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Abstract

Recently there has been a renewed interest in the spectra and role in dynamical properties of excited states 
of the spin-1/2 Heisenberg antiferromagnetic chain in longitudinal magnetic fields associated with Bethe 
strings. The latter are bound states of elementary magnetic excitations described by Bethe-ansatz com-
plex non-real rapidities. Previous studies on this problem referred to finite-size systems. Here we consider 
the thermodynamic limit and study it for the isotropic spin-1/2 Heisenberg XXX chain in a longitudinal 
magnetic field. We confirm that also in that limit the most significant spectral weight contribution from 
Bethe strings leads to (k, ω)-plane gapped continua in the spectra of the spin dynamical structure fac-
tors S+−(k, ω) and Sxx(k, ω) = Syy(k, ω). The contribution of Bethe strings to Szz(k, ω) is found to be 
small at low spin densities m and to become negligible upon increasing that density above m ≈ 0.317. 
For S−+(k, ω), that contribution is found to be negligible at finite magnetic field. We derive analytical ex-
pressions for the line shapes of S+−(k, ω), Sxx(k, ω) = Syy(k, ω), and Szz(k, ω) valid in the (k, ω)-plane 
vicinity of singularities located at and just above the gapped lower thresholds of the Bethe-string states’s 
spectra. As a side result and in order to provide an overall physical picture that includes the relative (k, ω)-
plane location of all spectra with a significant amount of spectral weight, we revisit the general problem of 
the line-shape of the transverse and longitudinal spin dynamical structure factors at finite magnetic field and 
excitation energies in the (k, ω)-plane vicinity of other singularities. This includes those located at and just 
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above the lower thresholds of the spectra that stem from excited states described by only real Bethe-ansatz 
rapidities.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently, there has been a renewed interest in bound states of elementary magnetic exci-
tations named Bethe strings known long ago [1–5]. In spite of Bethe strings being a rather 
theoretical issue, as they were first found and identified within the Bethe ansatz solution of spin 
and electronic integrable models in some classes of energy eigenstates described by complex 
non-real spin rapidities [1,2], this renewed interest is actually due, in part, to their experimental 
identification and realization in spin-chain compounds whose magnetic properties are described 
by the spin-1/2 Heisenberg chain in longitudinal magnetic fields [6–10]. This applies to that 
model isotropic point in the case of experimental studies of some classes of such compounds 
[8–11].

The present paper addresses only theoretical issues of that interesting physical problem. Most 
previous studies on the spin dynamical properties of the spin-1/2 XXX chain in a longitudinal 
magnetic field focused on the contribution from energy eigenstates described by real Bethe-
ansatz rapidities, which are associated with most spectral weight of the spin dynamical structure 
factors. Several such studies considered finite-size systems and relied on different methods. This 
includes for instance numerical diagonalizations [12] and evaluation of matrix elements between 
Bethe-ansatz states [13–15]. Previous studies that considered the thermodynamic limit [16], were 
also limited to the contribution to the spin dynamical structure factors from energy eigenstates 
described by real Bethe-ansatz rapidities. Concerning the specific issue of the contribution of 
Bethe strings to the spin dynamical properties of spin-1/2 XXX chain in a longitudinal magnetic 
field, the few previous studies considered finite-size systems [8,9].

In the case of that spin-1/2 chain, Bethe strings [1], which here we call n-strings, have for 
n > 1 and in the thermodynamic limit [2] been shown to be bound states of n = 2, ..., ∞ singlet 
pairs of the model physical spins 1/2 [17–19]. (The physical meaning of the form of the spin-1/2
XXX chain’s n-strings in that limit is an issue shortly further discussed below in Sec. 3.1.) 
Energy eigenstates described by only real Bethe-ansatz rapidities lack such bound pairs and are 
populated by unbound singlet pairs of such physical spins [17–19]. On the other hand, there 
are predictions according to which for the large spin-S Heisenberg XXX chain in longitudinal 
magnetic fields, Bethe strings could rather be bound states of spin-1 magnons [20,21].

In this paper we address the problem of the contribution of n-strings to the spin dynami-
cal properties of spin-1/2 XXX chain in a longitudinal magnetic field, in the thermodynamic 
limit. Based on a relation between the level of negativity of the momentum dependent exponents 
that control the (k, ω)-plane line shape of the spin dynamical structure factors near singulari-
ties and the amount of spectral weight existing in their vicinity, respectively, we confirm that in 
the thermodynamic limit, as in the case of finite-size systems [8,9], the only contribution from 
excited energy eigenstates populated by n-strings that leads to a (k, ω)-plane gapped contin-
uum in the spectrum of the spin dynamical structure factors refers to S+−(k, ω) and thus also 
to Sxx(k, ω) = Syy(k, ω). On the other hand, the contribution from n-strings states to Szz(k, ω)

is found to be small at low spin densities and to become negligible upon increasing it beyond a 
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spin density, m̃ ≈ 0.317. For the spin dynamical structure factor S−+(k, ω), that contribution is 
found to be negligible at any finite magnetic field.

The main goal of this paper is thus the study of the line shape of the spin dynamical structure 
factors S+−(k, ω), Sxx(k, ω), and Szz(k, ω) at and just above singularities located at the (k, ω)-
plane gapped lower thresholds of the spectra associated with n-string states. To reach that goal, 
we extend the dynamical theory of Ref. [16] to a larger subspace, which allows to account for 
the contribution from the latter states to the spin dynamical structure factors. We then derive 
analytical expressions valid in the thermodynamic limit for line shape of these factors in the 
(k, ω)-plane vicinity of the singularities under consideration.

Complementarily and as a side result, in order to provide an overall physical picture that 
includes the relative (k, ω)-plane location of all features with a significant amount of spectral 
weight, we account for the contributions from all types of states that lead to gapped and gapless 
lower threshold singularities in the spin dynamical structure factors. This includes both excited 
states with and without n-strings. (As mentioned above, the contribution from the latter states, 
shortly revisited in this paper, is known to lead to the largest amount of spin dynamical structure 
factors’s spectral weight [12–16].)

The paper is organized as follows. The model and the spin dynamical structure factors are the 
subjects of Sec. 2. In Sec. 3 the spectral functionals that control the extended dynamical theory’s 
general expressions of the dynamical structure factors are introduced. Such factors’s spectra are 
studied in Sec. 4. The line shape near their singularities is the issue addressed in Sec. 5. The 
subject of Sec. 6 is the limiting behaviors of the spin dynamical structure factors. Finally, the 
discussion and concluding remarks are presented in Sec. 7. Two Appendices provide useful side 
information needed for the studies of this paper.

2. The model and the spin dynamical structure factors

The spin-1/2 Heisenberg XXX chain with exchange integral J and length L → ∞ in a longi-
tudinal magnetic field h for spin densities m ∈]0, 1[, which describes N = ∑

σ=↑,↓ Nσ physical 
spins 1/2 of projection σ , is a paradigmatic example of an integrable strongly correlated system 
[1,2]. Its Hamiltonian is given by,

Ĥ = J

L∑
j=1

∑
a=x,y,z

Ŝa
j Ŝa

j+1 + 2μBh Ŝz . (1)

For simplicity, we have taken here g = 2, �̂Sj is the spin-1/2 operator at site j = 1, ..., N with 
components Ŝx,y,z

j , μB is the Bohr magneton, and Ŝz = ∑N
j=1 Ŝz

j is the diagonal generator of 
the global spin SU(2) symmetry algebra. We denote the energy eigenstate’s spin projection by 
Sz = −(N↑ − N↓)/2 ∈ [−S, S] where S ∈ [0, N/2] is their spin. Units of lattice spacing and 
Planck constant one are used in this paper.

Due to the rotational symmetry in spin space, off-diagonal components of the spin dynam-
ical structure factors vanish, Saa′

(k, ω) = 0 for a 
= a′ where a and a′ are given by x, y, z. 
In addition, the two transverse components are identical, Sxx(k, ω) = Syy(k, ω). In the present 
case of finite magnetic fields 0 < h < hc , one has that Szz(k, ω) 
= Sxx(k, ω). Here hc = J/μB

is the magnetic field above which there is fully polarized ferromagnetism. The correspond-
ing magnetic energy scale, 2μB hc = 2J , is associated with the quantum phase transition 
to fully polarized ferromagnetism. In the opposite limit of zero magnetic field, one has that 
Szz(k, ω) = Sxx(k, ω).
3
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The dynamical structure factors Saa(k, ω) are given by,

Saa(k,ω) =
N∑

j=1

e−ikj

∞∫
−∞

dt e−iωt 〈GS|Ŝaa
j (t)Ŝa

j (0)|GS〉

=
∑
ν

|〈ν|Ŝa
k |GS〉|2δ(ω − ωτ

ν (k)) for a = x, y, z . (2)

Here the spectra read ωaa
f (k) = (Eaa

ν − EGS), Eaa
ν refers to the energies of the excited energy 

eigenstates that contribute to the aa = xx, yy, zz dynamical structure factors, 
∑

ν is the sum 
over such states, EGS is the initial ground state energy, and Ŝa

k are for a = x, y, z the Fourier 
transforms of the usual local a = x, y, z spin operators Ŝa

j , respectively.
The spin dynamical structure factor Sxx(k, ω) can be expressed as,

Sxx(k,ω) = 1

4

(
S+−(k,ω) + S−+(k,ω)

)
. (3)

One can then address the dynamical properties of Sxx(k, ω) in terms of those of S+−(k, ω) and 
S−+(k, ω).

Since Saa(k, ω) = Saa(−k, ω) for a = x, y, z and thus also S+−(k, ω) = S+−(−k, ω) and 
S−+(k, ω) = S−+(−k, ω), in this paper we consider excitation momentum values k > 0 in the 
first Brillouin zone, k ∈ [0, π]. Another useful symmetry relating the spin density intervals m ∈
] − 1, 0] and m ∈]0, 1[ is such that,

S−+(k,ω)|m = S+−(k,ω)|−m and

S+−(k,ω)|m = S−+(k,ω)|−m for m ∈]0,1[ . (4)

Hence, as mentioned above, we only consider explicitly the spin density interval m = 2Sz/N ∈
]0, 1[. The subspace defined below in Sec. 3.1 of the quantum problem studied in this paper 
is spanned by some classes of energy eigenstates with spin S ∈]0, N/2[ and magnetic fields 
0 < h < hc for which the spin density belongs to the interval m ∈]0, 1[. (N is even and odd when 
the states spin S is an integer and half-odd integer number, respectively. In the latter case, the 
minimal spin value is 1/2, rather than 0.)

Some useful selection rules tell us which classes of energy eigenstates have nonzero matrix el-
ements with the ground state. Let |S, α〉, |Sz, β〉, and |S, Sz, γ 〉 denote energy eigenstates where 
S ∈ [0, N/2] is their spin, Sz their spin projection, and α, β and γ represent all other quantum 
numbers needed to uniquely specify these states, respectively. The selection rules given in the 
following are derived from the properties of the operators Ŝz

k and Ŝ±
k by straightforward manip-

ulations involving their operator algebra [15].
At vanishing magnetic field, h = 0, the following selection rules hold in the thermodynamic 

limit,

〈S,α|Ŝa
k |S′α′〉 = 0 for S = S′ = 0 and a = z,±

〈S,α|Ŝa
k |S′α′〉 = 0 for |S − S′| 
= 0,1 and a = z,±

〈Sz,β|Ŝ±
k |Sz′

, β ′〉 = 0 for Sz′ 
= Sz ± 1

〈Sz,β|Ŝz
k |Sz′

, β ′〉 = 0 for Sz′ 
= Sz . (5)

On the other hand, for finite magnetic fields 0 < h < hc of most interest for our study, the 
following selection rules are valid in that limit,
4
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〈S,S, γ |Ŝ±
k |S′, Sz′

, γ ′〉 = 0 for S′ 
= S ± 1 and Sz′ 
= S ± 1

〈S,S, γ |Ŝz
k |S′, Sz′

, γ ′〉 = 0 for S′ 
= S and Sz′ 
= S . (6)

The spin dynamical structure factors satisfy the following sum rules,

1

2π2

π∫
−π

dk

∞∫
0

dωS+−(k,ω) = (1 + m)

1

2π2

π∫
−π

dk

∞∫
0

dωS−+(k,ω) = (1 − m)

1

2π2

π∫
−π

dk

∞∫
0

dωSzz(k,ω) = 1

2
(1 − m2) . (7)

The selection rules in Eq. (5) reveal that at h = 0 and thus m = 0 when Sxx(k, ω) =
Syy(k, ω) = Szz(k, ω), the longitudinal dynamical structure factor Szz(k, ω) is fully controlled 
by transitions from the ground state for which Sz = S = 0 to excited states with spin numbers 
Sz = 0 and S = 1. That according to such rules the transverse dynamical structure factors are 
at h = 0 controlled by transitions from that ground state to excited states with spin numbers 
Sz = ±1 and S = 1, does not prevent the equality Szz(k, ω) = Sxx(k, ω) imposed by the spin 
SU(2) symmetry.

This is different from the case for magnetic fields 0 < h < hc considered in this paper. Ac-
cording to the selection rules, Eq. (6), the factor Szz(k, ω) 
= Sxx(k, ω) is then controlled by 
transitions from the ground state with spin numbers Sz = −S to excited states with the same 
spin numbers Sz = −S. According to the same selection rules, the dynamical structure factors 
S+−(k, ω) and S−+(k, ω) are controlled by transitions from the ground state with spin numbers 
Sz = −S to excited states with spin numbers Sz ± 1 = −S ± 1.

3. The spectral functionals of the extended dynamical theory

As reported in Sec. 1, the general goal of this paper is the study of the contribution from n-
string states to the spin dynamical structure factors given in Eq. (2) within the spin-1/2 XXX

chain in a longitudinal magnetic field, Eq. (1). The dynamical theory used in our studies refers 
to an extension of that introduced for the present model in Ref. [16]. In that reference, only the 
contribution to the spin dynamical structure factors from energy eigenstates described by real 
Bethe-ansatz rapidities was considered.

The theory of that reference is directly related to that introduced for the one-dimensional 
Hubbard model in Ref. [22]. The related dynamical theories of Refs. [16,22,23] are equivalent 
to and account for the same microscopic processes [19] as the mobile quantum impurity model 
scheme of Refs. [24,25] in the case of integrable models.

The main difference of such an extended theory to that considered in Ref. [16], refers to the 
Hamiltonian, Eq. (1), acting onto an extended subspace, including n-string states. This involves 
different new forms for the spectral functionals that control the momentum dependent exponents 
in the spin dynamical structure factors’s expressions obtained in this paper for (k, ω)-plane re-
gions near specific types of spectral features. For simplicity, we do not provide here the details 
5
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Fig. 1. The two (k, ω)-plane lower and upper continuum regions where for spin densities (a) m = 0.15, (b) m = 0.25, (c) 
m = 0.50, and (d) m = 0.75 there is in the thermodynamic limit more spectral weight in S+−(k, ω). The sketch of the 
(k, ω)-plane distributions represented here and in Figs. 2 and 3 does not provide information on the relative amount of 
spectral weight contained within each spectrum’s grey continuum. The three reference vertical lines mark the momenta 
(a) [k = kF↑ − kF↓ = 3π/20, k = kF↓ = 17π/40, k = 2kF↓ = 17π/20]; (b) [k = kF↑ − kF↓ = π/4, k = kF↓ = 3π/8, 
k = 2kF↓ = 3π/4]; (c) [k = kF↓ = π/4, k = kF↑ − kF↓ = 2kF↓ = π/2]; (d) [k = kF↓ = π/8, k = 2kF↓ = π/4, 
k = kF↑ − kF↓ = 3π/4]. The lower and upper continuum spectra are associated with excited energy eigenstates without 
and with n-strings, respectively. In the thermodynamic limit, the (k, ω)-plane region between the upper threshold of the 
lower continuum and the gapped lower threshold of the upper n-string continuum has nearly no spectral weight. In the 
case of the gapped lower threshold of the n-string continuum, the analytical expressions given in this paper refer to near 
and just above that threshold whose subintervals refer to branch lines parts represented in the figure by solid and dashed 
lines. The latter refer to k intervals where the momentum dependent exponents plotted in Fig. 4 are negative and positive, 
respectively. In the former intervals, S+−(k, ω) displays singularity peaks.

of the extended dynamical theory that are common to those already given in Ref. [16], and rather 
focus on the differences associated with its extension to the contribution from n-string states.

The use of the extended dynamical theory provides useful information on the (k, ω)-plane 
distribution of the excited energy eigenstates’s spectra that contain in the thermodynamic limit 
most spectral weight of S+−(k, ω), Sxx(k, ω), and Szz(k, ω). Such spectra are schematically 
represented in Figs. 1, 2, and 3, respectively.

After introducing the quantum problem’s extended subspace, the general expressions of the 
spectral functionals under consideration are introduced in the following. Specific expressions of 
the needed spectral functionals suitable to the line-shape near the four types of spectral features 
considered in our study are obtained. Finally, the issue concerning the k intervals where the 
corresponding momentum dependent exponents are valid is also addressed.
6
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Fig. 2. The two (k, ω)-plane lower and upper continuum regions where for the same spin densities as in Fig. 1 there 
is in the thermodynamic limit more spectral weight in Sxx (k, ω). The notations and the momenta associated with the 
reference vertical lines are the same as in Fig. 1. The additional part of the lower continuum relative to that of S+−(k, ω)

in Fig. 1 stems from the contributions from S−+(k, ω). As a result, for some k intervals the upper n-string continuum 
overlaps with the lower continuum.

3.1. The present quantum problem extended subspace

The quantum problem considered in this paper refers to the Hamiltonian, Eq. (1), in a sub-
space spanned by two classes of energy eigenstates, populated and not populated by n-strings, 
respectively. Our corresponding study of the spin dynamical structure factors relies on the rep-
resentation of such energy eigenstates in terms of n-particle occupancy configurations, which 
is that suitable to the dynamical theory used in this paper. Here n = 1, ..., ∞ is the number of 
singlet pairs of physical spins 1/2 that refer to their internal degrees of freedom. The studies of 
Ref. [16] only involved n = 1 particles that in such a reference were named “pseudoparticles”.

In the thermodynamic limit, the Bethe-ansatz rapidities have the general form given in 
Eq. (B.3) of Appendix B [2]. For n = 1 such Bethe-ansatz rapidities are real and otherwise 
their imaginary part is finite. In that equation, the Bethe-ansatz rapidities are partitioned in a 
configuration of strings, where a n-string is a group of l = 1, ..., n rapidities with the same real 
part �n(qj ). The number n is called in the literature the string length and the real part of the 
number n of rapidities, �n(qj ), is called the string center.

For n > 1 the n-particle internal degrees of freedom refer to a n-string, whereas the n-band 
momentum qj in the argument of the real part of the set of l = 1, ..., n rapidities, �n(qj ) in 
Eq. (B.3) of Appendix A, describes its translational degrees of freedom. Each n-string contains 
7
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Fig. 3. The (k, ω)-plane continuum region where for the same spin densities as in Figs. 1 and 2 there is in the thermody-
namic limit more spectral weight in Szz(k, ω). The reference vertical lines mark the same momenta as in these figures. 
Contributions from excited states containing n-strings are much smaller than for S+−(k, ω) and Sxx(k, ω) and do not 
lead to an upper continuum. The gapped lower threshold of such states is though shown in the figures. Only when that 
threshold coincides with the 1̄′-branch line, which only occurs for spin densities 0 < m < m̃ where m̃ ≈ 0.317, singular-
ities occur near and just above the 1̄′-branch line, which is represented by a solid (green) line. In the remaining parts of 
the gapped lower threshold, which for spin densities m̃ < m < 1 means all of it, the momentum dependent exponents are 
positive and there are no singularities. This is equivalent to a negligible amount of spectral weight near such lines. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

a number n = 2, ..., ∞ of bound singlet pairs of physical spins 1/2, whose number thus equals 
the length of the n-string [17–19]. The l = 1, ..., n imaginary parts, i(n + 1 − 2l), of the set of n
rapidities of a n-string describe the binding of the l = 1, ..., n pairs of physical spins 1/2. Con-
sistently, that imaginary part vanishes at n = 1, the internal degrees of freedom of the 1-particles 
corresponding to a single unbound singlet pair of physical spins [17–19]. Their translational 
degrees of freedom refer again the 1-band momentum qj . Energy eigenstates that are not popu-
lated and are populated by n-particles with n > 1 pairs, are described by only real Bethe-ansatz 
rapidities and both real and complex non-real such rapidities, respectively.

The ground states with spin densities 0 < m < 1 and corresponding longitudinal magnetic 
fields 0 < h < hc are not populated by n-strings. Concerning the amount of spectral weight of the 
spin dynamical structure factors originated from transitions from such ground states to n-string 
states, transitions to excited energy eigenstates populated by a single 2-particle are found to be 
dominant by far, as justified below. This is consistent with results for large finite-size systems 
[8,9].
8
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The 1- and 2-particles carry 1-band and 2-band discrete momentum values qj , respectively, 
Eq. (B.5) of Appendix B, whose spacing is qj+1 −qj = 2π/L. Accounting for 1/L contributions, 
the ground state at a given spin density 0 < m < 1 and corresponding longitudinal magnetic field 
0 < h < hc is populated by a number N1 = N↓ of 1-particles that fill a 1-band Fermi sea as 
follows,

qj ∈ [q−1
F , q+1

F ] where qj+1 − qj = 2π/L and

qι
F = ιkF↓ − ι

π

L
for N even and ι = ±1

qι
F = ιkF↓ − (ι ± 1)

π

L
for N odd and ι = ±1 . (8)

Here ι = +1 and ι = −1 refer to the 1-band right and left Fermi points, respectively, kF↓ =
π
2 (1 − m) (as given in Eq. (B.7) of Appendix B), and in the case of N odd, ±1 refers in (ι ± 1)π

L
to two alternative Fermi point’s values.

In the present thermodynamic limit, we often use continuous momentum variables q that 
replace the discrete 1- and 2-bands momentum values qj such that qj+1 − qj = 2π/L. We can 
then consider for the studies of some properties that qι

F = ιkF↓ and thus a ground-state 1-band 
occupied Fermi sea, q ∈ [−kF↓, kF↓].

As reported in Sec. 1, there is a direct relation between the values of the momentum de-
pendent exponents that within the dynamical theory used here control the line shape in the 
(k, ω)-plane vicinity of the spin dynamical structure factors spectral features and the amount 
of spectral weight located near them: Negative exponents imply the occurrence of singularities 
associated with a significant amount of spectral weight in their (k, ω)-plane vicinity.

The use of this criterion, reveals that in the present thermodynamic limit and for magnetic 
fields 0 < h < hc , the only significant contribution to S+−(k, ω) from excited energy eigenstates 
populated by n-particles refers to those populated by a number N↓ − 2 of 1-particles and a 
single 2-particle. There is as well a much weaker contribution at small spin densities from states 
populated by a number N↓ − 3 of 1-particles and a single 3-particle.

The only significant yet weak contribution to Szz(k, ω) from n-string states, refers to energy 
eigenstates populated by a number N↓ − 2 of 1-particles and a single 2-particle. On the other 
hand, the contribution from such excited energy eigenstates to S−+(k, ω) is found to be negligi-
ble, since all relevant exponents are both positive and large.

The contribution to S+−(k, ω) from energy eigenstates populated by a number N↓ − 3 of 
1-particles and a single 3 particle that occurs for small values of the spin density is very weak. 
It is actually inexistent in the vicinity of the (k, ω)-plane singularities to which the analytical 
expressions obtained in our study refer to. Indeed, except for very small spin densities, m → 0, 
the latter very weak contributions occur in (k, ω)-plane regions of higher excitation energy ω, 
above the gapped lower threshold of the spectrum continuum associated with energy eigenstates 
populated by a number N↓ − 2 of 1-particles and a single 2-particle whose expression is given 
below in Sec. 3.2. That spectrum refers to the upper continuum shown in Fig. 1.

The above spectral-weight analysis refers to the thermodynamic limit. Its results are fully 
consistent with corresponding results reached by a completely different method in the case of 
large finite-size systems [8].

The subspace of the quantum problem studied in this paper is thus spanned by an initial 
ground state for a given spin density 0 < m < 1 and a corresponding longitudinal magnetic 
field 0 < h < hc and its following excited energy eigenstates: States described by both real and 
complex non-real Bethe-ansatz rapidities populated by a number N↓ − 2 of 1-particles and a 
9
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single 2-particle whose internal degrees of freedom refer to a n-string of length n = 2; States 
populated by a number N↓ of 1-particles that are described only by real Bethe-ansatz rapidities.

3.2. General expressions of the extended dynamical theory’s spectral functionals

The following number and current number deviations under transitions from a ground state 
with 1-band momentum distribution given in Eq. (8) to the excited energy eigenstates that span 
the present subspace play an important role in the extended dynamical theory’s expressions,

δNF
1,ι for ι = 1,−1 (right, left) 1 − particles

δNF
1 =

∑
ι=±1

δNF
1,ι and δJF

1 = 1

2

∑
ι=±1

ι δNF
1,ι

δJ2 = ι

2
δN2(q)|q=ι (kF↑−kF↓) where ι = ±1 . (9)

Under some of the transitions from the ground state to the excited energy eigenstates of the 
present subspace, the number of 2-particles and/or that of 1-particles changes. This leads to 
number deviations δN2 and/or δN1, respectively. The specific number deviations δNF

1,ι in Eq. (9)
refer only to changes of the 1-particles numbers at the left (ι = −1) or right (ι = 1) 1-band 
Fermi points, Eq. (8). Exactly the same information is contained in the two Fermi points number 
deviations δNF

1,ι, on the one hand, and in the corresponding Fermi points number deviations 

δNF
1 = ∑

ι=±1 δNF
1,ι and current number deviations δJF

1 = 1
2

∑
ι=±1 ι δNF

1,ι, on the other hand. 
The overall 1-particles number deviation δN1 can be expressed as,

δN1 = δNF
1 + δNNF

1 . (10)

Here δNNF
1 refers to changes in the number of 1-particles at 1-band momenta other than those 

at the Fermi points, Eq. (8).
For the current subspace, the 2-band number deviations may read δN2 = 0 or δN2 = 1. The 

2-band is empty in the ground state. For that state its unoccupied momentum values qj such 
that qj+1 − qj = 2π/L refer to the range qj ∈ [−(kF↑ − kF↓ − 1/L), (kF↑ − kF↓ − 1/L)]
where kF↓ = π

2 (1 − m) and kF↑ = π
2 (1 + m) (as given in Eq. (B.7) of Appendix B). The 2-band 

momentum range that is of interest for our studies rather refers to excited energy eigenstates 
populated by a single 2-particle. For these states, the available discrete momentum values belong 
to the interval qj ∈ [−(kF↑ − kF↓), (kF↑ − kF↓)] where qj+1 − qj = 2π/L. The 2-particle can 
occupy any of such 2-band discrete momentum values whose number is N↑ − N↓ + 1. Only 
when the 2-particle is created at one of the two 2-band’s limiting values, q = −(kF↑ − kF↓) or 
q = (kF↑ − kF↓), that process leads to a current number deviation δJ2 = −1/2 and δJ2 = 1/2, 
respectively, Eq. (9).

Within the extended dynamical theory, the line shape at and just above the gapped lower 
thresholds of the n-string states of S+−(k, ω), Sxx(k, ω), and Szz(k, ω) is for spin densities 
0 < m < 1 and momenta in the range k ∈]0, π[ of the following general form,

Sab(k,ω) = C

ab

(
ω − 
ab

n̄ (k))
)ζ ab

n̄ (k)

for (ω − 
ab
n̄ (k)) ≥ 0

where n̄ = 2, 1̄, 1̄′,2′ and ab = +−, xx, zz

(valid when 
ab
gap > 0) . (11)
10
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Here C

ab is a constant that has a fixed value for the k and ω ranges associated with small values 

of the energy deviation (ω − 
ab
n̄ (k)) ≥ 0 and 
ab

n̄ (k) are the spectra that define the (k, ω)-
plane shape of the gapped lower thresholds of the n-string states’s in Figs. 1, 2, and 3. The 
analytical expressions of such spectra are given below in Sec. 3.2 and the general expression of 
the exponents ζ ab

n̄ (k) also appearing in Eq. (11) is provided below. The indices n̄ = 2, ̄1, ̄1′, 2′
in such spectra and exponents label the branch lines or branch line sections that are part of the 
corresponding gapped lower thresholds in some specific k intervals defined below in Sec. 4.1. 
Branch lines are types of spectral features that are defined as within the dynamical theory of 
Ref. [16].

The quantity 
ab
gap in Eq. (11) is the gap between the upper thresholds of the lower continua 

associated with excited states described only by real Bethe-ansatz rapidities and the gapped lower 
thresholds of the n-string states’s spectra displayed in Figs. 1, 2, and 3. Only for ab = xx there 
is overlap for small spin densities and some k intervals between the lower continuum and the 
n-string states’s upper continuum, as shown in Fig. 2 for spin densities m = 0.15 and m = 0.25. 
In the corresponding k intervals, one has that 
xx

gap < 0 and the general line-shape expression 
given in Eq. (11) does not apply.

Indeed, that expression is valid provided there is no spectral weight or nearly no spectral 
weight below the gapped lower thresholds of the n-string states. In the present thermodynamic 
limit, the amount of spectral weight just below such thresholds either vanishes or is extremely 
small. In the latter case, the very weak coupling to it leads to a higher order contribution to 
the line shape expressions given in that equation that can be neglected in such a limit. Hence, 
the general expression of the spin dynamical structure factors given in Eq. (11) is an excellent 
approximation for small values the energy deviation (ω − 
ab

n̄ (k)) ≥ 0.
On the other hand, the line shape of the spin dynamical structure factors Sab(k, ω) where 

ab = +−, −+, xx, zz at and just above their lower thresholds of the lower spectra that for ab =
+−, xx, zz are shown in Figs. 1, 2, and 3 and are associated with excited energy eigenstates 
described only by real Bethe-ansatz rapidities has been derived within the dynamical theory of 
Ref. [16]. It has the following general form, similar to that given in Eq. (11),

Sab(k,ω) = Cab

(
ω − ωab

lt (k)
)ζ ab

1 (k)

for (ω − ωab
lt (k)) ≥ 0

where ab = +−,−+, xx, zz . (12)

Again, here Cab are constants that have a fixed value for the k and ω intervals for which the 
energy deviation (ω − ωab

lt (k)) ≥ 0 is small. The lower thresholds under consideration refer to a 
single 1-branch line that except for S−+(k, ω) has two k interval sections. The ab = +−, −+, zz
lower threshold’s spectra ω+−(k), ω−+(k), and ωzz(k) in that deviation are given in Eqs. (A.10), 
(A.11), and (A.12) of Appendix A, respectively.

There is no spectral weight below the lower thresholds associated with the line-shape ex-
pression, Eq. (12). The general expression of the spin dynamical structure factors given in that 
expression is thus exact for small values of the energy deviation (ω − ωab

lt (k)) ≥ 0.
The branch-line exponents that appear in both Eqs. (11) and (12) have the same following 

general form,

ζ ab
n̄ (k) = −1 +

∑
ι=±1

(�ι(q))2 for n̄ = 2, 1̄, 1̄′,2′,1 . (13)

The differences relative to the dynamical theory of Ref. [16], refer to the form of the spectral 
functionals �ι(q) in this general exponent’s expression that is suitable to each type of branch 
11
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line. In the following, the forms of such functionals specific to the four types of branch line 
involved in our study are introduced.

Consistent with the occurrence of an infinite number of conservation laws associated with 
the present quantum problem integrability, there is a representation of the n-particles for which 
they only undergo zero-momentum forward-scattering events. The corresponding phase shifts 
fully control the spectral and dynamical properties. The extended dynamical theory uses such a 
n-particle representation. Within it, 1-particles carry discrete canonical momentum values q̄j =
q̄(qj ) defined below such that q̄j+1 − q̄j = 2π/L + h.o., rather than 1-band momentum values 
qj directly related to Bethe-ansatz quantum numbers, Eq. (B.5) of Appendix B. The higher order 
(1/L)2 terms in the spacing q̄j+1 − q̄j have no physical meaning in the present thermodynamic 
limit. The key property of the 1-particles canonical momentum representation is the lack of 
energy interaction terms. This is what ensures the occurrence of only zero-momentum forward-
scattering events.

The initial ground state is populated by a macroscopic number N1 = N↓ of 1-particles and 
contains no n-particles with n > 1. Therefore, 1-particles contribute to the dynamical properties 
both as scatterers and scattering centers, whereas the 2-particle contributes to them as a scatter-
ing center only. As justified below, in the case of scattering centers the same results are obtained 
in the thermodynamic limit within the representations for which such centers created under tran-
sitions to excited states carry momentum qj and canonical momentum q̄j = q̄(qj ), respectively. 
While canonical momentum can also be introduced for the 2-particle, for simplicity we thus 
remain using 2-band momentum qj for it.

From straightforward yet lengthly manipulations of the Bethe ansatz equations,
Eqs. (B.1)–(B.2) of Appendix B, one finds that for the excited energy eigenstates that span 
the present subspace, the 1-band rapidity functional �1(qj ) can be written in terms of the corre-
sponding ground-state rapidity function �0

1(qj ) as follows,

�1(qj ) = �0
1(q̄j ) for j = 1, ...,N↑ . (14)

Here q̄j = q̄(qj ) where j = 1, ..., N↑ are the following discrete canonical momentum values,

q̄j = q̄(qj ) = qj + 2π

L
�1(qj ) = 2π

L

(
I 1
j + �1(qj )

)
, (15)

and I 1
j are the Bethe-ansatz 1-band quantum numbers given in Eq. (B.6) of Appendix B. The 

lack of energy interactions follows from in terms of canonical momentum values the 1-band 
rapidity function having for the excited energy eigenstates the same form, �1(qj ) = �0

1(q̄j ), as 
for the corresponding initial ground state. (For the ground state, 1-band momentum values and 
canonical momentum values are actually the same.)

The general expression of the 1-band functional �1(qj ) in Eq. (15) is in the case of the present 
subspace given by,

�1(qj ) =
N↑∑

j ′=1

�1,1(qj , qj ′) δN1(qj ′) +
N↑−N↓+N2∑

j ′=1

�1,2(qj , qj ′) δN2(qj ′) , (16)

where �1,1(qj , qj ′) and �1,2(qj , qj ′) are as further discussed below phase shifts in units of 2π . 
They are defined by Eqs. (B.29)-(B.31) of Appendix B. The deviations δN1(qj ′) and δN2(qj ′)
also appearing in Eq. (16) read,

δNn(qj ) = Nn(qj ) − N0
n(qj ) for n = 1,2 . (17)
12
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Here Nn(qj ) and N0
n(qj ) are the 1-band and 2-band momentum distributions of the excited 

energy eigenstate and ground state, respectively. Such momentum distributions appear in the 
functional representation of the Bethe-ansatz equations, Eqs. (B.1)-(B.2) of Appendix B. The 
ground-state distribution N0

1 (qj ) is associated with the 1-band compact occupancy, Eq. (8), 
whereas N0

2 (qj ) = 0 for qj ∈ [−(kF↑ − kF↓ − 1/L), (kF↑ − kF↓ − 1/L)].
In the �1(qj )’s general expression, Eq. (16), the momentum values qj and qj ′ are associated 

with scatterers and scattering centers, respectively. As mentioned above, one could associate 
canonical momentum values both with the scatterers and with the scattering centers created under 
the transitions from the ground state to the excited states. However, in the case of the scattering 
centers, the form of the expression on the right-hand side of Eq. (16) reveals that this leads to 
contributions of order (1/L)2 that have no physical meaning in the thermodynamic limit. (The 
validity of the corresponding dynamical theory refers to that limit.)

For δN1(qj ′) = ±1, the quantity ±�1,1(qj , qj ′) = �1,1(qj , qj ′) δN1(qj ′) in Eq. (16) is the 
scattering phase shift in units of 2π acquired by a 1-particle of canonical momentum q̄j = q̄(qj )

(scatterer) upon creation of one 1-hole (−�1,1(qj , qj ′)) and one 1-particle (+�1,1(qj , qj ′)) at 
a momentum qj ′ in the 1-band unoccupied and occupied Fermi sea (scattering centers), respec-
tively. (Given the one-to-one relation between the canonical momentum q̄j and the momentum 
qj , Eq. (15), scatterers of canonical momentum q̄j can also be labelled by momentum qj , which 
refers to two representations of the same 1-particle.)

On the other hand, the quantity �1,2(qj , qj ′) = �1,2(qj , qj ′) δN2(qj ′) in Eq. (16) is for 
δN2(qj ′) = 1 the scattering phase shift in units of 2π acquired by a 1-particle of canonical mo-
mentum q̄j = q̄(qj ) (scatterer) under creation of one 2-particle at a momentum qj ′ in the 2-band 
interval qj ′ ∈ [−(kF↑ − kF↓), (kF↑ − kF↓)] (scattering center).

Hence �1(qj ) is in Eq. (16) the overall phase shift in units of 2π acquired by a 1-particle of 
canonical momentum q̄j = q̄(qj ) under a transition from the ground state to an excited energy 
eigenstate belonging to the present subspace.

Important quantities for the dynamical properties, are the following ι = ±1 deviations δqι
F

from the values of the 1-band ground-state Fermi momenta, Eq. (8), under transitions to excited 
energy eigenstates,

δqι
F = ι

2π

L
δNF

1,ι = 2π

L

(
ι δN

0,F
1,ι + �0

1

)
. (18)

Here δN0,F
1,ι are the deviations in the number of 1-particles at the Fermi points which either 

vanish or are positive or negative integer numbers. On the other hand, the actual number de-
viations, δNF

1,ι = δN
0,F
1,ι + ι �0

1, can as well be half-odd integers. Their extra term, ι �0
1 where 

ι = ±1, stems from contributions from a non-scattering phase shift �0
1 regulated by the bound-

ary conditions in Eq. (B.6) of Appendix B. It shifts all 1-band’s discrete momentum values as, 
qj → qj + (2π/L) �0

1, and is given by,

�0
1 = 0 for δN1 even

= ±1

2
for δN1 odd . (19)

It follows from the form of Eqs. (15) and (16) that for the initial ground state the equality 
q̄j = qj holds. Canonical momentum values q̄j are different from the corresponding 1-band 
momentum values qj only for excited energy eigenstates. Hence the initial ι = ±1 ground-state 
1-band Fermi momenta qι

F have exactly the same values, Eq. (8), for the 1-particle momentum 
qj and canonical momentum q̄j representations.
13
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The corresponding ι = ±1 Fermi canonical momentum values deviations δq̄ι
F fully control the 

momentum and spin density dependence of the exponents ζ ab
n̄ (k), Eq. (13), in the spin dynamical 

structure factors’ general expressions, Eqs. (11) and (12). The deviations δq̄ι
F are obtained from 

the excited state’s 1-band Fermi momentum values qι
F + δqι

F under the momentum - canonical-
momentum transformation, Eq. (15), as follows,

qι
F + δqι

F → q̄(qι
F + δqι

F ) = qι
F + δqι

F + 2π

L
�1(q

ι
F + δqι

F )

= qι
F + δqι

F + 2π

L
�1(ιkF↓) + h.o. . (20)

Neglecting contributions of order (1/L)2 and accounting for the values of 1-band Fermi momenta 
being in the case of the initial ground state the same for the momentum and canonical-momentum 
representations, this gives,

δq̄ι
F = δqι

F + 2π

L
�1(ιkF↓)

= 2π

L

(
ι δNF

1,ι + �1(ιkF↓)
)

= 2π

L

(
ι δN

0,F
1,ι + �0

1 + �1(ιkF↓)
)

. (21)

Indeed, expanding 2π
L

�1(q
ι
F + δqι

F ) in both the O(1/L) corrections in the ground-state ex-
pression, qι

F = ιkF↓ + O(1/L), Eq. (8), and in the deviation δqι
F , leads to 2π

L
�1(ιkF↓) plus 

contributions of order (1/L)2. Those have no physical meaning in the thermodynamic limit 
to which the validity of the dynamical theory refers. Here kF↓ = π

2 (1 − m), Eq. (B.7) of Ap-
pendix B.

That there are no n-particles with n > 1 in the ground state dictates why only the ι = ±1
Fermi canonical momentum values fluctuations play an active role in the dynamical properties. 
Within the present extended dynamical theory, such fluctuations though account for the creation 
of the 2-particle through the phase-shift �1,2(qj , qj ′) in units of 2π appearing on the right-hand 
side of Eq. (16).

That the ι = ±1 Fermi canonical momentum values fluctuations associated with the deviations 
δq̄ι

F fully control the excitation momentum k and spin density dependence of the exponents, 
Eq. (13), follows from the ι = ±1 spectral functionals �ι in that equation being such deviations 
δq̄ι

F , Eq. (21), in units of the quantum momentum spacing 2π/L,

�ι = δq̄ι
F

(2π/L)
= ι δNF

1,ι + �(ιkF↓) = ι δN
0,F
1,ι + �0

1 + �(ιkF↓)

= ι δNF
1,ι +

N↑∑
j ′=1

�1,1(ιkF↓, qj ′) δN1(qj ′) +
N↑−N↓+N2∑

j ′=1

�1,2(ιkF↓, qj ′) δN2(qj ′) . (22)

The specific phase shifts in units of 2π , �1,1
(
ιkF↓, q

)
and �1,2

(
ιkF↓, q

)
where ι = ±1, of the 

1-particles with momentum and canonical momentum values at the 1-band Fermi points that 
appear in the last expression of this equation, are defined by Eq. (B.32) of Appendix B. Limiting 
behaviors of such phase shifts are provided in Eqs. (B.33)-(B.36) of that Appendix.

In the case of the four types of branch lines considered in our study, some of the deviations 
δN1(qj ′) and δN2(qj ′) in Eq. (22) refer to 1-band momenta qj ′ = ιkF↓ and 2-band momenta 
qj ′ = ι(kF↑ − kF↓) and qj ′ = 0 where ι = ±1. As a result, the expressions of the functionals 
14
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�ι, Eq. (22), specific to the corresponding branch-line exponents, Eq. (13), involve the phase-
shifts related parameters ξ1 1 and ξ0

1 2. Those are defined by Eqs. (B.37)-(B.41) and (B.42)-(B.43), 
respectively, of Appendix B. Corresponding number and current number deviations δNF

1 , δJF
1 , 

δN2, and δJ2, Eq. (9), then emerge in such expressions of the spectral functionals �ι(q) that 
control the momentum and spin density dependences of the branch-line exponents, Eq. (13).

We start by providing the three specific forms of the ι = ±1 general spectral functionals �ι, 
Eq. (22), suitable to the 2- and 2′-branch lines, 1̄-branch lines, and 1̄′-branch lines, respectively, 
that are part of the gapped lower thresholds of the upper n-string spectra in Figs. 1–3. (The 
spectra of such branch lines are given below in Sec. 5.1.)

In the case of the 2- and 2′-branch lines, the form of the ι = ±1 spectral functionals �ι(q) is,

�ι(q) = ι δNF
1

2ξ1
1 1

+ ξ1
1 1 δJF

1 + �1,2(ιkF↓, q) for s2 − and s2′−branch lines , (23)

where ξ1 1 = 1 + ∑
ι=±1(ι) �1,1

(
kF↓, ιkF↓

)
(see Eq. (B.37) of Appendix B.) For the excited 

energy eigenstates that contribute to the singularities at and above the 2- and 2′-branch lines, 
the maximum interval of the 2-band momentum q in Eq. (23) is q ∈ [0, (kF↑ − kF↓)[ or q ∈
] − (kF↑ − kF↓), 0].

For the 1̄′-branch lines, the form of the spectral functionals is,

�ι(q) = ι δNF
1

2ξ1
1 1

+ ξ1
1 1 (δJF

1 − 2δJ2) − �1,1(ιkF↓, q) for 1̄′−branch lines , (24)

where it was accounted for that the phase shift �1,2(ιkF↓, ±(kF↑ −kF↓)) can be written as ∓ξ1
1 1

(see Eq. (B.38) of Appendix B).
In the case of the 1̄-branch lines, the spectral functionals �ι, Eq. (22), have the following 

form,

�ι(q) = ι δNF
1

2ξ1
1 1

+ ι ξ0
1 2

2
+ ξ1

1 1 δJF
1 − �1,1(ιkF↓, q) for 1̄−branch lines , (25)

where ξ0
1 2 = �1,2(kF↓, 0) and it was accounted for that �1,2(ιkF↓, 0) = ι �1,2(kF↓, 0) (see 

Eq. (B.42) of Appendix B and text below it.) The maximum interval of the 1-band momentum is 
q ∈] − kF↓, kF↓[ in both Eqs. (24) and (25).

Finally, the expressions of the spectral functionals already considered in Ref. [16] that control 
the momentum and spin density dependence of the exponents associated with the 1-branch lines 
are provided. Those refer to parts of the lower thresholds of the lower continua in Figs. 1–3. The 
spectra of such thresholds are given in Eqs. (A.10)-(A.13) of Appendix A. The corresponding 
spectral functionals are of general form,

�ι(q) = ι δNF
1

2ξ1
1 1

+ ξ1
1 1 δJF

1 ∓ �1,1(ιkF↓, q) where for 1−branch lines

− → maximum interval q ∈] − kF↓, kF↓[
+ → maximum intervals q ∈ [−kF↑,−kF↓[ and q ∈]kF↓, kF↑] . (26)

Here − and + is the phase-shift sign in ∓�1,1(ιkF↓, q) suitable to 1-branch lines involving 1-
hole and 1-particle creation, respectively, at a 1-band momentum q belonging to the maximum 
intervals given in the equation.
15
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The values of the 1- and 2-bands number and current number deviations that in the case 
of the transverse and longitudinal excited states are for excitation momentum k > 0 used in 
Eqs. (23)-(25) to reach the specific expressions of the branch-line exponents given in Sec. 5.1
are provided below in Tables 1 and 2, respectively. Those of the 1-band number and current 
number deviations that are used in Eq. (26) to derive the expressions of the branch-line exponents 
provided in Sec. 5.2 are given below in Table 3.

3.3. Constrains to the momentum dependent exponents’ k intervals

The exponents of general form, Eq. (13), that control the spin dynamical structure factors’ 
expressions, Eqs. (11) and (12), at and above the 2-, 1̄-, 1̄′-, 2′-branch lines and the 1-branch lines, 
respectively, depend on the excitation momentum k ∈]0, π[ through the 1- or 2-band momentum 
values in the arguments of the spectral functionals, Eqs. (23)-(26).

The 1̄- and 1̄′-branch lines’s exponents and those of the 1-branch lines involving 1-hole 
creation are valid in k ranges corresponding to a maximum 1-band momentum interval q ∈
[−(kF↓ − δq1), (kF↓ − δq1)]. On the other hand, the exponents of the 1-branch lines involving 
1-particle creation are valid in k ranges corresponding to maximum 1-band momentum intervals 
such that |q| ∈ [(kF↓ + δq1), kF↑]. In both cases, δq1, such that δq1/kF↑ � 1 for 0 < m < 1, is 
for the different branch lines very small or vanishes in the thermodynamic limit.

In the very small k intervals corresponding to the 1-band intervals q ∈ [−(kF↓+δq1), −(kF↓−
δq1)] and q ∈ [(kF↓ − δq1), (kF↓ + δq1)], the exponents that control the line shape of the spin 
dynamical structure factors have a different form, as given in Ref. [16]. (See Eqs. (77)-(82) of 
that reference.)

Similarly, the 2- and 2′-branch lines’s exponents that control the line shape at and above 
some parts of the gapped lower thresholds refer to k ranges corresponding to 2-band momen-
tum maximum intervals q ∈ [−(kF↑ − kF↓ − δq2), 0] or q ∈ [0, (kF↑ − kF↓ − δq2)]. Here δq2, 
such that δq2/(kF↑ − kF↓) � 1 for 0 < m < 1, is for the different branch lines again very 
small or vanishes in the thermodynamic limit. (And again, the spin dynamical structure fac-
tors expressions are different and known for q ∈ [−(kF↑ − kF↓), −(kF↑ − kF↓ − δq2)] and 
q ∈ [(kF↑ − kF↓ − δq2), (kF↑ − kF↓)] yet are not of interest for our study.)

In the present thermodynamic limit, the maximum 1-band q intervals corresponding to k
intervals for which the exponents, Eq. (13), are valid, are represented in the following as q ∈
] − kF↓, kF↓[ and |q| ∈]kF↓, kF↑]. Similarly, the 2-band q intervals corresponding to such k
intervals are represented as q ∈] − (kF↑ − kF↓), 0] and q ∈ [0, (kF↑ − kF↓)[.

Around the specific excitation momentum k values where along a gapped lower threshold or 
a lower threshold two neighboring branch lines or branch line sections cross, there are small 
momentum widths in which the corresponding lower threshold refers to a boundary line that 
connects the two branch lines or branch line sections under consideration.

In the thermodynamic limit, such momentum intervals are in general negligible and the corre-
sponding small spectra’s deviations are not visible in the spectra plotted in Figs. 1–3. In the cases 
they are small yet more extended, the two branch lines or branch line sections run very near and 
just above the (gapped or gapless) lower threshold and there is very little spectral weight between 
it and such lines. In this case, the singularities on the two branch lines or branch line sections 
remain the dominant spectral feature.

We again account for such negligible effects by replacing parenthesis [ or ] by ] or [, respec-
tively, at the k’s limiting values that separate (gapped or gapless) lower thresholds’s k intervals 
associated with two neighboring branch lines or branch line sections.
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4. Dynamical structure factors’s spectra

Here the spectra associated with the (k, ω)-plane regions that contain most spectral weight 
of the spin dynamical structure factors are introduced, with emphasis in those associated with 
n-string states. The (k, ω)-plane distribution of such spectra is represented for S+−(k, ω), 
Sxx(k, ω), and Szz(k, ω) in Figs. 1, 2, and 3, respectively, for spin densities (a) m = 0.15, (b) 
m = 0.25, (c) m = 0.50, and (d) m = 0.75. Note that the sketch of the (k, ω)-plane distribu-
tions represented in these figures does not provide information on the relative amount of spectral 
weight contained within each spectrum’s grey continuum.

In the case of the spin dynamical structure factors S+−(k, ω) and Sxx(k, ω), the figures show 
both a lower continuum (k, ω)-plane region, whose spectral weight is associated with excited 
states without n-strings, and an upper continuum whose spectral weight stems from excited states 
populated by such n-strings. In the case of Szz(k, ω), the contribution to spectral weight from 
excited states containing n-strings is much weaker than for S+−(k, ω) and Sxx(k, ω) and does not 
lead to an upper continuum. The gapped lower threshold of such states’s spectrum is represented 
in Fig. 3 by a well defined (k, ω)-plane line.

At finite magnetic fields 0 < h < hc the contribution to the spectral weight from excited states 
containing n-strings is negligible in the case of S−+(k, ω). Therefore, its lower continuum spec-
trum is not plotted here. (It was previously studied in Ref. [16].) The additional part of the lower 
continuum in Fig. 2 for Sxx(k, ω) = 1

4

(
S+−(k,ω) + S−+(k,ω)

)
relative to that of S+−(k, ω)

represented in Fig. 1 stems actually from contributions from S−+(k, ω). As a result of such 
contributions, for small spin densities and some k intervals the upper n-string continuum of 
Sxx(k, ω) overlaps with its lower continuum.

In the case of both S+−(k, ω) and Szz(k, ω), there is in the present thermodynamic limit for 
spin densities 0 < m < 1 and thus finite magnetic fields 0 < h < hc very little spectral weight 
between the upper threshold of the lower continuum associated with excited states described only 
by real Berthe-ansatz rapidities and the gapped lower threshold of the n-string states’s spectra 
in Figs. 1 and 3, respectively. The same applies to Sxx(k, ω) in the k intervals of Fig. 2 for 
which there is a gap between the upper continuum associated with n-string states and the lower 
continuum.

Indeed, in the thermodynamic limit nearly all the small amount of spectral weight associated 
with excited energy eigenstates described by only real Bethe-ansatz rapidities that involve the 
emergence of four 1-band holes under transitions from the ground state (named in the literature 
four-spinon states), is contained inside the lower continuum in such figures. This also applies to 
large finite systems at zero magnetic field, as shown in Fig. 4 of Ref. [26]. In the present case of a 
finite magnetic field, it also applies to the spin-1/2 Heisenberg antiferromagnetic with anisotropy 

 < 1, see Fig. 1 of Ref. [27].

In the case of S+−(k, ω) at finite magnetic fields 0 < h < hc , due to the behavior of spin 
operators matrix elements between energy eigenstates in the selection rules, Eq. (6), the spectral 
weight stemming from n-string-less states existing in finite systems for k ∈ [2kF↓, π] and ω val-
ues above the upper threshold of the lower spectrum in Fig. 1, is negligible for a macroscopic 
system. Such a spectral weight decreases upon increasing the system size, as confirmed by anal-
ysis of the spectra in the S+−(k, ω)’s first row frames of Figs. 3 (a) and (b) of Ref. [8] for two 
finite-size systems with N = 320 and N = 2240 spins, respectively.

The further discussion of this important issue is presented below in the final section of this 
paper, Sec. 7.
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4.1. The spin densities m̃, m̄, and m̄0 and related momentum values

The spectra of the gapped lower thresholds of S+−(k, ω), Sxx(k, ω), and Szz(k, ω) studied be-
low have a different form for two spin density intervals, m ∈]0, m̃] and m ∈ [m̃, 1[, respectively. 
Here m̃ ≈ 0.317 is the spin density at which the following equality holds,

W2|m=m̃≈0.317 = −ε1(2kF↓ − kF↑)|m=m̃≈0.317 . (27)

From the use of the value of 2-band energy dispersion ε2(q) at q = 0 given in Eq. (B.22) of 
Appendix B, the 2-band energy bandwidth W2 appearing here can be expressed as W2 = 4μBh −
ε2(0).

Some specific excitation momentum k’s values separate momentum intervals of the gapped 
lower threshold spectra of S+−(k, ω), Sxx(k, ω), and Szz(k, ω) that refer to different types of 
momentum dependences. Such specific k values either equal a momentum denoted here by k̃ or 
their expression involves k̃. The latter momentum is defined by the following relations,

W2 = ε1(kF↑ − k̃) − ε1(kF↓ − k̃) for k̃ ≥ (kF↑ − kF↓) and m ∈]0, m̃]
W2 = 4μB h − ε2(k̃) − ε1(kF↓ − k̃) for k̃ ≤ (kF↑ − kF↓) and m ∈ [m̃,1[ . (28)

The momentum k̃ is given by k̃ = (kF↑ − kF↓) at m = m̃.
In the relations provided in Eqs. (27) and (28), as well as in the expressions of the spin dy-

namical structure factors’s spectra given below and in Appendix A, the quantities ε1(q) and 
ε2(q) are the 1- and 2-band energy dispersions, respectively, defined by Eqs. (B.8), (B.9), and 
(B.11)-(B.17) of Appendix B. Limiting behaviors of such dispersions and corresponding 1- and 
2-band group velocities that provide useful information on the momentum and spin density de-
pendences of the corresponding spin dynamical structure factors’s spectra studied below are 
given in Eqs. (B.22)-(B.28) of that Appendix.

The (k, ω)-plane spectrum that contains most of Sxx(k, ω)’s spectral weight has features 
whose form is different for specific spin densities and momentum intervals. As shown in Fig. 2
(a) for m = 0.15 and (b) m = 0.25, for small spin densities there are k intervals for which the 
Sxx(k, ω)’s gapped lower threshold of the 2-string continuum overlaps with the lower continuum 
associated with energy eigenstates described by real Bethe-ansatz rapidities. Such k intervals are 
given by,

k ∈ [k̄0,π] for m ∈]0, m̄0]
k ∈ [k̄0, k̄1] for m ∈]m̄0, m̄] , (29)

where the spin densities m̄0 and m̄ are given by m̄0 ≈ 0.239 and m̄ ≈ 0.276, respectively.
The momenta k̄0 and k̄1 appearing in Eq. (29) are such kxx

ut ≤ k̄0 ≤ k̄1 and k̄0 ≤ k̄1 ≤ π . The 
equality, k̄0 = k̄1, holds at m = m̄. At that spin density, k̄0 = k̄1 has a value very near and just 
above 2kF↓. The spectra plotted in Fig. 2 (a) for m = 0.15 and (b) for m = 0.25 refer to the two 
types of k intervals reported in Eq. (29), respectively. For (a), spin density m = 0.15, one has that 
k̄0 ≈ 0.60 π , whereas for (b), spin density m = 0.25, the two limiting momenta read k̄0 ≈ 0.71 π
and k̄1 ≈ 0.92 π .

4.2. Dynamical structure factors’s spectra

The information on the constrains to the k intervals provided in Sec. 3.3 applies to the branch-
line spectra studied below in Sec. 5. On the other hand, in the particular case of the small k
18
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intervals corresponding to the small 1-band intervals q ∈ [−(kF↓ + δq1), −(kF↓ − δq1)] and 
q ∈ [(kF↓ − δq1), (kF↓ + δq1)] and 2-band intervals q ∈ [−(kF↑ − kF↓), −(kF↑ − kF↓ − δq2)]
and q ∈ [(kF↑ − kF↓ − δq2), (kF↑ − kF↓)], such constrains do not apply to the two-parametric 
spectra of the (k, ω)-plane regions where there is more spectral weight. They also do not apply 
to the corresponding one-parametric spectra of the gapped lower thresholds and lower thresholds 
themselves. Only the general line-shape expressions, Eqs. (11) and (12), are not valid in such 
small k intervals.

The remaining constrains mentioned in Sec. 3.3 associated with small k intervals of the 
(gapped and gapless) lower thresholds in the vicinity of crossing points of two branch lines or 
branch line sections though apply to the expressions of the one-parametric spectra of the gapped 
lower thresholds and lower thresholds given in the following and in Appendix A. This applies, 
for instance, to the small excitation momentum intervals in the vicinity of k = k̃ (in the transverse 
case) and other k values whose expression involves the momentum k̃ (in the longitudinal case) 
defined by the relations given in Eq. (28).

The (k, ω)-plane upper continuum shown in Fig. 1 is associated with the gapped upper spec-
trum of S+−(k, ω) that stems from transitions from the ground state to excited energy eigenstates 
populated by a number Ns = N↓ − 2 of 1-particles and a single 2-particle. It is given by,

ω+−

 (k) = −ε1(q) + ε2(q

′) and k = ιkF↓ − q + q ′ for ι = ±1 where

q ∈ [−kF↓, kF↓] , q ′ ∈ [0, (kF↑ − kF↓)] for ι = 1 and

q ∈ [−kF↓, kF↓] , q ′ ∈ [−(kF↑ − kF↓),0] for ι = −1 . (30)

This spectrum has two branches corresponding to ι = ±1, such that,

k = kF↓ − q + q ′ ∈ [0,π] and k = −kF↓ − q + q ′ ∈ [−π,0] . (31)

As mentioned above, ε1(q) and ε2(q) are here the 1- and 2-band energy dispersions, respectively, 
defined by Eqs. (B.8), (B.9), and (B.11)-(B.17) of Appendix B.

We denote by 
ab(k) where ab = +−, xx, zz the spectra of the n-string excited states’s 
gapped lower thresholds of the spin dynamical structure factors Sab(k, ω). These gapped lower 
thresholds play an important role in our study. For some of their k intervals there are singularities 
of power-law form, Eq. (11), in the spin dynamical structure factors at and just above them. (In 
that equation, the extra lower index n̄ in 
ab(k) refers to the different branch lines or branch line 
sections that coincide with the gapped lower threshold for well-defined k intervals given below 
in Sec. 5.1.)

The spectra of the transverse gapped lower thresholds are such that,


xx(k) = 
+−(k) for k ∈ [0,π] . (32)

(The equality 
−+(k) = 
+−(k) also holds, yet, as reported previously, the amount of 
S−+(k, ω)’s spectral weight produced by n-string states is negligible in the thermodynamic 
limit at finite magnetic fields.) The spectrum of the longitudinal gapped lower threshold is also 
related to 
+−(k) as follows,


zz(k) = 
+−(π − k) for k ∈ [0,π] . (33)

For smaller spin densities in the range m ∈]0, m̃], the spectrum of the lower threshold is of 
the form,
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+−(k) = ε2(k) for k ∈ [0, (kF↑ − kF↓)]
= 4μB h − ε1(kF↑ − k) for k ∈ [(kF↑ − kF↓), k̃[
= 4μB h − W2 − ε1(kF↓ − k) for k ∈]k̃,2kF↓]
= ε2(k − 2kF↓) for k ∈ [2kF↓,π] . (34)

For larger spin densities m ∈ [m̃, 1[, the spectrum of the lower threshold is slightly different 
and reads,


+−(k) = ε2(k) for k ∈ [0, k̃[
= 4μB h − W2 − ε1(kF↓ − k) for k ∈]k̃,2kF↓]
= ε2(k − 2kF↓) for k ∈ [2kF↓,π] . (35)

The expressions of two-parametric transverse gapless spectra ω−+(k) and ω+−(k) previously 
studied in Ref. [16], whose superposition gives ωxx(k), and that of the longitudinal gapless 
spectrum ωzz(k) that (except for ω−+(k)) refer to the lower continua in Figs. 1–3, are given in 
Eqs. (A.1)-(A.3) of Appendix A. The corresponding excited energy eigenstates are described by 
only real Bethe-ansatz rapidities. The related expressions of the one-parametric spectra of their 
upper thresholds ω−+

ut (k), ω+−
ut (k), ωxx

ut (k), and ωzz
ut (k) and lower thresholds ω−+

lt (k), ω+−
lt (k), 

ωxx
lt (k), and ωzz

lt (k) are also provided in that Appendix.
We consider the following energy gaps that refer to (k, ω)-plane regions with a negligible 

amount of spectral weight in the thermodynamic limit,


+−
gap (k) = 
+−(k) − ω+−

ut (k) ≥ 0


xx
gap(k) = 
xx(k) − ωxx

ut (k)


zz
gap(k) = 
zz(k) − ωzz

ut (k) ≥ 0 , (36)

where,


xx
gap(k) = 
+−(k) − ω+−

ut (k) for k ∈ [0, kxx
ut ]


xx
gap(k) = 
+−(k) − ω−+

ut (k) for k ∈ [kxx
ut , π] , (37)

and


zz
gap(k) = 
+−

gap (π − k) for k ∈ [0,π] . (38)

The momentum kxx
ut > kF↑ − kF↓ in Eq. (37) is that at which the equality, ω−+

ut (kxx
ut ) =

ω+−
ut (kxx

ut ), holds. As confirmed from analysis of Figs. 1–3, one has that 
+−
gap (k) ≥ 0 and 


zz
gap(k) ≥ 0 for k ∈]0, π[, whereas 
xx

gap(k) is negative for small spin densities m ∈]0, m̄], where 
m̄ ≈ 0.276, in the k intervals given in Eq. (29).

It follows from the k intervals given in that equation that at k = π the energy gap 
xx
gap(k)

has negative and positive values for spin densities m < m̄0 and m > m̄0, respectively, where 
m̄0 ≈ 0.239. Its corresponding negative, vanishing, and positive limiting values are provided in 
Eq. (A.24) of Appendix A.

The upper threshold spectra ω−+
ut (k), ω+−

ut (k), ωxx
ut (k), ωzz

ut (k) in Eqs. (36)-(38) are given in 
Eqs. (A.4)-(A.7) of Appendix A. The upper thresholds of the lower continua in Figs. 1, 2, and 3
refer to the spectra ω+−

ut (k), ωxx
ut (k), and ωzz

ut (k), respectively.
In Appendix A, the k dependent expressions and the limiting values of the energy gaps con-

sidered here are provided.
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5. The line shape near the singularities of the dynamical structure factors

The power-law singularities, Eq. (11), in the spin dynamical structure factors S+−(k, ω), 
Sxx(k, ω), and Szz(k, ω)’s expressions occur in the k intervals for which the corresponding mo-
mentum dependent exponents are negative. This applies to (k, ω)-plane regions at and just above 
the n̄-branch lines that are part of the corresponding gapped lower thresholds of the n-string 
states’s spectra. As discussed in Sec. 3.1, the main contributions to the line shape in these (k, ω)-
plane regions stem from transitions to excited states populated by a number N↓ −2 of 1-particles 
and a single 2-particle. The momentum interval, k ∈]0, π[, of the gapped lower thresholds under 
consideration is divided into several subintervals, which correspond to a set of 2-, 1̄′-, 1̄-, and 
2′-branch lines, respectively. (In the case of Szz(k, ω), the order of the 1̄′- and 1̄-branch lines’s k
subintervals is the reverse, 1̄- and 1̄′-.)

On the other hand, the lower thresholds of the gapless spectra associated with the lower con-
tinua in Figs. 1–3 that were already studied in Ref. [16], which stem from transitions to excited 
states that are populated by a number N↓ of 1-particles, either correspond to a single 1-branch 
line or to two sections of such a line.

Following the information provided in Sec. 3.3, the constrains to the k intervals where the 
expressions of the exponents in the general line-shape expressions, Eqs. (11) and (12), are valid 
imply replacements of parenthesis [ and/or ] by ] and/or [, respectively, in the limits of such 
intervals.

5.1. The line shape at and just above the gapped lower threshold of S+−(k, ω), Sxx(k, ω), and 
Szz(k, ω)

In the case of Sxx(k, ω), the present study of the line shape at and just above the gapped 
lower thresholds of the spectra plotted in Fig. 2 refers to k intervals for which the corresponding 
energy gap 
xx

gap(k) obeys the inequality 
xx
gap(k) > 0. At small spin densities, this excludes the 

k intervals given in Eq. (29).
Otherwise, the line shape near the gapped lower thresholds of S+−(k, ω), Sxx(k, ω), and 

Szz(k, ω) is given by Eq. (11). The exponents in the expression given in that equation have a 
general form provided in Eq. (13). The ι = ±1 spectral functionals �ι(q) in that exponent’s 
expression are in the case of the (i) 2- and 2′-branch lines, (ii) 1̄′-branch lines, and (iii) 1̄-branch 
lines given in Eqs. (23), (24), and (25), respectively.

The relation of the excitation momentum k to the 1-band momentum q or 2-band momentum 
q in the �ι(q)’s argument is branch-line dependent. Hence it is useful to revisit the expressions 
of the spectra of the gapped lower thresholds, Eqs. (32)-(35) and (33), for each of their branch 
lines or branch line sections, including information on the relation between k and the 1- or 2-
band momenta q . Additional 1-band and 2-band constrains reported in Sec. 3.3 associated with 
the validity of the corresponding expressions of the momentum dependent exponents are also 
accounted for. This ensures that the branch-line spectra’s expressions are given in the following 
for the k intervals for which the dynamical structure factor’s expression is of the form, Eq. (11).

In the case of S+−(k, ω), the gapped lower threshold spectrum 
+−(k) is divided into the 
following branch-line intervals,


+−
2 (k) = ε2(k) and k = q where

k ∈ [0, (kF↑ − kF↓)[ and q ∈ [0, (kF↑ − kF↓)[ for m ∈]0, m̃]
k ∈ [0, k̃[ and q ∈ [0, k̃[ for m ∈ [m̃,1[ , (39)
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+−
1̄′ (k) = 4μB h − ε1(kF↑ − k) and k = kF↑ − q where

k ∈ ](kF↑ − kF↓), k̃[ and q ∈](kF↑ − k̃), kF↓[ for m ∈]0, m̃] , (40)


+−
1̄

(k) = 4μB h − W2 − ε1(kF↓ − k) and k = kF↓ − q where

k ∈ ∈]k̃,2kF↓[ and q ∈] − kF↓, (kF↓ − k̃)[ for m ∈]0, m̃]
k ∈ ]k̃,2kF↓[ and q ∈] − kF↓, (kF↓ − k̃)[ for m ∈ [m̃,1[ , (41)

and


+−
2′ (k) = ε2(k − 2kF↓) and k = 2kF↓ + q where

k ∈ ]2kF↓,π[ and q ∈]0, (kF↑ − kF↓)[ for m ∈]0,1[ . (42)

The corresponding k dependent exponents of general form, Eq. (13), that appear in the ex-
pression, S+−(k, ω) = C
+−(ω − 
+−

n̄ (k))ζ
+−
n̄ (k), Eq. (11) for ab = +− and β = 2, ̄1′, ̄1, 2′, are 

given by,

ζ+−
2 (k) = −1 +

∑
ι=±1

(
− ι

2ξ1 1
+ �1,2(ιkF↓, q)

)2

for q = k where

k ∈ ]0, (kF↑ − kF↓)[ for m ∈]0, m̃] and k ∈]0, k̃[ for m ∈ [m̃,1[

ζ+−
1̄′ (k) = −1 +

∑
ι=±1

(
−ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↑ − k where

k ∈ ](kF↑ − kF↓), k̃[ for m ∈]0, m̃]

ζ+−
1̄

(k) = −1 +
∑
ι=±1

(
ι
ξ0

1 2

2
+ ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↓ − k where

k ∈ ]k̃,2kF↓[ for m ∈]0, m̃] and k ∈]k̃,2kF↓[ for m ∈]0, m̃]

ζ+−
2′ (k) = −1 +

∑
ι=±1

(
− ι

2ξ1 1
+ ξ1 1 + �1,2(ιkF↓, q)

)2

for q = k − 2kF↓ where k ∈]2kF↓,π[ . (43)

The three ι = ±1 spectral functionals �ι(q) in the general expression, Eq. (13), specific to 
the exponents given in Eq. (43) for the S+−(k, ω)’s 2- and 2′-branch lines, 1̄′-branch line, and 
1̄-branch line are provided in Eqs. (23), (24), and (25), respectively. The corresponding suitable 
specific values of the number and current number deviations, Eq. (9), used in such functionals 
are for the present branch lines given in Table 1.

The S+−(k, ω)’s 2-, 1̄′-, 1̄-, and 2′-branch line exponents whose expressions are given in 
Eq. (43) are plotted as a function of k in Fig. 4. In the k intervals of the gapped lower threshold 
of the n-string continuum in Fig. 1 for which they are negative, which are represented by solid 
lines, there are singularities at and just above the corresponding n̄ = 2, ̄1′, ̄1, 2′ branch lines in 
the expression S+−(k, ω) = C
+−(ω − 
+−

n̄ (k))ζ
+−
n̄ (k), Eq. (11) for ab = +−.

The related Sxx(k, ω)’s expression, Eq. (11) for ab = xx, also valid at and just above the 
gapped lower threshold of the n-string continuum in Fig. 2, is similar to that of S+−(k, ω) and 
involves exactly the same exponents. This though applies provided that in the corresponding k
intervals there is no overlap between that continuum and the lower continuum associated with 
22
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Table 1
The excitation momenta k > 0 of S+−(k, ω) and Sxx(k, ω) expressed in terms of 1- and 2-bands momenta q and 
corresponding number and current number deviations for excited states populated by a number N↓ − 2 of 1-particles 
and a single 2-particle and thus described by both real and complex non-real rapidities in the case of the 2-branch line, 
1̄′-branch line, 1̄-branch line, and 2′-branch line. For the momentum intervals given in Eqs. (39)-(42), such branch lines 
are part of the corresponding gapped lower thresholds. (In the case of Sxx(k, ω), the data given here do not apply to 
branch-line intervals overlapping with those given in Eq. (29).)

branch line k in terms of q δNF
1 δJF

1 δNNF
1 δJ2 δN2

2 k = q (for 2-band q) −1 0 0 0 1
1̄′ k = kF↑ − q (for 1-band q) 0 1/2 −1 1/2 1
1̄ k = kF↓ − q (for 1-band q) 0 1/2 −1 0 1
2′ k = 2kF↓ + q (for 2-band q) −1 1 0 0 1

Table 2
The same information as in Table 1 for the 2-branch line, 1̄-branch line, 1̄′-branch line, and 2′-branch line that for the 
momentum intervals given in Eqs. (44)-(47) are part of the gapped lower threshold of Szz(k, ω).

branch line k in terms of q δNF
1 δJF

1 δNNF
1 δJ2 δN2

2 k = (kF↑ − kF↓) + q (for 2-band q) −2 −1 0 0 1
1̄ k = kF↑ − q (for 1-band q) −2 −1/2 −1 0 1
1̄′ k = kF↑ − q (for 1-band q) 1 −1/2 −1 −1/2 1
2′ k = π + q (for 2-band q) −2 0 0 0 1

excited states described by only real Bethe-ansatz rapidities. For small spin densities, this thus 
excludes the k intervals given in Eq. (29).

In the case of Szz(k, ω), the expressions of the gapped lower threshold spectrum 
zz(k), 
Eqs. (36) and (38), are for the k intervals of each corresponding branch line given by,


zz
2 (k) = ε2(k − (kF↑ − kF↓)) and k = (kF↑ − kF↓) + q where

k ∈ ]0, (kF↑ − kF↓)[ and q ∈] − (kF↑ − kF↓),0[ for m ∈]0,1[ , (44)


zz

1̄
(k) = 4μB h − W2 − ε1

(
kF↑ − k

)
and k = kF↑ − q where

k ∈](kF↑ − kF↓), (π − k̃)[ and q ∈] − (kF↓ − k̃), kF↓[ for m ∈]0, m̃]
k ∈](kF↑ − kF↓), (π − k̃)[ and q ∈] − (kF↓ − k̃), kF↓[ and for m ∈ [m̃,1[ ,

(45)


zz

1̄′ (k) = 4μB h − ε1(kF↓ − k) and k = kF↓ − q where

k ∈ ](π − k̃),2kF↓[ and q ∈] − kF↓,−(kF↑ − k̃)[ for m ∈]0, m̃] , (46)

and


zz
2′ (k) = ε2(k − π) and k = π + q where

k ∈ ]2kF↓,π[ and q ∈] − (kF↑ − kF↓),0[ for m ∈]0, m̃]
k ∈ ](π − k̃), π[ and q ∈] − k̃,0[ for m ∈ [m̃,1[ . (47)

The corresponding k dependent exponents of general form, Eq. (13), that appear in the ex-
pression, Szz(k, ω) = C
(ω − 
zz(k))ζ

zz
n̄ (k), Eq. (11) for ab = zz and n̄ = 2, ̄1, ̄1′, 2′, read,
zz n̄
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Fig. 4. The momentum dependence of the exponents that in the k intervals for which they are negative control the 
S+−(k, ω) line shape near and just above the (a) n̄ = 2, (b) n̄ = 1̄′ , (c) n̄ = 1̄, and (d) n̄ = 2′ branch lines for several spin 
densities. The present branch lines are part of the gapped lower threshold of the n-strings continuum displayed in Fig. 1. 
The same exponents, in the k intervals for which they are negative, also control the Sxx(k, ω) line shape near and just 
above the corresponding branch lines in the n-strings continuum displayed in Fig. 2. In the case of the n̄ = 1̄ and n̄ = 2′
branch lines, this only applies to the k intervals for which there is a gap between them and the upper threshold of the 
lower continuum (See Fig. 2).

ζ zz
2 (k) = −1 +

∑
ι=±1

(
− ι

ξ1 1
− ξ1 1 + �1,2(ιkF↓, q)

)2

for q = k − kF↑ + kF↓ where

k ∈ ]0, (kF↑ − kF↓)[

ζ zz

1̄
(k) = −1 +

∑
ι=±1

(
− ι

ξ1 1
+ ι

ξ0
1 2

2
− ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↑ − k where

k ∈ ](kF↑ − kF↓), (π − k̃)[ for m ∈]0, m̃]
and k ∈](kF↑ − kF↓), (π − k̃)[ for m ∈]0, m̃]

ζ zz

1̄′ (k) = −1 +
∑
ι=±1

(
ι

2ξ1 1
+ ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↓ − k where

k ∈ ](π − k̃),2kF↓[ for m ∈]0, m̃]

ζ zz
2′ (k) = −1 +

∑ (
− ι

ξ1 1
+ �1,2(ιkF↓, q)

)2

for q = k − π where

ι=±1
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Fig. 5. The same as in Fig. 4 for the 1̄′ branch line of Szz(k, ω). For that dynamical structure factor, this exponent is the 
only one that is negative and refers to singularities near the corresponding small momentum intervals of the gapped lower 
threshold of the n-string continuum in Fig. 3. Such singularities only emerge in Szz(k, ω) for spin densities 0 < m < m̃

where m̃ ≈ 0.317.

k ∈ ]2kF↓,π[ for m ∈]0, m̃] and k ∈](π − k̃), π[ for m ∈ [m̃,1[ . (48)

Also in the present case of Szz(k, ω), the three ι = ±1 spectral functionals �ι(q) in the general 
expression, Eq. (13), specific to the 2- and 2′-branch lines, 1̄-branch line, and 1̄′-branch line are 
provided in Eqs. (23)-(25). The corresponding suitable values of the number and current number 
deviations, Eq. (9), given in Table 2 and used in such functionals to reach the expressions in 
Eq. (48) are though different relative to those used for S+−(k, ω).

The corresponding behaviors of the spin dynamical structure factor Szz(k, ω) are also qualita-
tively different from those of S+−(k, ω). Except for ζ zz

1̄′ (k), the exponents in Eq. (48) are positive 

for all their k intervals. The 1̄′-branch line’s exponent is plotted as a function of k in Fig. 5. It is 
negative for its whole k subinterval, which is part of the k interval of the gapped lower threshold 
in Figs. 3 (a) and (b). The 1̄′-branch line’s m-dependent subinterval is though either small or 
that line is not part of the Szz(k, ω)’s gapped lower threshold at all. Its momentum width de-
creases upon increasing m up to a spin density m̃ ≈ 0.317. For m̃ < m < 1, the 1̄′-branch line 
is not part of the Szz(k, ω)’s gapped lower threshold spectrum. This is why for m = 0.50 > m̃

and m = 0.75 > m̃ that line does not appear in the gapped lower threshold in Figs. 3 (c) and (d), 
respectively.

One then concludes that gapped lower threshold’s singularities only emerge in Szz(k, ω) for 
spin densities 0 < m < m̃ at and just above the 1̄′-branch line, the corresponding line shape read-

ing, Szz(k, ω) = C

zz(ω − 
zz

1̄′ (k))
ζ+−

1̄′ (k). That branch line k subinterval width though strongly 
decreases upon increasing m up to m̃.

These behaviors are consistent with the Szz(k, ω)’s spectral weight stemming from n-string 
states being suppressed upon increasing the spin density m within the interval m ∈]0, m̃]. Within 
it, that weight decreases upon increasing the spin density, becoming negligible for m̃ < m < 1.

5.2. The line shape near the lower thresholds of the spin dynamical structure factors

In order to provide an overall physical picture that accounts for all gapped lower threshold’s 
singularities and lower threshold’s singularities in the spin dynamical structure factors, here we 
shortly revisit their line shape behavior at and just above the lower thresholds of the lower con-
25
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tinua in Figs. 1–3. The corresponding dominant contributions are from excited states described 
by only real Bethe-ansatz rapidities [16]. Such lower continua contain most spectral weight of 
the corresponding spin dynamical structure factors.

In the case of the transverse dynamical structure factor, Sxx(k, ω) = 1
4 (S+−(k, ω) +

S−+(k, ω)), we consider the transitions to excited states that determine the line shape in the vicin-
ity of the lower thresholds of both S+−(k, ω) and S−+(k, ω), respectively. The lower threshold’s 
spectrum ωxx

lt (k) of Sxx(k, ω) is given in Eq. (A.13) of Appendix A. The corresponding two-
parametric spectrum ωxx(k) results from the superposition of the corresponding two-parametric 
spectra, ω+−(k) and ω−+(k), Eqs. (A.1) and (A.2) of that Appendix, respectively. It refers to the 
(k, ω)-plane lower continuum in Fig. 2.

For spin densities 0 < m < 1 and momenta k ∈]0, π[, the line shape of the spin dynamical 
structure factors Sab(k, ω) where ab = +−, −+, xx, zz at and just above their lower thresholds 
has the general form given in Eq. (12). In the case of Sxx(k, ω), this expression can be expressed 
as,

Sxx(k,ω) = S+−(k,ω) for k ∈ [0, (kF↑ − kF↓)[
= S−+(k,ω) for k ∈](kF↑ − kF↓),π[ . (49)

The k dependent exponents appearing in the spin dynamical factors’s expression, Eq. (12), are 
of general form, Eq. (13). Their specific expressions for the different 1-branch lines and 1-branch 
line sections under consideration read,

ζ−+
1 (k) = −1 +

∑
ι=±1

(
−ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↑ − k and k ∈](kF↑ − kF↓),π[

ζ+−
1 (k) = −1 +

∑
ι=±1

(
−ξ1 1

2
+ �1,1(ιkF↓, q)

)2

for q = k − kF↑ and k ∈]0, (kF↑ − kF↓)[

ζ+−
1 (k) = −1 +

∑
ι=±1

(
ι

ξ1 1
− ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↑ − k and k ∈](kF↑ − kF↓),π[

ζ zz
1 (k) = −1 +

∑
ι=±1

(
ι

2ξ1 1
+ ξ1 1

2
− �1,1(ιkF↓, q)

)2

for q = kF↓ − k and k ∈]0,2kF↓[

ζ zz
1 (k) = −1 +

∑
ι=±1

(
− ι

2ξ1 1
+ ξ1 1

2
+ �1,1(ιkF↓, q)

)2

for q = k − kF↓ and k ∈]2kF↓,π[ . (50)

The corresponding ι = ±1 spectral functionals �ι(q) in the exponent expression, Eq. (13), have 
for the present 1-branch lines and 1-branch line sections the general form given in Eq. (26). The 
values of the 1-band number and current number deviations, Eq. (9), that are used in Eq. (26) to 
reach the above specific exponents’s expressions are provided in Table 3.

As confirmed by the form of the expressions given in Eqs. (A.10) and (A.11) of Appendix A, 
the lower threshold’ spectra equality ω+−(k) = ω−+(k) holds for k ∈ [(kF↑ − kF↓), π]. On the 
lt lt
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Table 3
The excitation momenta k > 0 of (i) S−+(k, ω) and (ii) S+−(k, ω) and Szz(k, ω) expressed in terms of 1-band momenta 
q and corresponding number and current number deviations for the (i) 1-branch line and (ii) two 1-branch line sections 
that coincide with the corresponding lower thresholds of the lower continua shown in Figs. 1–3.

1-branch line k in terms of q k interval δNF
1 δJF

1 δNNF
1

−+ k = kF↑ − q k ∈](kF↑ − kF↓),π [ 0 −1/2 −1
+− k = kF↑ + q k ∈ [0, (kF↑ − kF↓)[ 0 −1/2 1
+− k = kF↑ − q k ∈](kF↑ − kF↓),π [ 2 −1/2 −1
zz k = kF↓ − q k ∈]0,2kF↓[ 1 1/2 −1
zz k = kF↓ + q k ∈]2kF↓,π ] −1 1/2 1

Fig. 6. The momentum dependence of the exponent that controls the Sxx(k, ω)’s line shape near and just above the lower 
threshold of the lower continuum in Fig. 2 for several spin densities. For k ∈]0, (kF↑ − kF↓)[ and k ∈](kF↑ − kF↓), π [
that exponent corresponds to that of S+−(k, ω) and S−+(k, ω), respectively.

other hand, ω+−
lt (k) = ωxx

lt (k) for k ∈ [0, π], as confirmed by inspection of Eqs. (A.11) and 
(A.13) of that Appendix. In the k ∈](kF↑ − kF↓), π[ interval, the line shape of Sxx(k, ω) =
1
4

(
S+−(k,ω) + S−+(k,ω)

)
is controlled by the smallest of the exponents ζ−+

1 (k) and ζ+−
1 (k)

in Eq. (50), which turns out to be ζ−+
1 (k). In the k ∈]0, (kF↑−kF↓)[ interval it is rather controlled 

by the exponent ζ+−
1 (k). The resulting exponent ζ xx

1 (k) is thus given by,

ζ xx
1 (k) = −1 +

∑
ι=±1

(
−ξ1 1

2
+ �1,1(ιkF↓, q)

)2

for

q = k − kF↑ and k ∈]0, (kF↑ − kF↓)[

= −1 +
∑
ι=±1

(
−ξ1 1

2
− �1,1(ιkF↓, q)

)2

for

q = kF↑ − k and k ∈](kF↑ − kF↓),π[ . (51)

This exponent is plotted as a function of k in Fig. 6. On the other hand, the 1-branch line exponent 
ζ zz

1 (k) whose expression is given in Eq. (50) is plotted as a function of that excitation momentum 
in Fig. 7.

Both such exponents are for spin densities 0 < m < 1 negative in the whole momentum in-
terval k ∈]0, π[. It follows that there are singularities at and just above the corresponding lower 
thresholds. (Due to a sign error, the minus sign in the quantity −ξ1 1/2 appearing in Eq. (51) was 
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Fig. 7. The momentum dependence of the exponent that controls the Szz(k, ω) line shape near and just above the lower 
threshold of the lower continuum in Fig. 3 for several spin densities.

missed in Ref. [16] where the exponent ζ xx
1 (k) was named ξ t . Its momentum dependence plotted 

in Fig. 6 corrects that plotted in Figs. 2-4 of that reference.)

6. Limiting behaviors of the spin dynamical structure factors

At zero magnetic field, h = 0, and thus spin density m = 0, the spin dynamical structure 
factor S−+(k, ω) equals that obtained in the m → 0 limit from m > 0 values. On the other hand, 
at h = 0 and m = 0 the spin dynamical structure factor S+−(k, ω) equals that obtained in the 
m → 0 limit from m < 0 values. This is consistent with the relation, Eq. (4). As required by the 
SU(2) symmetry, this confirms as well that S−+(k, ω) = S+−(k, ω) at h = 0 and m = 0. That 
symmetry also requires that at h = 0 and m = 0 the overall equality Sxx(k, ω) = Syy(k, ω) =
Szz(k, ω) holds. (For the ranges 0 < h < hc and 0 < m < 1 considered in this paper, the equality 
Sxx(k, ω) = Syy(k, ω) remains valid, whereas one has that Szz(k, ω) 
= Sxx(k, ω).)

The corresponding two parametric spectrums at h = 0 and m = 0 of the spin dynamical struc-
ture factors equals that obtained in the m → 0 limit from the spectrum ω−+(k) whose expression 
is given in Eq. (A.1) of Appendix A for 0 < h < hc and 0 < m < 1. On the other hand, in 
that limit both the spectra ω+−(k) and ωzz(k) in Eqs. (A.2) and (A.3) of that Appendix be-
come one-parametric and coincide with the lower threshold of the two-parametric spectrum of 
Sxx(k, ω) = Syy(k, ω) = Szz(k, ω) and thus also of S−+(k, ω) = S+−(k, ω) at h = 0 and m = 0.

What is then the origin of the two-parametric spectrum Szz(k, ω) at h = 0 and m = 0? At 
vanishing magnetic field, h = 0, the selection rules, Eq. (5), reveal that Szz(k, ω) is fully con-
trolled by transitions from the S = Sz = 0 ground state to triplet excited states with spin numbers 
S = 1 and Sz = 0. This is different from the case considered in this paper, for which the initial 
ground state refers to 0 < h < hc and 0 < m < 1. According to the corresponding selection rules, 
Eq. (6), Szz(k, ω) 
= Sxx(k, ω) is then controlled by transitions from the ground state with spin 
numbers Sz = S or Sz = −S to excited energy eigenstates with the same spin numbers, Sz = S

or Sz = −S, respectively.
For the initial ground state at h = 0 and m = 0, one has more generally that (i) Szz(k, ω)

and (ii) S+−(k, ω) and S−+(k, ω) are fully controlled by transitions to spin triplet S = 1 excited 
states with (i) Sz = 0 and (ii) Sz = ±1, respectively. Their 1-band two-hole spectrum is obtained 
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in the m → 0 limit from that of S+−(k, ω) for m < 0 and from that of S−+(k, ω) for m > 0. One 
then finds that,

ωxx(k) = ωzz(k) = −ε1(q) − ε1(q
′) = J

π

2
(cos(q) + cos(q ′))

where k = ιπ − q − q ′ and ι = ±1

for q ∈ [−π/2,π/2] and q ′ ∈ [−π/2,π/2] . (52)

These results are consistent with spin SU(2) symmetry implying that the triplet S = 1
and Sz = 0 excited energy eigenstates that control Szz(k, ω) have exactly the same spectrum, 
Eq. (52), as the triplet S = 1 and Sz = ±1 excited states that control S+−(k, ω) and S−+(k, ω).

On the other hand, the two parametric spectrum given in Eq. (30) refers to the S+−(k, ω)’s 
gapped continuum of the n-string states shown in Fig. 1. It was obtained in this paper for 0 <
h < hc and 0 < m < 1. In the m → 0 limit from such m > 0 values, it becomes again a one-
parametric line that coincides both with its 1̄- and 1̄′-branch lines, which extend to k ∈]0, π[, 
and with the lower threshold of Sxx(k, ω) = Syy(k, ω) = Szz(k, ω) and S−+(k, ω) = S+−(k, ω)

at h = 0 and m = 0.
It is confirmed in the following that, in spite of the singular behavior concerning the class 

of excited states that control the spin dynamical structure factors for magnetic fields h = 0 and 
h 
= 0, respectively, the same line shape at and above the lower thresholds of such factors is 
obtained at m = 0 and in the m → 0 limit, respectively.

6.1. Behaviors of the spin dynamical structure factors in the m → 0 limit

Taking the m → 0 limit from m > 0 values, one confirms that the lower threshold’s spec-
trum, Eq. (A.10) of Appendix A, of S−+(k, ω) expands to k ∈ [0, π]. One then finds that within 
the present dynamical theory the corresponding line shape at and just above the 1-branch line 
becomes valid for k ∈]0, π[. An exactly equal spectrum is obtained for the lower threshold of 
S+−(k, ω) in the m → 0 limit from m < 0 values. In the m → 0 limit, the lower threshold’s 
spectrum of Sxx(k, ω) = 1

4

(
S+−(k,ω) + S−+(k,ω)

)
is then found to read,

ωxx
lt (k) = −ε1(π/2 − k) = J

π

2
sink for k ∈]0,π[ . (53)

On the other hand and as reported above, the gapped continuum, Eq. (30), of the n-string states 
becomes in the m → 0 limit a (k, ω)-plane line whose spectrum is as well given by 
+−

1̄′ (k) =

+−

1̄
(k) = J π

2 sin k for k ∈]0, π[. By use of the limiting behaviors limm→0 �1,1
(±kF↓, q

) =
±1/(2

√
2) for q 
= ±kF↓, limm→0 �1,2 (±kF ,0) = ±1/

√
2, and limm→0 ξ1 1 = 1/

√
2 provided 

in Eqs. (B.34), (B.35), and (B.41) of Appendix B, one finds that the corresponding exponents 
ζ+−

1̄′ (k) and ζ+−
1̄

(k), Eq. (43), as well as the exponent ζ xx
1 (k), Eq. (51), become in the m → 0

limit equal and read,

ζ xx
1 (k) = ζ+−

1̄′ (k) = −1 +
∑
ι=±1

(
−ξ1 1

2
− �1,1(ιπ/2, q)

)2

= −1

2

ζ+−
1̄

(k) = −1 +
∑
ι=±1

(
ι
ξ0

1 2

2
+ ξ1 1

2
− �1,1(ιkF↓, q)

)2

= −1

2
. (54)

The exponent ζ xx
1 (k), Eq. (51), has for 0 < m < 1 two expressions associated with two k inter-

vals, respectively. The momentum width of one of such intervals vanishes in the m → 0 limit. 
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This is why only one of its two expressions contributes to the equality in this equation, which 
only occurs in that limit.

Consistent with spin SU(2) symmetry requirements, we confirm that in the m → 0 limit in 
which the two parametric spectrum ωzz(k) in Eq. (A.3) of Appendix A becomes a one-parametric 
line that coincides with the lower threshold’s spectrum of Szz(k, ω), Eq. (A.12) of that Appendix, 
and in addition becomes equal to the lower threshold’s spectrum ωxx

lt (k), Eq. (53), and thus reads 
ωzz

lt (k) = ωzz
1 (k) = J π

2 sink for k ∈]0, π[.
Similarly, the Szz(k, ω)’s gapped 1̄- and 1̄′-branch line spectra in Eqs. (45) and (46), respec-

tively, are in the m → 0 limit found to become equal and gapless and to expand to the whole 
k ∈]0, π[ interval. In that limit, they coincide with the Szz(k, ω)’s lower threshold, their spec-
trum thus again reading, 
zz

1̄′ (k) = J π
2 sin k for k ∈]0, π[.

One then finds that in the m → 0 limit the corresponding exponents ζ zz

1̄
(k) and ζ zz

1̄′ (k), 
Eq. (48), obey the inequality, ζ zz

1̄′ (k) < ζzz

1̄
(k). The smaller exponent ζ zz

1̄′ (k) is associated with 
the spectrum in Eq. (46). That inequality has a physical meaning, at it reveals that the line shape 
is controlled by the exponents ζ zz

1̄′ (k) and ζ zz
1 (k) such that ζ zz

1̄′ (k) = ζ zz
1 (k) in that limit. By the 

use of the behaviors provided in Eqs. (B.34) and (B.41) of Appendix B, one then finds that in 
the same limit the exponents ζ zz

1 (k), Eq. (50), and ζ zz

1̄′ (k), Eq. (48), equal as well those given in 
Eq. (54) and read,

ζ zz
1 (k) = ζ zz

1̄′ (k) = −1 +
∑
ι=±1

(
ι

2ξ1 1
+ ξ1 1

2
− �1,1(ιπ/2, q)

)2

= −1

2
. (55)

Also in this case, the exponent ζ zz
1 (k) given in Eq. (50) has for 0 < m < 1 two expressions 

associated with two k intervals, respectively. Only one of such expressions contributes to the 
equality in this equation, which only holds in the m → 0 limit. This follows from the momentum 
width of one of the two 0 < m < 1 excitation momentum k’s intervals considered in Eq. (50)
vanishing in that limit.

The above results then confirm that in the m → 0 limit the line shape at and just above the 
lower threshold of the spin dynamical structure factors is controlled by the exponent −1/2, which 
is a result known to hold at zero magnetic field [24,28,29]. The corresponding line-shape expres-
sion reads,

Saa(k,ω) = C (ω − ω(k))−1/2 where ω(k) = J
π

2
sin k for ]0,π[ , (56)

where aa = xx, yy, zz and C is a constant that has a fixed value for the k and ω ranges corre-
sponding to small values of the energy deviation (ω − ω(k)).

6.2. Behaviors of the spin dynamical structure factors in the m → 1 limit

The sum rules, Eq. (7), reveal that both the spin dynamical structure factors S−+(k, ω) and 
Szz(k, ω) vanish in the m → 1 limit. This implies that in that limit and thus in the h → hc limit, 
only Sxx(k, ω) dominates the spin dynamical structure factor. Here hc = J/μB is the critical 
field at which fully polarized ferromagnetism is achieved.

At h = hc the line-shape expressions of general form given in Eqs. (11) and (12) of the ex-
tended dynamical theory are not valid. Indeed, at that magnetic field the problem refers to a 
different quantum phase associated with fully polarized ferromagnetism and the line shape rather 
becomes of δ-function like type, given by,

Sxx(k,ω) = π
δ
(
ω − ωxx

lt (k)
)

where ωxx
lt (k) = J (1 + cosk) for [0,π] . (57)
2
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7. Discussion and concluding remarks

In this paper, the contribution to the spin dynamical structure factors S+−(k, ω), Sxx(k, ω), 
and Szz(k, ω) from excited energy eigenstates populated by n-strings has been studied for mag-
netic fields 0 < h < hc , in the thermodynamic limit. (The contribution to S−+(k, ω) from such 
states was found to be negligible.) In that limit, there is nearly no spectral weight in the (k, ω)-
plane gap region between the upper threshold of the lower continuum shown in Figs. 1 and 3
for S+−(k, ω) and Szz(k, ω), respectively, and the gapped lower threshold of the n-string states’s 
spectrum. The same applies to Sxx(k, ω) in Fig. 2 for the spin densities and k intervals for which 
there is no overlap between the n-string states’s upper continuum and the lower continuum.

Concerning the negligible amount of spectral weight in the (k, ω)-plane gap regions, let us 
consider for instance the more involved case of S+−(k, ω). Similar conclusions apply to the sim-
pler problems of the other spin dynamical structure factors. The behavior of spin operators matrix 
elements between energy eigenstates in the selection rules valid for magnetic fields 0 < h < hc , 
Eq. (6), has important physical consequences. It implies that the spectral weight stemming from 
excited energy eigenstates described by only real Bethe-ansatz rapidities existing in finite systems 
in a (k, ω)-plane region corresponding to the momentum interval k ∈ [2kF↓, π] and excitation 
energy values ω above the upper threshold of the lower continuum in Fig. 1, whose spectrum’s 
expression is given in Eq. (A.2) of Appendix A, becomes negligible in the present thermody-
namic limit for a macroscopic system.

Our thermodynamic limit’s study is complementary to results obtained by completely dif-
ferent methods for finite-size systems [8,9,15]. The spectral weight located in that (k, ω)-plane 
region is found to decrease upon increasing the system size [8]. This is confirmed by comparing 
the spectra represented in the first row frames of Figs. 3 (a) and (b) of Ref. [8] for two finite-size 
systems with N = 320 and N = 2240 spins, respectively, in the case under consideration of the 
spin dynamical structure factor S+−(k, ω).

More generally, the selection rules in Eqs. (5) and (6) are behind in the thermodynamic limit 
nearly all spectral weight generated by transitions to excited energy eigenstates described only by 
real Bethe-ansatz rapidities being contained in the (k, ω)-plane lower continuum shown in Fig. 1, 
whose spectrum is given in Eq. (A.2) of Appendix A. Let us consider for instance the (k, ω)-
plane spectral weight distributions shown in Fig. 18 of Ref. [15] for S+−(k, ω). As reported in 
that reference, due to the interplay of the selections rules given in Eqs. (5) and (6) for h = 0 and 
0 < h < hc , respectively, the spectral weight existing between the continuous lower boundary ε4L

and the upper boundary ε4U at h = 0 becomes negligible for finite magnetic fields 0 < h < hc. In 
addition, the spectral weight existing between the continuous lower boundary ε5L and the upper 
boundary ε5U for small finite-size systems, becomes negligible in the thermodynamic limit for 
a macroscopic system. This is indeed due to the selection rules, Eq. (6), as discussed in that 
reference. As also reported in it, only the spectral weight below the continuous lower boundary 
ε5L(q), located in the (k, ω)-plane between the lower boundary ε6L and the upper boundary ε6U

has a significant amount of spectral weight.
This refers to the (k, ω)-plane region where, according to the analysis of Ref. [15], for mag-

netic fields 0 < h < hc a macroscopic system has nearly the whole spectral weight stemming 
from transitions to excited energy eigenstates described by only Bethe-ansatz rapidities. Consis-
tent with the spectral weight in the present gap region being negligible, the (k, ω)-plane between 
the continuous lower boundary ε6L and the upper boundary ε6U in Fig. 18 of that reference 
corresponds precisely to the lower continuum shown in Fig. 1, whose spectrum is provided in 
Eq. (A.2) of Appendix A.
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Our results have focused on the contribution from n-string states. This refers to the line 
shape at and just above the (k, ω)-plane gapped lower threshold’s spectra 
ab

n̄ (k) where ab =
+−, xx, zz and n̄ refers to different branch lines. In well-defined m-dependent k subintervals, 
Eqs. (39)-(42) and (44)-(47), such branch lines coincide with the gapped lower thresholds under 
consideration. In these physically important (k, ω)-plane regions, the spin dynamical structure 
factors Sab(k, ω) have the general analytical expression provided in Eq. (11). In the case of 
S+−(k, ω) and Sxx(k, ω), such gapped lower thresholds refer to the n-string states’s upper con-
tinua shown in the (k, ω)-plane in Figs. 1 and 2, respectively.

The above results concerning the spectral weight in the gap regions being negligible in the 
present thermodynamic limit, are consistent with the amount of that weight existing just be-
low the (k, ω)-plane gapped lower thresholds of the n-string states’s spectra shown in Figs. 1–3
being vanishingly small or negligible. This is actually behind the validity at finite longitudinal 
magnetic fields 0 < h < hc and in the thermodynamic limit of the analytical expressions of the 
spin dynamical structure factors of general form, Eq. (11), obtained in this paper.

The momentum dependent exponents that control the spin dynamical structure factors’s line-
shape in such expressions are given in Eq. (43) for S+−(k, ω) and Sxx(k, ω) and in Eq. (48)
for Szz(k, ω). In the former case, the exponents associated with the (k, ω)-plane vicinity of the 
2−, 1̄′−, 1̄−, and 2′-branch lines are plotted in Fig. 4. Such lines refer to different k intervals 
of the gapped lower threshold of the n-string states’s spectra of S+−(k, ω) and Sxx(k, ω). The 
solid lines in Figs. 1 and 2 that belong to that gapped lower threshold correspond to k intervals 
for which the exponents are negative. In them, singularities occur in the spin dynamical structure 
factors’s expression, Eq. (11), at and above the gapped lower thresholds.

In the case of Sxx(k, ω), the expression given in that equation does not apply for small spin 
densities in the range m ∈ [0, m̄] where m̄ ≈ 0.276 to the k intervals given in Eq. (29). For these 
momentum ranges, there is overlap between the lower continuum and upper n-string states’s 
continuum, as shown in Figs. 2 (a) and (b). The two k intervals provided in Eq. (29), k ∈ [k̄0, π]
for m ∈]0, m̄0] and k ∈ [k̄0, k̄1] for ]m̄0, m̄] where m̄0 ≈ 0.239, apply to the spectra plotted in 
these two figures, respectively. For spin density (a) m = 0.15, the momentum k̄0 is given by 
k̄0 ≈ 0.60 π whereas for spin density (b) m = 0.25 the two limiting momenta read k̄0 ≈ 0.71 π
and k̄1 ≈ 0.92 π .

On the other hand, the contribution to Szz(k, ω) from excited states populated by n-strings is 
much weaker than for S+−(k, ω) and Sxx(k, ω). It does not lead to a (k, ω)-plane continuum. 
The gapped lower threshold of such states is shown in Fig. 3. There the k subinterval associated 
with the n̄ = 1̄′ branch line is the only one at and above which there are singularities. Out of 
the four branch-line’s exponents whose expressions are provided in Eq. (48), only that of the 
n̄ = 1̄′ branch line is indeed negative. That line is represented in the gapped lower threshold of 
Szz(k, ω) shown in Fig. 3 by a solid (green) line. The corresponding exponent is plotted in Fig. 5. 
That line’s k subinterval is though small. Its momentum width decreases upon increasing the spin 
density within the range 0 < m ≤ m̃ where m̃ ≈ 0.317. For spin densities m̃ ≤ m < 1, that line is 
not part of the gapped lower threshold, so that the contribution to Szz(k, ω) from excited states 
populated by n-strings becomes negligible. Consistent, in Fig. 3 (c) for m = 0.50 and (d) for 
m = 0.75 that line is lacking.

In order to provide an overall physical picture that includes the relative (k, ω)-plane location of 
all spectra with a significant amount of spectral weight, we also accounted for the contributions 
from all types of excited energy eigenstates that lead to gapped and gapless lower threshold 
singularities in the spin dynamical structure factors. This includes excited energy eigenstates 
described only by real Bethe-ansatz rapidities and thus without n-strings, which are known to 
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lead to most spectral weight of the sum rules, Eq. (7) [12–16]. Their contribution to S+−(k, ω), 
Sxx(k, ω), and Szz(k, ω) leads to the (k, ω)-plane lower continua shown in Figs. 1, 2, and 3, 
respectively.

While the present work is purely theoretical, the singularities to which (k, ω)-plane vicinity 
the analytical line-shape expressions obtained and studied in this paper refer to are observed in 
inelastic neutron scattering experiments on spin-chain compounds [8–11]. All cusp singularities 
at and near both the gapped lower thresholds and lower thresholds found in this paper to occur 
in the thermodynamic limit, indeed correspond to peaks shown in Fig. 4 of Ref. [8] for CuCl2·
2N(C5D5) and in Fig. 5 of that reference for Cu(C4H4N2)(NO3)2 at the finite values of the 
magnetic field considered in these figures and suitable values of the exchange integral J . Also in 
that reference such a correspondence was found within the spin-1/2 XXX chain, for finite-size 
systems.
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and T. Č. acknowledge the support from FCT through the Grant UID/FIS/04650/2013. T. Č. 
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Appendix A. Gapless continuum spectra and energy gaps of the n-string states

Within a k extended zone scheme, the S−+(k, ω) and S+−(k, ω)’s spectra associated with 
lower (k, ω)-plane continua, which for S+−(k, ω) is shown in Fig. 1, read,

ω−+(k) = −ε1(q) − ε1(q
′) where k = ιπ − q − q ′ and ι = ±1

for q ∈ [−kF↓, kF↓] and q ′ ∈ [−kF↓, kF↓] , (A.1)

and
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J.M.P. Carmelo, T. Čadež and P.D. Sacramento Nuclear Physics B 960 (2020) 115175
ω+−(k) = ε1(q) − ε1(q
′) where k = ιπ + q − q ′ and ι = ±1

for |q| ∈ [kF↓, kF↑] and q ′ ∈ [−kF↓, kF↓] , (A.2)

respectively. Here ε1(q) is the 1-band energy dispersion given in Eq. (B.8) of Appendix B. 
The spectrum ωxx(k) of the transverse dynamical structure factor Sxx(k, ω) associated with the 
lower continuum in Fig. 2 results from combination of the two spectra ω−+(k) and ω+−(k) in 
Eqs. (A.1) and (A.2), respectively.

The spectrum ωzz(k) associated with the lower continuum in Fig. 3 is again within a k ex-
tended zone scheme given by,

ωzz(k) = ε1(q) − ε1(q
′) where k = q − q ′

for |q| ∈ [kF↓, kF↑] and q ′ ∈ [−kF↓, kF↓] . (A.3)

The upper thresholds of the two-parametric spectra, Eqs. (A.1) and (A.2), have the following 
one-parametric spectra for spin densities m ∈]0, 1[,

ω+−
ut (k) = 2μB h − ε1(kF↓ − k) where k = kF↓ − q for k ∈ [0, kF↓] and q ∈ [0, kF↓] ,

= ε1(q) − ε1(q
′) where k = π + q − q ′ for k ∈ [kF↓,π] and vs(q) = vs(q

′)
with q ∈ [−kF↑,−kF↓] and q ′ ∈ [−kF↓,0] , (A.4)

and

ω−+
ut (k) = −2ε1

(
π − k

2

)
where k = π − 2q for k ∈ [(kF↑ − kF↓),π] and q ∈ [−kF↓,0] , (A.5)

respectively. The function v1(q) is in Eq. (A.4) the 1-band group velocity defined in Eq. (B.10)
of Appendix B.

The upper threshold spectrum ωxx
ut (k) of the combined spectra, Eqs. (A.1) and (A.2), is given 

by,

ωxx
ut (k) = ω+−

ut (k) for k ∈ [0, kxx
ut ]

= ω−+
ut (k) for k ∈ [kxx

ut , π] , (A.6)

where the momentum kxx
ut is such that ω+−

ut (kxx
ut ) = ω−+

ut (kxx
ut ).

On the other hand, the one-parametric upper threshold spectrum associated with the two-
parametric longitudinal spectrum, Eq. (A.3), reads for m ∈]0, 1[,

ωzz
ut (k) = ε1(q) − ε1(q

′) where k = q − q ′ for vs(q) = vs(q
′) and k ∈ [0, kF↑]

with q ∈ [kF↓, kF↑] and q ′ ∈ [0, kF↓] ,
= 2μB h − ε1(kF↑ − k) where k = kF↑ − q for k ∈ [kF↑,π]

and q ∈ [−kF↓,0] . (A.7)

At k = 0, kF↓, π and k = 0, kF↑ − kF↓, π , the upper threshold spectra, Eqs. (A.4) and (A.5), 
respectively, are given by,

ω+−
ut (0) = Wh

1 = 2μB h ; ω+−
ut (kF↓) = W1 = 2μB h + W

p
1 ; ω+−

ut (π) = 0

ω−+
ut (kF↑ − kF↓) = 0 ; ω−+

ut (π) = 2W
p

. (A.8)
1
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Here W1 = W
p

1 + Wh
1 , Wp

1 , and Wh
1 are the energy bandwidths of the full 1-band, its occupied 

Fermi sea, and unoccupied sea, respectively, in Eqs. (B.22) and (B.24) of Appendix B.
At k = 0, kF↑, π the upper threshold spectrum ωzz

ut (k) reads,

ωzz
ut (0) = 0 ; ωzz

ut (kF↑) = W1 = 2μB h + W
p
1 ; ωzz

ut (π) = Wh
1 = 2μB h . (A.9)

The spin dynamical structure factors’s line shape near the lower thresholds of the spectra, 
Eqs. (A.1), (A.2), and (A.3), has the general form provided in Eq. (12). In the case of (i) 
S−+(k, ω) and (ii) S+−(k, ω) and Szz(k, ω) such lower thresholds refer to (i) a single 1-branch 
line and (ii) two sections of a 1-branch line, respectively. Their spectra can be expressed in terms 
of the excitation momentum k or of the 1-band momentum q and are given by,

ω−+
lt (k) = −ε1(kF↑ − k) and k = kF↑ − q where

k ∈ [(kF↑ − kF↓),π] and q ∈] − kF↓, kF↓] , (A.10)

ω+−
lt (k) = ε1(k − kF↑) and k = kF↑ + q where

k ∈ [0, (kF↑ − kF↓)] and q ∈ [−kF↑,−kF↓] ,
= −ε1(kF↑ − k) and k = kF↑ − q where

k ∈ [(kF↑ − kF↓),π] and q ∈ [−kF↓, kF↓] , (A.11)

ωzz
lt (k) = −ε1 − kF↓[F↓−k) and k = kF↓ − q where

k ∈ [0,2kF↓] and q ∈ [−kF↓, kF↓] ,
= ε1(k − kF↓) and k = kF↓ + q where

k ∈ [2kF↓),π] and q ∈ [kF↓, kF↑] . (A.12)

The lower threshold’s spectrum ωxx
lt (k) of Sxx(k, ω) has the same expression as that of 

S+−(k, ω),

ωxx
lt (k) = ε1(k − kF↑) and k = kF↑ + q where

k ∈ [0, (kF↑ − kF↓)] and q ∈ [−kF↑,−kF↓] ,
= −ε1(kF↑ − k) and k = kF↑ − q where

k ∈ [(kF↑ − kF↓),π] and q ∈ [−kF↓, kF↓] . (A.13)

Finally, the k dependent expressions and the limiting values of the energy gaps in Eqs. (36)-(38)
are provided. The energy gap 
+−

gap (k) is finite and positive for 0 < m < 1. For spin densities 
m ∈]0, m̃] where m̃ ≈ 0.317 it reads,


+−
gap (k) = −2μB h + ε2(k) + ε1(kF↓ − k) for k ∈ [0, (kF↑ − kF↓)]


+−
gap (k) = 2μB h − ε1(kF↑ − k) + ε1(kF↓ − k) for [(kF↑ − kF↓), k̃[


+−
gap (k) = 2μB h − W2 for k ∈]k̃, kF↓]


+−
gap (k) = 4μB h − W2 − ε1(kF↓ − k) + ε1(q) − ε1(k + q − π) for k ∈ [kF↓,2kF↓]

and q ∈ [−(k• − kF↑ + kF↓),0]

+−

gap (k) = ε2(k − 2kF↓) + ε1(q) − ε1(k + q − π) for k ∈ [2kF↓,π] and

for spin densities m ∈]0, m̃] . (A.14)

For spin densities m ∈ [m̃, 1[ its expression is,
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+−
gap (k) = −2μB h + ε2(k) + ε1(kF↓ − k) for k ∈ [0, k̃[


+−
gap (k) = 2μB h − W2 for k ∈]k̃, kF↓]


+−
gap (k) = 4μB h − W2 − ε1(kF↓ − k) + ε1(q) − ε1(k + q − π) for k ∈ [kF↓,2kF↓]

and q ∈ [−(k• − kF↑ + kF↓),0]

+−

gap (k) = ε2(k − 2kF↓) + ε1(q) − ε1(k + q − π) for k ∈ [2kF↓,π] and

q ∈ [−kF↓,−(k• − kF↑ + kF↓)]
for spin densities m ∈ [m̃,1[ . (A.15)

In the above equations, the momentum k̃ is defined by the relations, Eq. (28), and the momen-
tum k• satisfies the following equation,

v1(k•) = v1(k• − kF↑ + kF↓) where k• > kF↓ . (A.16)

On the other hand, for spin densities m ∈]0, m̃], the energy gap 
−+
gap (k) = 
−+(k) −ω−+

ut (k)

where 
−+(k) = 
+−(k) reads,


−+
gap (k) = ε2(k) for k ∈ [0, (kF↑ − kF↓)]


−+
gap (k) = 4μB h − ε1(kF↑ − k) + 2ε1

(
π − k

2

)
for k ∈ [(kF↑ − kF↓), k̃[


−+
gap (k) = 4μB h − W2 − ε1(kF↓ − k) + 2ε1

(
π − k

2

)
for k ∈]k̃,2kF↓]


−+
gap (k) = ε2(k − 2kF↓) + 2ε1

(
π − k

2

)
for k ∈ [2kF↓,π] , (A.17)

whereas for m ∈ [m̃, 1[ it is given by,


−+
gap (k) = ε2(k) for k ∈ [0, k̃[


−+
gap (k) = 4μB h − W2 − ε1(kF↓ − k) for k ∈]k̃, (kF↑ − kF↓)]


−+
gap (k) = 4μB h − W2 − ε1(kF↓ − k) + 2ε1

(
π − k

2

)
for k ∈ [(kF↑ − kF↓),2kF↓]


−+
gap (k) = ε2(k − 2kF↓) + 2ε1

(
π − k

2

)
for k ∈ [2kF↓,π] . (A.18)

The energy gap 
+−
gap (k) is given by the constant energy scale 2μB h − W2 where W2 is the 

energy bandwidth of the 2-band in Eqs. (B.22) and (B.24) of Appendix B for the following k and 
spin density m values and intervals,


+−
gap (k) = 2μB h − W2

k = 0 for m ∈]0,1[
k = kF↑ − kF↓ for m ∈]0,1/3]
k ∈ ]k̃, kF↓] for m ∈]0,1[ . (A.19)

The energy scale 2μB h − W2 ≥ 0 has the following limiting values,

2μB h − W2 = 0 for m → 0 and 2μB h − W2 = J for m → 1 . (A.20)
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At k = π the energy gap 
+−
gap (k) reads,


+−
gap (π) = 4μB h for m ∈]0,1[ . (A.21)

It has the following limiting values,


+−
gap (π) = 0 for m → 0 and 
+−

gap (π) = 4J for m → 1 . (A.22)

The energy gap 
−+
gap (k) has the following values at k = 0, kF↑ − kF↓, π ,


−+
gap (0) = 4μB h − W2 for m ∈]0,1[


−+
gap (kF↑ − kF↓) = 4μB h for m ∈]0, m̃]


−+
gap (π) = 4μB h − 2W

p

1 for m ∈]0,1[ . (A.23)

For small spin densities m ∈]0, m̄] where m̄ ≈ 0.276 and the momentum intervals given in 
Eq. (29) the inequality 
−+

gap (k) < 0 holds. In such k intervals, 
−+
gap (k) equals the energy gap 


xx
gap(k) = 
−+

gap (k) < 0. At k = π such gaps thus have negative and positive values for spin 
densities m < m̄0 and m > m̄0, respectively, where m̄0 ≈ 0.239. The corresponding limiting 
values read,


xx
gap(π) = 
−+

gap (π) = −πJ for m → 0

= 0 for m = m̄0 ≈ 0.239

= 4J for m → 1 . (A.24)

Appendix B. Some useful quantities

In this Appendix some quantities needed for our study are defined and corresponding useful 
limiting behaviors are provided. The quantum problem studied in this paper is described by the 
spin-1/2 XXX chain in a longitudinal magnetic field, Eq. (1), acting in the subspace considered 
in Sec. 3.1. It involves a subset of Bethe ansatz equations. That associated with the 1-band is 
given by,

qj = 2 arctan
(
�1(qj )

) − 2

L

N↑∑
j ′=1

N1(qj ′) arctan

(
�1(qj ) − �1(qj ′)

2

)

− 2

L

N↑−N↓+N2∑
j ′=1

N2(qj ′)

{
arctan

(
�1(qj ) − �2(qj ′)

) + arctan

(
�1(qj ) − �2(qj ′)

3

)}

where j = 1, ...,N↑ and N2 = 0,1 . (B.1)

That associated with the 2-band reads,

qj = 2 arctan

(
�2(qj )

2

)

− 2

L

N↑∑
j ′=1

N1(qj ′)

{
arctan

(
�2(qj ) − �1(qj ′)

) + arctan

(
�2(qj ) − �1(qj ′)

3

)}

where j = 1, ...,N↑ − N↓ + N2 and N2 = 0,1 . (B.2)
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In these equations, N1(qj ′) = 1 and N2(qj ′) = 1 for occupied momentum values qj ′ and 
N1(qj ′) = 0 and N2(qj ′) = 0 for unoccupied momentum values qj ′ .

The subspace considered in Sec. 3.1 is spanned by excited energy eigenstates populated either 
by a number N1 = N↓ of 1-particles or by a number N1 = N↓ − 2 of 1-particles and a single 2-
particle. In the case of the latter class of states, the Bethe-ansatz equation, Eq. (B.2), does not 
include a third term, that in the case of the full Hilbert space involves the spin rapidity differences 
�2(qj ) − �2(qj ′). Indeed, when δN2 = 1 one has that such a term only contributes for qj = qj ′
at which values it vanishes.

The 1-band Bethe ansatz rapidity is real and associated with the rapidity function �1(qj )

in the above Bethe-ansatz equations. In the case of general n-strings of length n > 1, the corre-
sponding complex non-real Bethe ansatz rapidities have in the thermodynamic limit the following 
form [2],

�n,l(qj ) = �n(qj ) + i(n + 1 − 2l) for l = 1, ..., n and j = 1, ...,Ln where

Ln = Nn + Nh
n and Nh

n = 2S +
∞∑

n′=n+1

2(n′ − n)Nn′ . (B.3)

This general expression also applies for n = 1, �1,1(qj ) being real and equal to �1(qj ). In the 
general n = 1, ..., ∞ case, �n(qj ) are real rapidity functions defined by the set of coupled Bethe-
ansatz equations associated with the full Hilbert space not given here, qj such that qj+1 − qj =
2π/L are the corresponding n-band discrete momentum values whose number is Ln, Nn is both 
the number of n-band occupied momentum values and the number of n-particles and thus of 
n-strings when n > 2, Nh

n is that of n-band unoccupied momentum values, and S is the energy 
eigenstate’s spin such that 2S gives the number of unpaired physical spins 1/2 that are not paired 
and thus are not part of the n particles’s internal degrees of freedom.

In the present case of the subspace considered in Sec. 3.1, the problem simplifies. The 2-band 
rapidity function �2(qj ) that appears in Eqs. (B.1) and (B.2) is the real part of the following two 
Bethe ansatz complex rapidities associated with a n-string of length n = 2,

�2,l(qj ) = �2(qj ) + i(3 − 2l) for l = 1,2 and j = 1, ...,N↑ − N↓ + N2 . (B.4)

This expression refers to that given in Eq. (B.3) for n = 2 and l = 1, 2.
The momentum values qj in Eqs. (B.1), (B.2), and (B.4) are given by,

qj = 2π

L
In
j for n = 1,2 , (B.5)

where the quantum numbers In
j are either integers or half-odd integers according to the following 

boundary conditions [2],

I 1
j = 0,±1,±2, ... for N↑ odd

= ±1/2,±3/2,±5/2, ... for N↑ even

I 2
j = 0,±1,±2, ... for N2 = 1 . (B.6)

In the thermodynamic limit, we often use continuous momentum variables q that replace the 
discrete 1- and 2-bands momenta qj such that qj+1 − qj = 2π/L. They read q ∈ [−kF↑, kF↑]
and q ∈ [−(kF↑ − kF↓), (kF↑ − kF↓)], respectively. In that limit, the momenta kF↓ and kF↑ are 
given by,

kF↓ = π
(1 − m) ; kF↑ = π

(1 + m) ; kF = π
, (B.7)
2 2 2
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J.M.P. Carmelo, T. Čadež and P.D. Sacramento Nuclear Physics B 960 (2020) 115175
for the spin-density interval, m ∈]0, 1[ where kF = limm→0 kF↓ = limm→0 kF↑.
The energy dispersions ε1(q) and ε2(q) that appear in the spectra of the excited energy eigen-

states are defined as,

ε1(q) = ε̄1(�1(q)) for q ∈ [−kF↑, kF↑] where ε̄1(�) =
�∫

B

d�′ 2Jη1(�
′) , (B.8)

where B is defined below and,

ε2(q) = 4μB h + ε0
2(q) for q ∈ [−(kF↑ − kF↓), (kF↑ − kF↓)] where

ε0
2(q) = ε̄0

2(�2(q)) and ε̄0
2(�) =

�∫
∞

d�′ 2Jη2(�
′) , (B.9)

respectively.
The corresponding 1- and 2-bands group velocities are given by,

v1(q) = ∂ε1(q)

∂q
and v2(q) = ∂ε2(q)

∂q
. (B.10)

The distribution 2Jη1(�) appearing in Eq. (B.8) is the solution of the integral equation,

2Jη1(�) = 4J �

(1 + �2)2 +
B∫

−B

d�′ G(�,�′)2Jη1(�
′) . (B.11)

The kernel G(�, �′) appearing here is given by,

G(�,�′) = − 1

2π

(
1

1 + ((� − �′)/2)2

)
. (B.12)

The values of the distribution 2Jη2(�) in Eq. (B.9) are determined by those of 2Jη1(�) as 
follows,

2Jη2(�) = J

2

�(
1 + (

�
2

)2
)2 − 1

π

B∫
−B

d�′ 2Jη1(�
′)

1 + (� − �′)2 − 1

3π

B∫
−B

d�′ 2Jη1(�
′)

1 +
(

�−�′
3

)2 ,

(B.13)

where the distribution 2Jη1(�) is the solution of Eq. (B.11).
The rapidity distribution function �1(q) where q ∈ [−kF↑, kF↑] in the argument of the auxil-

iary dispersion ε̄1 in Eq. (B.8) is defined in terms of its 1-band inverse function q = q1(�) where 
� ∈ [−∞, ∞]. The latter is defined by the equation,

q = q1(�) = 2 arctan(�) − 1

π

B∫
−B

d�′ 2πσ(�′) arctan

(
� − �′

2

)
for � ∈ [−∞,∞] .

(B.14)

The rapidity distribution function �2(q) where q ∈ [−(kF↑ − kF↓), (kF↑ − kF↓)] in the ar-
gument of the auxiliary dispersion ε̄0

2 in Eq. (B.9) is also defined in terms of its 2-band inverse 
function q = q2(�) where � ∈ [−∞, ∞] as follows,
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q2(�) = 2 arctan

(
�

2

)
− 1

π

B∫
−B

d�′ 2πσ(�′) arctan
(
� − �′)

− 1

π

B∫
−B

d�′ 2πσ(�′) arctan

(
� − �′

3

)
for � ∈ [−∞,∞] . (B.15)

The distribution 2πσ(�) in Eqs. (B.14) and (B.15) is the solution of the integral equation,

2πσ(�) = 2

1 + �2 +
B∫

−B

d�′ G(�,�′)2πσ(�′) , (B.16)

whose kernel is given in Eq. (B.12). Such a distribution obeys the sum rule,

1

π

B∫
−B

d�2πσ(�) = (1 − m) . (B.17)

The parameter B = �1(kF↓) appearing in the above equations has the limiting behaviors,

B = �1(kF↓) with lim
m→0

B = ∞ and lim
m→1

B = 0 . (B.18)

Useful reference values of the rapidity functions �1(q) and �2(q) are,

�1(0) = 0 and �1(±kF↑) = ±∞
�2(0) = 0 and �2(±(kF↑ − kF↓)) = ±∞ . (B.19)

The 1-band energy dispersion,

ε0
1(q) = ε̄0

1(�1(q)) where ε̄0
1(�) =

�∫
∞

d�′ 2Jη1(�
′) , (B.20)

whose zero-energy level is for m > 0 shifted relative to that of ε1(q) defines the spin density 
curve as follows,

h(m) = −ε0
1(kF↓)

2μB

|m=1−2kF↓/π ∈]0, hc[ . (B.21)

Here hc = J/μB is the critical field for fully polarized ferromagnetism achieved when m → 1
and thus kF↓ → 0.

The 1- and 2-band energy dispersions ε1(q) and ε2(q), Eqs. (B.8) and (B.9), respectively, 
have limiting values,

ε1(0) = −W
p

1 ; ε1(±kF↓) = 0 ; ε1(±kF↑) = Wh
1 = 2μB h

ε2(0) = Wh
1 − W2 = 4μB h − W2 ; ε2(±(kF↑ − kF↓)) = 4μB h , (B.22)

where W1 = W
p
1 + Wh

1 , Wp
1 , and Wh

1 are the 1-band energy bandwidth, occupied Fermi sea 
energy bandwidth, and unoccupied sea energy bandwidth, respectively, and W2 is the 2-band 
energy bandwidth. Such energy scales have the limiting behaviors,
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lim
m→0

W1 = W
p

1 = π

2
J and lim

m→0
W2 = 0 , (B.23)

and

lim
m→1

W1 = Wh
1 = 2μB hc = 2J and lim

m→1
W2 = J . (B.24)

In the m → 0 limit, the 2-band does not exist in the ground state. In that limit, it reduces to 
q = 0 with ε2(0) = 0 for energy eigenstates for which N2 = 1. In the same limit, the 1-band 
energy dispersions and group velocity can be written as,

ε1(q) = ε0
1(q) = −J

π

2
cosq and v1(q) = J

π

2
sinq

for q ∈ [−π/2,π/2] and m → 0 . (B.25)

For (1 − m) � 1, the 1-band energy dispersions and group velocity, Eq. (B.10), behave as,

ε1(q) = −J (cosq − 1) + J (1 − m) sinq arctan

(
1

2
tan

(q

2

))

ε0
1(q) = −J (cosq + 1) + J (1 − m) sinq arctan

(
1

2
tan

(q

2

))

v1(q) = J sinq + J (1 − m)

{
sinq

1 + 3 cos2
( q

2

) + cosq arctan

(
1

2
tan

(q

2

))}

for q ∈
[
−π

2
(1 + m),

π

2
(1 + m)

]
and (1 − m) � 1 . (B.26)

Also for (1 − m) � 1, the behaviors of the 2-band energy dispersion and group velocity are,

ε2(q) = 4J − J

2
(1 + cosq) + J

2
(1 − m) sinq

{
arctan

(
2 tan

(q

2

))
+ arctan

(
2

3
tan

(q

2

))}
ε0

2(q) = ε2(q) − 4J

v2(q) = J

2
sinq + J

2
(1 − m) sinq

{
1

1 + 3 sin2 ( q
2

) + 3

4 + 5 cos2
( q

2

)
}

+ J

2
(1 − m) cosq

{
arctan

(
2 tan

(q

2

))
+ arctan

(
2

3
tan

(q

2

))}
for q ∈ [−πm,πm] and (1 − m) � 1 . (B.27)

From analysis of the above expressions, one finds that for (1 −m) � 1 the following equality 
holds,

v1(kF↓) = v2(kF↑ − kF↓) = J
π

2
(1 − m) . (B.28)

The 1-particle phase shifts play an important role in the dynamical properties. They are given 
by,

2π �1,n(q, q ′) = 2π �̄1,n

(
�,�′) where � = �1(q) and �′ = �n(q

′) . (B.29)

The rapidity phase shifts 2π�̄1,n

(
�,�′) on the right-hand side of the above equality are func-

tions of the rapidity-related variables � for the n-bands. In the case of the excited energy 
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.

eigenstates that span the subspace considered in Sec. 3.1, the quantum number n has the val-
ues 1 and 2. In units of 2π , the corresponding n = 1, 2 rapidity phase shifts 2π�̄1,n

(
�,�′) are 

defined by the following integral equations,

�̄1,1(�,�′) = 1

π
arctan

(
� − �′

2

)
+

B∫
−B

d�′′ G(�,�′′) �̄1,1(�
′′,�′) , (B.30)

and

�̄1,2
(
�,�′) = 1

π
arctan(�−�′)+ 1

π
arctan

(
� − �′

3

)
+

B∫
−B

d�′′ G(�,�′′) �̄1,2(�
′′,�′)

(B.31)

The kernel G(r, r ′) in these equations is given in Eq. (B.12).
The phase shifts in units of 2π that appear in the expressions of the branch-line exponents, 

Eqs. (43), (48), (50), and (51), are given by,

�1,1
(
ιkF↓, q

) = �̄1,1 (ιB,�1(q)) and �1,2
(
ιkF↓, q

) = �̄1,2 (ιB,�2(q))

where ι = ±1 . (B.32)

In the m → 0 limit, the rapidity phase shift �̄1,1(�, �′) (in units of 2π ) is given by,

�̄1,1(�,�′) = i

2π
ln

⎛
⎝�

(
1
2 + i

(�−�′)
4

)
�

(
1 − i

(�−�′)
4

)
�

(
1
2 − i

(�−�′)
4

)
�

(
1 + i

(�−�′)
4

)
⎞
⎠ for � 
= ι∞

= ι

2
√

2
for � = ι∞ and �′ 
= ι∞

= ι

(
3

2
√

2
− 1

)
for � = �′ = ι∞ where ι = ±1 , (B.33)

where �(x) is the usual gamma function.
From the use of Eq. (B.33), one finds that in the m → 0 limit for which kF = π/2 the phase 

shift �1,1 (ιπ/2, q) = limm→0 �1,1
(
ιkF↓, q

)
reads (in units of 2π ),

�1,1 (ιπ/2, q) = ι

2
√

2
for q 
= ιkF

= ι

(
3

2
√

2
− 1

)
for q = ιkF where ι = ±1 . (B.34)

In the m → 0 limit, the phase shift �1,2 (ιπ/2, q) = limm→0 �1,2
(
ιkF↓, q

)
has in units of 2π

the following value,

lim
m→0

�1,2 (ιπ/2, q) = �1,2 (ιπ/2,0) = ι√
2

. (B.35)

In the opposite m → 1 limit in which kF↓ → 0, the phase shifts �1,1
(
ιkF↓, q

)
and 

�1,2
(
ιkF↓, q

)
behave as,
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lim
m→1

�1,1(ιkF↓, q) = �1,1(0, q) = − 1

π
arctan

(
1

2
tan

(q

2

))
lim
m→1

�1,2(ιkF↓, q) = �1,2(0, q)

= − 1

π
arctan

(
2 tan

(q

2

))
− 1

π
arctan

(
2

3
tan

(q

2

))
. (B.36)

The phase-shift related parameters ξ1 1 and ξ0
1 2 also appear in the expressions of the branch-

line exponents, Eqs. (43), (48), (50), and (51). The 1-band Fermi-points phase-shift parameter 
ξ1 1 is such that [30],

(ξ1 1)
±1 = 1 +

∑
ι=±1

(ι)
1±1

2 �1,1
(
kF↓, ιkF↓

)
. (B.37)

It is also related to the phase shift �1,2(kF↓, q) in Eq. (B.32) as follows,

ξ1 1 = −�1,2(±kF↓, (kF↑ − kF↓))

= �1,2(±kF↓,−(kF↑ − kF↓)) . (B.38)

From manipulations of the phase-shift integral equation, Eq. (B.30), and of Eq. (B.37) one 
finds that the parameter ξ1 1 given by,

ξ1 1 = ξ1 1 (B) . (B.39)

The function ξ1 1(r) on the right-hand side of this equation at � = B is the solution of the integral 
equation,

ξ1 1(�) = 1 +
B∫

−B

d�′ G(�,�′) ξ1 1(�
′) , (B.40)

where the kernel G(�, �′) is given in Eq. (B.12).
The parameter ξ1 1 continuously increases upon increasing the spin density from ξ1 1 = 1/

√
2

as m → 0 to ξ1 1 = 1 for m → 1, so that its limiting values are,

lim
m→0

ξ1 1 = 1√
2

and lim
m→1

ξ1 1 = 1 . (B.41)

Finally, the parameter ξ0
1 2 that also appears in the momentum dependent exponents is given 

by,

ξ0
1 2 = 2�1,2(kF↓,0) , (B.42)

where the phase shift �1,2(kF↓, q) is defined in Eq. (B.32). At q = 0, it is such that 
�1,2(ιkF↓, 0) = ι �1,2(kF↓, 0). This justifies why ι ξ0

1 2 = 2�1,2(ιkF↓, 0) = ι 2�1,2(kF↓, 0) for 
ι = ±1.

The parameter ξ0
1 2 continuously decreases upon increasing the spin density from ξ0

1 2 = √
2 as 

m → 0 to ξ0
1 2 = 0 for m → 1. Consistent, it follows from Eqs. (B.35) and (B.36) that,

lim ξ0
1 2 = √

2 and lim ξ0
1 2 = 0 . (B.43)
m→0 m→1
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