Keywords:

Abstract:

Improving the Latency of Python-based Web Applications

Antonio Esteves™? and Jodao Fernandes

Centro ALGORITMI, School of Engineering, University of Minho, Campus de Gualtar, Braga, Portugal

esteves @di.uminho.pt, jmiguelgfernandes @ gmail.com

Web Performance Optimization, Latency, Web Application, Django, Python.

This paper describes the process of optimizing the latency of Python-based Web applications. The case study
used to validate the optimizations is an article sharing system, which was developed in Django. Memcached,
Celery and Varnish enabled the implementation of additional performance optimizations. The latency of
operations was measured, before and after the application of the optimization techniques. The optimization
of the application was performed at various levels, including the transfer of content across the network and
the back-end services. HTTP caching, data compression and minification techniques, as well as static content
replication using Content Delivery Networks, were used. Partial update of the application’s pages on the front-
end and asynchronous processing techniques were applied. The database utilization was optimized by creating
indexes and by taking advantage of a NoSQL solution. Memory caching strategies, with distinct granularities,
were implemented to store templates and application objects. Furthermore, asynchronous task queues were
used to perform some costly operations. All of the aforementioned techniques favorably contributed to the
Web application’s latency decrease. Since Django operates on the back-end, and optimizations must be

implemented at various levels, it was necessary to use other tools.

1 INTRODUCTION

According to published studies, regarding the effect
a Web application’s response time has on the user’s
experience, 47% of the users expect the pages to
be loaded in two seconds or less and 40% will
abandon the site if it takes more than three seconds
to load (Anastasios, 2016). With the increasing
complexity of Web applications, optimizing its
response time (or latency) is crucial in many cases.
The concept of performance is wide. According to
(Meier et al., 2004), performance can be expressed in
terms of latency, throughput, scalability, and resource
utilization. Latency quantifies the time required to
perform a particular operation. In Web applications,
the latency associated with a page request includes
both server latency, which is the time required to
process the client’s request, and the latency of the
network, which is the time spent in transferring the
request and response messages of the page. The
throughput describes the number of transactions
performed per unit time. Due to multithreading
strategies, this metric is not the inverse of latency.
Resource utilization refers to the consumption
of services, or infrastructures, such as memory,

(2 https://orcid.org/0000-0003-3694-820X

processor, disk, and network. Scalability is the ability
of a system to process higher loads, allowing an
increase in the number of users or operations without
significantly degrading performance.

In this paper, we discuss several latency
optimization techniques that were applied on a
Web application development. Optimization of the
application performance took place at several levels,
including the transfer of content across the network
and the back-end services. The optimization of the
content transfer involved the use of techniques aimed
at reducing the number or size of HTTP messages,
such as HTTP caching (Grigorik, 2017), information
compression and minification (Google, 2017), as
well as static content replication using Content
Delivery Networks (CDNs) (Fielding et al., 1999).
In addition, asynchronous processing techniques and
partial updating of application pages on the front-end
were applied. On the server side, the database was
optimized by creating indexes (Connolly and Begg,
2005) and taking advantage of a NoSQL solution
(Smith, 2013). Authors in (Holovaty and Kaplan-
Moss, 2009) recommend the use of in-memory
caching strategies, which have been implemented
with distinct granularities to store templates and
objects generated by the application. In addition,

we used asynchronous task queues to improve the
user experience in some scenarios (Greenfeld and
Greenfeld, 2017) (Arcos, 2016).

The paper is organized as follows. Section 2
presents the related work and section 3 refers
the technologies used to the develop the Web
application that will be presented later on. In
section 4 is introduced our case study: the
Sharticle Web application. Section 5 details
the performance optimization techniques, which
allowed decreasing the latency of several Sharticle
operations. Section 6 presents the results obtained
with the optimizations made on Sharticle. Finally,
in section 7 are pointed out some conclusions and
topics for future developments.

2 RELATED WORK

According to (Subrayen et al., 2013) the major goal
of improving Web pages’ performance is to minimize
the delay, perceived by the user, between the moment
he/she clicks on a link and the page is displayed.
This is a user-centric approach to Web performance
optimization (WPO), the same followed by our work.
To reduce the perceived delay, they reduced the time
the browser takes to fetch a given resource, decreased
the number of requests, optimized the rendering
speed, and made the loading time appear shorter. The
paper presents the optimization techniques but not the
gain obtained with their application.

In (Manchanda, 2013) the author analyzed seven
techniques to reduce the average user response time
for the Moodle Learning Management System. A
performance analysis of Moodle was performed using
Apache JMeter. Among the front-end optimizations
documented are reducing the number and size of
HTTP requests, minimizing DNS lookups (Grigorik,
2013), wusing HTTP compression, reducing the
response header size by deactivating the ETags,
and reducing the response time with AJAX. The
maximum reduction in user response time was 98%,
achieved with hardware optimizations.

Authors of (Horat and Arencibia, 2009) present
Web optimizations such as reducing the number
of HTTP requests, using CDNs, using expires
header, compressing plain text resources, deactivating
ETags, avoiding HTTP redirections, sending partially
generated pages, reducing the number of DOM
elements and iframes, reducing the cookies size,
using domains without cookies for static components,
placing styles and scripts correctly, avoiding CSS
expressions, using GET requests whenever possible,
externalizing all static content, minifying styles and

scripts, downloading components before they are
requested, and selecting the most compact image
formats. The work doesn’t report the application of
the techniques, just analyzes Moodle to verify if it is
"compliant” with them.

In (Ossa et al.,, 2012), latency is considered
the main Web performance metric. This work
is grounded on studies that demonstrate that Web
prefetching is an effective technique to reduce latency.
Web prefetching was split in two main components:
a predictor engine and a prefetching engine. The
predictor is located at the Web server and the
prefetcher is at the client. Prefetching improved page
latency from 39% to 52%.

In (Shivakumar and Suresh, 2017) it is discussed
the key aspects of pro-active quality in Web
applications, including identification of the key
indicators of quality problems, methods to achieve
the quality at the source, tools for continuous
integration, and monitoring of QoS. WPO techniques
were classified in 8 categories. The application of
the techniques was not validated with quantitative
measures.

(Anastasios, 2016) evaluates how WebPageTest,
GTmetrix, PageSpeed Insights, Blackfire, and Google
Analytics can be used to identify which parts of a
Web application must be improved to accelerate page
rendering. The author also analyzed a significant set
of front-end and back-end optimization techniques.
Despite the detailed and fairly comprehensive
explanation of the different optimizations, the author
presents few results.

Since front-end tasks contribute on average for
80-90 % of the time it takes to get a response from
a Website, work in (Cao et al., 2017) focuses on
five front-end optimizations. Authors present the
optimizations but don’t validate their implementation.

In (Cerny and Donahoo, 2010a; Cerny and
Donahoo, 2010b) it is used a debugging Web proxy
to evaluate and improve page load times, identifying
the load time and characteristics of the various
page resources. After identifying the resources
with the largest impact on page load time, several
optimizations can be applied. ~The number and
coverage of the applied optimization strategies are
very incomplete.

3 TECHNOLOGIES

This section summarizes the main technologies that
supported the Web application development and
optimization. Django is a full-stack Python-based
Web development framework that provides solutions

for all levels of the application stack. Django
uses the MTV architectural pattern, which comprises
models, templates, and views. The models form the
data access layer, containing its representation and
validation rules. The views make up the business
logic layer, being responsible for defining which data
will be presented to the users, rely on templates
for rendering the content. Templates establish
the presentation layer, since they define the visual
structure of the content, receiving the data from the
views and rendering it according to established rules.

In contrast to traditional Web servers, which use
several threads to serve customer requests, NGINX
Web server has an event-driven architecture that is
more scalable than alternative solutions, enabling the
simultaneous processing of thousands of requests.
This Web server also has a set of characteristics that
allow to improve the performance of applications,
namely load balancing, fault tolerance, caching and
resources compression.

NoSQL solutions are flexible since they allow
variable-structure data. The best cache solutions
utilize key-value NoSQL databases to store the data
in memory, as in the Memcached and Redis solutions.
The Memcached technology was used in order to
implement caching strategies at various levels on the
server side. Redis is a more flexible alternative that
can also be used as broker in the implementation of
asynchronous task queues.

Varnish is a reverse proxy, placed between the
Web server and the network, that caches the responses
returned by the application. In most cases, reverse
proxies are used to decrease the latency associated
with the retrieval of Web content. If Varnish has an
appropriate response in its cache, it returns it directly
to the client. Otherwise, it contacts the Web server
in order to obtain a response to the client. Varnish
is an alternative to using Django and Memcached for
caching templates on the server side.

The Celery asynchronous task queue technology
was selected in the present work. Other alternatives
were Huey and Django Q. Commonly, an
asynchronous task queue requires a broker to
store the tasks. Brokers may be implemented with
in-memory key-value databases. A broker can be
seen as a simple message queue without consumers.
Examples of available brokers are Redis, Disque,
and RabbitMQ. Celery supports task scheduling, the
possibility of working synchronously, flexibility, and
can be integrated with brokers.

4 SHARTICLE APPLICATION

The Web application developed to validate the
optimization techniques is an article sharing system,
similar to Medium. Users can register themselves
in the application, and gain access to wider
functionalities. Sharticle includes features such
as writing, publishing, consulting, and commenting
articles, as well as searching articles by topic or
title. An article consists of a title, a topic, some
tags, and content that may contain text and images.
The application was developed with Django and the
other technologies introduced in the previous section.
Figure 1 presents the architecture of Sharticle.
On the server side, the architecture uses in-memory
caching technologies (Memcached), asynchronous
task queues (Celery), and a reverse proxy (Varnish).
At the network level, a CDN is used to serve static
content.

5 IMPROVING SHARTICLE
LATENCY

In order to reduce the latency of the operations,
several optimization techniques were applied,
including database indexes, a NoSQL solution,
in-memory caching, asynchronous task queues,
multi-level paging, HTTP compression and caching,
minification, combination and correct placement of
scripts and styles, dynamic inlining, post-onload
download, data validation and rendering on the
front-end, and CDNs (Souders, 2007).

Front-end

Figure 1: Architecture of Sharticle Web application.

5.1 Cached Sessions

To speedup reading and writing the users session data,
it was decided to keep such data in memory, therefore

eliminating unnecessary accesses to the database
and increasing the efficiency of login and logout
operations. To achieve this goal, Memcached was used
and it was necessary to appropriately configure the
Django project so that the application could interact
with Memcached.

5.2 HTTP Caching

Two HTTP caching strategies were used, namely
caching with explicit time and conditional caching
with Last-Modified headers. Conditional caching
allows us to significantly reduce the size of a response
if the content that is stored in an HTTP cache is still
valid. In Sharticle, the pages used to view and
edit the user profile are dynamic. Therefore, these
pages are served along with Last-Modified headers,
to enable the clients reuse their copies. Similarly,
pages containing the lists of articles belonging to a
particular user are also subject to conditional caching,
varying according to the actions of creating, deleting
and publishing articles. Additionally, pages used to
edit the drafts of articles, which vary with the update
frequency, also have Last-Modified headers. This
strategy only proves to be favorable if calculating the
last modification date of the resource is faster than
generating a response that contains the resource itself.

Regarding HTTP caching with explicit time, it is
important to select a suitable time for the validity
of the resources. Although this technique is better
suited for static resources, it can be used in dynamic
pages. The published articles view pages are dynamic
because they contain, in addition to the content of
the corresponding article, the information of the
respective author. However, one can perform HTTP
caching of these pages for some time, eventually
reaching consistency after expiring the resource
copies. In addition, such pages also include user
session data in the navigation bar. In order to reuse
the copies of these pages among clients, and adapt
them to each user session, it was necessary to render
the session data in the application front-end. For this
purpose, cookies that include such session data were
used by a script that populates the navigation bar after
loading the page from the server or a cache. Similarly,
HTTP caching with explicit validity was also applied
to the pages used to search articles by topic, which are
also rendered progressively with cookies.

5.3 Database Indexes

In order to speedup database selection operations
indexes should be used. Selecting user information,
based on its user name, integrates the process of

constructing several pages of the application. This
way an index was created on the attribute that
corresponds to the user name, which contributed for
decreasing the latency of such operation. Similarly,
indexes were also created on the attributes that
correspond to the identifier and author of an article.
These attributes are used by several operations to
select articles. To accelerate searching articles by
keyword, a textual index was created on the attributes
that correspond to the title and description of the
articles.

5.4 Bulk Operations

Database bulk operations are more performant
than a sequence of several independent operations.
Publishing an article involves the association of a
variable number of tags to the corresponding article.
To improve the performance of this operation, one can
perform a bulk operation that adds all tags in a single
query. Although the latency of this operation depends
on the number of tags, it increases much less when
we execute a bulk operation than in the alternative
scenario.

5.5 NoSQL Database

To publish an article, we have to associate a set of
tags with this article. In a relational paradigm, one
would have to resort to an additional table to store
such tags, which would be separated into different
registers. Alternatively, by using the MongoDB
NoSQL database one can define the article data
model as a container of its own tags. Updating
a single database record is significantly faster than
inserting multiple records. In contrast to what
happens in a relational paradigm, the execution time
associated with the tag insertion remains constant and
independent on the number tags.

5.6 Dynamic Inlining and Post-onload
Download

Even though scripts and styles are external resources
to Web pages, obtaining such pages can benefit from
using inline scripts and styles. This accelerates the
transfer and rendering of such content. The dynamic
inlining technique allows to decide whether (i) the
responses returned to the clients should include the
scripts and styles inlined on the pages, or (ii) they
should contain only references to external resources,
which should be served separately.

We implemented dynamic inlining on the
registration page. It was necessary to select the styles

for the correct presentation of the page, to extract
them from the respective files and to place them in an
HTML <style> tag. In addition, it was necessary to
implement application code for the view that serves
this page, in order to determine if the client request
has a cookie and to decide the appropriate response
to return to the client, i.e., whether to use internal
style sheets or references to external style sheets.
Post-onload Download allows the reuse of
resources that were transferred inline, along with the
required page, thus not being cached. After rendering
the page on the client side, in subsequent requests
the external resources can be downloaded and cached.
To implement Post-onload Download, it was used a
script that, after loading the page, transfers the scripts
and styles present in external files, so that they can be
placed in the browser cache and reused in the future.

5.7 Validating Forms in the Front-end

For data consistency and security reasons, form
validation is typically performed on the back-end.
To eliminate the computational burden on the server
and to accelerate form validation, it must also be
performed on the front-end. This technique was
implemented on the registration page, by adding a
script that verifies if both passwords in a registration
form are equal. Validation on the front-end does not
offer any performance advantage when the submitted
forms are valid. However, when there is an
irregularity in the form, it is advantageous to report
such error to the user when he tries to submit the form.
This eliminates a server request.

5.8 Asynchronous Operations and
Partial Update of Web Pages

Operations such as deleting drafts or published
articles do not require reloading the Web page
completely. The page that contains the user published
and draft articles is dynamic. The server returns a
page with a common skeleton, which includes only
the required list. Later, if the user wants to view
the other list of articles, it will be transferred from
the server, using AJAX technology, and rendered in
the client browser using JavaScript. This eliminates
reloading the page completely and rendering the base
skeleton again, when the client switches between lists.
Any operation that does not require a complete page
reload can be performed asynchronously. So the
user can continue interacting with the page while the
required operation is being processed. Therefore,
deleting an article was implemented asynchronously,

with an AJAX request to the server followed by the
page update on the client side.

5.9 Pagination

Sometimes the number of items that result from
processing the user request is so extensive that
it is impractical to build and return a response
that includes the complete set. In these cases,
the technique of data pagination must be used.
Pagination operates on several levels, from selecting
the information from the database, through building
the corresponding response and transferring it over
the network, to rendering the data on the client device.

5.10 Asynchronous Task Queues

Asynchronous tasks queues allow to perform certain
operations asynchronously, without the application
being blocked waiting for the execution result.
Registering a new user in the application involves
sending a confirmation e-mail, which is a relatively
time-consuming process. To mitigate performance
issues associated with the synchronous execution
of e-mail delivery, and to be able to return the
registration confirmation page to the user as quickly
as possible, the asynchronous processing mechanism
was used. Upon submitting a registration form, the
application creates and orders the execution of an
asynchronous task that will be responsible for sending
the confirmation e-mail, returning immediately the
register confirmation page to the user. The
delay function of Celery was used to run tasks
asynchronously.

5.11 In-memory Caching

There are several situations where the content
displayed on a page results from the execution
of actions that produce dynamic results, such as
retrieving information from a database. To reduce the
time required to get this information, it is convenient
to store it temporarily in a cache memory to speed up
the processing of subsequent requests. However, it is
necessary to define a maximum time during which the
data can be reused, since its state can vary, generating
inconsistencies between the source and the cache.

In certain situations, the cache must be populated
proactively and not as a result of client requests,
since the first request will be penalized by the need
to populate the cache. The solution is to use
asynchronous task queues, executing a task at a given
frequency to populate the in-memory cache with
information from database. In-memory caching, with

a periodic task, allowed us to decrease the latency
of the process that generates the pages with articles
searched by topic.

5.12 Combining and Placing Scripts
and Styles

It is often preferable to combine resources of the
same type, because so clients only have to transfer
once each type of resource. Using external and
combined scripts and styles, the clients can reuse
them among distinct pages. The scripts and styles
used in the application are provided as external
resources and include Cache-Control or Expires
headers, to allow them to be stored in the proxy cache
or in client browser. When the styles used in the
different pages of the application are combined in a
single file conflicts arise, which need to be eliminated.
Thus, to suppress internal stylesheets it was necessary
to perform its re-factorization. Similarly, the scripts
defined in HTML pages were removed and replaced
in external and reusable files.

To render the application pages in the client’s
browser progressively, it is convenient to refer the
external stylesheets at the top of the pages (<head>
section). Instead, the scripts must be referenced at the
end of HTML pages (<body> section), to allow faster
rendering. Placing scripts in other parts of the page
could cause them to be transferred early, temporarily
blocking the renderization.

5.13 Scripts and Styles Minification

All scripts and styles were minified with the Minify
tool. Removing unnecessary characters, as well as
the comments on the original code, contributes to
decrease the latency associated with their transfer.
Minification must occur before the files are deployed
to the server. Minification can be more or less rigid.
It is possible to change the names of the functions and
variables, using names with fewer characters.

5.14 HTTP Compression

To further reduce the latency of HTTP responses, we
have used the compression technique, which allows
us to reduce the size of the transferred content.
Compression can be performed at the application
level, using the Django compression tool. In this
case, it is only necessary to include a reference to the
GZipMiddleware class in the MIDDLEWARE variable
of the Django project configuration file. Another
alternative is to use the capabilities of the Nginx Web
server, through the presence of the directive gzip

on; in its configuration file. In any case, HTTP
responses will now include the Content-Encoding
HTTP header, parameterized with the value gzip.
This technique proves to be advantageous since the
time involved in compression and decompression is
lower than the reduction in latency pages’ transfer.

5.15 Server-side Template Caching

In some cases, server-side template caching
completely eliminates operations such as database
accesses and template rendering. All pages that are
targeted for HTTP caching must also be stored on
the server side, to avoid they need to be recalculated.
One of the main solutions for template caching on
the server is a reverse proxy, such as Varnish. All
requests made to the application go first through
Varnish and, if the appropriate response in its cache,
Varnish returns it directly to the client. Otherwise,
Varnish contacts the Web server to obtain a response
for the client.

By default, Varnish does not cache pages whose
requests or responses have cookies. To enable the
return of the pages stored in cache, it was necessary to
remove all the cookies present in the client requests.
For this purpose, code was added to the vcl_recv
routine, which is executed by Varnish immediately
after parsing each request and before checking the
existence of a cached response. This code removes
the cookies from all page requests whose URL is not
declared in the test of the if statement included in the
vcl_recv routine. Deleting cookies allows Varnish
to return the responses, rather than contacting the
application server. When the Varnish receives a
request whose URL is declared in the if statement
test, cookies remain unchanged and the request is
forwarded to the application server in order to get the
corresponding response.

5.16 Content Delivery Networks

CDNs create replicas of the Web applications
static content in different locations, putting the
content closer to the target users and decreasing its
transference time. We used the Hostry CDN service,
which configuration includes information about the
address and URL of the static resources server. On
the origin server side, it is also necessary to rename
the references to static resources in the HTML pages.
The new location will be a URL provided by the CDN
service, followed by the resource name. In Django,
the definition of the location of static resources is
done through the variable STATIC_ROOT.

Only the styles and scripts created specifically

for the developed application, as well as the
images submitted by the users, are served by
the configured CDN. Furthermore, the styles and
scripts of third parties, namely bootstrap.min. js,
bootstrap.min.css and jquery.min.js, are
served by specific CDNs.

6 RESULTS

Table 1 shows that the pagination technique when
applied to database accesses allows a significant
decrease of the data retrieval latency. Additionally,
it highlights the benefits of storing data in memory,
in which case the latency can be reduced almost 50
times, in contrast with accessing database. Table 2
documents the difference in latency verified with the
application of the pagination technique at the network
level. When we reduce the content size 10 times, we
get a 5-fold reduction in the latency of the download.

Table 1: Memory vs. database access time.

Source Operation Latency (ms)
Database Retr%eve 500 ar.ticles 51.77

Retrieve 50 articles 14.78
Memory | Retrieve 50 articles | 0.3

Table 2: Influence of network pagination on latency (s).

Network
Operation Slow 3G | Fast 3G
Download a 1.2 MB page 26 7
Download a 120 KB page 5 1.2

Table 3 shows the latency values associated with
the insertion in the database of a variable number of
article tags. Regarding the relational paradigm, it can
be verified that bulk operations provide much faster
response times than individual insertions. The latency
increases with the number of tags, but this trend is
much more pronounced when inserted one by one.
Furthermore, the table shows that NoSQL allows to
maintain the response time independent of the number
of records inserted in the database.

Table 3: Latency of database operations (ms).

Number of tags
1 3 6 12
Individual insertion | 5.2 | 29.6 | 33.1 | 63.9
Bulk insertion 521 79 8.3 | 10.6
NoSQL 53| 55 54 | 55

Table 4 presents the latency associated with
content retrieval, highlighting the benefits of using

HTTP caching. While the transfer time of several
application pages depends on its size, obtaining
any page from the browser cache takes only 5
ms approximately, which is much faster than any
download made from the application server.

Table 4: Influence of HTTP caching on latency.

Source Page Size Latency
Articles by topic | 122 KB | 5.03 s
Network | User profile page | 13 KB 2.54s
Article page 11 KB 2.29s
Search page 35KB | 2.08s
B. cache | Any page Variable | 5 ms

Table 5 contains the latency for five operations,
highlighting the advantages of applying other
performance optimization techniques. Storing session
data in-memory allows to reduce 40 times the
latency of the logout operation. Sending registration
confirmation emails asynchronously reduces latency
1700 times. The time required to select a user profile
data from the database, based on his/her username,
is 14 times lower when an index is used on the
corresponding attribute. HTTP compression allowed
us to reduce the latency associated with downloading
a 122 KB page to half of the original time. Finally, the
CDN made it possible to reduce the download time of
a 217 KB image by 10 times.

Table 5: Latency of diverse operations.

Latency (ms)

Technique | Operation NonOpt | Opt
In-memory | Logout 123 3
sessions

Async task | Send an e-mail | 1700 1
DB indexes | Get user data 55 4
HTTP Download a | 4490 2120

compression| 122K page (122K) | (5.2K)
CDN Get a 217K | 1110 106
image from
Washington

Tests were carried out with the GTmetrix
performance analysis tool, which grades the website
pages according to their load speed and performance
best practices, having obtained high grades for several
application pages. The performance score provided
by GTmetrix is determined by running both Google
PageSpeed Insights tool and Yahoo YSlow. The
homepage, which lists the articles of a specific topic,
got 95% and 96% scores (figure 2). The article page
got 87% and 96% scores (figure 3). A score of 90
and above is considered fast, 50 to 90 is considered
average, and below 50 is considered to be slow.

GTmetrix also provides recommendations regarding
performance optimization. For example, the images
served by the application should be scaled, in order to
reduce the network traffic associated with its transfer.
Furthermore, the static components of the application,
such as scripts, styles and images, should also be
subject to HTTP compression and caching. Beyond
these aspects, we can confirm in figures 2 and 3 that
the application is highly optimized.

GTmetrix =

Latest Performance Report for:
http:/sharticle.ddns.net/

Performance Scores
PageSpeed Score YSlow Score

A (95%)~ A(96%)~

‘Web Programming

R

PageSpeed YSlow

Waterfall Timings
RECOMMENDATION GRADE TYPE PRIORITY
~ Compress components with gzip v SERVER HIGH
¥ Minify JavaScript and CSS S cssis MEDIUM
~ Avoid HTTP 404 (Not Found) error CONTENT MEDIUM

Ll

COEDNN A coNTENT e

Add Expires headers

Ll

Make fewer HTTP requests

¥ Use a Content Delivery Network (CDN) A SERVER MEDIUM
~ Avoid URL redirects S CONTENT MEDIUM
v Make AJAX cacheable s MEDIUM
~ Remove duplicate JavaScript and CSS MEDIUM
~ Avoid AlphalmageLoader filter MEDIUM
~ Reduce the number of DOM elements A CONTENT Low
¥ Use cookie-free domains -~ Low
~ Use GET for AJAX requests Js Low
~ Avoid CSS expressions css Low
~ Reduce DNS lookups A CONTENT Low
~ Reduce cookie size COOKIE Low
~ Make favicon small and cacheable IMAGES Low
~ Configure entity tags (ETags) A~ SERVER Low
~ Make JavaScript and CSS external infa) Cssis MEDIUM

Figure 2: YSlow and PageSpeed scores for the homepage.

7 CONCLUSIONS

There is a conflict among the quality attributes
considered during Web applications development.
For example, database indexes have a positive impact
on the latency of reading the associated data, but it
influences negatively the insert and update operations.
Therefore, a higher priority should be given to the
operation that is intended to perform best.

The Django framework supports building high-
performance applications, providing a number of
tools to accelerate the execution of operations.

GTmetrix =

Latest Performance Report for:
http://sharticle.ddns.net/articles/6038/

Performance Scores

PageSpeed Score YSlow Score
3(87%) ~ A (96%)~
PageSpeed YSlow Waterfall Timings
RECOMMENDATION GRADE TYPE PRIORITY
~ Serve scaled images BB v IMAGES HIGH
~ Enable gzip compression v SERVER HIGH
~ Avoid bad requests A (92) v CONTENT HIGH
~ Optimize images A IMAGES HIGH
> Minify HTML CONTENT Low
~ Specify image dimensions IMAGES MEDIUM
~ Minify CSS css HIGH
~ Minify JavaScript ~ Js HIGH
~ Avoid landing page redirects SERVER HIGH
= Defer parsing of JavaScript A Js HIGH
~ Enable Keep-Alive SERVER HIGH
~ Inline small CSS css HIGH
~ Inline small JavaScript I8 HIGH

4

Leverage browser caching

~ Minimize redirects

~ Minimize request size CONTENT HIGH

- Opt_imize the order of styles and i oTED
scripts

~ Put CSS in the document head css HIGH

CCINNNN A CoNTENT HoH
COTTNNN A e HoH

Specify a Vary: Accept-Encoding SERV W
Spech SR 1o

~ Serve resources from a consistent
URL

4

Specify a cache validator

Il

4

Combine images using CSS sprites

~ Avoid CSS @import css MEDIUM
~ Prefer asynchronous resources J8 MEDIUM
~ Specify a character set early CONTENT MEDIUM
~ Avoid a character set in the meta tag CONTENT Low

Il

Remove query strings from static
resources

A CONTENT Low

Figure 3: PageSpeed and YSlow scores for article page.

Some examples are HTTP compression of the pages
returned by the application, handling HTTP caching,
caching user session data in memory, and caching the
generated pages. Since it is a full-stack framework,
Django is not globally as fast as other Python
frameworks. NoSQL solutions are not natively
supported by the framework. An alternative is
the Djongo technology, which has limitations in
performing certain operations. For example, it is not
possible to execute textual search queries with a OR-
clause, i.e., a logical disjunction.

The HTTP protocol has evolved over time. The
latest HTTP/2 version exhibits several optimizations,
making it unnecessary to implement some of the

described optimizations. Server push is an HTTP/2
mechanism that enables sending proactively Web
resources without requiring an explicit request. This
mechanism eliminates the necessity to implement
certain performance enhancement techniques, such
as combining features of the same type and inlining
styles in the home page. The remaining optimizations
that were discussed are not affected by the new
version of the HTTP protocol and should continue to
be applied.

In the future, more performance optimization
techniques can be explored, as well as other
performance metrics besides latency, such as
throughput and resource utilization. Regarding
databases, there are mechanisms, such as sharding,
whose objective is sharing the information among
multiple partitions, as well as data replication, which
implies the existence of several copies of the same
information. These techniques allow to spread
the database access load across several processing
nodes, reducing resource utilization per node and
possibly increasing throughput and decreasing the
system’s response time. It is also possible to replicate
the application servers, taking advantage of load
balancing mechanisms, which aim to distribute
client requests across multiple server nodes. On the
client side, there are technologies such as Service
Worker, which is a service placed in the browser and
acts as a proxy, intercepting HTTP requests, and can
serve responses from its cache. This technology gives
users the ability to use certain parts of the application
while being offline, eliminating the need to contact
the server and decreasing the latency associated with
obtaining certain content.

ACKNOWLEDGMENT

This work has been supported by FCT — Fundagio
para a Ciéncia e Tecnologia within the Project Scope:
UID/CEC/00319/2019.

REFERENCES

Anastasios, D. (2016). Website Performance Analysis and
Optimization. Master’s thesis, Harokopio University,
Greece.

Arcos, D. (2016). Efficient django. EuroPython.

Cao, B., Shi, M., and Li, C. (2017). The solution
of web font-end performance optimization. In
10th International Congress on Image and Signal
Processing. IEEE.

Cerny, T. and Donahoo, M. (2010a). Evaluation and
optimization of web application performance under

varying network conditions.
Simulation of Systems conference.

Cerny, T. and Donahoo, M. (2010b). Performance
optimization for enterprise web applications through
remote client simulation. In 7th EUROSIM Congress
on Modelling and Simulation.

Connolly, T. and Begg, C. (2005). Database Systems: A
Practical Approach to Design, Implementation and
Management. Addison Wesley.

Fielding, R., Gettys, J., and Berners-Lee, T. (1999).
Hypertext transfer protocol - http/1.1. RFC 2616.

Google (2017). Google page speed insights and rules.
developers.google.com/speed/docs/insights/rules.
Consultado em 19/10/2017.

Greenfeld, D. R. and Greenfeld, A. R. (2017). Two Scoops
of Django 1.11. Two Scoops Press.

Grigorik, 1. (2013).
Networking. O’Reilly.

Grigorik, I (2017). Web fundamentals:
Optimizing content efficiency.
https://developers.google.com/web/fundamentals/-
performance/optimizing-content-efficiency/.
Consultado em 19/10/2017.

Holovaty, A. and Kaplan-Moss, J. (2009). The Definitive
Guide to Django: Web Development Done Right.
Apress.

Horat, D. and Arencibia, A. (2009). Web applications: A
proposal to improve response time and its application
to moodle. In Computer Aided Systems Theory
(EUROCAST), pages 218-225. Springer.

Manchanda, P. (2013). Analysis of Optimization
Techniques to Improve User Response Time of
Web Applications and Their Implementation for
MOODLE. In International Conference on Advances
in Information Technology, pages 150-161. Springer.

Meier, J., Vasireddy, S., Babbar, A., and Mackman, A.
(2004). Improving .net application performance
and scalability. https://msdn.microsoft.com/en-
us/library/ff647781.aspx (accessed in 12/0ct/2017).

Ossa, B., Sahuquillo, J., Pont, A., and Gil, J. (2012). Key
factors in web latency savings in an experimental
prefetching system. Journal of Intelligent Information
Systems, 39:187-207.

Shivakumar, S. and Suresh, P. (2017). An analysis
of techniques and quality assessment for Web
performance optimization. Indian Journal of
Computer Science and Engineering, 8(2):61-69.

Smith, P. (2013). Professional Website Performance:
Optimizing the Front End and the Back End. John
Wiley and Sons, Inc.

Souders, S. (2007). High Performance Websites. O’Reilly.

Subrayen, B., Elangovan, G., Muthusamy, V., and
Anantharajan, A. (2013). A Case Study for Improving
the Performance of Web Application. International
Journal of Web Technology, 02(01):17-20.

In Modelling and

High Performance Browser

