry of the blocks. The external forces applied comprehend the weight of the roof transmitted to the pier 
(PR) and the equivalent horizontal force (PR), i.e. the self-weight of the roof (R) and the coefficient of friction 
() are considered as aleatory variables. The lower, median and upper values of the aleatory variables (Xk,low, Xk,med 
and Xk,up, respectively) are summarized in Table 2. 

Table 2 – Characterization of the aleatory variables in terms of lower, median and upper values 

Xk Xk,low Xk,med Xk,up 
tparapet [m] 0.10 0.13 0.15 
tpier [m] 0.35 0.38 0.40 
R [kN/m2] 0.88 1.09 1.30 
 [-] 0.40 0.50 0.60 

 
In the global model of the buildings, the street façade in the last floor is defined with 0.40 m of thickness. 
Considering that the thickness of the façade walls decreases along the height, approximately 0.05 m in each floor, 
the same variation is now assumed for the thickness of the central pier (tpier). In addition, in the global model of 
the buildings, the parapet is defined with 0.15 m of thickness and 0.80 m of height. In this case, the thickness of 
the parapet (tparapet) is considered between 0.10 m and 0.15 m. 



17 
 

The self-weight of the roof (R) is defined by the interval of values proposed by (Ferreira and Farinha, 1974). In 
the global model of the buildings, this is defined equal to 1.30 kN/m2. The dimensions a and b, defining the 
tributary area for the timber roof structure supported on the central pier (Figure 8 (a)), are assumed deterministic 
(a = 2.27 m and b = 3.90 m). The coefficient of friction () between timber and masonry is defined from (Farinha 
and Reis, 1993; Zhang et al., 2008).  
The aleatory variables are treated by a full factorial combination at two levels. For each of the Q=2N models, the 
aleatory variables assume the values correspondent to the lower (Xk,low) and upper (Xk,up) values of the interval. 
Table 3 identifies the variables involved in the three out-of-plane mechanisms and the number of 
combinations/models considered for the analysis of the local seismic behaviour. 

Table 3 – Combination of aleatory variables for each mechanism 

Mech. Variables Xk N Q=2N 
1 tparapet, tpier, R,    4 16 
2  tparapet, tpier, R   3 8 
3 tparapet   1 2 

 
6. Derivation of fragility functions 
 
6.1. Global behaviour 
Figure 11 shows the pushover curves obtained by performing non-linear static (pushover) analyses subjected to 
uniform (Unif) and triangular (Triang) load distributions in the direction parallel to the façade walls (X direction) 
and parallel to the side walls (Y direction), including negative (-) and positive (+) orientations. The pushover 
curves express the ratio between the base shear force and the weight of the structure (V/W) as a function of the 
average displacement of the roof weighted by the seismic modal mass of all nodes (d). The option for the average 
displacement represents a heuristic approach useful to define a curve representative of the whole structure in case 
of buildings with flexible diaphragms and/or in plan irregularities (Lagomarsino and Cattari, 2015). For more 
information on the global behaviour of the class of buildings check §4.1 from (Simões et al., 2019a).  

 

Figure 11 – Pushover curves: median values of the aleatory variables 

Figure 12 presents the fragility curves parameters obtained from the all analyses performed, namely: (a) and (d) 
plot the median intensity measure IMLS values that produces the attainment of the limit state threshold LS, in this 
case represented by the PGA50% and performance levels (PLi, with i=1,…,4), (b) and (e) plot the dispersion in the 
capacity (C), and (c) and (f) plot dispersion in the seismic demand (D).  
From Figure 12 (a) and (c) it is observed that there are small variations between the PGA50% values obtained with 
the negative and positive directions (the coefficient of variation is lower than 5.7%) and between the uniform and 
triangular distributions (the coefficient of variation is lower than 10.4%) even though, the uniform distribution 
provides, in general, lower PGA50% values. In what concerns the different performance levels, lower PGA50% 
values are obtained for PL1 and PL2 in the X direction and for PL3 and PL4 in the Y direction. 
Figure 12 (b) and (e) show a lower dispersion in the Y direction than in the X direction. The behaviour of the 
block of buildings in the Y direction is mainly governed by the response of the side solid walls, while the behaviour 
in the X direction is affected by the full set of aleatory variables considered. From Figure 12 (b), it emerges that 
the dispersion in the capacity (C) has the highest value for PL1 in the X direction. Although the macro-element 
scale is the criterion that defines, in general, the position of the DL in the pushover curves obtained for the X 
direction, as exemplified in Figure 13, it is also observed that for DL1 it is divided between the three criteria, 
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increasing therefore the dispersion in the capacity (C) for PL1. Moreover, the determination of DL1 is in general 
a difficult task because it is associated with a state of slight damage in the structure. 
Finally, comparing the dispersion in the capacity (C) (Figure 12 (b) and (e)) and the dispersion in the seismic 
demand (D) (Figure 12 (c) and (f)), it is evident that the latter has higher contribution for the final value of 
dispersion G,PL due to the large variability of possible ground-motion records. 
Taking into account the small variations between the PGA50% values obtained in the negative and positive 
directions and between the PGA50% values obtained with the application of the uniform and triangular load 
distributions, it is proposed to set the minimum PGA value between these results, as this leads to the most 
demanding condition for the block of buildings. On the other hand, the dispersion in the seismic demand (D) is 
defined as the maximum value between the all results obtained (negative and positive directions with the uniform 
and triangular distributions). The dispersion related to the global seismic behaviour (G,PL) is defined according 
to Equation (6). Table 4 summarizes the parameters for the fragility curves associated with the global behaviour 
obtained in the X and Y directions. 
 

 

(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 12 – Fragility curves parameters for the global behaviour: all analyses 

 

 

Figure 13 – Percentage of models as a function of the criteria for the definition of DL 

Table 4 – Fragility curves parameters for the global behaviour: X and Y directions 

PL 
X Direction Y Direction 

PGA50% [m/s2] C D G,PL PGA50% [m/s2] C D G,PL 
1 0.303 0.260 0.340 0.428 0.379 0.087 0.275 0.289 
2 0.608 0.068 0.336 0.343 0.650 0.048 0.284 0.288 
3 1.434 0.107 0.394 0.408 1.371 0.061 0.314 0.320 
4 1.855 0.125 0.446 0.464 1.544 0.064 0.329 0.336 

 

X Direction X Direction X Direction 

Y Direction Y Direction Y Direction 

Y Direction X Direction 
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It is proposed to derive the fragility curves associated with the global behaviour by considering the minimum 
between the fragility curves obtained in the X and Y directions, as this leads to the most demanding condition for 
the structure. Figure 14 shows the fragility curves obtained in the X and Y directions and the minimum 
combination between the two (represented by solid lines). 
It is important to highlight that the resulting fragility curves are not a lognormal cumulative distribution function. 
The parameters that characterize the fragility curves are presented in Table 5. Here, the dispersion G is determined 
in an approximated way according to Equation Erro! A origem da referência não foi encontrada., considering 
the values of PGA corresponding to the 84% and 16% percentile of the distribution. 

 

 

 

 

 

Figure 14 – Fragility curves for the global behaviour: combination between the fragility curves obtained in the X 
and Y directions 

Table 5 – Fragility curves (approximated) parameters for the global behaviour 

PL PGA50% [m/s2] G,PL 
1 0.303 0.426 
2 0.608 0.342 
3 1.371 0.340 
4 1.544 0.334 

 

, 84% 16%

1
log( ) log( )

2G PL PGA PGA    (31) 

 
6.2. Local behaviour 
Figure 15 shows the capacity curves for the three mechanisms considered obtained by performing non-linear 
kinematic analyses. It is verified that the strength of Mech. 2 is higher than that of Mech. 1, but it is characterized 
by a lower displacement capacity. Mech. 3, which only involves the parapet, is the most critical mechanism as it 
exhibits the lowest strength and displacement capacity due to the reduced thickness of the element. In Mech. 1, 
the sudden decay of strength after 0.11 m displacement is consequence of the complete unthreading of the roof 
timber structure. For more information on the local behaviour of the class of buildings check §4.2 from (Simões 
et al., 2019a).  
 

 
Figure 15 – Capacity curves for the local behaviour: median values of the aleatory variables 

ACTION TYPE 1 
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Figure 16 and Table 6 present the fragility curves parameters obtained for Mech. 1, Mech. 2 and Mech. 3. Figure 
16 (a) plots the median intensity measure IMLS values that produces the attainment of the limit state threshold LS, 
in this case represented by the PGA50% and performance levels (PLi). Here, only the results concerning the 
attainment of PL1 and PL2 are presented provided that PL3 and PL4 are coincident with PL2 (i.e. the PGA values 
compatible with PL2, PL3 and PL4 are the same). This is justified because the attainment of PL2 corresponds to 
the final equilibrium condition of the mechanisms. In this case, Mech. 3 is the most vulnerable case, followed by 
Mech. 1 and Mech. 2. 
 

 

(a)  (b)  (c)  (d)  

Figure 16 – Fragility curves parameters for the local behaviour 

Table 6 – Fragility curves parameters for the local behaviour 

Mech. PL PGA50% [m/s2] C D FS PL 

1 
1 1.063 0.241 0.441 0.154 0.526 
2 2.248 0.173 0.514 0.412 0.681 

2 
1 3.683 0.095 0.301 0 0.315 
2 5.231 0.096 0.358 0 0.370 

3 
1 0.356 0.229 0.267 0.042 0.354 
2 0.558 0.236 0.309 0.058 0.393 

 
Figure 16 (b) provides the corresponding dispersion in the capacity (C) for Mech. 1, Mech. 2 and Mech. 3, where 
it is observed that Mech. 2 presents the lowest dispersion from all. Figure 16 (c) presents the dispersion in the 
seismic demand (D). These results are in general higher than the ones obtained with the analysis of the global 
seismic behaviour for PL1 and PL2 because they also take into account the filtering effect of the building. 
In fact, an additional contribution to the dispersion needs to be considered in the analysis of the local behaviour. 
This additional contribution is referred here as the dispersion in the floor response spectrum (FS) and takes into 
account the aleatory uncertainties in the determination of the dynamic characteristics of the main structure that 
influence the filtering effect and the determination of the floor response spectrum. This dispersion is also estimated 
according to Equation (6). The PGA84% and PGA16% values that produces the attainment of PL are determined by 
considering each mechanism, defined by the median properties of the aleatory variables, and by applying the 
iterative procedure to define the floor response spectrum, as referred in §4.4. However, in this case, the period of 
the main structure (Tk,PLk) and the PGA value compatible with PL at the global scale (PGAPL,G), are defined as the 
values corresponding to the 84% and 16% percentiles of the building models defined by the aleatory variables. 
Figure 16 (d) plots the dispersion in the floor response spectrum (FS) showing that: 1) in case of Mech. 1, the 
dispersion for PL2 is higher than the dispersion for PL1 because to activate the mechanism a higher value of PGA 
is necessary (Figure 16 (a)), and 2) in case of Mech. 2 and Mech. 3 the dispersion is close to zero, because the 
computation of the PGA is almost not affected by the filtering effect of the building. 
Taking this additional contribution, the dispersion related to the local seismic behaviour (L,PL), presented in Table 
6, is defined according to: 

2 2 2
,L PL C D FS       (32) 

In reference to §5.3.1, two possible scenarios were identified for the local seismic behaviour of the buildings 
related to: 1) the last floor of the building and 2) the parapet. These were assumed as epistemic uncertainties and 
treated by the logic-tree approach. It is now proposed to determine the PGA50% and the dispersion (PL) associated 
with each scenario taking into account the probability/reliability attributed to the different options. For the first 
scenario, the parameters are determined according to Equation (33) and Equation (34): 

50%, 50%, 1 50%, 20.70 0.30LastFloor Mech MechPGA PGA PGA   (33) 
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2 2
, 1 , 20.70 0.30LastFloor L Mech L Mech     (34) 

As referred for the analysis of the global seismic behaviour (§6.1), the previous equations are an approximation, 
as the fragility curves obtained from the combination of the two possible scenarios are not a lognormal cumulative 
distribution function. 
For the second scenario, the “no problem” hypothesis (see Figure 10) is characterized by a PGA that tends to 
infinity. Thus, the parameters that define the fragility curves associated with this scenario are obtained directly 
from the ones determined for Mech. 3 (Table 6), but imposing that the probability cannot exceed 0.60, which 
corresponds to the reliability/weight of this hypothesis (Figure 10 (b)).  
The parameters that characterize the fragility curves associated with the local behaviour are presented in Table 7. 
Figure 17 provides the resulting fragility curves for both scenarios. 

Table 7 – Fragility curves (approximated) parameters for the local behaviour 

Scenario PL PGA50% [m/s2] L,PL 

Last Floor 
1 1.865 0.464 
2 3.116 0.611 

Parapet 
1 0.363 0.334 
2 0.562 0.391 

 

 

 

Figure 17 – Fragility curves for the local behaviour (note that the upper limit for the parapet collapse has a 
probability of 60%, as discussed in §5.3.1) 

6.3. Combination between global and local behaviour 
In order to derive the final fragility curves, it is first necessary to combine the global and the local seismic 
behaviour in the Y direction and after to combine the results in the X and Y directions. 
The contribution of the local behaviour is limited to the mechanisms involving the last floor of the buildings (first 
scenario). Notwithstanding the relevance of the second scenario for the life safety, the simple overturning of the 
parapets is secondary for the verification of the main structure at a global scale. In addition, it is assumed that PL1 
at the local scale is not relevant at a global scale. On the other hand, the occurrence of PL2 at the local scale is 
related both to the activation of the mechanism and to the out-of-plane collapse (i.e. the PGA values compatible 
with PL2, PL3 and PL4 are the same). Thus, it is proposed to add the contribution of PLk greater than PL1 at the 
local scale to the corresponding PLk at the global scale. In what concerns the contribution of the global behaviour, 
the different performance limit states are directly correlated to the behaviour of the main structure in the Y 
direction. The resulting fragility curves are defined by: 

, , ,(1 )PLk G PLk G PLk L PLkP P P P    (35) 
Finally, it is proposed to consider the minimum between the results obtained in the X and Y directions, the later 
including the local behaviour, as this leads to the most demanding condition for the group of buildings. Figure 18 
shows the fragility curves in the X and Y directions and the minimum combination between the two (represented 
by solid lines). These define the final fragility curves for the class of buildings. The parameters that characterize 
the fragility curves are given in Table 8, determined in an approximated way according to Equation Erro! A 
origem da referência não foi encontrada.. 
The discrete probability associated with the different damage states is determined following the procedure 
presented in §2. The code seismic action for Lisbon: type 1 (PGA*S = 1.94 m/s2 with a return period of 475 years) 

ACTION TYPE 1 
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is considered for the estimation of the damage distribution. Figure 19 shows the corresponding probability damage 
distribution. The values obtained considering only the global behaviour are also included for comparison. The 
mean and variation parameters are not very different in the case of global and combined behaviour. This is not a 
general result and it depends on the relative position between the two basic fragility curves (see Table 5 and 7). 
Indeed, in particular the global response is significantly affected by the seismic action type. To clarify this issue, 
Figure 20 and Figure 21 illustrate the effect of the combination varying the seismic action type considered (see 
Simões et al. (2019a) for more details on results associated to the seismic type 2). It is observed that the local 
behaviour has in both cases a negligible contribution for the definition of PL1 and PL2, but an important 
contribution for the other PLk in particular in case of the seismic type 2. 
The results put in evidence the high seismic vulnerability of the buildings. It is estimated that there is about 50% 
probability of having very heavy damage (DS4) and about 30% probability of collapse (DS5). As expected, the 
contribution of the local seismic behaviour increases the final vulnerability. Moreover, according to Figure 17, 
collapse of the parapets for seismic action type I in Lisbon (PGA*S=1.94 m/s2) is guaranteed. Here, it is important 
to refer that these results represent the upper line of the expected distribution of damage, taking into account that: 
1) the worst case scenario was considered in the main steps of the methodology and, 2) the recommendation given 
by the Portuguese National Annex to the EC8-3 (IPQ, 2017) to reduce of the reference peak ground acceleration 
for the assessment of existing buildings was disregarded. 
 

 

 

 

 

 

Figure 18 – Final fragility curves: combination between X and Y directions, the latter including the local 
behaviour 

Table 8 – Final fragility curves (approximated) parameters 

PL PGA50% [m/s2] PL 
1 0.303 0.426 
2 0.608 0.341 
3 1.326 0.318 
4 1.470 0.326 

 

 

 
 

Damage distribution DS0 DS1 DS2 DS3 DS4 DS5 

Action Type 1 
PGA*S = 1.94 m/s2 

Global Behaviour 0.000 0.000 0.154 0.094 0.467 0.285 

Global & Local Behaviour 0.000 0.000 0.116 0.082 0.475 0.327 

ACTION TYPE 1 
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Figure 19 – Distribution of damage for seismic action type 1 (PGA*S=1.94 m/s2) 

 

 
Figure 20 – Combination of the fragility functions in the Y direction for PL3: seismic action type 1 (left) and 

type 2 (right) 

 

 

 
Figure 21 – Combination of the fragility functions in the Y direction for PL4: seismic action type 1 (left) and 

type 2 (right) 

 
 
7. Final Remarks 
 
The article presents a procedure for the derivation of fragility functions for unreinforced masonry building classes. 
The approach adopted comprehends the generation of fragility functions for the in-plane and out-of-plane response 
following different criteria and methods of analyses. The individual fragility curves are after combined in order 
to define a single fragility curve representative of the class of buildings. 
The contributions for the dispersion of the fragility functions account for: 

- The variability in the definition of the capacity, evaluated by the Monte Carlo Method for the analysis of 
the global behaviour and the Response Surface Technique for the local behaviour. Notwithstanding the 
lower computational burden, the application of the Response Surface Method for the global behaviour 
would not be feasible for the comprehensive evaluation of the uncertainty propagation taking into 
account the complexity of the analysis and the higher number of aleatory variables considered. 

- The aleatory uncertainty in the definition of the seismic demand, evaluated starting from a selection of a 
set of real ground-motion records compatible with the geophysical characteristics of the reference code 
seismic action. 
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- The aleatory uncertainty in the definition of the modified/floor response spectrum, when the local 
mechanisms are located in the upper level of the building, in order to account the variability of the 
dynamic filtering effect provided by the main structure. 

The procedure is applied to a class of URM tall buildings, constructed between the 19th and 20th centuries in 
Lisbon, Portugal. The results put in evidence their high seismic vulnerability and the urgent need for structural 
retrofitting in order to reduce potential losses due to future earthquakes. The companion article (Simões et al., 
2019a) deals with the derivation of the fragility functions for different classes of buildings. This aims to evaluate 
the fragility curves representative of the class of buildings at the territory level. The fragility curves obtained for 
this type of URM buildings are compared with the fragility curves derived in previous studies in Simões et al. 
(2019b). The final objective of this work is to perform the overall seismic evaluation of the buildings constructed 
in Lisbon in this period, which are assumed the most vulnerable of the building typologies in Lisbon. 
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