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Abstract We discuss the implementation of the bisection algorithm for the computation of the eigenvalues of
symmetric tridiagonal matrices in a context of mixed precision arithmetic. This approach is motivated by the
emergence of processors which carry out floating-point operations much faster in single precision than they do in
double precision. Perturbation theory results are used to decide when to switch from single to double precision.
Numerical examples are presented.
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1 Introduction

As observed in [11],We are now seeing growing use of mixed precision, in which different floating point precisions
are combined in order to deliver a result of the required accuracy at minimal cost. Single precision arithmetic
(32bits) is an attractive alternative to double precision because it halves the costs of storing and transferring data
and there are processors around that carry out floating point operations faster in single precision. For instance, on
Intel chips the SSE extensions allow single precision arithmetic to run twice as fast as double.

This new technological paradigm is likely to have a significant impact in the design of fast algorithms, namely
in the area of numerical linear algebra. Even when one wishes to produce highly accurate results, the opportunity
to exploit the fast single precision mode is not to be discarded. Iterative algorithms adapt well to this paradigm
of mixed-precision arithmetic: single precision may be used to get close enough to the solutions, double precision
will be used in the last iterations when convergence is usually faster. There is already a significant amount of
work following this line of research for the solution of linear systems; for dense matrices, the authors in [3,12,13]
use Gaussian elimination in single precision with iterative refinement of the solution to the full double precision
accuracy; for sparse systems and mixed precision Krylov subspace methods see [4,9]. A mixed-precision QR
decomposition on GPUs is presented in [19]. For the symmetric tridiagonal eigenvalue problem, a mixed precision
MRRR algorithm may be found in [15].
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We take this approach in the context of a bisection-like algorithm for computing the eigenvalues of symmetric
tridiagonal matrices. The reader is supposed to be familiar with this method. Single precision will be used to produce
real intervals, as narrow as possible, containing one or more eigenvalues, that will be finally refined with double
precision arithmetic.

This simple picture is flawed for a subtle, often overlooked, reason: some eigenvalues may not be defined to
full accuracy by the data (i.e., the entries of the tridiagonal). Single precision rounding errors can perturb some
eigenvalues to more than single precision variation at each bisection step. On top of that, it is not at all rare for a
single precision interval, passed on to DP arithmetic, to be empty.

There is an easy remedy that is justifiable but not fully satisfactory. For symmetric matrices all eigenvalues are
perfectly conditioned with respect to the norm of the matrix. Thus, a stopping criterion of the form

interval length ≤ O(ε) · ‖T ‖ (1)

where ε denotes the rounding error unit (adjusted for single and double precision), would be a safe stopping criterion.
The blemish here is that ‖T ‖ / |λ| may be huge and λ may sometimes be defined to high relative accuracy. In this
case more steps of bisection could have been performed in single precision. However, one should not carry out
single precision bisection steps (at least, not too many) on intervals that are not guaranteed to contain a desired
eigenvalue. Therefore, the main purpose of this paper is to use perturbation theory results to approach, as close as
possible, the optimal point for switching from single to double precision arithmetic. In practical terms, we wish to
replace, whenever possible, the right hand side of the criterion (1) with some quantity significantly smaller.

The outline of the remaining of the paper is as follows. In the next section we justify our choice of the mixed
precision bisection algorithm and review the basic facts of the method; in Sect. 3 we present two numerical
examples to support our claim that from all LAPACK codes to compute the eigenvalues of a symmetric tridiagonal
matrix, DSTEBZ, which implements bisection, is the most accurate one; in Sect. 4 we describe the mixed precision
implementation of the method; in Sects. 5 and 6 we discuss some criteria to reduce the number of double precision
steps. We end up with some conclusions. Throughout the paper we use εs and εD to denote rounding error units in
single and double precision arithmetic, respectively.

2 Why Mixed Precision Bisection

For the computation of the eigenvalues of symmetric tridiagonalmatrices, there are algorithmsof different flavors and
themost popular are implemented in LAPACK [1]. For brevity, we organize them in 3 sets: (1) algorithms based upon
similarity transformations (QR, dqds), (2) divide-and-conquer and (3) iterative refinement (this includes bisection).
For the methods in (1) it is clear that there is no point in carrying out double precision similarity transformations
of matrices which have been derived from the original matrix through single precision transformations. Similarly,
for divide-and-conquer methods, the errors introduced at early stages will inevitably affect the accuracy of the
computed eigenvalues. On the other hand, onemay consider the use of thosemethods for computing single precision
approximations to be improved with some iterative refinement carried out in double precision. If successful, such
approach will give rise to codes that mix not only different precisions for the arithmetic but also different methods.
Along these lines, there are many possible hybrid algorithms that may prove to be efficient. For instance, one may
consider a two-stage dqds algorithm: in the first stage, approximations are computed in single precision and serve
only as shifts to accelerate convergence in the second stage, in which similarity transformations are re-started with
the initial matrix. However, there are non trivial issues to be addressed in this approach, namely the question of
knowing whether this will reduce significantly the total number of transformations to be carried out in double
precision as compared to the standard approach.

In our experience with LAPACK’s routines, we found that bisection, as implemented in routine DSTEBZ, is
indeed the unique method that consistently delivers approximations as accurate as possible (see Sect. 3). Further-
more, it is a versatile method that may be used to compute only a part of the spectrum. For these reasons, and also
because the gain in speed from using a mixed precision bisection algorithm is unquestionable (on architectures
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whose arithmetic is faster in single precision than it is in double precision) and case independent, we consider a
mixed precision bisection algorithm. A detailed description of the algorithm can be found in [8,10] or [14]. Let

T =

⎡
⎢⎢⎢⎢⎣

d1 e1

e1 d2
. . .

. . .
. . . en−1

en−1 dn

⎤
⎥⎥⎥⎥⎦

(2)

be an n × n symmetric tridiagonal matrix. For any given real number x , if

T − x I = LDLT , (3)

where L is unit lower triangular and D = diag(q1(x), . . . , qn(x)) is diagonal, then

q1(x) = d1 − x (4)

qk(x) = dk − x − e2k−1/qk−1 (x) , k = 2, . . . , n. (5)

According to Sylvester’s law of inertia, the inertia of D equals the inertia of T −x I so that the number of negative
qk(x) gives the number of eigenvalues of T which are smaller than x . Following [7], we will use count (x) to denote
this number. The bisection method is able to compute the eigenvalues of a symmetric matrix which is very close
to the exact one. In fact (see Lemma 5.3 in [8], p. 230), the values qk(x) computed in floating point arithmetic,
using (4)–(5), have the same signs (and so compute the same inertia) as the q̂k(x) that would be obtained if exact
arithmetic was carried out with the matrix T̂ such that

d̂k = dk (6)

êk = ek (1 + δk) , with |δk | ≤ 2.5ε + O
(
ε2

)
(7)

where, in accordance with our notation, we should replace ε with εs or εD , depending upon the precision of the
arithmetic, single or double, respectively.

Therefore, the bisection method, correctly implemented, is able to deliver eigenvalues to high relative accuracy,
even if they are much smaller than ‖T ‖2, provided that T defines them well, i.e., small relative perturbations in
its entries induce correspondingly small perturbations in its eigenvalues. Using the exception handling facilities of
IEEE arithmetic, the computation produces a correct count (x) even when some qk−1(x) in (5) is exactly zero. In
this case, qk(x) = −∞, qk+1(x) = dk+1 − x and the computation continues unexceptionally [6,7]. A numerically
robust, vectorized implementation of the algorithm is available in LAPACK’s SSTEBZ (single precision) and
DSTEBZ (double precision) routines. For parallel processing, care must be taken to ensure the correctness of the
results. The logic of the bisection algorithm depends on count (x) being a monotonic increasing function of x .
However, depending upon the features of the arithmetic, monotonicity can fail and incorrect eigenvalues may be
computed, because of rounding or as a result of using networks of heterogeneous parallel processors. In [7], several
parallel algorithms are proposed and detailed analysis are carried out to ensure the correctness of the codes even
when the arithmetic is non-monotonic. One of such algorithms has been implemented in ScaLAPACK [2]. For an
implementation of the bisection algorithm on GPUs (Graphical Processing Units) see [17].

3 Bisection Versus Competitors (Accuracy of Eigenvalues)

In LAPACK, the routine DSTERF uses the Pal–Walker–Kahan variant (square-root free) of the QR algorithm for
computing eigenvalues only, DSTEQR and DSTEDC use the implicitly shifted QR algorithm and divide and con-
quer algorithm, respectively, to compute eigenvalues and also eigenvectors. The routine DSTEMR uses dqds and
bisection to compute eigenvalues and numerically orthogonal eigenvectors (optional) are computed with the use
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of various suitable LDLT factorizations near clusters of close eigenvalues (Multiple Relatively Robust Represen-
tations). Finally, DSTEBZ uses bisection to compute some or all of the eigenvalues with prescribed accuracy. As
already observed, DSTEBZ, with the appropriate stopping criterion, is the only routine that consistently delivers
eigenvalues as accurate as the data warrant. To support our claim, we now present two examples.

Example 1 The matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 10100

10100 1 1020

1020 1 10
10 1 10

10 1 1020

1020 1 10100

10100 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

has eigenvalues (with fifteen correct digits) λ1 = −10100, λ2 = −10100, λ3 = −13.1421356237310, λ4 = 1,
λ5 = 15.1421356237310, λ6 = 10100, λ7 = 10100. We know that T defines well its eigenvalues (in [16] we
have shown that a symmetric tridiagonal matrix defines to high relative accuracy all the eigenvalues of size not
smaller than the second largest absolute value in the main diagonal, this is better explained in Sect. 5). Only
DSTEQR and DSTEBZ (with abstol=2SFMIN) compute λ3, λ4 and λ5 correctly. For instance, DSTEMR delivers
λ̃3 = λ̃4 = λ̃5 = 1.0.

Example 2 The symmetric positive definite matrix

T =
⎡
⎣

1 0.15 × 10−16

0.15 × 10−16 10−32 0.15 × 10−16

0.15 × 10−16 1

⎤
⎦

defines well its eigenvalues1 which, to fifteen digits of accuracy, are λ1 = 0.955 × 10−32 and λ2 = λ3 = 1. This
time, DSTERF and DSTEDC, together with DSTEBZ, are able to compute the smallest eigenvalue accurately but
DSTEQR and DSTEMR compute λ̃1 = −2.25 × 10−34 and λ̃1 = 1.0 × 10−32, respectively.

4 From Single to Double Precision

In the following, we will use countS(x) and countD(x) to denote the computed values of count (x) in single and
double precision arithmetic, respectively. Suppose that a certain number of bisection steps have been carried out in
single precision, producing an interval [y, z] such that p = countS(y) < q = countS(z). Now, we switch to double
precision arithmetic to compute better approximations for the eigenvalues λp+1, . . . , λq . Of course, our goal is to
guarantee that the final approximations will be as accurate as those that would be produced if double precision was
used from the very beginning. To this end, we must correct possible errors introduced in the single precision steps.
Correction of the bound y will be necessary only if countD(y) > countS(y); the bound z needs to be corrected
only when countD(z) < countS(z). For instance, if we have countS(y) = 3 and countD(y) = 4, we will trust that
the four leftmost eigenvalues satisfy

λ1 ≤ λ2 ≤ λ3 ≤ λ4 < y

and to compute λ4 we must therefore find another value y such that countD(y) = 3. To simplify the presentation,
we assume that we are looking for a specific eigenvalue, the kth one, say. What we need, to start double precision
bisection steps, is an interval [y, z] such that

countD(y) < k, countD(z) ≥ k (8)

1 This matrix is scaled diagonally dominant, see [5].
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and one of these conditions may fail in practice.2 When this happens, we use an iterative procedure that updates the
values of y and z in a way that doubles the width of the interval at each step. Let [y0, z0] be the interval produced
in single precision and h = z0 − y0. If countD(y0) ≥ k, we set z1 = y0 and take tentatively y1 = z1 − 2h; if
countD(y1) < k, we have produced an interval of width 2h which satisfies (8), otherwise, if countD(y1) ≥ k, we
set z2 = y1 and take y2 = z2 − 4h. The procedure stops when we find y j such that countD(y j ) < k (at this point,
the width of the interval [y j , z j ] is 2 j h). The case countD(z0) < k is treated in a similar manner. We will refer to
this scheme as the “doubling procedure”.

For the sake of the efficiency of the mixed precision bisection algorithm, the criteria for stopping the single
precision phase should be adjusted to each case (matrix and eigenvalue). On one hand, if we stop too soon, we
will carry out bisection steps in double precision that could have been done in faster single precision; on the other
hand, too many bisection steps in single precision are a waste in two ways: firstly, because bisection steps of wrong
intervals do not produce any useful information; secondly, because for each iteration that delivers a wrong countS ,
a step of the doubling procedure will be needed in the process of retrieving an interval that satisfies (8). In the
following we will denote by p the maximum number of steps with successive points x1, x2, . . ., produced from
an initial interval [y, z] such that countS(xi ) = countD(xi ) for i = 1, . . . , p but countS(xp+1) �= countD(xp+1).
Note that in the single precision phase we are not computing countD(xi ) but we would like to predict the optimal
value p and carry out single precision bisection iterations till this point exactly. If one assumes that the eigenvalue
being looked for may be computed to full relative accuracy, then we carry out single precision bisection steps while
the following condition is verified

z − y > εS · (|y| + |z|) (9)

(this is used in [10], p. 439, for the usual bisection algorithm without mixed precision arithmetic). This optimistic
criterion should not be used unless we know that the eigenvalue is defined by the matrix entries to full relative
accuracy. If this rule is violated then it is likely that we carry out a number of single bisection steps which is
significantly larger than the optimal number p. We illustrate this with the following

Example 3 The eigenvalues of a matrix T , of order n, with diagonal entries di = 2 and off-diagonal entries ei = 1
are

λr = 4

(
sin

πr

2 (n + 1)

)2

, r = 1, . . . , n. (10)

We start with the initial interval [0, 4] to compute the smallest eigenvalue of such a tridiagonal matrix T of size
n = 100. With sixteen digits correct, the eigenvalue is

λ1 = 4
(
sin

π

202

)2 ≈ 9.674354160238702e − 004. (11)

If we carry out single precision bisection and use the stopping criterion given in (9), with εS = 2−24, 36 iterations
will be done; in Table 1 we list the bisection points xk , for k = 26, . . . , 36, along with the corresponding values of
countS(xk). For each xk , we also give, for the sake of comparison, the value countD(xk). Note, however, that the
sequence of points xk produced with double precision arithmetic would not be the same.

Since countD(xk) = countS(xk) for k ≤ 28 and countD(x29) �= countS(x29), the optimal number of single
precision bisection steps is p = 28, that is, we should have switched to double precision after computing [x28, x26],
if we could guess it, of course. Single precision has produced the interval

[x36, x26] = [9.674429311417043e−004, 9.674429893493652e−004]
2 If the arithmetic is not monotonic, both conditions may actually fail; see [7] for details.
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Table 1 The optimal number of single precision bisection steps here is p = 28

k xk countS(xk) countD(xk)

. . . . . . . . . . . .

26 9.674429893493652e−004 1 1

27 9.674131870269775e−004 0 0

28 9.674280881881714e−004 0 0

29 9.674355387687683e−004 0 1

30 9.674392640590668e−004 0 1

31 9.674411267042160e−004 0 1

32 9.674420580267906e−004 0 1

33 9.674425236880779e−004 0 1

34 9.674427565187216e−004 0 1

35 9.674428729340434e−004 0 1

36 9.674429311417043e−004 0 1

as a candidate to contain the desired eigenvalue λ1. If we now switch to double precision arithmetic and test these
bounds, we get

dcount (x26) = 1, dcount (x36) = 1

and conclude that [x36, x26] does not, in fact, contain λ1. Becausewe carried out 8 steps toomany, in single precision,
we need an equal number of steps of the ”doubling procedure”, in double precision, to get an interval [y, z] that
satisfies (8), plus the number of iterations required to refine this interval to a prescribed accuracy.

5 A Better Switching Criterion

In alternative to the criterion (9) which, as illustrated in the previous example, may allow a number of single
precision bisection steps significantly larger than the optimal p, one may use the following

z − y > εS · max {|a| , |b|} (12)

where [a, b] is the initial interval containing all eigenvalues. This is a natural criterion when absolute errors of the
order of magnitude of εS · ‖T ‖2 are to be expected in the computed eigenvalues. For matrices with entries and
eigenvalues of very different magnitudes, we may improve significantly the criteria. In [16] we have shown (see
Theorem 3.1) that the bounds for the relative errors (in the eigenvalues) due to relative perturbations in the entries
of T are proportional to the size of the diagonal entries; more precisely, if the relative perturbation in each entry is
bounded by some quantity denoted by τ , we have, for each λk and the corresponding perturbed eigenvalue λ̃k ,

∣∣λk − λ̃k
∣∣ < 2.02nτ

(
M + ∣∣̃λk

∣∣) (13)

where M denotes the second largest absolute value of the diagonal entries. Therefore, for eigenvalues of magnitude
not smaller than M the criterion (9) is quite adequate. For those which have magnitude smaller than M we should
keep bisecting, in single precision, while z− y > M ·εS . Therefore, we now replace condition (9) with the following

z − y > εS · (|y| + |z| + M) (14)
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Table 2 Positive (negative) integers account for too many (few) single precision steps

Deviation from p (optimal) λ1 λ2 λ3 λ4 λ5 λ6

Criterion (9) 2 2 19 0 0 0

Criterion (12) − 7 − 7 − 19 − 19 − 9 − 9

Criterion (14) 2 2 1 0 0 0

where, for simplicity, we neglect the multiplicative constant proportional to n (for large matrices, the final condition
should reflect the growth of the error with the size n).We illustrate the usefulness of criterion (14) with the following

Example 4 The matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 106

106 1 1
1 1 1

1 1 1
1 1 106

106 1

⎤
⎥⎥⎥⎥⎥⎥⎦

has eigenvalues (the sixteen figures displayed are correct, see Example 1 in [16])

λ1 = λ2 = − 999999. 000 000 500 0
λ3 = 0.000 000 000 0010000
λ4 = 1. 999 999 999 999000
λ5 = λ6 = 1000001.000 000 500.

The question is how accurately can we compute λ3 and λ4 with bisection. If the absolute errors are of the order of
magnitude of εS · ‖T ‖2 ≈ 6 × 10−2, then λ4 will be approximated with only two or three correct places and for
λ3 we do not even get close to approximate its order of magnitude. This is not the case because we have M = 1,
therefore λ3 and λ4 will exhibit errors of magnitude εS . The gain obtained with the new stopping criterion can be
appreciated in Table 2 where we list the deviation from the optimal number of bisection steps for each one of the
three stopping criteria

Note that both switching criteria (9) and (12) perform very poorly for the computation of λ3. Criterion (9) is
too optimistic since it assumes that λ3 can be computed with full relative accuracy and this is not the case; for this
reason, it allows 19 too many single precision steps. Criterion (12) is too pessimist and switches too soon to double
precision. Finally, criterion (14) misses the optimal value by only one step.

6 More on Perturbations of Symmetric Tridiagonals

To show that the bisection method is not able, in general, to compute every eigenvalue with low relative error,
Wilkinson [18, p. 307] used the matrix which we have also used in our Example 3 and made clear that for x such
that |x | is much smaller than the diagonal entries dk = 2, many digits of x will be inevitably lost in the subtraction
dk − x .3 If x1 and x2 are two numbers such that the computed values of the differences dk − x1 and dk − x2 are the
same, for every k = 1, . . . , n, then the computed sequence of the principal minors for T − x1 I and T − x2 I will
be the same. Note that this may happen even when x1 and x2 are quite far apart in the relative sense. Wilkinson’s
argument has to be analyzed carefully. In fact, the argument is quite right for a matrix with constant main diagonal

3 The method, as presented in [18], uses the Sturm sequence property of the leading principal minors of (T − x I ) but the discussion
of the errors in dk − x applies to the formulae (4)–(5) in the same way.
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(see also Proposition 2.3 in [16]) but there are tridiagonal symmetric matrices with diagonal entries of varying size
for which the loss of digits of x in the subtractions dk − x , for some dk such that |dk | � |x |, is quite harmless. This
is the case of the matrix

T =
⎡
⎣

1 e1 0
e1 d2 e2
0 e2 1

⎤
⎦ (15)

whose eigenvalue λ = 1 does not depend upon the entries d2, e1 and e2. Therefore, no matter how large |d2| is, the
loss of digits of x ≈ 1 in the difference d2 − x does not affect the accuracy of the computation of λ = 1. More
generally, such errors will be always harmless when computing an eigenvalue that is well defined by the matrix
entries and this does not imply that the eigenvalue can not have size that is smaller than max {|dk |}. In [16] we have
proposed a technique to derive a new bound for the errors due to the relative perturbations in the entries of bigger
size. For matrices with entries and eigenvalues of varying size, our bound may be much sharper than the classical
ones. The idea of the technique is to express as many as possible of the relative perturbations in the larger entries in
terms of a diagonal congruence (we say these entries to be “cleaned”). We recall here the technique. Referring to
the previous matrix T , suppose that |d2|, |e1| and |e2| are much bigger than unity. Then, with relative perturbations
ηi and δi , we may write

T̃ =
⎡
⎣

1 (1 + η1) e1 (1 + δ1) 0
e1 (1 + δ1) d2 (1 + η2) e2 (1 + δ2)

0 e2 (1 + δ2) 1 (1 + η3)

⎤
⎦

= X

⎡
⎣
1
(
1 + η′

1

)
e1 0

e1 d2 e2
0 e2 1

(
1 + η′

3

)

⎤
⎦

︸ ︷︷ ︸
T̂

X

where

X = diag
(
(1 + δ1) (1 + η2)

−1/2 (1 + η2)
1/2 (1 + δ2) (1 + η2)

−1/2
)

(1 + η′
1) = (1 + η1) (1 + δ1)

−2 (1 + η2)

(1 + η′
3) = (1 + η3) (1 + δ2)

−2 (1 + η2) .

On one hand, since
∥∥XT X − I

∥∥ is very close to one, each eigenvalue λ̂k of T̂ is very close (in the relative sense) to
the corresponding eigenvalue λ̃k of T̃ ; on the other hand, the absolute errors

∣∣̂λk − λk
∣∣ are all bounded by the norm

of an additive perturbation matrix which is smaller than the norm of the additive perturbation in T . Therefore, in
this case, and following our proposal in [16], we would take M = 1 (the size of the largest entry not cleaned in the
congruence transformation) to use in the stopping criterion given in (14).

Finally, we note that if, in the matrix as given in (15), |d2|, |e1| and |e2| are much smaller than unity, then it is
possible to choose the congruence transformation such that the entries equal to one are the ones to be cleaned. By
using the general procedure, fully described in [16], one may find M in each case (the largest absolute of the entries
not cleaned) to be used in criterion (14).

7 Conclusions and Future Work

We have presented the bisection algorithm for the computation of the eigenvalues of symmetric tridiagonal matrices
in a context of mixed precision arithmetic. It guarantees double precision results even if a significant number of
the initial steps is carried out in single precision. The key issue is the determination of the number of steps to carry
out in single precision before switching to double precision. In this direction, we used new error bounds for the
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eigenvalues of symmetric tridiagonal matrices and illustrated the usefulness of our bounds with numerical examples
carried with our Matlab codes.

Sharper error bounds for the eigenvalues will improve the computational efficiency of amixed precision bisection
algorithm so that they deserve further investigation. Another line of research that was not explored in this paper is
the use of mixed precision in the computation of the pivots qk(x) for the same point x . Based upon the bounds for
the errors induced by perturbations on each entry, it is possible to use double precision only for those qk(x) that
involve entries whose perturbations cause more damage to the eigenvalues accuracy.
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