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Resumo 

Um dos maiores problemas associados à substituição de vasos sanguíneos de pequeno 

diâmetro é a insuficiência de enxertos vasculares com propriedades mecânicas e biológicas 

adequadas. Embora existam enxertos vasculares sintéticos na prática clínica, estes substitutos 

apresentam trombogenicidade e são demasiado rígidos comparativamente aos vasos sanguíneos 

nativos. Uma rápida endotelização e propriedades mecânicas semelhantes aos vasos sanguíneos 

humanos são requisitos essenciais que um excerto vascular deve possuir. Neste trabalho, 

estruturas tubulares fibrosas foram produzidas por electrospinning (eTF scaffolds) e 

funcionalizadas para imobilizar tropoelastina na superfície interna, proporcionando um ambiente 

biomimético para promover a endotelização.  

A morfologia foi analisada por microscopia eletrónica de varrimento (SEM), a eficiência da 

funcionalização da superfície pela quantificação dos grupos amina (-NH2) e pela carga de 

superfície, e as propriedades mecânicas foram analisadas por testes uniaxiais à tração. A 

tropoelastina foi imobilizada a uma concentração de 20 µg/mL através dos seus grupos -NH2 nos 

eTF scaffolds activados, bem como pelos seus grupos carboxílicos (-COOH) nos scaffolds 

aminolisados, de forma a expor diferentes conformações para a ligação com as células. A 

quantidade de tropoelastina imobilizada em ambos os substratos foi quantificada através do 

método microBCA. Por último, os eTF scaffolds foram semeados com uma linha celular de células 

endoteliais da veia umbilical humana durante 7 dias para estudar a endotelização. Desta forma, a 

atividade metabólica, a proliferação celular, a síntese proteica e de VEGF, bem como a morfologia 

celular e a manutenção do fenótipo dos eTF scaffolds foram investigadas. 

Os resultados experimentais demonstraram que os eTF scaffolds possuem uma espessura 

de 240.85 ± 46.91 µm e uma superfície interna 33.55% porosa com diâmetros de fibras na ordem 

do micro ao submicro, tamanhos de poros inferiores a 23 µm e áreas de poros até 70 µm2. Os 

eTF scaffolds foram efetivamente funcionalizados através da inserção de 0.5 ± 0.04 nmol de 

grupos NH2 na superfície e pelas diferenças observadas na carga de superfície. Os eTF scaffolds 

não tratados, activados e aminolisados suportaram tensões e elongamentos mais elevados na 

direção axial do que na radial. Estes resultados obtidos são compatíveis com os valores reportados 

para os vasos sanguíneos nativos. A exposição dos grupos -COOH da tropoelastina induziu um 

aumento da atividade metabólica e crescimento das células endoteliais. Quando expostos os 

grupos -NH2, uma influência significativa na síntese proteica foi observada. Além disso, os eTF 

scaffolds promoveram a manutenção do fenótipo e a formação de uma monocamada de células 
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endoteliais na superfície após 7 dias de cultura. De um modo geral, estes resultados confirmam 

que estes eTF scaffolds biofuncionais são adequados para aplicação vascular, uma vez que 

apresentam propriedades mecânicas adequadas e uma rápida endotelização. 

Keywords: Electrospinning, Enxertos vasculares por engenharia de tecidos, Biofuncionalização, 

Tropoelastina, Propriedades mecânicas, Endotelização. 



vii 

Abstract  

One of the major problems related to small-diameter blood vessels replacement is the lack 

of vascular grafts with suitable mechanical and biological properties. Although there are synthetic 

vascular grafts in clinical use, these substitutes present thrombogenic behaviour and are too stiff 

compared to native vessels. Rapid endothelialization and matched mechanical properties are 

important functional requirements that vascular grafts should accomplish. Herein, an electrospun 

tubular fibrous (eTF) scaffold was fabricated and functionalized to immobilize tropoelastin at the 

luminal surface, providing a biomimetic environment to enhance endothelialization.  

The morphology was assessed by scanning electron microscopy, the effectiveness of 

surface functionalization by NH2 groups quantification and surface charge measurements, and the 

mechanical properties by uniaxial tensile tests. Tropoelastin was immobilized at 20 µg/mL by its -

NH2 functional groups on activated scaffolds, as well as by its -COOH functional groups on 

aminolysed scaffolds, in an attempt to expose different conformations of tropoelastin for cell 

binding. The amount of immobilized tropoelastin on both substrates was quantified by microBCA 

assay. These constructs were cultured with a cell line of human umbilical vein endothelial cells 

(HUVECs) for 7 days, to study the endothelialization of eTF scaffolds by evaluating their metabolic 

activity, proliferation, total protein synthesis, VEGF secretion, as well as cell morphology and 

phenotype maintenance. 

Our experimental characterization demonstrated that the eTF scaffolds have a thickness 

of 240.85 ± 46.91 µm and their luminal surface was 33.55 % porous mix of micro to submicro 

fibers diameters, pore sizes less than 23 µm and pore areas up to 70 µm2. The eTF scaffolds were 

successfully functionalized by the insertion of 0.5 ± 0.04 nmol/mg of NH2 groups at their surface 

and confirmed by the differences observed in surface charge. Untreated, activated and aminolysed 

scaffolds supported higher stresses and strains in axial direction rather than in radial direction. 

These values are compatible to those of native blood vessels. The exposure of tropoelastin -COOH 

groups promoted endothelial cells metabolic activity and growth, whereas when exposed its -NH2 

groups a significant influence on protein synthesis was observed. Additionally, eTF scaffolds 

promoted phenotype maintenance and endothelial cell coverage just after 7 days of culture. 

Altogether, the results confirm that biofunctional eTF scaffolds are suitable for vascular application 

since they presented adequate mechanical properties and a rapid endothelialization. 

Keywords: Electrospinning, Tissue-Engineered Vascular Graft, Biofunctionalization, Tropoelastin, 

Mechanical properties, Endothelialization.



viii 

Table of Contents 

Agradecimentos ........................................................................................................................ iii 

Resumo..................................................................................................................................... v 

Abstract................................................................................................................................... vii 

Table of Contents .................................................................................................................... viii 

List of Abreviations ................................................................................................................... xi 

List of Figures .......................................................................................................................... xiii 

List of Tables ........................................................................................................................... xvi 

List of Equations ..................................................................................................................... xvii 

CHAPTER I. General Introduction ............................................................................................... 1 

1.1 The blood vessels ....................................................................................................... 3 

1.1.1. Architecture of native blood vessels ..................................................................... 3 

1.1.2. Vascular cells ..................................................................................................... 6 

1.2 Cardiovascular diseases ............................................................................................. 7 

1.3 Functional requirements of blood vessel substitutes .................................................... 8 

1.3.1 Hemocompability of blood vessel substitutes ....................................................... 9 

1.4 Treatment modalities ............................................................................................... 11 

1.5 Tissue engineering .................................................................................................. 12 

1.6 Tissue-engineered vascular grafts strategies ............................................................. 13 

1.6.1 Cell sources..................................................................................................... 13 

1.6.2 Cell-sheet approaches ...................................................................................... 15 

1.6.3 Scaffold-based approaches .............................................................................. 15 

1.6.4 Processing techniques ..................................................................................... 19 

1.6.5 Surface modification ........................................................................................ 23 

1.7 Purpose of the work ................................................................................................ 27 

1.8 References .............................................................................................................. 29 

CHAPTER II. Materials and Methods ....................................................................................... 41 

2.1 Materials ................................................................................................................. 43 

2.1.1 Polycaprolactone ............................................................................................. 43 

2.1.2 Tropoelastin .................................................................................................... 44 

2.2 Electrospinning ....................................................................................................... 45 

2.2.2 Electrospinning parameters ............................................................................. 46 



ix 

2.2.3 Production of electrospun tubular fibrous (eTF) scaffolds .................................. 47 

2.3 Functionalization of eTF scaffolds............................................................................. 48 

2.3.1 Optimisation of surface functionalisation .......................................................... 49 

2.3.2 Amine groups (NH2) quantification .................................................................... 50 

2.4 eTF scaffolds characterization .................................................................................. 51 

2.4.1. Scanning Electron Microscopy (SEM)................................................................ 51 

2.4.2. Uniaxial tensile testing ..................................................................................... 52 

2.5 Tropoelastin immobilization ..................................................................................... 56 

2.6 Chemical characterization of the biofunctionalized eTF scaffolds............................... 57 

2.6.1. Quantification of immobilized tropoelastin......................................................... 57 

2.6.2. Surface charge properties ................................................................................ 58 

2.7 Cell biology assays .................................................................................................. 60 

2.7.1. Cell source ...................................................................................................... 60 

2.7.2. Cell culture and seeding ................................................................................... 60 

2.7.3. Metabolic activity ............................................................................................. 61 

2.7.4. Cell proliferation .............................................................................................. 62 

2.7.5. Total Protein synthesis ..................................................................................... 62 

2.7.6. Soluble VEGF quantification ............................................................................. 63 

2.7.7. Cells morphology ............................................................................................. 64 

2.7.8. Immunocytochemistry ...................................................................................... 64 

2.8 Statistical analysis ................................................................................................... 65 

2.9 References .............................................................................................................. 66 

CHAPTER III. Tubular fibrous scaffold functionalized with tropoelastin as a small-diameter vascular 

graft ....................................................................................................................................... 73 

3.1 Abstract .................................................................................................................. 75 

3.2 Introduction ............................................................................................................. 76 

3.3 Materials and methods ............................................................................................ 79 

3.3.1. Production of electrospun tubular fibrous scaffolds ........................................... 79 

3.3.2. Surface functionalization .................................................................................. 79 

3.3.3. Scaffolds characterization ................................................................................ 80 

3.3.4. Tropoelastin immobilization at luminal surface ................................................. 81 

3.3.5. Chemical characterization of biofunctionalized scaffolds ................................... 81 

3.3.6. Cell biology assays ........................................................................................... 82 



x 

3.3.7. Statistical analysis ........................................................................................... 85 

3.4 Results .................................................................................................................... 86 

3.4.1. Scaffolds characterization ................................................................................ 86 

3.4.2. Characterization of functionalized scaffolds ...................................................... 87 

3.4.3. Uniaxial tensile properties ................................................................................ 89 

3.4.4. Characterization of biofunctionalized scaffolds .................................................. 91 

3.4.5. Biological performance .................................................................................... 92 

3.5 Discussion .............................................................................................................. 98 

3.6 Conclusions .......................................................................................................... 101 

3.7 References ............................................................................................................ 101 

 CHAPTER IV. General Conclusions and Future Work ............................................................. 107 

4.1. General conclusions .............................................................................................. 109 

4.2. Future work ........................................................................................................... 110 

 

 

 

 

 

 

 



xi 

List of Abreviations 

µg Microgram 

µL Microliter 

µm Micrometer 

Pg Picogram 

Ε Tensile strain 

Σ Tensile stress 

2-IT 2-Iminothiolane 

 A 

ASA Acetylsalicylic acid 

ASCs Adipose stem cells 

 B 

BCA Bicinchoninic acid 

BSA Bovine Serum Albumin 

 C 

CABG Coronary artery bypass graft 

CAG Cysteine-Alanine-Glysine 

 D 

DES Drug Eluting Stents 

DMAP Dimethylaminopyridine 

DMEM Dulbecco´s Modified Eagle Medium 

DNA Deoxyribonucleic acid 

DPBS 
Dulbecco's Phosphate Buffered 

Saline 

dsDNA double-stranded DNA 

DTNB 5,5'-dithiobis-(2-nitrobenzoic acid 

DTT  Dithiothreitol 

 E 

E Young´s modulus 

ECM Extracellular matrix 

  

  

ECs Endothelial cells 

EDC 
1-(3-Dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride 

EDTA 
 Ethylenediaminetetraacetic 

acid 

ELISA 
Enzyme-linked Immunosorbent 

Assay 

EOCs Endothelial outgrowth cells 

EPCs Endothelial progenitor cells 

ePTFE Expanded polytetrafluoroethylene 

ESCs Embryonic stem cells 

eTF Electrospun Tubular Fibrous 

 F 

FBS Fetal Bovine Serum 

FDA Food and Drug Administration 

 G 

GAGs Glycoaminoglycans 

 H 

hiPSCs 
Human induced pluripotent stem 

cells 

HMD Hexamethylenediamine 

HUVECs 
Human Umbilical Vein Endothelial 

Cells 

PBS Phosphate Buffered Saline 

PGS Poly(glycerol sebacate 

 K 

KCL Potassium Chloride 

 M 

M Molar 



xii 

MES 
2-N-morpholino) ethanesulfonic acid 

hydrate) 

mL Milliliter 

Mm Millimeter 

mM Millimolar 

MPa Mega Pascal 

MSCs Mesenchymal stem cells 

MTS 

3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4- 

sulfophenyl)-2H-tetrazolium) 

 N 

N Newton 

NaCL Sodium Chloride 

NaOH Sodium Hydroxide 

NHS N-hydroxysulfosuccinimide 

Nm Nanometer 

Nmol/mg Nanomol per milligram 

 P 

PCAM-1 
Platelet Endothelial Cell Adhesion 

Molecule 

PCL Polycaprolactone 

PCU Polycarbonate urethane 

PDGF Platelet-derived growth factor 

PDS Polydioxanone 

PEEUU Poly(ester-urethane)urea 

PEGMA Poly(ethyleneglycol)methacrylate; 

PES Polyethersulfone 

PET Polyethylene terephthal 

PGA Polyglycolic acid 

PHVB 
Poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) 

PLA Polylactic acid 

PLCL Poly(L-lactide-co-E-caprolactone) 

PLGA Poly(lactic-co-[glycolic acid]) 

PLLA Isomer of PLA 

PU Polyurethane 

 R 

RGD arginine–glycine–aspartic acid 

rpm Revolutions per minute 

 S 

SDF-1α Stromal cell-derived factor-1α 

SEM Scanning Electron Microscopy 

SMCs Smooth muscle cells 

 T 

TEVGs Tissue-engineered Vascular Grafts 

TIPS 
Thermally Induced Phase 

Separation 

TNB 2-nitro-5-thiobenzoic acid 

 U 

UV Ultra-violet 

 V 

VEGF Vascular endothelial growth factor 



xiii 

List of Figures 

Chapter I. General Introduction 

Figure 1. 1 - Structure of an artery, illustrating the cellular and extracellular components 

distributed within the three tunics. Adapted from ref. [1]. ........................................................... 4 

Figure 1. 2 - Development of atheroclerosis. (a) A healthy artery. (b) The infiltration and migration 

of leuckocytes into the intima. (c) The migration of SMCs from the media to the intima layer and 

proliferation of intimal SMCs and ECM proteins, resulting in the formation of plaque. (d) Disruption 

of the plaque which leads to the formation of thrombus. Adapted from ref. [9]. .......................... 8 

Figure 1. 3 - The coronary artery bypass graft. The use of a non-vital vessel (A) to provide a new 

path for blood flow (B). Adapted from ref. [29]......................................................................... 11 

Figure 1. 4 - Tissue-engineered vascular grafts strategy. Adapted from ref. [35]. .................... 13 

 

Chapter II. Materials and Methods 

Figure 2. 1 - PCL chemical structure. Adapted from ref. [10]. ............................................... 43 

Figure 2. 2 - Tropoelastin structure which includes two functionally distinct regions, N and C 

terminal, separated by a bridge responsible for the mechanical coupling. Adapted from ref. [17].

 .............................................................................................................................................. 45 

Figure 2. 3 - Schematic representation of the electrospinning setup used to produce eTF 

scaffolds. ................................................................................................................................ 48 

Figure 2. 4 - Schematic representation of activation (NaOH treatment) and aminolysis (HMD 

treatment) reactions on eTF scaffolds surface. ......................................................................... 49 

Figure 2. 5 - Typical tensile specimen with an enlarged ends and reduced gauge section. Adapted 

from ref. [53]. ......................................................................................................................... 53 

Figure 2. 6 - Stress-strain curve for a ductile material. Adapted from ref. [52]. ....................... 54 

Figure 2. 7 - Specimens preparation (A) and specimens mounting (B) for uniaxial tensile testing.

 .............................................................................................................................................. 55 

Figure 2. 8 - Schematic representation of tropoelastin immobilization on activated (A) and 

aminolysed (B) eTF scaffolds surface. ..................................................................................... 56 

Figure 2. 9 - Chemical reaction for the EDC/NHS coupling. Adapted from ref. [55]. .............. 57 

Figure 2. 10 - Schematic representation of charge distribution in the zeta potential measurement. 

Adapted from ref. [58]. ........................................................................................................... 59 

file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865057
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865057
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865058
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865058
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865058
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865058
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865059
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865059
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865060
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865061
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865062
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865062
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865062
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865063
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865063
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865064
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865064
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865065
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865065
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865066
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865067
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865067
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865068
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865068
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865069
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865070
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865070


xiv 

Chapter III. Tubular fibrous scaffold functionalized with tropoelastin as a small-

diameter vascular graft 

Figure 3. 1- Electrospun tubular fibrous (eTF) scaffolds. Macrostructure (A and B) and SEM 

micrographs of the cross-section (C and D). ............................................................................ 86 

Figure 3. 2 - SEM micrographs of eTF scaffolds along axial (A) and radial (B) directions. Fibers 

morphology analysis: fiber orientation of axial and radial directions (C), fiber diameter frequency 

(D), pore size frequency (E) and pore area frequency (F). ........................................................ 87 

Figure 3. 3 - SEM micrographs of the activated (A) and aminolysed (B) surfaces. Frequency 

distribution of fibers diameter of activated (C) and aminolysed (D) surfaces. NH2 groups 

quantification on untreated, activated and aminolysed eTF scaffolds (E). Data were analyzed by the 

one-way ANOVA test, followed by the Tukey´s HSD test (p<0.05): a denotes significant differences 

compared to untreated condition and b denotes significant differences compared to activated 

condition. The data is expressed as the mean ± standard deviation. ........................................ 88 

Figure 3. 4 - Stress-Strain curves of untreated, activated and aminolysed eTF scaffolds, tested in 

dry and hydrated conditions: axial direction (A) and radial direction (B). ................................... 89 

Figure 3. 5 - Uniaxial tensile properties of untreated, activated and aminolysed eTF scaffolds 

under axial and radial directions, tested in dry (1) and hydrated (2) conditions: Young´s modulus 

(A), maximum stress (B) and strain at maximum stress (C). Data were analysed by the Krustal-

Wallis tes Wallis test, followed by the Tukey’s HSD test (p<0.01): a denotes significant differences 

compared to untreated and b denotes significant differences compared to activated condition. The 

data is expressed as median ± interquartile range. .................................................................. 90 

Figure 3. 6 - Maximum immobilization capacity of tropoelastin at the surface of activated (OH-

TE) and aminolysed (NH2-TE) eTF scaffolds. Data were analysed by the Krustal-Wallis test, followed 

by the Tukey’s HSD test (p<0.01): a denotes significant differences compared to concentration 0 

µg/mL; b denotes significant differences compared to concentration 5 µg/mL; c denotes 

significant differences compared to concentration 10 µg/mL. The data is expressed as median ± 

interquartile range. ................................................................................................................. 91 

Figure 3. 7 - Surface zeta potential of untreated, activated (OH), aminolysed (NH2) and 

tropoelastin-immobilized on activated (OH-TE) or on aminolysed (NH2-TE) eTF scaffolds along pH.

 .............................................................................................................................................. 92 

file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865071
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865071
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865072
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865072
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865072
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865073
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865073
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865073
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865073
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865073
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865073
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865074
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865074
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865075
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865075
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865075
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865075
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865075
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865075
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865076
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865076
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865076
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865076
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865076
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865076
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865077
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865077
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865077


xv 

Figure 3. 8 - Metabolic activity (A) and DNA quantification (B) of human endothelial cells seeded 

on untreated, activated (OH), aminolysed (NH2) and tropoelastin-immobilized on activated (OH-TE) 

or on aminolysed (NH2-TE) eTF scaffolds after 1, 3 and 7 days of culture. Data were analysed by 

the Krustal-Wallis test, followed by the Tukey´s HSD test (p<0.01): a denotes significant differences 

compared to the untreated condition. ...................................................................................... 94 

Figure 3. 9 - Total protein synthesis (A) and soluble VEGF production (B) human endothelial cells 

seeded on untreated, activated (OH), aminolysed (NH2) and tropoelastin-immobilized on activated 

(OH-TE) or on aminolysed (NH2-TE) eTF scaffolds after 1, 3 and 7 days of culture. Data were 

analysed by the Krustal-Wallis test, followed by the Tukey´s HSD test (p<0.01): a denotes 

significant differences compared to the untreated condition; b denotes significant differences 

compared to the activated condition; c denotes significant differences compared to the aminolysed 

condition and d denotes significant differences compared to the OH-TE condition. ................... 95 

Figure 3. 10 - Morphological analysis by SEM of human endothelial cells cultured on untreated, 

activated (OH), aminolysed (NH2) and tropoelastin-immobilized on activated (OH-TE) or on 

aminolysed (NH2-TE) eTF scaffolds surface after 1, 3 and 7 days of culture. Scale bar: 100 µm 

(250x magnification) and 10 µm (1000x magnification). .......................................................... 96 

Figure 3. 11 - Fluorescent images of human endothelial cells seeded on untreated, activated 

(OH), aminolysed (NH2) and tropoelastin immobilized on activated (OH-TE) or on aminolysed (NH2-

TE) eTF scaffolds surface after 1, 3 and 7 days of culture. Cell nuclei are stained in blue by DAPI 

and the CD31 endothelial cell marker is stained in green. Scale bar: 50 µm. ........................... 97 

file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865078
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865078
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865078
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865078
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865078
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865079
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865080
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865080
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865080
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865080
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865081
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865081
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865081
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12865081


xvi 

List of Tables 

Chapter I. General Introduction 
Table 1. 1 - Characteristics of the blood vessels. Adapted from ref. [1] ..................................... 5 

Table 1. 2 - Summary of some processing techniques, materials and cell sources explored to 

produce TEVGs ....................................................................................................................... 21 

Table 1. 3 - Summary of the surface modification strategies applied for TEVGs ...................... 24 

Chapter II. Materials and Methods 

Table 2. 1 - Electrospinning parameters tested for optimization of eTF scaffolds production ... 47 

Table 2. 2 - Concentrations and incubation times of both NaOH and HMD solutions tested for 

optimization of nanofibers surface functionalization ................................................................. 50 

Chapter III. Tubular fibrous scaffold functionalized with tropoelastin as a small-

diameter vascular graft 

Table 3. 1 - Uniaxial tensile mechanical properties: Young´s modulus and maximum stress of 

some native human blood vessels ........................................................................................... 77 

 



xvii 

List of Equations 

Chapter II. Materials and Methods 

Determination of the amine groups (NH2) (Equation 2. 1)......................................................... 51 

Determination of Tensile Stress (Equation 2. 2) ....................................................................... 53 

Determination of Tensile Strain (Equation 2. 3) ........................................................................ 53 

Determination of Young´s Modulus (Equation 2. 4) ................................................................. 54 

  

 

 

 

 

 

 

 

 

 

  

file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12374065
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12374066
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12374067
file:///C:/Users/User/Documents/5º%20ano%20-%20Tese/Word/Master%20Thesis/Master%20document/Master%20Thesis%20document.docx%23_Toc12374068


xviii 



Chapter I. General Introduction 

1 

 

 

 

 

 

 

 

 

 

 

                      CHAPTER I. 
General Introduction 

 

 

 

 

 

 

  



2 

 

 

 

 

 



Chapter I. General Introduction 

3 

Chapter I. General Introduction  

1.1  The blood vessels 

The vascular system of the human body is composed of blood vessels whose function is 

to facilitate blood distribution to and from the heart, tissues and organs. The blood vessels form a 

branched system of arteries and veins which differs in function and structural organization [1].  

An artery is a larger blood vessel which transports the oxygenated blood from the heart to 

the organs and tissues where it branches into smaller vessels, called arterioles [1]. The arterioles 

divide into tiny capillaries to distribute the blood within the organs and tissues, providing the supply 

of nutrients, oxygen and transport of CO2 and waste [2]. Afterwards, the blood leaves the capillaries, 

converging into smaller veins, called venules. The venules carry the blood to a vein, a larger blood 

vessel which is responsible for conducting the blood back to the heart [1,2]. 

1.1.1. Architecture of native blood vessels 

Structurally, both arteries and veins have a concentric layered structure and are composed 

of three distinct tissue layers called tunics. Starting from the inner layer to the outer, it is possible 

to identify the tunica intima, the tunica media and the tunica adventitia. These layers present 

different cellular and protein composition, having specific roles in the maintenance of the normal 

vascular function [1,3]. 

Concerning the vascular wall composition, collagen is the load bearing protein which 

establishes the structural basis of the vessels and, thus, provides strength and flexibility to the 

vessel. Along with collagen, elastin is also an important element of the vascular walls since it 

provides resilience and passive elastic recoil without energy input [4]. The following Figure 1. 1 

represents the structure and characteristics of an artery. 

The tunica intima, or tunica interna, is composed of the endothelium, the basement 

membrane and the connective tissue. The endothelium consists of a single layer of endothelial 

cells (ECs) and is the layer lining the vascular wall. Next to the endothelium, the basement 

membrane, or basal lamina, is a thin extracellular layer composed mainly of collagen, 

proteoglycans and glycoproteins. This membrane binds the endothelium to the subendothelial layer 

which consists of loose connective tissue, where smooth muscle cells (SMCs) can be present [1]. 
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The tunica media is the intermediate layer of the vessel wall. This layer consists of 

circumferentially organized layers of SMCs that are responsible for the contractile function of the 

vessel [1,3]. Elastin, arranged in circular concentric layers, reticular fibers, and proteoglycans are 

interposed between the SMCs in the tunica media [1]. These components provide strength to the 

vessel and act as effectors of vascular tone [2].  

The tunica adventitia is a considerable sheath of connective tissue composed mainly by 

longitudinally arranged collagenous fibers containing fibroblasts and perivascular nerve cells, that 

provides rigidity to the vessel walls. The outer layers of the tunica adventitia are found with the 

surrounding connective tissue outside the vessel in order to hold it in place [1,3].  

Both arteries and veins can be distinguished by the composition and thickness of the 

vascular wall, as suggested in the Table 1. 1. For instance, arteries with diameter superior of 10 

mm are called elastic arteries because they are composed of multiple sheets of elastin in their 

walls, which allow them to stretch and recoil without permanent deformation. Additionally, the 

medium arteries display lower diameters and are known as muscular arteries due to the higher 

content of SMCs in comparison with elastin in the middle layer [1]. These arteries present two 

additional layers, the internal and external elastic membrane, which separate the tunica intima and 

media, and the tunica media and adventitia, respectively, to provide elasticity to the vessel, as 

illustrated in Table 1. 1 [1,3]. In contrast, the vascular wall layers of veins are more similar and 

thinner than arteries. For small vessels as arterioles and venules, the vascular wall is composed of 

Figure 1. 1 - Structure of an artery, illustrating the cellular and extracellular components distributed within 

the three tunics. Adapted from ref. [1]. 
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few layers of SMCs, while in capillaries the structure of the layers might be less obvious or absent 

[2,3]. 

Table 1. 1 - Characteristics of the blood vessels. Adapted from ref. [1] 

Blood Vessels Diameter 
Tunicas composition 

Intima Media Adventitia 

A
rt

e
ri

e
s 

Large 
Artery 

>10 mm 
Endothelium 

Connective tissue 
SMCs 

SMCs 
Elastic lamellae 

Connective 
tissue 

Elastic fibers 

Medium 
artery 

2-10 mm 

Endothelium 
Connective tissue 

SMCs 
Internal elastic 

membrane 

SMCs 
Collagen fibers 
External elastic 

membrane 

Connective 
tissue 

Some elastic 
fibers 

Arteriole 10-100 µm 
Endothelium 

Connective tissue 
SMCs 

SMCs (1-2 cell 
layers) 

Unclear sheet of 
connective 

tissue 

Capillary 4-10 µm Endothelium None None 

V
e

in
s 

Large vein >10 mm 
Endothelium 

Connective tissue 
SMCs 

SMCs 
Collagen fibers 

Connective 
tissue 

Some elastic 
fibers 
SMCs 

Medium 
vein 

1-10 mm 
Endothelium 

SMCs 
Collagen fibers 

SMCs 
Collagen fibers 

Connective 
tissue 

Some elastic 
fibers 

Venule 50-100 µm Endothelium 
SMCs (1-2 cell 

layers) 

Connective 
tissue 

Some elastic 
fibers 

Postcapillary 
venule 

10-50 µm 
Endothelium 

Pericytes 
None None 
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1.1.2. Vascular cells 

The endothelium is the major component of the tunica intima which is formed by a 

continuous layer of flattened, elongated and polygonally shaped ECs that are aligned in the direction 

of the blood flow. These cells play an important role in blood homeostasis and participate in the 

structural and functional integrity of the vascular wall [1]. Moreover, ECs are responsible for 

maintaining a selective permeability barrier which allows the movement of small and large 

molecules from the blood to the tissues and vice versa [2,5]. 

One of the most important properties of the vessels is the presence of a non-thrombogenic 

barrier between blood platelets and subendothelial tissue. The maintenance of this barrier is 

achieved by the production of anticoagulants (e.g. thrombomodulin), agents that prevent 

coagulation, and anti-thrombogenic substances (e.g. prostacyclin), agents that prevent or interfere 

with platelet aggregation and formation of clots [1]. ECs regulate the expression of binding sites for 

anticoagulant and anti-thrombogenic factors at cell surface, maintaining the blood fluidity and 

controlling the activity of anticoagulants pathways, under physiological conditions. Upon vascular 

injury, these anticoagulant mechanisms are interrupted and the procoagulant pathways are 

induced to produce prothrombogenic agents (e.g. Von Willebrand factor) promoting clot formation 

to restore vascular integrity [6]. 

The endothelium is also important in the modulation of blood flow and vascular resistance. 

ECs secrete and uptake several vasoactive substances, such as nitric oxide (NO), endothelin and 

angiotensin II, in response to physical stimuli which induce constriction and dilation, regulating the 

blood flow [6]. Vascular ECs also regulate the SMCs growth not only by the synthesis of several 

stimulating growth factors as platelet-derived growth factor (PDGF) but also by the synthesis of 

inhibiting growth factors as heparin. At the luminal surface, ECs express a variety of surface 

adhesion molecules and receptors crucial to regulate the immune responses by controlling the 

interaction between lymphocytes and endothelial surface. The maintenance of extracellular matrix 

(ECM) is achieved by the synthesis of type IV collagen, laminin and proteoglycans [1,5]. 

The mechanical properties of native arteries rely on the presence of contractile vascular 

SMCs, elastin, collagen and proteoglycans within the tunica media. SMCs respond to stimuli from 

the ECs and cytokines from the blood, contracting or dilating [7]. The shear stresses produced 

between the blood flow and endothelium increase the production of NO by ECs. Once synthetized, 

NO diffuses to the tunica media to induce the relaxation of SMCs and, consequently, the vessel 

dilation. To cause vasoconstriction, endothelins are also produced by ECs to reduce the luminal 
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diameter of the vessel and increase vascular resistance, promoting the contraction of SMCs and, 

consequently, the vessel contraction [1]. SMCs are primarily responsible for the ECM proteins 

synthesis, namely, elastin and collagen, in this layer. Elastin confers elasticity, as well as act as 

regulator of SMCs proliferation, whereas the radially aligned collagen fibers provide appropriate 

stiffness to withstand the physiological stress. Moreover, proteoglycans, such as heparan sulfate, 

chondroitin sulfate and dermatan sulfate, play a crucial role on the compressibility of the artery 

wall [7]. 

Tunica adventitia participates in vessel structure and function, mediated mainly by the 

presence of adventitial fibroblasts which are also responsible for collagen synthesis [7]. Particularly, 

this layer influences growth and repair of the vessel wall and mediates communication between 

ECs and SMCs. Also, lymphatic vessels and nerves can be found to control the lumen size and 

vascular remodelling, as well as populations of macrophages and mast cells mediate immune 

response [8]. Incorporated within the media and the adventitia layers can be found the vasa 

vasorum which is a network of blood vessels responsible for oxygen and nutrients supply to cells 

present in both layers [7]. 

1.2  Cardiovascular diseases 

Diseases of the cardiovascular system are the major causes of morbidity and mortality 

worldwide. Coronary heart disease, also known as ischemic heart disease, is the most common 

type of vascular disease which is mainly caused by atherosclerotic changes in the walls of coronary 

arteries. This promotes the artery occlusion and, consequently, the restriction to the blood flow and 

oxygen supply to the cardiac muscle [1]. 

Atherosclerosis develops primarily in the tunica intima of blood vessels and is responsible 

for functional and structural changes in the vessel wall (Figure 1. 2) [9]. In its early stage, the 

damaged endothelium has increased permeability to the circulating low-density lipoproteins (LDL, 

responsible for cholesterol transport), ECM proteins and cells such as blood leukocytes and 

monocytes [5,9]. These molecules can penetrate and become entrapped within the tunica intima. 

Also, as SMCs and fibroblasts migrate to the lesion to replace dead ECs, the resultant layer of 

fibrous connective tissue becomes thicker which leads to the development of atheromatous 

plaques [1,10]. As these plaques progress, the integrity of endothelium is lost, narrowing the 

arteries enough to impair the blood flow. Eventually, the disruption of the plaques may occur, 

resulting in the formation of thrombus and, consequently, in the artery obstruction which can cause 
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severe damages on the patient. Alternatively, the plaque can break off and travel with the 

bloodstream as an embolus until it blocks a smaller artery more distant [1]. 

 

 

 

 

 

 

 

The endothelium dysfunction may also lead to the reduction of the artery compliance. 

Compliance is the ability of an artery to expand, when the blood is pumped through it from the 

heart, and then to recoil after the blood passage, facilitating the blood flow [1]. In atherosclerosis, 

the compliance is reduced increasing the pressure and the resistance within the vessel [1,10].  

1.3  Functional requirements of blood vessel substitutes 

There are several requirements that a vascular graft needs to meet, aiming to be 

considered ideal for blood vessel substitute. It should be biocompatible, non-immunogenic, non-

thrombogenic and induce an acceptable healing response. Additionally, it should possess suitable 

mechanical properties, such as physiological compliance, and the ability to withstand the cyclic 

hemodynamic stress without failure [11–13]. 

Thrombogenic complications are in the short-term the primary cause of graft failure [13]. 

Since the endothelium contacts the blood, it is required a vessel substitute with a confluent 

endothelium, as well as vasoactive properties to provide an antithrombotic lumen [11,14]. As such, 

ECs must adhere to the graft to allow the formation of an anti-thrombogenic luminal continuous 

Figure 1. 2 - Development of atheroclerosis. (a) A healthy artery. (b) The infiltration and migration of 

leuckocytes into the intima. (c) The migration of SMCs from the media to the intima layer and proliferation 

of intimal SMCs and ECM proteins, resulting in the formation of plaque. (d) Disruption of the plaque which 

leads to the formation of thrombus. Adapted from ref. [9]. 
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surface [11]. A rapid endothelialization plays a critical role in reducing thrombosis and keeping 

long-term patency due to the anti-inflammatory and anticoagulation functions of the ECs [12].  

The graft should mimic the ECM morphology with suitable pore size, porosity and 

interconnectivity in order to allow cells infiltration, adhesion, proliferation and synthesis of their own 

ECM [12,15]. Regarding the pore size, larger pores may induce excessive fibrous tissue infiltration 

and lead to blood leakage, compromising the endothelial coverage and the mechanical properties 

[13]. On the other hand, small pores may obstruct the cell infiltration and migration, particularly, 

for SMCs colonization in the outer part of the vessel [15]. Furthermore, the vascular graft surface 

should allow cells to resist to the detachment caused by the high shear forces resulting from the 

blood flow and turbulence [11]. 

An important aspect to be considered is the mechanical properties of the vascular graft. It 

should possess structural and mechanical properties similar to the native blood vessels [15]. The 

blood vessel substitute requires a compliant material since the compliance mismatch is the basis 

of intimal hyperplasia [11]. The compliance mismatch between the native vessel and the vascular 

graft can trigger the excessive proliferation of SMCs and fibroblasts, as well as the ECM deposition 

in the vessel wall, leading to lumen narrowing [13]. Furthermore, the vascular graft should provide 

mechanical support to withstand the physiological conditions of native blood vessels over an 

extended period of time, without experiencing permanent deformation [15,16]. To mimic the native 

tissue, the engineered vascular grafts should possess burst strength higher than 1,700 mmHg to 

support the systemic arterial pressures. In addition to burst strength, the vascular graft must be 

fatigue resistance to cyclic physiological loading without noticeable dilation [17]. In fact, it should 

allow contractility but not undergoing plastic behaviour since it could result in aneurysm formation 

upon long-term implantation [11,15]. Additionally, the vascular graft must present appropriate 

elastic moduli to allow suture retention strength comparable with physiological values and suitable 

degradation kinetics properties to allow the regeneration of the vascular tissue [14,15].  

1.3.1 Hemocompability of blood vessel substitutes 

Since the hemocompatibility is one of the major requirements of blood vessel substitutes, 

it is crucial to understand the fundamental mechanism that induces thrombosis. When implanted, 

the vascular graft should not adversely interact, activate and not damaged any blood components 

[18]. 
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The blood is composed of 55% plasma, 44% erythrocytes and 1% leucocytes and platelets. 

The blood plasma contains high amounts of proteins, such as albumin, coagulation factors and 

immunoglobulins. The erythrocytes are the most abundant blood cells which function is to transport 

the oxygen to all tissues. These cells are sensitive to rupture when exposed to exterior shear stress 

and changes in osmotic pressure. Platelets are the second abundant cell type in the blood and are 

the cellular component responsible for the coagulation cascade. These cells can rapidly recognize 

foreign surfaces and trigger the blood coagulation. Besides these cell types, monocytes and 

granulocytes are also present in the blood. These immune cells can be rapidly activated upon 

recognition of a foreign material to neutralize it [18].  

Once the biomaterial is in contact with the blood, several reactions occur at the surface 

that are crucial for tissue replacement, determining the success or failure of the implant [19]. The 

contact of the biomaterial with the blood induces a cellular response mediated by the platelets. 

The cells are recruited to the implant surface where they might adhere, spread, release active 

compounds and recruit other cells to the implant site [20]. Consequently, an instantaneous 

adsorption of plasma proteins (e.g., fibrinogen, fibronectin, vitronectin, albumin) may occur to the 

biomaterial surface, triggering the activation of the coagulation cascade and of the complement 

system [21–23].  

The activation of the coagulation cascade involves two enzyme based pathways, the 

extrinsic and intrinsic, leading to the thrombus formation. The extrinsic pathway is initiated when 

the blood is exposed to the damaged endothelium. The intrinsic pathway is activated by the contact 

between the implanted materials and the blood, followed by conformational changes in the plasma 

proteins. Both pathways converge, eventually, into a common pathway where the thrombin 

catalyses the conversion of fibrinogen to fibrin that forms crosslinked fibrils, resulting in a fibrin 

clot. The complement system consists of more than 20 proteins circulating in the blood and, when 

a foreign surface is in contact with blood, the complement factors are sequentially activated, 

leading to the activation of platelets, coagulation enzymes and inflammation through leukocyte 

activation [24]. The thrombogenicity of a blood vessel substitute is determined by the extent of the 

activation of these pathways [25].  

The protein adsorption depends on the biomaterial surface chemical composition and 

topography, affecting the blood-material interactions [26]. In particular, hydrophobic surfaces have 

an increased complement activation in comparison to the hydrophilic surfaces [27]. Since the 

adhesion and activation of platelets is prevented by a healthy endothelial monolayer, a rapid 
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endothelialization is required to develop a EC layer on the material´s surface, preventing the 

thrombus formation [28]. 

1.4  Treatment modalities 

In the early stages of plaque deposition in the lumen of blood vessels, medication can be 

used to prevent the progression of plaque formation. However, in many cases, the blood flow is 

compromised, and the use of therapeutic drugs may be no longer effective [29,30]. For severe 

lesions in the vessel walls, other treatments must be considered. When the plaque deposition is in 

the early stages but causing thoracic pain, angioplasty is performed. In this treatment, a catheter 

is inserted into the vessel at the narrowing point and a ballon is inflated to expand the vessel. The 

blocked artery is opened and begin to heal as soon as the ballon is deflated. However, if the plaque 

progression causes severe thoracic pain, a stent is normally included in the angioplasty procedure 

to prevent the collapse of the vessel [29,30].  

In plaque occlusion cases, surgical procedure is required, particularly, when there is a 

significant narrowing of the left main coronary artery or multiple areas of coronary artery blockage 

[29,30]. This procedure, called coronary artery bypass graft (CABG) surgery, uses a non-vital 

superficial vessel from another part of the body or a synthetic vessel to insert in the blocked area 

to restore the blood flow in the coronary artery [29]. The following Figure 1. 3 illustrates the 

alternative blood flow created by the CABG surgery. 

 

 

 

 

 

 

In CABG surgery, the surgeon uses a portion of a healthy vessel (either a muscular artery 

or a muscular vein) from the leg, chest or arm [29]. The most commonly used vessels for bypass 

surgery are the saphenous vein from the leg, the internal mammary artery from the chest and the 

Figure 1. 3 - The coronary artery bypass graft. The use of a non-vital vessel (A) to provide a new path for 

blood flow (B). Adapted from ref. [29]. 
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radial artery from the arm. Although the saphenous vein is preferred than other vessels due to its 

easily surgical access, this vessel is more prone to intimal hyperplasia, aneurysm and 

atherosclerosis [30]. In contrast, the internal mammary artery exhibits greater elasticity, the ability 

to vasoregulate and is less prone to atherosclerosis than the other vessels. Also, the internal 

mammary artery demonstrates superior patency comparing to the saphenous vein [31]. 

These biological grafts are suitable replacements because they are flexible, viable, non-

thrombogenic, biocompatible and have adequate patency. Therefore, autologous substitutes are 

considered the gold standard in CABG surgery. However, the limited availability of non-affected 

autologous grafts in patients with vascular diseases may limit their use. This is particularly frequent 

in patients subjected to previous surgery or by the anatomical variability [32,33]. As alternative 

substitutes, allografts (donor/cadaveric) and xenografts (from bovine or porcine pulmonary valve 

conduit) can be also used, but their performance may be compromised by the potential 

immunogenic reaction [33]. 

Synthetic vascular grafts have emerged as commercial alternatives to the autologous 

vessels [33]. Currently, there are two clinically available synthetic vascular grafts: polyethylene 

terephthalate (PET) and expanded polytetrafluoroethylene (ePTFE) [31]. These non-degradable 

materials have been extensively used as medium and large diameter vessel replacement (ø > 6 

mm) with reasonable success. However, when they are applied to small-diameter vessels (ø < 6 

mm), such as the coronary artery, these grafts tend to fail, producing low patency rates. This occurs 

because the large diameter vessels are subject to higher flows and less resistance than small 

diameter vessels. Furthermore, the low blood flow and high shear stresses involved in small-

diameter vessels make the synthetic graft more prone to thrombus formation and intimal 

hyperplasia [29,32]. In fact, synthetic surfaces display a thrombogenic behaviour and cause 

immune reaction, resulting in chronic inflammation. Because these polymers are stiffer, this also 

leads to a compliance mismatch between the rigid synthetic conduits and the native elastic vessels, 

and, consequently, cause intimal hyperplasia [31]. Therefore, an ideal small-diameter vascular 

graft for these situations is currently not available. 

1.5  Tissue engineering 

Tissue engineering is a promising alternative for the creation of vascular grafts. This 

approach combines the principles of engineering and life sciences, aiming for the creation of tissue 

substitutes. Generally, the tissue engineering approach relies on the seeding or encapsulation of 

cells, followed by culture of cells under defined in vitro conditions in scaffolds fabricated from 
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biodegradable synthetic or natural polymer [34]. The scaffold provides a temporary biomechanical 

structure for cells in culture to produce their own ECM, while the polymer is degrading, which 

facilitated the production of ECM, allowing the gradual creation of the intended tissue [32].  

Functional tissue-engineered vascular grafts (TEVGs) were already extensively investigated. 

The cells are harvested from the patient and expanded in vitro, followed by their seeding onto a 

polymeric tubular scaffold. The construct can be placed in a bioreactor to mature the engineered 

vessel and, then, be implanted into the patient, replacing the damaged blood vessel (Figure 1. 4) 

[35]. These tubular constructs combined with viable cells represent an attractive potential solution 

due to their ability to grow and remodel in vitro, avoiding the need for autograft surgery [33].  

 

 

1.6  Tissue-engineered vascular grafts strategies 

Several strategies have been applied to develop functional TEVGs, from cell-sheet to scaffold-

based approaches, to address the vascular grafts needs. Although some of these strategies have 

already reached the clinical studies, the searching for an ideal small-diameter vascular graft is still 

underway. Aiming to create a vascular graft, a balance between the advantages and limitations of 

the current approaches should be considered, as well as the most appropriate cells, materials and 

processing methods.  

1.6.1 Cell sources  

Several different types of cells were previously considered for the development of TEVGs. 

There are two main groups of cells sources to obtain functional TEVGs, autologous vascular cells 

and stem cells. Vascular cells possess several physiologic functions in vivo. ECs are important in 

maintaining a barrier between the blood and the vessel wall, and in regulating the inflammation 

and thrombosis [36]. Currently, ECs are isolated from human tissue, such as umbilical cord vein 

and human aortic, being in a differentiated and mature state [37,38]. However, the isolation of 

Figure 1. 4 - Tissue-engineered vascular grafts strategy. Adapted from ref. [35]. 
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large number of ECs for expansion is limited in this source, as well as their capacity of regeneration. 

Besides, the vascular endothelium is plastic in nature, but the phenotypic plasticity of ECs is 

limited, losing the phenotypic marker expression in vitro [36]. In addition, SMCs, isolated from 

human tissues, have been also applied in TEVGs to develop functional vascular grafts with 

mechanical integrity [14].  

Endothelial progenitor cells (EPCs) were used to overcome the limitations of using ECs. 

These cells represent a less invasive cell source that can be isolated from peripheral blood or 

umbilical cord blood [38]. EPCs can be differentiated to an endothelial-like phenotype, promoting 

the vascularization in many pathophysiological situations [39,40]. Among EPCs, endothelial 

outgrowth cells (EOCs) have been studied due to their easy isolation from a patient blood sample, 

as well as their high proliferation capacity. These cells are expanded from circulating EPCs, 

providing a convenient source of autologous ECs. EOCs have been demonstrating an uniform 

expression of endothelial cell markers and a typical endothelial cell morphology [41]. 

Alternatively, stem cells were explored as a potential cell source for tissue engineering. 

Human embryonic stem cells (hESCs) are a population of cells that can be obtained from the inner 

cell mass of blastocyst-stage embryos, having the ability to proliferate indefinitely in culture [42]. 

Moreover, providing the right biochemical factors, it is possible to stimulate the hESCs 

differentiation into vascular ECs [42] and SMCs [43]. Despite their proliferative capacity and 

pluripotency, the source of this type of cells present many ethical concerns [42]. Alternatively, 

human induced pluripotent stem cells (hiPSCs) can be obtained from the patient´s own somatic 

cells and differentiated into every cell type of the body. As such, it is possible to obtain ECs derived 

from hiPSCs [36], as well as vascular SMCs [44], displaying the characteristics of primary ECs and 

SMCs. This source has a similar potential to hESCs without the ethical constraints and in 

autologous context avoids the immunogenic issues of hESCs. 

Adult mesenchymal stem cells (MSCs) can be isolated from the patient´s own tissues, 

being also an alternative to hESCs. MSCs can be isolated from bone marrow, adipose tissue and 

they have the ability to self-renew indefinitely and to differentiate into mature cells in specific 

conditions [45]. The use of this type of cells is less invasive than harvesting vascular cells from 

autologous blood vessels. In many cases, patients may not have suitable blood vessels to harvest 

the cells due to a pre-existing vascular disease or the vessel use in previous procedures, which 

makes the stem cells a reliable and promisor cell source. These cells have the ability to differentiate 

into ECs and SMCs in vitro and in vivo, under specific stimulation. Additionally, MSCs present good 
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plasticity and play an important role in vascularization and angiogenesis [46]. However, the 

advanced patient age, the availability of cells from this source may be limited [47]. As an alternative 

to MSCs, adipose-derived stem cells (ASCs), obtained from the adipose tissue, can be easily 

isolated, representing a viable alternative to MSCs. ASCs can differentiate into vascular cells, 

acquiring several endothelial-like characteristics when exposed to mechanical stimuli and to a 

modified culture environment [47]. 

1.6.2 Cell-sheet approaches 

Cell sheet self-assembly is a cell-based approach towards developing a TEVG, without the 

need of exogeneous materials. This strategy allows the production of an intact sheet of cells without 

enzymatic digestion, allowing the preservation of cell-to-cell junction proteins and ECM. Since the 

cell sheets must be detached from the culture flask without excessive mechanical stress, a 

temperature-responsive substrate can be used. Therefore, the cell layer is easily harvest from the 

substrate, depending on the temperature, which avoids the use of external excessive stresses [48]. 

L'Heureux et al., [49] constructed vascular grafts based on cell-sheet self-assembly using 

fibroblasts isolated from patients who had undergone vascular bypass surgery. These cell sheets 

were produced, and, after their detachment, they were rolled around a tubular mandrel and 

cultured for an extended period to develop the tubular construct. These novel grafts were studied 

in vivo in short-term in canine model and in long-term in rats, presenting non-immunogenic 

properties and appropriate mechanical support. These encouraging findings resulted in early stage 

of clinical trials of these vascular grafts in six patients, demonstrating to be a feasible approach to 

use in vascular tissue engineering [50]. Despite the advantages achieved, this is considered a time-

consuming strategy since it is required a long production time. Additionally, the ability to produce 

ECM in vitro differs between different cell types, as well as between different donors [51]. 

1.6.3 Scaffold-based approaches 

The scaffold is one of the most critical components in tissue engineering because it must 

provide a temporary structure for tissue regeneration [15]. The development of scaffolds with 

suitable mechanical, structural and biological properties for vascular applications has been 

explored using different approaches. 

1.6.3.1 Decellularized extracellular matrix 
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Decellularized extracellular matrix is an attractive approach for the creation of small-

diameter vascular substitutes. The decellularization process consists of the removal of antigenic 

cellular material from the tissue, using a range of chemical agents. The use of decellularized natural 

matrices in tissue engineering takes advantage of the structure and mechanical performance of 

natural tissue ECM while avoiding any adverse immunological reactions due to its origin [52].  

Olausson et al., [53] conducted a clinical study in a child who presented a vein obstruction 

which was successfully treated with a tissue-engineered vascular graft. A vein segment, harvested 

from a donor, was decellularized and, subsequently, recellularized with endothelial and smooth 

muscle cells differentiated from stem cells. However, the decellularization process may 

compromise the structure of the vessel matrix and it may remove important ECM components 

such as elastin, leading to altered mechanical properties [54]. Although there are studies which 

combine the decellularization approach with other processing techniques to obtain more robust 

scaffolds [54], the time required to prepare these grafts, their cost and practicality limit their use 

in the health-care market. 

1.6.3.2 Natural polymer-based scaffolds 

The main natural polymers explored so far are collagen and elastin due to their presence 

in the native blood vessels. Tubular scaffolds prepared by blends of collagen and elastin have been 

produced, promoting a confluent monolayer of SMCs after 14 days [32,55]. These constructs may 

also benefit from suitable mechanical properties which may resemble those of native vascular 

tissues.  

 Chitosan is a natural polymer which presents structural similarity to 

glycosaminoglycans, the main component of the ECM. It has been used in TEVGs due to its 

biocompatibility and biodegradability [56,57]. Along with chitosan, gelatin, a natural polymer 

derived from collagen, was also explored due to its biological properties. Elsayed et al., [58] 

developed a scaffold made of only gelatin to be used as tunica-media equivalent. This natural 

scaffold achieved values of suture retention strength close to the ones of saphenous vein. Also, it 

promoted SMCs adhesion, proliferation, elongation along the fibers and migration through the 

scaffold. 

Hyaluronic acid, a polymer present in the natural ECM, has been also explored because it 

promotes the adhesion and proliferation of ECs [59]. In addition, silk-fibroin was investigated in 

TEVG because of its mechanical properties, biocompatibility and slow degradation in vivo. In 
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particular, Lovett et al., [60] developed a biological construct made of silk fibroin cultured with both 

ECs and SMCs, resulting in enhanced non-thrombogenicity and mechanical properties compatible 

with those of rat aorta.  

Hydrogels are also considered as valid substrates for the development of TEVG products 

due to the use of a natural origin polymers, inducing cell spreading and binding to ECM 

components. These structures aim to mimic the native vessel structure by embedding cells in gels 

with a solubilized protein matrix, such as fibrin and collagen [61,62]. Although some work has 

been developed on that direction, the scaffolds produced only by these natural polymers may not 

present the required mechanical properties needed for functional and patent vascular grafts.  

1.6.3.3 Synthetic polymer-based scaffolds 

Scaffolds made of synthetic biodegradable polymers have been commonly employed in 

the development of TEVGs owing to their easy processing, to control dimensions, degradation and 

mechanical properties. Furthermore, they may be biocompatible and can be easily processed by 

a number of different techniques [15,63]. 

Niklason et al., [14] produced a tubular scaffold made of polyglycolic acid (PGA) sheets 

seeded with SMCs from bovine aorta. This construct was developed under conditions of pulsatile 

radial stress by a bioreactor for 8 weeks and, then, seeded with ECs in the luminal side. The results 

obtained demonstrated suitable biological response with enhanced collagen synthesis, burst 

pressure strength and mechanical integrity. However, this polymer exhibits rapid degradation which 

may compromise the stability of the construct for a sufficient time [64]. In contrast, polylactic acid 

(PLA) exhibits slower degradation times, but it is intrinsically very stiff with poor flexibility [23]. 

Particularly, it was reported that electrospun vascular scaffolds made of PLA collapsed when placed 

in a bioreactor system under physiological conditions [33]. 

Polycaprolactone (PCL) is often proposed for vascular applications since it has slow 

degradation rates and suitable mechanical properties as tensile and high elongation properties, 

crucial to withstand the physiological stress and elasticity  [63]. Pektok et al., [65] studied the in 

vivo performance of PCL tubular scaffolds in rats for 6 months, showing slow degradation times 

and better healing properties when compared to ePTFE grafts. Lately, Valence et al., [66] 

performed a long-term in vivo experiment with these PCL scaffolds for up to 18 months, which 

demonstrated suitable patency and rapid endothelialization. Nevertheless, evidences of 
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calcification were reported after 6 months, suggesting that more long-term in vivo experiments of 

TEVGs should be conducted to give more information about their long-term responses. 

Searching for an ideal scaffold, these polyesters are often combined with each other to 

provide the mechanical integrity and degradation rate similar to native blood vessels. For example, 

the copolymer composed of PLLA and poly(lactic-co-[glycolic acid]) (PLGA) presented an enhanced 

stability for vasculature formation [67]. Poly(L-lactide-co-E-caprolactone) (PLCL) is another 

copolymer proposed in vascular applications due to its inherent elasticity and flexibility, and 

tailorable degradation properties [68]. Therefore, PLLA has been blended with PLCL to provide 

adequate elastic properties and structural integrity [23]. Shin´oka et al., [69] produced a tubular 

scaffold made of PLCL reinforced with PGA that was pre-seeded with autologous bone marrow 

cells. These TEVGs were tested in clinical trials for larger-diameter blood vessels replacement in 

23 patients, demonstrating no evidences of aneurysm formation or calcification after a follow-up 

time of 32 months. Other study conducted by Shalumon et al., [70] produced a tubular scaffold 

with an inner layer of PLA aligned fibers for ECs adhesion and a randomly organized outer layer 

composed of a mixture of PLA-PCL for SMCs infiltration. This strategy resulted in a bilayered tubular 

scaffold with enhanced mechanical response, ECs organization and SMCs proliferation, mimicking 

the native morphology of blood vessels. A similar approach was explored by Vaz et al., [71] where, 

in contrast, aligned PLA fibers were electrospun in the outer layer and random PCL fibers in the 

inner layer to construct a hierarchical scaffold with adequate mechanical and biological properties 

for blood vessel substitutes.  

Elastic polymers were also explored in vascular tissue engineering such as polyurethanes 

(PUs) [11] and their derivates, e.g. poly(ester-urethane)urea (PEUU) [15] due to their enhanced 

tensile properties, as well as their biocompatibility. Mi et al., [72] developed a tubular scaffold 

made of a blend of PU and PCL to mimic the mechanical properties of elastin and collagen in the 

native vessels, respectively. This construct presented adequate compliance, suture retention 

strength and burst pressure strength, promoting ECs adhesion. In addition to PUs, it has been 

reported the use of fast-degrading polymers such as poly(glycerol sebacate) (PGS) and 

polydioxanone (PDS) to allow a rapid remodelling, reducing the time at which the tissue is exposed 

to the material [73,74]. Because PCL degrades slower, these polymers have been frequently 

combined with PCL to develop vascular grafts able to maintain the scaffold integrity with a 

sufficiently long degradation time [74,75]. 

1.6.3.4 Blends of natural and synthetic polymers  
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Aiming to provide enhanced mechanical properties and biological functionality, synthetic 

and natural polymers can be blended. Jin et al., [33] developed a composite scaffold composed of 

PCL and collagen to provide sufficient biomechanical properties and to support ECs and SMCs 

adhesion and proliferation. The addition of collagen to PCL resulted in increased yield tensile 

strength and burst pressure strength, presenting biomechanical properties comparable to native 

vessels and long-term stability in vitro. Jeong et al., [16] also reported the production of a scaffold 

composed of PLGA and collagen to provide a biomimetic environment to ECs and SMCs under 

pulsatile perfusion conditions. The results showed suitable mechanical properties and stability, 

inducing cellular alignment and the maintenance of the cell phenotype. Other examples of these 

blended scaffolds include PCL/chitosan [76] and PCL/tropoelastin [31]. In the latter, Wise et al., 

[31] produced a vascular graft which comprised a luminal layer of only tropoelastin and an outer 

layer of a mixture of tropoelastin and PCL to mimic the mechanical properties of the human internal 

mammary artery. The addition of tropoelastin to the vascular graft resulted in reduced 

thrombogenicity due to lower platelets adhesion when compared to the constructs containing only 

PCL.  

Multi-layered vascular grafts were also explored to mimic the native architecture of the 

blood vessels, combining different materials with different cells types [56,77]. A study conducted 

by Mcclure et al., [78] focused on designing a three-layered scaffold composed of PCL, collagen 

and elastin to mimic as close as possible the native artery. These polymers were electrospun 

sequentially, using different polymer ratios and unique polymer blends, to develop the inner, media 

and outer layers. This preliminary study demonstrated that by tuning the different ratios of these 

blends, it was possible to obtain different fiber diameters, as well as suture retention and 

compliance values within the range of native vessels. 

1.6.4 Processing techniques  

Several processing techniques were used to fabricate 3D polymeric scaffolds such as 

freeze-drying [32], salt-leaching [73], phase separation [79] and electrospinning [33].  

One of the most popular fabrication methods is freeze-drying with further cross-linking. The 

polymeric solutions are homogenized and the resulting suspension is frozen, and, then, freeze-

dried [32]. This technique allows the production of porous three-dimensional scaffolds with high 

degree of porosity and interconnected porous network [32,59].  
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Salt-leaching is a manufacturing technique also used to fabricate 3D interconnected porous 

scaffolds [67]. This technique has been used along with solvent casting to produce scaffolds with 

tailored macroporosity. NaCl particles are mixed with the polymer solution for some time and 

transferred to the mold. After solvent evaporation, the scaffold is dried, and soaked in water to 

leach out the porogen particles, creating the porous structure [80]. 

Phase separation is a fabrication technique induced by temperature, being also known by 

thermally induced phase separation (TIPS). This method is commonly used to produce vascular 

grafts since it allows the fabrication of highly porous structures with a morphology that promotes 

cell adhesion and migration [15]. The molds are filled with a warm polymeric solution, followed by 

a rapid cooling, to reach -80°C. Afterwards, the scaffolds are immersed in ethanol for some time 

to allow the removal of the solvent, creating an interconnected pore structure [15,23].  

Electrospinning is the most widely used processing techniques in TEVG strategies because 

of its ability to produce meshes of fibers with diameters in the nano to micrometer range. The 

polymer is dissolved in an organic solvent that is electrospun using a syringe pump at a constant 

flow rate and voltage. The fibers are electrospun and deposited in a conducting metallic collector 

which, in case of a  tubular conduit, is a rotating mandrel, creating tubular scaffolds [33]. Soletti 

et al., developed a tubular scaffold produced by TIPS and electrospinning. TIPS technique allows 

the production of highly porous scaffolds, but with poor mechanical properties. Therefore, it was 

combined with electrospinning to give mechanical properties more similar to those of native blood 

vessels. Additionally, co-electrospinning is an advanced form of electrospinning which has been 

applied to produce nanofibers with core-shell morphology by two different polymer solutions that 

flow separately through concentric nozzles to form a core-shell structure, combining different 

materials into one graft [74]. 

Wet and gel spinning are fabrication techniques that were also explored to produce tubular 

scaffolds. In the wet spinning technique the polymeric solution is spun into a non-solvent bath, 

forming fibers around a rotating mandrel [11]. In gel spinning, the polymeric solution is in a gel 

state that is deposited onto a cylindrical mandrel, followed by air-drying and lyophilization [60]. 

Additionally, dip coating was also used as a simple manufacturing technique where the mold is 

dipped into the polymeric solution [57]. 

The following Table 1. 2 contains a summary of the most processing techniques, materials 

and cell sources employed to fabricate TEVGs.  
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Table 1. 2 - Summary of some processing techniques, materials and cell sources explored to produce 

TEVGs 

Processing 
technique 

Scaffold material (s) Cell source Reference 

Freeze-drying 

Collagen/Elastin SMCs [32] 

Collagen/Hyaluronic acid ECs [59] 

PU ECs [81] 

PLCL BMCs [69] 

Freeze-drying and 
Electrospinning 

Collagen/PLGA EC and SMCs [16] 

Salt-leaching and 
UV crosslinking 

PTMC - [82] 

Salt-leaching 

PLLA/PLGA ECs [67] 

PLCL - [68] 

PGS - [73] 

TIPS 
PLLA/PLCL ECs [23] 

PEUU 
Stem cells from 
skeletal muscle 

[79] 

TIPS and 
Electrospinning 

PEUU 
Stem cells from 
skeletal muscle 

[15] 

Solvent casting and 
phase separation 

PLGA SMCs [83] 

Electrospinning 

PCL - [63,65,66] 

PCL/Tropoelastin ECs [31] 

PCL/Collagen ECs and SMCs [33] 

TPU/PCL ECs [72] 

Gelatin SMCs [58] 

PCL/PLA 
ECs and SMCs [70] 

Fibroblasts [71] 

Gelatin SMCs [58] 
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Table I. 2 - Summary of some processing techniques, materials and cell sources explored to produce 
TEVGs (Continued) 
 

Processing 
technique 

Scaffold material (s) Cell source Reference 

Electrospinning 

PLGA/Gelatin 
PLGA/chitosan 

PCL/Gelatin 

Fibroblasts (L-929) and 
ECs from a bovine 
pulmonary artery 

(CPAE) 

[56] 

Collagen/Elastin SMCs [55] 

PCL/Collagen/Elastin - [78] 

PGS/PCL - [75] 

PCL/chitosan EOCs [76] 

Electrospinning 
and UV crosslinking 

PCL and PLA MSCs [84] 

Co-electrospinning PCL/PDS - [74] 

Wet spinning and 
electrospinning 

PCL/PU ECs [11] 

Gel spinning Silk fibroin ECs and SMCs [60] 

Dip coating 
Chitosan SMCs [57] 

PCL SMCs [77] 

Abbreviations: BMCs – Bone Marrow Cells; PTMC - Poly (trimethylene carbonate); TPU - Thermoplastic polyurethane. 

 

Scaffolds are used for co-culture systems and bioreactors. Co-culture systems have been 

employed to improve ECs adhesion and retention in vitro within the scaffold. By combining SMCs 

and fibroblasts with ECs, it is possible to increase the level of interactions with different cells, 

developing a scaffold with improved mechanical and biological performances [85,86]. The use of 

bioreactors in vascular graft fabrication was also investigated, aiming to reproduce the physiological 

conditions of native blood vessels such as pressure and blood flow rate. Pulsatile bioreactors 

provide a dynamic environment for cell culture and proliferation, allowing cell growth and 

maturation of the tissue-engineered vessels [14,77] or to promote the maturation of differentiated 

ECs [36]. 
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1.6.5 Surface modification  

The interaction between the scaffold and the biological environment takes place at the 

biomaterials’ surface, where its physical and chemical characteristics are crucial to determine the 

biological response [28,87]. The commonly used synthetic polymers do not facilitate, in general, 

cell adhesion and proliferation due to their hydrophobicity or negative electrical charge [88]. This 

can lead to the detachment of poorly adhered cells when exposed to the blood flow, compromising 

its anti-thrombogenic behaviour [80]. Therefore, lack of cell-interactive properties and poor 

hemocompability may limit the use of these scaffolds as vascular grafts [28]. 

Surface modifications may improve either the hemocompability and the endothelialization 

of the luminal surface of vascular grafts, without affecting significantly their mechanical properties 

[21]. Physical and chemical methods were employed to introduce specific functional groups at the 

biomaterials’ surface, such as plasma, wet chemical and photografting treatments [89].  

Plasma treatments induce chemical reactions at the material surface, resulting in radical 

reactions between the chains of the polymer and the high energy gases in plasma [90]. Using 

different plasma sources, several functional groups can be inserted to modify the biomaterial 

surface chemistry, improving its surface properties [90,91]. Plasma treatments with oxygen, 

ammonia, nitrogen, argon and air are usually used to generate active and functional groups, 

allowing covalent immobilization of several bioactive molecules [90,92–95]. However, the 

penetration depth of plasma is a limitation of this method since it is not able to effectively modify 

deeply located fibers within the structure [89]. 

Wet chemical methods are based on the partial hydrolysis of the biomaterial surface, under 

acidic or basic conditions, to modify its wettability. This method involves the random chemical 

scission of ester linkages of the polymer backbones, leading to the generation of carboxylic and 

hydroxyl groups at the surface [89]. This results in surface degradation, as well as in increased 

roughness and hydrophilicity due to the presence of oxygen-containing functional groups [92,96]. 

These surface treatments provide a negatively charged and hydrophilic surface which may 

contribute to enhanced hemocompability of the scaffolds since this sort of surfaces do not allow 

the adhesion and activation of platelets [96]. Furthermore, the aminolysis method has been used 

to generate amine functionalised surfaces [89]. This method uses diamine molecules to insert 

amine groups at the biomaterial surface, aiming to achieve the immobilisation of biomolecules at 

the surface [87,97].  
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Photografting was also investigated as a method to functionalise the scaffolds surface. 

Using UV radiation or plasma, it is possible to generate free radicals to immobilise molecules to 

establish a stable coating with improved cell-material interaction [28].  

Aiming to provide the required signals for cell survival and tissue maintenance, most of 

these approaches involve the immobilisation of bioactive molecules [88]. These strategies include 

the immobilisation of natural proteins, bioactive peptides, anti-coagulant drugs or growth factors. 

The following Table 1. 3 summarizes the surface modification strategies employed in 

TEVGs. 

Table 1. 3 - Summary of the surface modification strategies applied for TEVGs 

Surface 
modification 

material 
Scaffold material (s) 

Surface modification 
method (s) 

Reference 

Gelatin 

PET Photografting [28] 

PEEUU 

Aminolysis 

[80] 

PCU/PEGMA [98] 

PCL 
[87,99] 

Plasma treatment [95] 

Collagen 

PEEUU 
Aminolysis 

[80] 

PCL [87] 

PLLACL Plasma treatment [100] 

Hyaluronic 
acid 

PCL Aminolysis [101] 

Tropoelastin 

Metallic stent 

Plasma treatment 

[94] 

ePTFE [102] 

PU [93] 

Fibrin PCL Coating [103] 

Fibronectin 
Gelsoft™ and Polymaille* 

Coating 
[104] 

Decellularized scaffolds [105] 
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Table I. 3 - Summary of the surface modification strategies applied for TEVGs (Continued) 

Surface 
modification 

material 
Scaffold material (s) 

Surface modification 
method (s) 

Reference 

Biomimetic 
matrix 

PCL Coating [106] 

RGD peptide PHBV/PCL Coating [107] 

CAG peptide PCL Mix into PCL [108] 

ASA PCL 
Plasma treatment and wet 

chemical treatment 
[92] 

Heparin 

PLLA/SPU 

EDC/NHS coupling 

[21] 

PLLA/PLCL [23,109] 

Decellularized vessels [110] 

Silk fibroin Coating [111] 

PLLA 
Plasma treatment, followed 

by EDC/NHS coupling 
[112] 

VEGF 

PCL 

Plasma treatment and 
aminolysis 

[92] 

Heparin binding [113] 

PHBV/PCL Coating [107] 

PGLA/PGA/PCLLA Heparin binding [114] 

SDF-1α 
Gelsoft™ and Polymaille* Coating with fibronectin [104] 

PLLA/PCL Heparin binding [109] 

CD34Ab 
PGLA/PGA/PCLLA Heparin binding [114] 

ePTFE Coating with Matrigel [115] 

Abbreviations: EDC/NHS - 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N hydroxysulfosuccinimide; 

PCU - polycarbonate urethane; PEGMA - poly(ethyleneglycol)methacrylate; PHBV - poly(3-hydroxybutyrate-co-3-

hydroxyvalerate); SPU - Segmented polyurethane. 

* Clinically available small-diameter vascular grafts. 
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Gelatin and collagen are natural proteins that have been immobilised at the surface of 

polymeric scaffolds by aminolysis, improving cells attachment and proliferation, as well as 

phenotype maintenance [80,87,100]. Hyaluronic acid was also considered in the modification of 

the materials´ surface since it was demonstrated to play a crucial role on the regulation of ECs, 

namely in their adhesion, viability and proliferation [101].  

Since elastin is present in the blood vessels, this protein is a candidate for scaffold coating 

because it regulates the ECs and the hemocompatibility [93,102]. Waterhouse et al., [94] 

immobilized recombinant tropoelastin, the soluble building block of elastin, at the surface metallic 

stents by plasma treatment. This surface modification promoted a significant reduction in platelets 

adhesion and activation, contributing for the enhancement of hemocompability of these stents. 

Fibrin is another protein investigated to promote an improved biological response. Zhu et 

al., [103] coated PCL nanofibers with fibrin due to its important functions in blood clotting, and 

cellular matrix interactions. The fibrin-coated scaffolds promoted SMCs and ECs growth, activity 

and differentiation. Additionally, fibronectin, a ECM protein present in plasma and platelets, was 

immobilised onto decellularized aortic conduits to accelerate the recellularization in vivo [104,105]. 

Moreover, it has been employed the use of a biomimetic matrix composed of fibrin, fibronectin, 

gelatin, growth factors and GAGs to coat the scaffold surface [106]. This strategy aims to preserve 

a normal anti-thrombotic cell phenotype, as well as to improve the cell attachment, proliferation 

and survival. 

The immobilisation of bioactive peptides was investigated as an alternative strategy for 

surface modification due to their high affinity to vascular cells [108]. The tripeptide sequence 

arginine–glycine–aspartic acid (RGD) is one of the peptides often proposed to improve the material 

biocompability, particularly the adhesive properties of the scaffold [107]. Along with RDG peptide, 

the cysteine-alanine-glysine (CAG) trimer peptide was also used due to its high affinity to ECs [108]. 

The surface modification with anti-coagulant drugs is a strategy extensively explored to 

improve the anti-thrombogenic properties of scaffolds [23,92]. The acetylsalicylic acid (ASA) is an 

anti-thrombogenic drug that has been studied to improve the hemocompability of vascular grafts, 

as well as to provide anti-inflammatory properties [92]. Heparin is another biomolecule which has 

been commonly used in vascular therapy as an anticoagulant agent to provide hemocompability 

and anti-coagulation properties to the scaffolds. Caracciolo et al., [21] produced electrospun 

tubular scaffolds, which inner surface was, further, modified by the insertion of heparin. This 

surface modification approach resulted in the decrease of platelets attachment and the increase 
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in the hydrophilicity and water absorption, promoting the adhesion and proliferation of hASCs. 

These findings were also reported by Wang et al., [23] where the immobilization of heparin at the 

surface resulted in an enhancement of hemocompability properties, cellular behaviour, as well as 

neovascularization after implantation in rabbits. 

Heparin can be also used as a ligand of growth factors to protect them from proteolytic 

degradation and to allow them to be slowly released [114]. Singh et al., [113] explored this 

approach by cross-linking heparin to PCL scaffolds to bind the vascular endothelial growth factor 

(VEGF). The results showed that the heparin-immobilized scaffolds presented lower burst release 

and higher retention of VEGF when compared to the scaffolds alone, being proportional to the 

heparin content. The in vivo analysis in mices demonstrated that these scaffolds loaded with VEGF 

increased the angiogenic response after 14 days. Besides these molecules, the chemokine stromal 

cell-derived factor-1a (SDF-1a) and the CD34 monoclonal antibody (CD34ab) were recently studied 

for biofunctionalization purposes owing to their high affinity and selectivity to endothelial progenitor 

cells. By cross-linked heparin, these molecules can be immobilised at the surface to promote the 

endothelialization of the scaffolds. [109,115]. In addition to the protein immobilisation, it is possible 

to modify the surface by loading growth factors into the scaffold, while it is processed. For instance, 

Han et al., [12] developed a multilayered vascular scaffold with loaded VEGF in the inner layer and 

platelet-derived growth factor (PDGF) in the middle layer. The in vivo performance indicated that 

the dual release of growth factors promoted endothelialization and inhibited SMCs 

hyperproliferation, maintaining suitable patency in rabbit carotid artery for 8 weeks. 

1.7  Purpose of the work 

Currently, the synthetic vascular grafts used to replace small-diameter blood vessels fail in 

providing suitable mechanical support and anti-thrombogenic properties. Considering these 

limitations, the purpose of this work is to develop a synthetic vascular graft with appropriate 

mechanical properties and able to promote endothelialization. Tubular fibrous scaffolds made of 

PCL will be produced by electrospinning and their luminal surface will be functionalized by a wet 

chemical method to covalently bind tropoelastin. Therefore, tropoelastin will be immobilized onto 

activated (NaOH treatment) and aminolysed (HMD treatment) substrates by its -NH2 and -COOH 

groups, respectively, to study the effect of the exposed functional groups over the human ECs 

behaviour. These constructs will be characterized in terms of morphology, surface functionality and 

uniaxial tensile properties. The endothelialization of eTF scaffolds will be also assessed by culturing 

the HUVECs cell line EA.hy926. Endothelial cells will be cultured up to 7 days on the untreated, 
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functionalized (activated and aminolysed) and biofunctionalized (tropoelastin-immobilized on 

activated or on aminolysed) scaffolds. Metabolic activity, cell proliferation, total protein synthesis 

and VEGF secretion will be assessed, as well as cell morphology and phenotype. 
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Chapter II. Materials and Methods 

The aim of this chapter is to describe in detail the materials and the experimental procedures 

used, enabling the comprehension of the experimental results. Moreover, this chapter intends to 

justify properly the selection of materials and the experimental methods to achieve the main 

objectives of this experimental work. 

2.1 Materials 

2.1.1 Polycaprolactone  

Polycaprolactone (PCL) is a biodegradable aliphatic polyester, which molecular structure 

consists of repeating five nonpolar methylene groups and a single relatively polar ester group 

(Figure 2. 1) [1]. It has a glass transition temperature of around - 60°C and a melting point of 55-

60 °C, but these values may differ according to the molecular weight and the processing method 

used [2]. 

 PCL is a biomaterial already Food and Drug Administration (FDA) approved in a variety of 

clinical applications such as drug delivery or suture material [3,4]. Owing to its low melting 

temperature, good blend-compability with other polymers and low cost production, this polymer 

can be processed by a wide range of fabrication techniques [2]. Additionally, this polymer has been 

extensively preferred in tissue engineering such as cartilage, bone and vascular applications [5–

7].  

 

 

 The suitable mechanical properties of this polymer have been reported for vascular 

grafts as high strength and excellent compliance [7]. Several studies have investigated the 

mechanical properties of PCL tubular conduits, demonstrating the ability of this polymer to 

withstand the burst pressure and suture retention strength of native blood vessels both in vitro [8] 

and in vivo [9]. Moreover, it was demonstrated that PCL grafts presents faster endothelial coverage 

compared to ePTFE grafts [7].   

Another important characteristic of PCL is its slow degradation rate due to its semi-

crystalline and hydrophobic nature, which makes this polymer a potential candidate for vascular 

Figure 2. 1 - PCL chemical structure. Adapted from ref. [10]. 
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applications [7,10]. For blood vessel replacements, degradation must be slow enough to avoid 

events of mechanical failure which can cause severe damages on the patient. As such, the vascular 

substitutes should provide structural resistance during the tissue regeneration process [11]. 

Typically, the in vivo degradation of PCL takes more than 2 years, resulting, sequentially, in loss of 

molecular weight by a slow nonenzymatic bulk activation, loss of mechanical strength by hydrolytic 

process and, finally, in  loss of mass by phagocytosis [1,11]. The degradation mechanism of PCL 

nanofibers meshes is faster from those of bulk PCL due to the larger surface area-to-volume ratio, 

as well as changes in hydrophobicity and crystallinity induced by the electrospinning process [10]. 

Despite its excellent characteristics, the hydrophobic nature of PCL confers to the polymer 

a poor wettability [10]. Also, it has been reported that the hydrophobic PCL surface interacts with 

platelets, contributing to the thrombogenicity which could lead to thrombosis and intimal 

hyperplasia [9]. To overcome these drawbacks, several approaches have been explored to enhance 

the biological and mechanical properties of vascular grafts using PCL. Several bioactive molecules 

have been immobilised at the PCL surface such as gelatin [12], vascular endothelial growth factor 

(VEGF) [13] and fibrin to improve the cell-material interaction [14]. Blending PCL with other 

polymers as such polyurethane [15], collagen [8] and tropoelastin [9] was also considered to 

improve the mechanical properties of the vascular graft. 

2.1.2 Tropoelastin 

The ECM of the connective tissues is composed of proteins, proteoglycans and 

glycosaminoglycans which function is to provide a biologically and mechanically structural base 

that influences the cellular behaviour [16]. Elastin is a vital protein ECM component which provides 

elasticity and resilience to several biological tissues such as vasculature and skin. However, due to 

its insolubility and difficulty of handling, the use of elastin in biomaterials is limited [17]. This protein 

is formed by the cross-linking of its soluble precursor, the tropoelastin, which, in contrast, can be 

used in a range of elastin-related products [18].  

Tropoelastin is secreted as a 60 kDa unglycosylated protein by several types of cells such 

as fibroblasts, endothelial and smooth muscle cells. Its molecular structure contains hydrophobic 

domains, responsible for the elasticity, alternated with hydrophilic domains with lysines residues 

crucial for cross-linking [19]. Structurally, in one end of the molecule structure, N-terminal is 

characterized by the presence of a 26-amino-acid signal peptide while the other end comprises the 
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C-terminal which terminates with a positively charged amino acid motif [19], responsible for cell-

binding [20] (Figure 2. 2).  

 

 

 

 

 

 

 

 

Tropoelastin possesses high elasticity, being the most distensible monomer protein known 

in the human body. Tropoelastin participates in several cell interactions through its receptors, 

integrin αvß3 and elastin binding protein (EBP), at the cell surface, influencing cell adhesion and 

proliferation [17].  

Binding tropoelastin to biomaterial surfaces have been investigated to improve not only cell 

adhesion and proliferation but also to stimulate specific cellular responses, mimicking the natural 

cell environment [17,21,22]. Other ECM proteins such as collagen, fibronectin and laminin have 

been also coated onto polymer surfaces to improve and support ECs adhesion. Nevertheless, these 

proteins are often associated with fibrinogen deposition, platelet adhesion, activation and thrombus 

formation, which restricts their use as vascular conduits [23]. In contrast, it has been demonstrated 

the hemocompability of tropoelastin, presenting low thrombogenicity, minimal platelet adhesion 

and aggregation [24]. Over the past years, tropoelastin has been immobilised at the surface of 

several materials ranging from metallic surfaces, such as drug eluting stents (DES) [25], to 

polymeric surfaces such as PLLA-PLGA [18], polyethersulfone (PES) [21], polyurethane [26] and 

expanded polytetrafluoroethylene (ePTFE) [27]. 

2.2  Electrospinning  

Electrospinning is an attractive and versatile approach for polymers processing which is 

based on the use of a high-voltage electrical field to generate fibers in a nano to micrometer 

Figure 2. 2 - Tropoelastin structure which includes two functionally distinct regions, N and C terminal, 

separated by a bridge responsible for the mechanical coupling. Adapted from ref. [17]. 
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diameter range [28]. This technique is able to process a wide range of natural and synthetic 

polymers commonly proposed for tissue engineering applications such as PCL [7], PLA [29], PU 

[30], collagen [8] or gelatin [31]. 

The conventional electrospinning apparatus consists of a high voltage power source, a 

capillary where the polymer solution is extruded, and a grounded metal to collect the fibers [28]. 

When a high voltage is applied to the capillary, containing a polymeric solution dispensed by a 

syringe pump, a conical shape “Taylor cone” is generated at the tip of the capillary. A jet of fluid is 

ejected from the capillary tip with the increasing of the electrostatic field. While the jet progresses, 

it is stretched and the solvent evaporates, generating a polymeric fiber. This technique produces 

randomLy oriented nanofiber meshes which can be collected on a stationary or rotating metallic 

collector to obtain flat meshes or tubular scaffolds, respectively [32].  

Since most of the natural ECM of connective tissues is composed of randomLy oriented 

fibers with nanometre scale diameters (50 to 500 nm), the electrospun meshes provide a 

biomimetic environment designed to resemble the natural ECM [33]. Additionally, using this 

technique enables the production of fibrous scaffolds with controllable pore size, porosity, 

composition and morphology [32,34]. Despite its interesting characteristics, one disadvantage of 

this technique is the production of thin scaffolds. In fact, the development of scaffolds with 

considerable thickness, higher than 0.5 mm is limited due to the small fiber diameter and pore 

size, influencing the possibility of cell infiltration into the scaffold [35].  

2.2.1 Electrospinning parameters 

The morphology of electrospun meshes is influenced by several factors such as solution, 

concentration and viscosity, processing and environmental parameters which may affect the 

electrospinning process. Thus, tuning these variables is crucial  to control the fiber 

characteristics of the scaffold [28,36]. 

The type of polymer used, as well as its molecular weight, concentration, viscosity, surface 

tension and electrical conductivity, all affect the electrospinning process. The polymeric solution 

must have enough surface tension, charge density and viscosity to prevent the jet from coalescing 

into droplets before the solvent evaporation. Also, the properties of the solvent are of high 

importance since its volatility and polarity may influence the morphology and diameter of the fibers 

[32]. Increasing the concentration of the polymer, as well as its molecular weight and the solution 

viscosity, results in larger fiber diameters and, consequently, in higher pore sizes [28,36]. On the 
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other hand, an increase on the electrical conductivity of the polymeric solution decreases the fiber 

diameter [36]. Polymeric solutions with low conductivity may result in insufficient elongation of the 

jet to produce the fibers, leading to fibers with larger diameters [37]. 

The processing parameters comprise the applied voltage, the flow rate and the distance to 

the collector. When the applied voltage is increased, the fiber diameter tends to decrease, and vice-

versa. The flow rate has influence on the jet velocity and material transfer rate. The higher the flow 

rate, the larger the fiber diameter and pore size [32]. However, it is commonly used lower flow 

rates to allow an efficient evaporation of the solvent from the fibers during the process [36]. Another 

important parameter is the distance between the needle tip and the collector which can equally 

affect the structure and morphology of the electrospun fibers. The distance influences the polymer 

deposition time and evaporation rate. Thus, shorter distances tend to produce wetter fibers since 

the fibers do not have sufficient time to dry before reaching the collector [32,37]. Equally important, 

the environmental conditions have a tremendous effect on the fiber morphology, determining the 

mesh properties. For instance, both temperature and humidity influence the solvent evaporation 

rate during the fiber formation process [10]. Increasing the temperature results in smaller fiber 

diameters which can be attributed to the decrease of viscosity of the polymeric solution [37]. 

2.2.2 Production of electrospun tubular fibrous (eTF) scaffolds  

The production of eTF scaffolds by electrospinning was previously optimized considering 

different works from the literature [7,38]. As a result, several parameters were tested, as illustrated 

in Table 2. 1, in flat meshes and tubular structures.  

Table 2. 1 - Electrospinning parameters tested for optimization of eTF scaffolds production 

Electrospinning parameters 

PCL concentration 15% (v/v), 17% (v/v) 

Organic solvent Chloroform:ethanol (7:3), Chloroform: dimethylformamide (7:3) 

Voltage 10 kV, 15 kV 

Distance to collector 15 cm, 20 cm 
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Based on a morphological analysis, the most effective electrospinning condition was 

selected. The eTF scaffolds were produced using a customized electrospinning device. The Figure 

2. 3  illustrates the electrospinning setup used in this experimental work. 

A polymeric solution was prepared by dissolving PCL (Mw = 80,000; Sigma-Aldrich, USA) 

at a concentration of 15% (v/v) into an organic solvent mixture of chloroform (Fisher Scientific, UK) 

and absolute ethanol (Fisher Scientific, UK) at a ratio of 7:3. Firstly, PCL was dissolved in 

chloroform under gentle stirring and, after total dissolution of the polymer, ethanol was added. The 

solution was kept in constantly stirring to avoid phase separation.  

The PCL solution was placed into a 6 mL syringe (Braun, Germany) connected to a metallic 

21G needle. The syringe was mounted in a syringe pump (model Alladin 220) to control the solution 

flow rate. A high-voltage power supply (0-25 kV) was applied to the needle to generate a continuous 

current with a voltage of 10 kV. The needle tip-to-collector distance and the flow rate were fixed at 

15 cm and 1.0 mL h−1, respectively. Fibers were electrospun onto a custom metallic rotating 

mandrel with 4 mm external diameter, rotating at 200 rpm for the manufacture of the conduit. The 

electrospinning process was conducted for 1 h. Both temperature and relative humidity were kept 

at 22°C ± 2 and 35% - 42%, respectively. The eTF scaffolds were, then, extracted from the mandrel 

and cut into squares of 1x1 cm2 for further assays. 

2.3 Functionalization of eTF scaffolds 

The functionalization of eTF scaffolds aims at providing biochemical cues by the 

immobilization of tropoelastin at the surface to enhance the endothelial cells adhesion and 

proliferation. Since PCL does not have reactive functional groups, several strategies have been 

Figure 2. 3 - Schematic representation of the electrospinning setup used to produce eTF scaffolds. 
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implemented to achieve the immobilization of bioactive molecules at the nanofibers surface. 

Plasma treatment, UV-ozone irradiation and immersion in NaOH are common methods used to 

activate the surface of electrospun PCL nanofibers, following the incorporation of amine groups by 

aminolysis treatment and, consequently, the immobilization of biomolecules [39–42]. To 

accomplish the immobilization of tropoelastin at the luminal surface of the eTF scaffolds, a wet 

chemical method was selected. This method is based on the random chemical scission of ester 

linkages on the polymer backbones, allowing the modification in the inner layers of the meshes 

[43]. 

The surface functionalization was based on two reactions: activation, followed by the 

aminolysis reaction. Firstly, the surface eTF scaffolds was activated by sodium hydroxide solution 

(NaOH) (Fisher Scientific, UK). The ester groups (-COO-) of PCL were cleaved by NaOH solution, 

generating carboxylic (-COOH) and hydroxyl groups (-OH) at the nanofibers surface. After activation, 

eTF scaffolds were aminolysed using a diamine solution, hexamethylenediamine (HMD; Sigma-

Aldrich, USA), resulting in a reaction between the amine groups (-NH2) from the diamine solution 

and the carboxylic groups previously introduced. One -NH2 reacts with the -COOH- group to form a 

covalent bond, -CONH-, the other one is unreacted and free [44]. The Figure 2. 4 illustrates the 

functionalization process onto eTF scaffolds surface. 

 

 

 

 

 

 

 

2.3.1 Optimisation of surface functionalisation 

The duration of both reactions, as well as the concentration of the chemical agents, are 

important parameters that must be taken in attention in order to develop functional groups at the 

surface with minimal change in the bulk properties of the polymer [43]. Therefore, an optimisation 

process was conducted using flat electrospun PCL meshes (Table 2. 2). 

Figure 2. 4 - Schematic representation of activation (NaOH treatment) and aminolysis (HMD treatment) 

reactions on eTF scaffolds surface. 
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Table 2. 2 - Concentrations and incubation times of both NaOH and HMD solutions tested for optimization 

of nanofibers surface functionalization 

 NaOH solution HMD solution 

Concentration 1M  2M 5M  1M  4M  

Reaction time 3h 12h 3h 1h 24h 

Ref. [40] [45] [46] [39] [40] 

Briefly, eTF scaffolds, placed in 24 well plates with the luminal surface faced up, were 

immersed in 1 mL of 1M NaOH solution. The 24 well plates were placed in a mechanical shaker 

(Model Mini shaker, VWR) to provide a homogeneous surface activation at room temperature. After 

this treatment, eTF scaffolds were washed with PBS three times. Then, eTF scaffolds were placed 

in new wells where 1 mL of HMD solution in isopropyl alcohol (VWR Chemicals, USA) was added. 

The plates were wrapped with aluminium foil to avoid degradation of the HMD reagent during the 

reaction time and, then, placed in an incubator (Model BE500, Memmert) at 37 °C. After this 

treatment, the washing process was repeated and the meshes were left to dry at room temperature 

for further analysis. The conditions which allowed the immobilization of a higher concentration of 

NH2 groups without affecting the fibers morphology were 1M NaOH for 3h and, then, 4M HMD for 

24h. 

2.3.2 Amine groups (NH2) quantification 

The free amine groups (NH2) introduced by the aminolysis reaction were quantified by the 

Ellman´s reagent method [47]. Untreated, activated and aminolysed eTF scaffolds weighted, 

functionalized and, then, incubated with 300 µL of PBS at pH=7.27, containing 20 mM 2-

Iminothiolane (2-IT; Sigma-Aldrich, USA) and 20 mM 4-dimethylaminopyridine (DMAP; Thermo 

Fisher Scientific, USA) for 1h at 37°C, protected from light. The incubation with 2-IT introduces 

sulfhydryl groups (-SH) at the surface by reacting specifically with the primary amines already 

present, generating one sulfhydryl group per one amine group reacted with the reagent [47]. Then, 

the samples were thoroughly washed with 400 µL of each of the following solutions, sequentially: 

a. PBS at pH = 7.27; 

b. Ultrapure water containing 1 mM dithiothreitol (DTT; abcr GmbH, Germany) and 

10 mM Ethylenediaminetetraacetic acid (EDTA; Sigma-Aldrich, USA) at pH=7; 
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c. Ultrapure water containing 1 M sodium chlroride (NaCl; PANREAC QUIMICA, 

Spain) and 10 mM EDTA at pH=7; 

d. PBS containing 1mM EDTA at pH = 7.27. 

The use of DTT in one of the washing solutions will ensure that the covalently bounded 

sulfhydryl groups remained in the reduced state [47]. After the washing procedure, samples were 

moved to new wells and incubated with 500 µL of 0.1 mM 5,5'-dithiobis-(2-nitrobenzoic acid) 

(DTNB), Ellman´s reagent; Sigma-Aldrich, USA) solution in PBS at pH=7.27 for 1h at 37 °C, 

protected from light. The Ellman´s reagent is the detection reagent which allows the quantification 

of the sulfhydryl groups generated at the eTF scaffold surface. The reaction between the Ellman´s 

reagent and the -SH groups results in the cleavage of DTNB, producing 1 mol of 2-nitro-5-

thiobenzoic acid (TNB) per mole of sulfhydryl groups. The quantification of free amine groups is 

carried out through the extinction coefficient of TNB at 412 nm [47]. After the Ellman´s reagent 

incubation, 150 µL of each sample was transferred to a quartz 96 well plate in triplicate and the 

absorbance was read at 412 nm by a microplate reader (Synergy, HT, Bio-TEK) using DTNB 

solution alone as blank. Controls of each condition (untreated, activated and aminolysed) were 

used in triplicates, where only the first step (i.e. 2-IT incubation) was eliminated, using PBS instead. 

The quantification of free amine groups of each samples was calculated according to the equation 

2.1. 

𝑁𝐻2 𝑚𝑜𝑙 =
(𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒  − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘 )𝑥 500𝑥10−6 𝐿

14150 𝑀−1 𝑐𝑚−1
  

The ODsample refers to the absorbance of the sample incubated with 2-IT and the ODblank refers 

to the absorbance of the sample without the first incubation. The absorbances were corrected for 

the volume of DTNB solution that reacted with the samples and divided by the TNB-2 molar 

absorption coefficient value of 14,150 M-l cm-1. 

2.4 eTF scaffolds characterization 

2.4.1. Scanning Electron Microscopy (SEM) 

SEM is a technique which allows the morphological characterization of a sample. This 

technique is based on the interaction between the electrons and the sample, producing several 

signals at the sample surface [48]. When a sample is scanned by a focused beam of electrons, 

these signals can be collected to give information about the morphology and surface topography. 

(Equation 2. 1) 
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Additionally, SEM is a suitable method to analyze the material surface due to its high resolution, 

less than 1 nm [49]. Since the scaffolds are composed of nanofibers, SEM is an appropriate 

technique to analyze their surface. However, this microscopy method can only analyze conductive 

samples and, thus, the nonconductive samples must be coated with a thin layer of conductive 

material [48]. 

To analyse the eTF scaffolds by SEM, the following procedure was applied: frozen in liquid 

nitrogen for 15 min and, then, cut with a scalpel to obtain a clean cross-section surface. 10 images 

of the cross-section surface at x150 magnification were used and at least 3 measures were 

performed to assess the scaffold thickness using the software ImageJ (National Institute of Health, 

USA). Along with the cross-section surface, both inner and outer surfaces, before and after the 

functionalization process, were sputter-coated with gold (Cressington, model 108A) for 2 min at 15 

mA. The samples were further analyzed by SEM (JSM-6010 LV, JEOL, Japan) with an acceleration 

voltage of 5-10 kV. The magnifications used were x150, x500 and x1000.  

The diameters of the nanofibers characterization was assessed using the DiameterJ plugin 

created for ImageJ. DiameterJ is an open-acess and simple-to-use image analysis tool which 

enables a rapid and efficient measurement of nanofiber diameters from SEM micrographs [50]. At 

least 6 images of luminal surfaces at x1000 magnification (before and after surface treatments) 

were used to perform the DiameterJ analysis, according to Hotaling, et al. [50]. Overall, this 

analysis is based on, firstly, the segmentation of the original image into a binary image, where 

fibers are white and the background is black; secondly, the analysis of the segmented image. As 

outputs, the algorithm produces histograms of fiber diameters and orientation, as well as gives 

information of pore area, pore size and the amount of the porosity. The outputs displayed 

correspond to a representative frequency distribution of each fiber properties. 

2.4.2. Uniaxial tensile testing 

The evaluation of the mechanical properties of biomaterials for vascular use is an important 

aspect that should be considered when designing vascular grafts. Hence, uniaxial tensile testing 

was performed to characterize the material´s response to loading [51]. 

In a uniaxial tensile test, a strip of the material is placed between the grips which are 

connected to a movable cross-head that can be moved up and down by a hydraulic piston. The 

specimen is strained at a constant speed and the load gives the load supported by the specimen 
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over time. The mechanical test ends when the specimen fractures. For a correct determination of 

the failure properties, failure must not occur in the grips [51,52]. 

A typical tensile specimen is illustrated in Figure 2. 5. It has enlarged ends for gripping 

and a reduced gage section to localize the deformation and failure within this region. The gage 

length is the region over which measurements are made and it is centered within the area of more 

reduced cross-section [53]. 

 

 

 

The tensile stress (σ) is defined as the load (P), expressed in newtons (N) per cross-

sectional area (A) of the gage section (equation 2. 2). Thus, tensile stress is expressed in units of 

force per unit area (N/m2 or Pa) [52].  

𝜎 =  
𝑃

𝐴
  

The tensile strain (𝜀) is defined as the change in gauge length (𝛥𝑙) relatively to the initial 

gauge length (𝑙0) of the specimen (equation 2. 3). Tensile strain can be expressed in millimeter 

per millimeter or as unit of percentage (mm/mm x 100) [52]. 

𝜀 =  
𝛥𝑙

𝑙0
 =  

𝐿 −  𝑙0

𝑙0
  

From the tensile stress and tensile strain values, a stress-strain curve can be obtained, 

which gives information about the mechanical properties of the material. A typical stress-strain 

curve for a ductile material is shown in Figure 2. 6. 

 

 

 

 

 

(Equation 2. 2) 

(Equation 2. 3) 

Figure 2. 5 - Typical tensile specimen with an enlarged ends and reduced gauge section. Adapted from 

ref. [53]. 
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In the early portion of the stress-strain curve (low strain), the material behaves in an elastic 

manner. Thus, the materials obeys Hooke´s Law where the stress is proportional to strain, being 

the deformation elastically recoverable [52]. The slope of the straight-line portion of the stress-

strain diagram (∆σ/∆ε) is called Elastic Modulus or Young´s Modulus, denoted by E, expressed 

in units of force per unit area (N/m2 or Pa) (equation 2. 4). Young´s modulus is a basic physical 

property of each biomaterial [51]. 

𝐸 =  
𝜎

𝜀
 

After a certain stress level is reached, the material enters in a plastic deformation regime 

before failure. Once the plastic deformation occurs, the strain is no longer proportional to the stress 

and it is not recovered when the stress is removed due to the irreversibly rearrangement of its 

internal molecular structure [52]. The transition from elastic to plastic deformation is not frequently 

easy to identify. As such, the yield strength can be obtained by constructing a straight line parallel 

to the initial linear portion of the stress-strain curve, but offset by 0.02%, 0.2% or 2%. The yield 

strength is the stress needed to induce plastic deformation which can be 0.02%, 0.2% or 2% of 

permanent strain, depending on the mechanical behaviour of each material. Other property that is 

often reported from the stress-strain curve is the ultimate tensile stress (𝜎𝑈𝑇𝑆) or tensile strength. 

The tensile strength is the stress calculated from the maximum load experienced during the tensile 

(Equation 2. 4) 

Figure 2. 6 - Stress-strain curve for a ductile material. Adapted from ref. [52]. 
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test, giving information about the maximum load that a material can support in an uniaxial loading. 

The fracture strength (𝜎𝑓) is the stress at the point of fracture [51,52].  

Since a dimension of 18 mm in length of the specimens was required, the 4 mm diameter 

scaffolds did not present enough perimeter along radial direction (∼12 mm). Therefore, 6 mm 

internal diameter tubular scaffolds were produced using a custom rotating collector with 6 mm 

external diameter. The 6 mm diameter scaffolds were cut into strips (18x5 mm) along their radial 

or axial directions (Figure 2. 7A), using a scalpel. The thickness of the specimens was measured 

at three different points using a digital micrometer (Mitutoyo, Japan). The average of the three 

measurements was obtained for each specimen and their dimensions were used in the tensile test. 

At least 6 specimens in each radial and axial direction were tested before and after the activation 

and aminolysis reactions. As such, the specimens were activated or aminolysed and left to dry over 

a teflon foil to avoid attachment to the plate. All specimens were mounted in paper frames using 

double-side tape on both edges to ensure a firm retention of the eTF scaffold within the tensile 

system grips (Figure 2. 7B). Immediately, before the mechanical test, the lateral sides of the paper 

frames were cut. 

 

 

 

 

 

 

Uniaxial tensile properties were measured using a universal mechanical testing equipment 

(Model 5543, INSTRON, UK) equipped with a 1kN load cell. A cross-head speed of 2 mm/min and 

a 10 mm gauge length were used. Untreated, activated and aminolysed specimens from each 

direction were tested under dry and wet conditions at room temperature. In the latter, the mounted 

specimens were rehydrated by spraying PBS on the specimens prior to testing. The mechanical 

tests were performed until specimen fracture. Load and displacement measurements were 

acquired by the software Bluehill 2, and tensile stress and strain were calculated and plotted, 

according to the initial length and cross-sectional area of the specimens. A linear regression of the 

maximum linear region from stress-strain curves was used to calculate the Young´s modulus. 

Figure 2. 7 - Specimens preparation (A) and specimens mounting (B) for uniaxial tensile testing. 
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Maximum stress and strain at maximum stress were considered, respectively, as the maximum 

stress value before failure and its corresponding strain value. 

2.5 Tropoelastin immobilization  

After selecting the best condition for the functionalization of eTF scaffolds, tropoelastin can 

be further immobilized at their surface using two pathways: (i) the immobilization can be performed 

by the reaction between its - NH2 groups and the –COOH groups introduced at the fibers surface, 

after the activation step (Figure 2. 8A); (ii) or the tropoelastin can be immobilized by the reaction 

between its -COOH groups and the -NH2 groups introduced at the fibers surface, after the aminolysis 

step (Figure 2. 8B). In both cases, it is established a covalent bond between the protein and the 

polymeric substrate.  

 

 

 

 

 

 

 

 

 

 

Human recombinant tropoelastin was produced at Weiss Lab (The University of Sydney, 

Australia) by an Escherichia coli expression system [54].  

To achieve a more stable and strong immobilization, 1-Ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride/Nhydroxysuccinimide (EDC/NHS; Sigma-Aldrich 

Aldrich, USA) was used as a linker to enhance the efficiency of the binding. EDC reacts with the 

carboxylic groups (from protein or substrate) generating an unstable reactive ester, O-acylisourea. 

In combination of NHS, a semi-stable amine-reactive NHS-ester is formed. These species can 

interact with the amine groups (from the protein or substrate) establishing a covalent bond between 

the protein and the substrate. Combining the EDC with the NHS, the efficiency of the coupling is 

enhanced, resulting in the chemical reaction illustrated in the Figure 2. 9 [55]. 

(A (B

Figure 2. 8 - Schematic representation of tropoelastin immobilization on activated (A) and aminolysed 

(B) eTF scaffolds surface. 
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The parameters of the EDC/NHS solution, as concentration and ratio, were previously 

optimized [39]. Briefly, 50 mM EDC and 200 mM NHS (1:4) was dissolved in 0.1 M 2-N-morpholino 

(ethanesulfonic acid hydrate) buffer (MES; Sigma-Aldrich-Aldrich, USA) with 0.9% (w/w) NaCl 

(Panreac Quimica, Spain), following pH adjustment to 4.7. Tropoelastin solution was then mixed 

with 1% (v/v) EDC/NHS solution for 15 min, at room temperature, prior the incubation with eTF 

scaffolds. After the incubation with EDC/NHS solution, the activated and aminolysed eTF scaffolds 

were placed in non-adherent 24 well-plates and 500 µL of tropoelastin solution was added to each 

sample for 2h, at room temperature, under gentle stirring.  

2.6 Chemical characterization of the biofunctionalized eTF scaffolds 

2.6.1. Quantification of immobilized tropoelastin 

To ensure that eTF scaffolds were used at their maximum immobilization capacity, an 

optimization of the tropoelastin concentration at the activated and aminolysed surfaces was 

conducted, using the MicroBCATM Protein Assay Kit (Pierce, Thermo Scientific). MicroBCA assay is 

a common method to measure proteins in solution. When a protein is placed in an alkaline 

environment containing Cu2+, the peptide bonds of the protein react with Cu2+ atoms, leading to the 

reduction of Cu2+ to Cu1+, within the complexation sites of the protein. Bicinchoninic acid (BCA), the 

detection reagent, is a sensitive, stable, water-soluble compound and highly specific for Cu1+, 

establishing a 2:1 complex with Cu1+. This results in a stable and highly colored complex with an 

absorbance at 562 nm, which is directly proportional to the protein concentration [56].  

The microBCA assay was performed with some modifications from the manufacturer´s 

protocol. Several concentrations of tropoelastin (0, 5, 10, 15 and 20 µg/mL) were used to assess 

the amount of retained tropoelastin at the eTF scaffold surface, in duplicate. After the 

Figure 2. 9 - Chemical reaction for the EDC/NHS coupling. Adapted from ref. [55]. 
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immobilization of tropoelastin solutions, the scaffolds were washed three times with PBS, 5 min 

each. Afterwards, PBS was completely removed and 150 µL of working reagent was added along 

with 150 µL of PBS directly on the eTF scaffolds for 2h at 37 °C. The preparation of the working 

reagent was done according to the manufacture´s instructions and a standard curve with values 

ranging from 0 µg/mL to 20 µg/mL was prepared in PBS. After the incubation time, 300 µL of the 

solution that reacted with the eTF scaffold was transferred to a 96-well plate and the absorbance 

was read at 562 nm, using a microplate reader (Synergy, HT, Bio-TEK). The concentration of 

immobilized tropoelastin was interpolated from the standard curve. The assay was performed five 

independent times. 

2.6.2.  Surface charge properties 

The surface properties of biomaterials such as surface chemistry, charge and topography 

influence the biological performance and response of materials to the surrounding environment 

[57]. Zeta potential, denoted as ζ, is a parameter which gives information about the charge at the 

solid/liquid interfacial layer of a material in an aqueous solution [58]. This parameter is an useful 

indicator of surface charges and, therefore, can be used to characterize surface functionality of 

biomaterials.  

When a material is immersed in an electrolyte solution, the functional groups on its surface 

react with the surrounding medium, attracting oppositely charged ions (counterions) onto the 

surface (Figure 2. 10). This leads to the formation of an electrical double layer at the interfacial 

boundary by attractive forces between a surface-charged material and counterions. The layer that 

is generated where the counterions are strongly attached to the surface charge is called Stern layer. 

Outside this layer, a diffuse layer is present containing a low concentration of counterions that are 

not firmLy bound to the material surface. Between these two layers, a boundary, called shear plane, 

is formed. The electric potential of the shear plane is called zeta potential [58].  
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The formation of surface charge is dependent on the pH value of the aqueous electrolyte 

solution. Zeta potential can be determined with different measurement techniques, being the 

streaming potential the most commonly used method [58]. This method is based on the generation 

of an electric field when a liquid is forced to flow through a stationary charged surface. The sample 

is enclosed into a measuring cell, where an aqueous electrolyte solution flows, causing an electrical 

charge separation in the flow direction. The resulting differential potential (streaming potential) or 

electrical current (streaming current) is detected by electrodes that are connected to the measuring 

cell. During the measurement, the pressure increases continuously in both flow directions, and 

pressure difference across the measuring cell (dp) and streaming potential (dU) or streaming 

current (I) are recorded. The measured values of dp and dU or I are used to calculate the zeta 

potential [58]. 

The zeta potential of eTF scaffolds was determined using the SurPASS electrokinetic 

analyzer (Anton Paar GmbH, Austria). Untreated, activated, aminolysed and tropoelastin 

immobilized eTF scaffolds were cut in 12 cm2 disks and placed in an adjustable disk gap cell 

(14mm), with an adjusted gap of 115 μm. The streaming currents were detected by the Ag/AgCl 

electrodes at different pH values within the range 6.0 to 10. An electrolyte solution of 1 mM KCl 

was flushed through the cell with a pressure of 400 mbar and the pH was automatically adjusted 

by adding 0.05 M NaOH to the electrolyte solution. The data was recorded and analyzed using the 

Attract 2.0 software.  

Figure 2. 10 - Schematic representation of charge distribution in the zeta potential measurement. Adapted 

from ref. [58]. 



Chapter II. Materials and Methods 

60 

2.7 Cell biology assays 

A biological assessment of the proposed material is crucial to understand how the scaffold 

behaves in the presence of cells. This analysis aims to study if the eTF scaffolds are suitable to 

support endothelialization by assessing the metabolic activity, proliferation, protein synthesis, 

morphology and phenotype maintenance. 

2.7.1. Cell source 

A cell line is an immortalized population of cells that proliferate indefinitely due to a 

genetically induced mutation. Since primary cells have limited lifespan and display different 

features due to their different donor origin, immortalized cell lines have been commonly used 

instead of primary cells [59,60]. Cell lines are cost effective, easy to use and offer a pure population 

of cells which provide consistent sample and reproducible results. Additionally, the use of these 

cells avoid ethical issues related to the use of animal or human tissue [59]. Despite this, special 

attention should be taken when using cell lines. These cells should exhibit and maintain functional 

characteristics, similar to those of primary cells which can be difficult since the immortalization 

process may interfere with their phenotype and native functions [59]. 

In endothelialization research, Human Umbilical Vein Endothelial Cells (HUVECs) are 

widely used to study the function of endothelial cells in several physiological and pathological 

studies. As they are primary cells, HUVECs have an average life span of 10 serial passages before 

entering in the senescence stage, when they stop proliferating. Moreover, they lose their primary 

features and responsiveness to several stimuli. Therefore, several endothelial cell lines were 

established, characterized and used for various research purposes [60]. The human umbilical vein 

endothelial cell line EA.hy926 is well characterized and frequently used. This cell line was 

generated by a genetic mutation of HUVEC [60]. EA.hy926 have been previously studied for 

endothelialization purposes within vascular tissue engineering [61–63]. As such, EA.hy926 (LGC 

Standards, Spain) was used to assess the endothelialization of the developed biofuncionalized eTF 

scaffolds.  

2.7.2. Cell culture and seeding 

EA.hy926 cells were cultured in Dulbecco´s Modified Eagle Medium (DMEM; Sigma-

Aldrich, USA) low glucose supplemented with sodium bicarbonate (Sigma-Aldrich, USA), 10% Fetal 

Bovine Serum (FBS; Life Technologies, USA) and 1% antibiotic/antimycotic (A/A; Life Technologies, 
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USA) and incubated at 37°C in a humidified 5% CO2  atmosphere. EA.hy926 cells were used within 

10-18 passages. Medium was changed every 2-3 days until a 90% confluency was reached. 

The eTF scaffolds were sterilized by UV light for 30 min, on each side, inside a laminar 

flow chamber (PV-100, Telstar). Both functionalization and tropoelastin immobilization were further 

performed under sterile conditions by filtering each solution with 0.22 µm filters. The cell seeding 

was performed by dropping a cell suspension containing 100 000 cells on top of each untreated, 

activated, aminolysed and tropoelastin immobilized eTF scaffolds. After 4h of cell adhesion, culture 

medium was added to each well and the plate was maintained in an incubator. After 1, 3 and 7 

days, the seeded constructs and the culture medium were collected to perform the biological 

assays described below. As controls, untreated, activated, aminolysed and tropoelastin 

immobilized eTF scaffolds were prepared, as described before, and used throughout the cell culture 

without cells.  

2.7.3. Metabolic activity 

The MTS assay is a colorimetric method widely used to assess the metabolic activity. 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS) is a 

tetrazolium compound that is reduced by nicotinamide adenine dinucleotide (NADH) and 

nicotinamide adenine dinucleotide phosphate (NADPH) enzymes present in metabolically active 

cells. This reduction leads to the production of a brown formazan product, which is soluble in cell 

culture medium. The amount of formazan produced can be assayed colorimetrically, at 490 nm 

absorbance, which is directly proportional to the amount of living cells in culture [64]. 

At the defined time points, the metabolic activity of the endothelial cells seeded on 

untreated, activated, aminolysed and tropoelastin-immobilized eTF scaffolds was analyzed by the 

MTS assay (CellTiter 96® Aqueous One solution, Promega). Briefly, at each time point, the culture 

medium was removed and the samples were washed three times with Dulbecco's Phosphate 

Buffered Saline (DPBS; Life Technologies, USA). A mixture of culture medium, without phenol red 

and FBS, and MTS reagent (5:1 ratio) was prepared and added to each sample, as well as to the 

negative control with no cells or samples, in triplicate for 3h at 37°C in a humidified 5% CO2 

atmosphere. Afterwards, the absorbance of the MTS medium of each sample was read in triplicate 

at 490 nm in a microplate reader (Synergy, HT, Bio-TEK). The absorbance of each sample was 

subtracted to the absorbance of its corresponding negative control. 
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2.7.4. Cell proliferation  

The assessment of the cell proliferation is essential in several biological studies, being an 

important indicator of the cells health. Fluorochromes that interact with DNA are commonly used 

to measure the amount of cells by quantifying their DNA [65]. The cell proliferation was assessed 

using a fluorimetric quantification Kit (Quant-iT™, PicoGreen®, Molecular Probes, Invitrogen, USA). 

PicoGreen is a fluorescence dye that binds specifically to double-stranded DNA (dsDNA). When 

bound to dsDNA, the dye is excited at 480 nm and emits at 520 nm [65]. 

After each time point, the samples were washed three times with DPBS and the adhered 

cells were lysed by thermal and osmotic shock. As such, these samples were transferred to 

eppendorfs tubes containing 1 mL of ultrapure water (Milli-Q Direct 16, Millipore) which were 

further placed inside a water bath at 37°C for 1h and, then, stored at -80°C until further use. 

Before starting the DNA quantification, the samples were left to thaw at room temperature and 

placed in an ultrasound bath for 15 min to remove all cell content. 

The reagents from the kit were prepared according to the manufacturer´s instructions. 

The DNA standards, provided by the kit, were prepared in ultrapure water at concentrations ranging 

from 0 to 2 µg/mL for the standard curve. In each well of a white opaque 96-wells plate, 28.7 µL 

of sample or standard (n=3), 71.3 µL of PicoGreen solution and 100 µL of TE buffer were added. 

Additionally, 28.7 µL of controls (samples with no cells) were used as negative control for DNA 

quantification. The plates were incubated in the dark for 10 min and, then, the fluorescence was 

read in a microplate reader (Synergy, HT, Bio-TEK) with an excitation wavelength of 485/20 nm 

and emission wavelength of 528/20 nm. The DNA concentration of each sample was calculated 

from the standard curve, which relates the DNA concentration with the fluorescence intensity. The 

results from controls with no cells of each testing condition were further subtracted to the ones 

with cells. Also, the samples were diluted accordingly to fit within the standard curve. 

2.7.5. Total Protein synthesis 

The amount of protein synthesized by the cells was assessed using the same lysates 

prepared for the cell proliferation assay. For the quantification of total protein, the MicroBCATM 

Protein Assay Kit (Pierce, Thermo Scientific) was used. The assay was performed according to the 

manufacturer´s protocol. Briefly, the standards were prepared at concentrations ranging from 0 to 

40 µg/mL in ultrapure water. In each well of a 96-well plate, 150 µL of samples or standards, and 

150 µL of working reagent were added. The plate was sealed and incubated for 2h at 37°C. After 
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the incubation time, the plate was left to cool at room temperature and, then, the absorbance was 

measured at 562 nm in a microplate reader (Synergy HT, Bio-Tek). The protein concentration of 

each sample was calculated from the standard curve which relates the protein (Bovine Serum 

Albumin) concentration with the absorbance intensity. Since there is already protein immobilized 

in certain conditions and knowing that proteins from cell culture medium may adhere to the 

activated and aminolysed substrates, the negative controls were also assayed as for the other 

samples. As a result, the amount of protein detected in each negative control was subtracted to 

the amount of protein of its corresponding testing condition. 

2.7.6. Soluble VEGF quantification  

Vascular Endothelial Growth factor (VEGF) is a protein produced by endothelial cells which 

regulates the angiogenesis [66]. As such, the production of this protein by endothelial cells was 

quantified by performing an enzyme-linked immunosorbent assay (ELISA) on the culture medium 

collected at each time point for each condition. For this purpose, a Human VEGF DuoSet ELISA kit 

(R&D Systems, USA) was used. The assay was performed according to the manufacturer´s 

indications as well as the preparation of the reagents. The washing buffer was prepared by 

dissolving 0,05% Tween 20 (Sigma-Aldrich, USA) in DPBS solution previously filtered. The washing 

steps were performed manually three times. The blocking buffer was prepared by diluting a reagent 

diluent concentrate (R&D Sydtems, USA) in filtered ultrapure water. The stop solution was 2N 

sulfuric acid (Sigma-Aldrich, USA) in ultrapure water.  

Briefly, the wells of Nunc MaxiSorp 96-well plate (Thermo-Fisher, USA) were coated with 

100 µL of capture antibody, overnight at room temperature. The wells were washed three times 

with 400 µL of wash buffer and, then, 300 µL of blocking buffer was incubated for 1h. The wells 

were again washed three times and 100 µL of standards diluted in cell culture medium, at 

concentrations ranging from 0 to 2000 pg/mL, and samples with unknown VEGF concentration 

were added to the coated wells, in duplicate for 2h, at room temperature. This time allowed for the 

antigen from the samples bind to the immobilized antibody at the bottom of the wells. After the 

incubation, a washing step was performed and 100 µL of detection antibody was added to the 

wells for 2 hours more to bind to the captured antigen. Afterwards, the wells were again washed 

and Spreptavidin-HRP was added for 20 min, protected from light. After this washing step, 100 µL 

of substrate solution composed of a 1:1 mix of color reagent A and color reagent B from the kit 

was added to each well and incubated for 20 min. To complete the procedure, 50 µL of stop 
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solution was added to each well and the absorbance was immediately read on a microplate reader 

at 450nm and 540nm. Then, the 540nm absorbance was subtracted to 450nm for correction of 

optical imperfections in the plate. 

2.7.7. Cells morphology 

At the defined time points, the samples were washed three times with DPBS and 1mL of 

2.5% glutaraldehyde (VWR, USA) solution in PBS was added to each well, to fix the cells. The 

samples were left in the fixation solution at 4°C, until further use. The specimens were then 

dehydrated with an increasing concentration series of ethanol solutions (10, 20, 30, 40, 50, 60, 

70, 80, 90 and 100%). Briefly, 1 mL of each solution was added to the samples for 30 min at room 

temperature. After the last ethanol solution, the sample was left to dry overnight. Afterwards, the 

samples were mounted in copper stubs and sputter-coated with gold for SEM analysis. SEM was 

used to assess the cell distribution and morphology at 250x and 1000x magnifications. 

2.7.8. Immunocytochemistry 

To assess the maintenance of endothelial cell phenotype, the expression of CD31 by 

endothelial cells seeded on the scaffolds was analyzed. CD31 is a transmembrane glycoprotein, 

belonging to the immunoglobulin family, which is also designed as PECAM-1 (Platelet Endothelial 

Cell Adhesion Molecule). This protein is present at the surface of platelets, monocytes and 

macrophages, and it is a component of the endothelial intercellular junction. CD31 plays an 

important role in the adhesion between endothelial cells during angiogenesis and, thus, it is 

recognized for its angiogenic role [67]. 

After each time point, the samples were washed three times with PBS and fixed with 1mL 

of 10% formalin (Thermo Fisher Scientific, USA) for 20 min at room temperature. After the fixation 

time, the samples were washed three times with PBS and left in PBS solution at 4°C, until further 

analysis. The seeded constructs were permeabilized with 0.01% Triton (Fisher Scientific, USA) in 

PBS for 5 min. Afterwards, the specimens were washed three times with PBS, 5 min each. Then, 

3% BSA (Sigma-Aldrich, USA) in PBS was used to block unspecific binding sites and incubated for 

30 min at room temperature. After this, the samples were incubated overnight with primary 

antibody against human CD31 in PBS (1:100) (Abcam, UK), in a humid environment at 4°C. After 

the incubation time, the constructs were washed with PBS, as described before. A secondary 

antibody was used to bind to the anti-CD31 antibody, alexa fluor 488 in PBS (1:200) 
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(ThermoFisher, USA) was incubated for 1h at room temperature, protected from light. The washing 

step was performed again and DAPI in PBS (1:5000) was incubated for 1 min, protected from 

light, to stain the cell nuclei. The samples were analyzed by fluorescent microscopy (Zeiss, 

Germany) at 20x magnification. 

2.8 Statistical analysis 

Statistical analysis was perfomed using the SPSS statistic software (release 24.0.0.0 for 

Mac). First, a Shapiro-Wilk test was used to ascertain the data normality and Levene test 

for the homogeneity of variances. For all quantitative data, except for NH2 groups quantification, 

the normality and variance homogeneity were rejected and non-parametric tests were used 

(Kruskal-Wallis test followed by Tukey’s HSD test). P values lower than 0.01 were considered 

statistically significant and the results were expressed as median ± interquartile range. NH2 groups 

quantification data followed a normal distribution and the comparison of the mean values was 

performed by one-way ANOVA tests followed by Tukey’s HSD test for multiple comparisons. P 

values lower than 0.05 were considered statistically significant and the results were expressed as 

mean ± standard deviation.  
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Chapter III. Tubular fibrous scaffold functionalized with tropoelastin as a 

small-diameter vascular graft 

3.1  Abstract 

Cardiovascular disorders, such as coronary artery diseases, are one of the major 

healthcare problems in today´s society. The clinically available synthetic vascular grafts exhibit 

thrombogenic behaviour and could induce intimal hyperplasia when used to restore small-diameter 

blood vessels (ø < 6mm). Rapid endothelialization and matched mechanical properties are two 

major requirements that should be considered when designing functional vascular grafts.  

Herein, an electrospun tubular fibrous (eTF) scaffold made of polycaprolactone was 

functionalized to immobilize tropoelastin at the luminal surface, providing a biomimetic 

environment of a small-diameter blood vessel. The luminal surface comprised a mix of micro to 

submicro fibers and its functionalization was confirmed by an increase of the zeta potential and by 

the insertion of NH2 groups. Tropoelastin was immobilized at 20 µg/mL via its -NH2 and -COOH 

groups at the activated or aminolysed eTF scaffolds, respectively, to study the effect of exposed 

functional groups over human endothelial cells (ECs) behaviour. Tensile properties demonstrated 

that functionalized eTF scaffolds presented strength and stiffness within the range of those of native 

blood vessels. Tropoelastin immobilized on activated eTF scaffolds promoted higher metabolic 

activity and proliferation of ECs, whereas when immobilized on aminolysed eTF scaffolds a 

significantly higher protein synthesis was observed. The developed biofunctional eTF scaffolds are 

a promising small-diameter vascular graft which is able to promote a rapid endothelialization and 

have mechanical properties compatible with this demanding application.  

Keywords: Electrospinning, Tissue-engineered vascular graft, Biofunctionalization, Tropoelastin, 

Mechanical properties, Endothelialization. 
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3.2  Introduction  

Diseases of the cardiovascular system are the major causes of morbidity and mortality 

worldwide. Coronary heart disease is mainly caused by atherosclerotic changes in the walls of 

coronary arteries which can narrow the vessel enough to impair the blood flow and the oxygen 

supply to cardiac muscle [1]. In severe cases, a coronary artery bypass graft (CABG) surgery is 

performed, using a portion of a healthy vessel such as the saphenous vein and the internal 

mammary artery [2]. These autologous substitutes are considered the gold standard in CABG 

surgery since they are viable, non-thrombogenic, biocompatible and have adequate patency. 

Nevertheless, the lack of non-affected autologous grafts in patients with vascular diseases and the 

need for an additional surgery, limit their use [1]. There are commercially available alternatives, 

namely, synthetic vascular grafts made of polyethylene terephthalate (PET) and expanded 

polytetrafluoroethylene (ePTFE). However, they tend to fail when applied in small-diameter blood 

vessels (ø < 6 mm) due to their thrombogenic behaviour and mechanical mismatch, producing low 

patency [3]. Therefore, an ideal small-diameter vascular graft for these clinical situations is needed.  

Tissue engineering is a multidisciplinary field, which principles have been applied to 

develop functional substitutes for blood vessels [4]. Most strategies are focused on the biological 

performance of these constructs, attempting to mimic the native structure and ECM composition. 

Examples of these grafts can be a vascular graft made of cell sheets wrapped around a tubular 

mandrel [5], obtained by decellularization of ECM synthetized by smooth muscle cells (SMCs) [6], 

or based on hydrogels with cells embedded in a matrix of biological proteins [7]. These approaches 

are quite complex and lack appropriate mechanical response.  

Scaffolds composed of synthetic polymers are promising alternatives, owing to the ability 

to control their degradation and mechanical properties [8]. In fact, a durable biomaterial is required 

to withstand the physiological conditions without the risk of collapse or premature degradation until 

the formation of a new tissue in vivo [9,10]. Mechanical properties of human healthy blood vessels 

have been extensively reported in the literature, as illustrated in the Table 3. 1, which resumes the 

young´s modulus and maximum stress values measured for some native blood vessels. Therefore, 

these values can be used as target properties for the development of new and functional vascular 

grafts. 
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Table 3. 1 - Uniaxial tensile mechanical properties: Young´s modulus and maximum stress of some native 

human blood vessels 

Native blood vessels 
Young´s modulus (MPa) Maximum stress (MPa) 

Refs 
Axial Radial Axial Radial 

Saphenous vein 23.7 ± 15 4.2 ± 3.3 6.3 ± 4.0 1.8 ± 0.8 [11] 

---- 2.25 ---- 4 [8] 

Left internal mammary artery 16.8 ± 7.1 8 ± 3.0 4.3 ± 1.8 4.1 ± 0.9 [11] 

Coronary arteries 
1.48 ± 0.24 1.44 ± 0.87 [12] 

1.4 ± 0.72 ---- [13] 

Ascending aortas 2.61 ± 0.26 3.25 ± 0.63 1.71 ± 0.14 1.80 ± 0.24 [14] 

Electrospinning is frequently used to produce scaffolds with fiber diameters in the nano to 

micrometer range [15]. Since the natural ECM is composed of nanofibers, the electrospun 

scaffolds provide an ideal biomimetic substrate for the development of blood vessel substitutes 

[16]. Single or multilayer vascular grafts have been electrospun to mimic the native architecture of 

blood vessels, combining different materials [17–20]. Polycaprolactone (PCL) is a synthetic 

biodegradable polymer widely used to produce vascular conduits by electrospinning due to its 

suitable mechanical properties as strength and high elongation, and slow degradation kinetics 

[10,21]. The mechanical and biological response of electrospun PCL tubular scaffolds were 

investigated in vivo, demonstrating appropriate patency and faster endothelialization compared to 

ePTFE grafts [22]. Although PCL is well tolerated in vivo, its hydrophobicity may lead to platelet 

adhesion and, consequently, failure of the grafts [20]. 

The surface properties of scaffolds has been tailored to improve the hemocompability and 

the endothelialization of vascular grafts, without affecting their mechanical properties [23]. Binding 

ECM proteins to the surface of the scaffolds gained special interest since they mimic the natural 

cell environment, particularly, when using tropoelastin [24]. Tropoelastin, the soluble precursor of 

elastin, is a protein present in the vascular ECM which is secreted by the endothelial cells. 

Structurally, tropoelastin is asymmetric with two functional regions, C-terminal and N-terminal, 

which mediate several interactions at the cell surface, influencing their adhesion and proliferation 

[25]. Furthermore, tropoelastin presents lower thrombogenicity, minimal platelet adhesion and 

aggregation compared to other ECM proteins such as collagen and fibronectin [26,27]. Therefore, 

tropoelastin has been used as a coating on polymeric [28] and metallic [29] surfaces. 

The present study aims at developing a biofunctional electrospun tubular fibrous (eTF) 

scaffold with adequate mechanical properties and capable of supporting endothelialization for 
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blood vessel grafts. Hence, tubular scaffolds will be produced by electrospinning and, further, 

biofunctionalized with tropoelastin to provide biochemical cues at their luminal surface. The 

mechanical response of eTF scaffolds, before and after surface treatments, will be assessed. 

Finally, by culturing an endothelial cell line (EA.hy926), the potential of these constructs to support 

endothelialization will be validated in vitro. 
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3.3  Materials and methods 

3.3.1. Production of electrospun tubular fibrous scaffolds  

A 15% PCL (Mw = 80,000; Sigma-Aldrich, USA) solution was prepared in a solvent mixture 

of chloroform and absolute ethanol (Fisher Scientific, UK) at a ratio of 7:3. The polymeric solution 

was loaded into a syringe connected to a metallic 21G needle. Fibers were electrospun at a voltage 

of 10 kV, using a needle tip-to-collector distance of 15 cm and a flow rate of 1.0 mL h−1. A 

customized metallic rotating mandrel with 4 mm external diameter was used to collect the fibers, 

rotating at 200 rpm for the manufacture of the conduit. The electrospinning process was conducted 

for 1 h. The range of temperature and relative humidity used was 22°C ± 2 and 35% - 42%, 

respectively. The electrospun tubular fibrous (eTF) scaffolds were, then, extracted from the mandrel 

and cut into squares of 1x1 cm2 for further assays. 

3.3.2. Surface functionalization  

The eTF scaffolds were, firstly, activated with 1M sodium hydroxide (NaOH; Fisher 

Scientific, UK) solution for 3h at room temperature. Afterwards, the activated substrates were 

washed with PBS and immersed in 4M hexamethylenediamine (HMD; Sigma-Aldrich, USA) solution 

in isopropyl alcohol (VWR Chemicals, USA) for 24h at 37°C to insert NH2 groups at the surface.  

3.3.2.1.  Amine groups quantification  

The amine groups (NH2) inserted by the aminolysis reaction were quantified by the 

Ellman´s reagent method [30]. Untreated, activated and aminolysed eTF scaffolds were incubated 

with PBS at pH=7.27, containing 20 mM 2-Iminothiolane (2-IT, Sigma-Aldrich, USA) and 20 mM 

4-dimethylaminopyridine (DMAP, Thermo Fisher Scientific, USA) for 1h at 37°C, protected from 

light. Then, the scaffolds were thoroughly washed with each one of the following solutions, 

sequentially: (1) PBS at pH = 7.27; (2) ultrapure water containing 1 mM dithiothreitol (DTT, abcr 

GmbH, Germany) and 10 mM Ethylenediaminetetraacetic acid (EDTA; Sigma-Aldrich, USA) at 

pH=7; (3) ultrapure water containing 1 M sodium chloride (NaCl; Panreac Quimica, Spain) and 10 

mM EDTA at pH=7; (4) PBS containing 1mM EDTA at pH = 7.27. Afterwards, the constructs were 

incubated with 0.1 mM 5,5'-dithiobis-2-nitrobenzoic acid (DTNB, Ellman´s reagent; Sigma-Aldrich, 

USA) solution in PBS at pH=7.27 for 1h at 37°C, protected from light. After the Ellman´s reagent 

incubation, 150 µL of each sample was transferred to a quartz 96 well plate in triplicate and the 
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absorbance was read at 412 nm in a microplate reader (Synergy, HT, Bio-TEK) using DTNB solution 

alone as blank. Controls of each condition (untreated, activated and aminolysed) were used in 

triplicates where only the first step (i.e. 2-IT incubation) was eliminated, using PBS instead. The 

quantification of amine groups of each sample was calculated using the TNB-2 molar absorption 

coefficient value of 14,150 M-l cm-1 [30]. 

3.3.3. Scaffolds characterization 

3.3.3.1.  Scanning Electron Microscopy  

The eTF scaffolds were frozen in liquid nitrogen and cut to obtain a clean cross-section 

surface. Also, the luminal surfaces, before and after the activation and aminolysis, were sputter-

coated with gold (Cressington, model 108A) for 2 min at 15 mA and analysed by SEM (JSM-6010 

LV, JEOL, Japan) with an acceleration voltage of 5-10 kV. The magnification used was 500x and 

1000x.  

SEM micrographs (10 images) of the cross-section surface at x150 magnification were 

used and at least 3 measures were performed to assess the scaffold thickness. Also, at least 6 

images of luminal surfaces at 1000x magnification (before and after surface treatments) were used 

to assess the fiber features. This characterization was performed using the plug-in DiameterJ 

created for the software ImageJ (National Institute of Health, USA), according to the literature [31]. 

As outputs, the algorithm produces histograms of fiber diameters and orientation, as well as 

information about pore area, pore size and porosity.  

3.3.3.2.  Uniaxial tensile properties 

Since a dimension of 18 mm in length of the specimens was required, the 4 mm diameter 

scaffolds did not present enough perimeter along radial direction (∼12 mm). Therefore, 6 mm 

internal diameter tubular scaffolds were produced using a custom rotating collector with 6 mm 

external diameter. The 6 mm internal diameter tubular scaffolds were cut into strips (18x5 mm) 

along their radial or axial directions. The thickness of the specimens was measured at three 

different points using a digital micrometer (Mitutoyo, Japan). At least 7 specimens in each radial 

and axial direction were tested before and after the activation and aminolysis reaction, under dry 

and hydrated conditions, at room temperature. Uniaxial tensile properties were measured using a 

universal mechanical testing equipment (Model 5543, INSTRON, UK) equipped with a 1kN load 

cell. A cross-head speed of 2 mm/min and a 10 mm gauge length were used. The mechanical 
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tests were performed until complete fracture of the specimen. Load and displacement 

measurements were acquired, and tensile stress and strain were calculated from the raw data. A 

linear regression of the maximum linear region from stress-strain curves was used to calculate the 

Young´s modulus. Maximum stress and strain at maximum stress were considered as the 

maximum stress value and its corresponding strain value before failure. 

3.3.4. Tropoelastin immobilization at luminal surface  

Human recombinant tropoelastin was produced at the Weiss Lab (The University of 

Sydney, Australia) by an Escherichia coli expression system [32]. Briefly, tropoelastin was 

immobilized at the luminal surface of activated and aminolysed eTF scaffolds by a covalent bond 

mediated by a coupling agent, 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 

(EDC)/hydroxysuccinimide (NHS) (Sigma-Aldrich Aldrich, USA). Specifically, 50 mM EDC and 200 

mM NHS mixture (1:4 ratio) was prepared in 0.1 M 2-N-morpholino (ethanesulfonic acid hydrate) 

buffer (MES; Sigma-Aldrich-Aldrich,USA) with 0.9% (w/w) NaCl at pH=4.7. Next, 500 µL of 

tropoelastin solution in PBS (Sigma-Aldrich, USA) was mixed with 1% (v/v) of EDC/NHS solution 

15 min for protein activation and, further, incubated with activated and aminolysed substrates for 

2h at room temperature, under gentle stirring. 

3.3.5. Chemical characterization of biofunctionalized scaffolds 

3.3.5.1.  Optimization of tropoelastin immobilization  

To ensure that eTF scaffolds were used at their maximum immobilization capacity, several 

tropoelastin concentrations ranging from 5 to 20 µg/mL were used and incubated with activated 

and aminolysed eTF scaffolds. The MicroBCATM Protein Assay Kit (Pierce, Thermo Scientific) was 

used to detect the amount of immobilized tropoelastin at the eTF scaffolds surface, in duplicate. 

After tropoelastin immobilization, activated and aminolysed eTF scaffolds were washed three times 

with PBS, 5 min each. Then, 150 µL of working reagent was added with 150 µL of PBS directly to 

the eTF scaffolds for 2h at 37°C. The working reagent was prepared according to the 

manufacture´s instructions. After the incubation time, 300 µL of the solution that reacted with the 

eTF scaffolds was transferred to a 96-well plate and the absorbance was read at 562 nm, using a 

microplate reader (Synergy, HT, Bio-TEK). The concentration of immobilized tropoelastin was 
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interpolated from the standard curve with values ranging from 0 µg/mL to 20 µg/mL. The assay 

was performed independently five times. 

3.3.5.2.  Surface charge properties 

Zeta potential, denoted as ζ, of eTF scaffolds was measured using the SurPASS 

electrokinetic analyser (Anton Paar GmbH, Austria). Untreated, activated, aminolysed and 

tropoelastin immobilized eTF scaffolds were cut in 12 cm2 disks and placed in an adjustable disk 

gap cell (14mm), with an adjusted gap of 115 μm. The streaming currents were detected by the 

Ag/AgCl electrodes at different pH values within the range of 6.0 to 10. An electrolyte solution of 

1 mM potassium chloride (KCl; VWR, USA) was flushed through the cell with a pressure of 400 

mbar and the pH was automatically adjusted by adding 0.05 M NaOH to the electrolyte solution. 

The data was recorded and analysed using the software Attract 2.0.  

3.3.6. Cell biology assays 

3.3.6.1.  Cell culture and seeding 

A human umbilical vein endothelial cell line (EA.hy926; LGC Standards, Spain) was used 

to assess the endothelialization of the developed eTF scaffolds, as reported by other authors 

[33,34]. ECs were cultured in Dulbecco´s Modified Eagle Medium (DMEM; Sigma-Aldrich-Aldrich, 

USA) low glucose supplemented with 10% Fetal Bovine Serum (FBS; Life Technologies, USA) and 

1% antibiotic/antimycotic (A/A; Life Technologies, USA) and incubated at 37°C in a humidified 5% 

CO2  atmosphere. ECs cells were used within passages 10-18. Medium was changed every 2-3 days 

until a 90% confluency was reached. 

The eTF scaffolds were sterilized by UV light for 30 min, on each side, inside a laminar 

flow chamber (PV-100, Telstar). Activation, aminolysis and tropoelastin immobilization were further 

performed under sterile conditions. The cell seeding was performed by dropping a cell suspension 

containing 100,000 cells on top of each substrate. After 4h of cell adhesion, culture medium was 

added to each sample and kept in the incubator. After 1, 3 and 7 days, the seeded constructs and 

the culture medium were collected for metabolic activity, cell proliferation, total protein synthesis, 

soluble VEGF production as well as for cell morphology and phenotype analysis. As negative 

controls of quantitative data, untreated, activated, aminolysed and tropoelastin immobilized eTF 

scaffolds were prepared, as described before, and tested throughout the cell culture experiment 
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without cells. All experiments were conducted in triplicates and repeated at least three times 

independently. 

3.3.6.2.  Metabolic activity 

At the defined time points, the metabolic activity of the endothelial cells seeded on 

untreated, activated, aminolysed and tropoelastin-immobilized eTF scaffolds was analysed by the 

MTS assay (CellTiter 96® Aqueous One solution, Promega, USA). At each time point, the culture 

medium was removed and the samples were washed three times with sterile Dulbecco's Phosphate 

Buffered Saline (DPBS; Life Technologies, USA). A mixture of culture medium, without phenol red 

and FBS, and MTS reagent (5:1 ratio) was prepared and added to each sample, as well as to the 

negative controls and blank, in triplicate, for 3h at 37°C in a humidified 5% CO2 atmosphere. 

Thereafter, the absorbance of the MTS medium of each sample was read in triplicate at 490 nm 

in a microplate reader (Synergy, HT, Bio-TEK). The absorbance of each sample was subtracted to 

the absorbance of its corresponding negative control. 

3.3.6.3.  Cell proliferation 

After each time point, the samples were washed three times with sterile DPBS and 

transferred to eppendorf tubes containing 1 mL of ultrapure water (Milli-Q Direct 16, Millipore) 

which were further placed inside a water bath at 37°C for 1h and, then, stored at -80°C. Before 

starting the DNA quantification, the samples were left to thaw at room temperature and placed in 

an ultrasound bath for 15 min to remove all cell content from the scaffolds. The reagents from the 

kit were prepared according to the manufacturer´s instructions. The DNA standards, provided by 

the Quant-iT™ PicoGreen® dsDNA assay Kit (Invitrogen, USA) were prepared in ultrapure water at 

concentrations ranging from 0 to 2 µg/mL for the standard curve. In each well of a white opaque 

96-wells plate, 28.7 µL of samples, negative controls or standards (in triplicate), 71.3 µL of 

PicoGreen solution and 100 µL of TE buffer were added. The plates were incubated in the dark for 

10 min and, then, the fluorescence was read in a microplate reader (Synergy, HT, Bio-TEK) with 

an excitation wavelength of 485/20 nm and emission wavelength of 528/20 nm. The results from 

negative controls of each testing condition were further subtracted to the ones with cells.  
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3.3.6.4.  Total protein synthesis 

The amount of synthesized protein by the cells was assessed using the same lysates 

prepared as described for the cell proliferation assay. For the quantification of total protein 

synthesis, the MicroBCATM Protein Assay Kit was used. The assay was performed according to the 

manufacturer´s protocol, using a standard curve ranging from 0 to 40 µg/mL in ultrapure water. 

The plate was incubated for 2h at 37°C and, then, the absorbance was measured at 562 nm in a 

microplate reader (Synergy HT, Bio-Tek). The negative controls were also assayed for a correct 

measure of total protein synthesis. Accordingly, the amount of protein detected in each negative 

control was subtracted to the amount of protein of its corresponding testing condition. 

3.3.6.5.  Soluble VEGF quantification 

The expression of vascular endothelial growth factor (VEGF) by endothelial cells was 

quantified by performing an enzyme-linked immunosorbent assay (ELISA) on the cell culture 

medium collected at each time point for each condition. For this purpose, a Human VEGF DuoSet 

ELISA kit (R&D Systems, USA) was used. The assay was performed according to the 

manufacturer´s indications, as well as the preparation of the reagents. All steps were performed 

at room temperature. The wash buffer was 0.05% Tween 20 (Sigma-Aldrich, USA) in filtered DPBS 

solution. The washing steps were performed manually three times. The blocking buffer (R&D 

Sydtems, USA) was diluted in filtered ultrapure water. The stop solution was 2N sulfuric acid 

(Sigma-Aldrich, USA) prepared in ultrapure water. The ELISA 96-well plate (Thermo-Fisher, USA) 

was coated with capture antibody, overnight, followed by the addition of blocking buffer for 1h. The 

standards and samples were then incubated, in duplicate, for 2h. After the incubation, the detection 

antibody was added to the wells for 2 hours. Afterwards, the Spreptavidin-HRP was added for 20 

min, protected from light and, then, substrate solution was incubated for 20 min. To complete the 

procedure, stop solution was added to each well and the absorbance was immediately read on a 

microplate reader at 450nm and 540nm. Then, the 540nm absorbance was subtracted to 450nm 

for correction of optical imperfections in the plate. 

3.3.6.6.  Cells morphology 

At the defined time points, the samples were washed three times with sterile DPBS and 

fixed with a 2.5% glutaraldehyde (VWR, USA) solution in PBS. The constructs were then dehydrated 

with an increasing concentration series of ethanol solutions (10, 20, 30, 40, 50, 60, 70, 80, 90 
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and 100%) each for 30 min. After the last ethanol solution, the sample was left to dry overnight. 

Afterwards, the samples were mounted in copper stubs and sputter-coated with gold for SEM 

analysis. SEM was used to assess cell distribution and morphology at 250x and 1000x 

magnifications. 

3.3.6.7.  Immunocytochemistry 

The expression of CD31 endothelial cell marker was analysed to assess the maintenance 

of the endothelial cell phenotype. After each time point, the samples were washed three times with 

PBS and fixed with 10% formalin (Thermo Fisher Scientific, USA) for 20 min. The seeded constructs 

were permeabilized with 0.01% Triton (Fisher Scientific, USA) in PBS for 5 min. Thereafter, the 

samples were washed three times with PBS, 5 min each, and blocked with 3% BSA (Sigma-Aldrich, 

USA) in PBS for 30 min at room temperature. Then, the samples were incubated with primary 

antibody against human CD31 in PBS (1:100) (Abcam, UK) overnight at 4°C. After the incubation, 

the constructs were washed with PBS and the secondary antibody, alexa fluor 488 in PBS (1:200) 

(Thermo Fisher, USA), was incubated for 1h at room temperature, protected from light. DAPI in 

PBS (1:5000) was incubated for 1 min, protected from light, to stain the cell nuclei. The samples 

were analyzed by fluorescent microscopy (Zeiss, Germany) at 20x magnification. 

3.3.7. Statistical analysis 

Statistical analysis was perfomed using the SPSS statistic software (release 24.0.0.0 for 

Mac). First, a Shapiro-Wilk test was used to ascertain about the data normality and Levene test 

for the homogeneity of variances. For all quantitative data, except for NH2 groups quantification, 

the normality and variance homogeneity were rejected and non-parametric tests were used 

(Kruskal-Wallis test followed by Tukey’s HSD test). P values lower than 0.01 were considered 

statistically significant and the results were expressed as median ± interquartile range. NH2 groups 

quantification data followed a normal distribution and the comparison of the mean values was 

performed by one-way ANOVA tests followed by Tukey’s HSD test for multiple comparisons. P 

values lower than 0.05 were considered statistically significant and the results were expressed as 

mean ± standard deviation.   
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3.4  Results  

3.4.1. Scaffolds characterization 

The tubular scaffolds produced by electrospinning had 10-15 cm in length with about 4 

mm internal diameter (Figure 3. 1A and Figure 3. 1B). The SEM micrographs show the cross-

section of the eTF scaffolds, having an average wall thickness of 240.85 ± 46.91 µm (Figure 3. 

1C and Figure 3. 1D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEM micrographs of the luminal surface were taken along axial (x axis) (Figure 3. 2A) and 

radial (y axis) directions (Figure 3. 2B), showing that the first layers of fibers were randomly 

organized, but with a tendency to present some orientation along the axial direction. This is 

supported by the fiber orientation analysis (Figure 3. 2C) showing one single peak at approximately 

0º. The eTF scaffolds´ inner surface displayed fiber diameters ranging from submicron to several 

microns (Figure 3. 2D): 19% of diameters are below 1 µm, diameters ranging between 1 and 3 µm 

accounted for 66% of total fiber diameter; and 15% are larger than 3 µm and up to 7 µm. The 

porosity obtained was about 33.55 ± 4.05 %. The pore size and area were also analysed. About 

90% of total pore lengths (major and minor) are below 10 µm and 5 µm, respectively (Figure 3. 

2E). The remaining 10% accounted for major pore lengths higher than 10 µm and up to 23 µm 

and minor pore lengths higher than 5 µm and up to 11 µm (Figure 3. 2E). Concerning the pore 

500 µm 50 µm 

(A) (B) 

(C) (D) 

Figure 3. 1- Electrospun tubular fibrous (eTF) scaffolds. Macrostructure (A and B) and SEM micrographs 

of the cross-section (C and D). 
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area, 85% of pores have an area lower than 20 µm2 while pores with areas up to 70 µm2 

represented 15% of the total pores (Figure 3. 2F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2. Characterization of functionalized scaffolds  

The morphology and fiber diameter distribution of the eTF scaffolds after activation and 

aminolysis, as well as the amount of NH2 groups inserted at their surface are shown in Figure 3. 

3. Both activation (Figure 3. 3A) and aminolysis (Figure 3. 3B) did not induce changes in fiber 

morphology. The fiber diameter distributions remained comparable between surface treatments, 

also comprising two main groups of fibers: less than 1 µm and between 1 and 3 µm. However, a 

decrease in the amount of fibers with diameters less than 1 µm was observed after NaOH (Figure 

3. 3C) and aminolysis (Figure 3. 3D) treatments, corresponding to about 10% and 13% of total fiber 

Figure 3. 2 - SEM micrographs of eTF scaffolds along axial (A) and radial (B) directions. Fibers morphology 

analysis: fiber orientation of axial and radial directions (C), fiber diameter frequency (D), pore size frequency 

(E) and pore area frequency (F). 
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diameters, respectively. Diameters ranging from 1 to 3 µm accounted for 70% and 74% of total 

fiber diameter for activated and aminolysed scaffolds, respectively. 

Untreated and activated conditions presented a residual amount of NH2 groups at the eTF 

scaffolds surface. In contrast, after aminolysis, eTF scaffolds presented on average 0.5 ± 0.04 

nmol/mg of NH2 groups (p<0.0001) (Figure 3. 3E). 

(B) 

Figure 3. 3 - SEM micrographs of the activated (A) and aminolysed (B) surfaces. Frequency distribution 

of fibers diameter of activated (C) and aminolysed (D) surfaces. NH2 groups quantification on untreated, 

activated and aminolysed eTF scaffolds (E). Data were analyzed by the one-way ANOVA test, followed by the 

Tukey´s HSD test (p<0.05): a denotes significant differences compared to untreated condition and b 

denotes significant differences compared to activated condition. The data is expressed as the mean ± 

standard deviation. 

Activated Aminolysed 
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3.4.3. Uniaxial tensile properties 

The stress-strain curves for untreated, activated and aminolysed eTF scaffolds, for both 

axial and radial orientations, in dry and hydrated states, are presented in Figure 3. 4. The curves 

were similar before and after the surface functionalization, but slightly different between axial and 

radial directions. The radial properties were generally characterized by a lower maximum stress 

and its corresponding strain (Figure 3. 4B) when compared to those obtained for the properties in 

the axial direction (Figure 3. 4A).  

 

 

 

 

 

 

The surface functionalization did not affect the stiffness of the eTF scaffolds along axial and 

radial direction (Figure 3. 5A1 and Figure 3. 5A2). Under dry conditions, the Young´s modulus of 

untreated samples was 8.16 (6.10 – 8.63) MPa. After NaOH and aminolysis treatments, it 

increased to 9.80 (7.62 – 10.27) MPa and to 11.21 (8.73 – 13.10) MPa, respectively, although 

no statistical differences were observed. In radial direction, the Young´s modulus values were also 

not significantly different among conditions, being 6.78 (5.07 – 8.09) MPa for the untreated, 6.41 

(5.52 – 10.41) MPa for the activated and 6.63 (6.43 – 7.13) MPa for the aminolysed specimens. 

After hydration, the stiffness was equivalent under both axial and radial directions among 

conditions. 

In the axial direction, the aminolysis treatment induced a decrease in the maximum stress 

values to 1.59 (1.51 – 1.77) MPa comparing to the untreated (4.82 (3.53 – 6.84) MPa; p<0.0001) 

and activated (3.23 (2.59 – 3.50) MPa; p<0.001) in dry condition (Figure 3. 5B1 and Figure 3. 

5B2). After hydration, the same trend was observed in comparison to the untreated (p<0.0001) 

Figure 3. 4 - Stress-Strain curves of untreated, activated and aminolysed eTF scaffolds, tested in dry and 

hydrated conditions: axial direction (A) and radial direction (B). 
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and activated samples (p<0.0001). When tested radially, these differences were not observed in 

both dry and hydrated states, being the maximum stress values similar for all conditions.  

Specimens tested under axial direction were able to experience larger strain compared to 

the specimens tested under radial direction (Figure 3. 5C1 and Figure 3. 5C2). Untreated 

specimens were significantly more compliant (1026 (930.3 – 1158) %) than the aminolysed ones 

(p<0.001) which presented strain values of 300.6 (250.8 – 381.4) %, in dry state. After hydration, 

this value decreased to 106.1 (99.64 – 113.2) %, being lower than activated (p<0.0001) condition. 

Figure 3. 5 - Uniaxial tensile properties of untreated, activated and aminolysed eTF scaffolds under axial 

and radial directions, tested in dry (1) and hydrated (2) conditions: Young´s modulus (A), maximum stress 

(B) and strain at maximum stress (C). Data were analysed by the Krustal-Wallis tes Wallis test, followed by 

the Tukey’s HSD test (p<0.01): a denotes significant differences compared to untreated and b denotes 

significant differences compared to activated condition. The data is expressed as median ± interquartile 

range. 
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Interestingly, in radial direction, the strain experienced at maximum stress was comparable among 

conditions, tested under dry and hydration conditions. 

3.4.4. Characterization of biofunctionalized scaffolds  

3.4.4.1.  Quantification of immobilized tropoelastin  

Tropoelastin was immobilized at the luminal surface of activated and aminolysed eTF 

scaffolds, in concentrations ranging from 0 to 20 µg/mL, aiming to determine the maximum 

immobilization capacity (Figure 3. 6). 

 The activated eTF scaffolds (OH-TE) presented a higher immobilization capacity of 

tropoelastin in comparison to the aminolysed substrate (NH2-TE). Activated eTF scaffolds allowed 

the immobilization of 82 ± 16 % when incubated with 5 µg/mL of tropoelastin, while for 20 µg/mL 

of tropoelastin this binding capacity decreased to 71 ± 14 %. The same tendency was observed for 

the aminolysed substrates which promoted an immobilization of 61 ± 20 % and 43 ± 17 % after 

the incubation with 5 µg/mL and 20 µg/mL of tropoelastin, respectively.  

Concerning the activated surfaces, the incubation with 20 µg/mL of tropoelastin was 

statistically different from the incubation with 10 µg/mL (p<0.0001). In contrast, for aminolysed 

substrates, incubation with 20 µg/mL of tropoelastin was significantly different from incubation 

Figure 3. 6 - Maximum immobilization capacity of tropoelastin at the surface of activated (OH-TE) and 

aminolysed (NH2-TE) eTF scaffolds. Data were analysed by the Krustal-Wallis test, followed by the Tukey’s 

HSD test (p<0.01): a denotes significant differences compared to concentration 0 µg/mL; b denotes 

significant differences compared to concentration 5 µg/mL; c denotes significant differences compared to 

concentration 10 µg/mL. The data is expressed as median ± interquartile range. 
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with 5 µg/mL (p<0.0001). Thus, the tropoelastin immobilization capacity reached its maximum at 

20 µg/mL from which no statistically differences were observed. Taking these results into 

consideration, 20 µg/mL of tropoelastin concentration was selected for further studies, using both 

surface functionalities.  

3.4.4.2. Surface charge properties 

The zeta potential (ζ), an indicator of surface electric charge, was measured on untreated, 

functionalized and biofunctionalized eTF scaffolds. The Figure 3. 7 shows the behaviour of zeta 

potential along pH for each testing condition. The untreated eTF scaffold presents a negative 

surface charge at pH from 6.5 to 9.5. At physiological values (pH = 7.4), it presents a zeta potential 

around -100 mV. After activation with NaOH, the zeta potential became more negative, 

approximately -300 mV, at pH = 7.4. Following the aminolysis treatment, the surface charge shifted 

from negative to positive, roughly +30 mV, within physiological conditions, presenting an isoelectric 

point (IEP) at pH = 8.  The biofunctionalized surfaces were also analysed to understand the effect 

of tropoelastin orientation on the surface charge. The activated eTF scaffolds that were further 

immobilized with tropoelastin (OH-TE) presented a zeta potential of -240 mV at pH = 7.4. This 

charge is less negative comparing to the activated eTF scaffold. Moreover, tropoelastin-immobilized 

on aminolysed scaffolds (NH2-TE) showed a potential of +20 mV at physiological pH. However, this 

condition presented a higher IEP = 8.8.  

3.4.5. Biological performance 

Different biological assays were performed to assess the endothelialization of the eTF 

scaffolds. A HUVEC cell line (EA.hy926) was cultured at the surface of five different substrate 

Figure 3. 7 - Surface zeta potential of untreated, activated (OH), aminolysed (NH2) and tropoelastin-

immobilized on activated (OH-TE) or on aminolysed (NH2-TE) eTF scaffolds along pH. 
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conditions: (i) untreated eTF scaffolds (Untreated), (ii) activated eTF scaffolds (OH), (iii) aminolysed 

eTF scaffolds (NH2), (iv) tropoelastin immobilized on activated eTF scaffolds (OH-TE) and (v) 

tropoelastin immobilized on aminolysed eTF scaffolds (NH2-TE). 

3.4.5.1.  Metabolic activity and cell proliferation 

The metabolic activity results shown an increased cell metabolic activity during the time-

course of the experiment for every group (Figure 3. 8A). The activated eTF scaffolds presented a 

higher metabolic activity in comparison to the untreated eTF scaffolds at 1 day of culture (p<0.01). 

Particularly, at the OH-TE condition, the endothelial cells were significantly more metabolically 

active when compared with the untreated condition, after 1 (p<0.0001) and 3 (p<0.01) days of 

culture. Also, the NH2-TE condition presented higher metabolic activity than the untreated condition 

after 1 day (p<0.01).  

Concerning the cell proliferation, the DNA content of endothelial cells significantly 

increased for all time points, being more noticeable from day 3 to 7 (Figure 3. 8B). Activated 

surface, as well as tropoelastin-immobilized substrates do promote higher cell proliferation 

compared to the untreated condition, even if not statistically significant different. 
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3.4.5.2.  Total protein synthesis and soluble VEGF production 

An increase in total protein synthesis was observed for all conditions along the time-course 

of the experiment (Figure 3. 9A). In particular, statistically significant differences can be seen for 

both conditions comprising immobilized tropoelastin. After 1 day of culture, endothelial cells 

produced a higher amount of protein on OH-TE condition compared to the untreated one (p<0.01). 

Furthermore, the tropoelastin immobilization onto aminolysed eTF scaffolds (NH2-TE) promoted a 

higher protein production throughout the entire experiment. The protein synthesis was significantly 

higher than the untreated (p<0.0001) and activated (p<0.01) conditions and when compared with 

the untreated (p<0.01) and aminolysed (p<0.01) conditions after 1 and 3 days of culture, 

respectively. After 7 days of culture, the protein production was even higher in comparison to the 

untreated (p<0.0001), activated (p<0.0001), aminolysed (p<0.0001) and the OH-TE (p<0.01) 

conditions. 

By performing an enzyme-linked immunosorbent assay (ELISA), it was possible to quantify 

the production of soluble VEGF present in the cell culture medium (Figure 3. 9B). A slight increase 

(A) 

(B) 

Figure 3. 8 - Metabolic activity (A) and DNA quantification (B) of human endothelial cells seeded on 

untreated, activated (OH), aminolysed (NH2) and tropoelastin-immobilized on activated (OH-TE) or on 

aminolysed (NH2-TE) eTF scaffolds after 1, 3 and 7 days of culture. Data were analysed by the Krustal-

Wallis test, followed by the Tukey´s HSD test (p<0.01): a denotes significant differences compared to the 

untreated condition. 



Chapter III. Tubular fibrous scaffold functionalized with tropoelastin as a small-diameter vascular graft 

95 

in VEGF production was observed from day 1 to 7. Despite no statistical differences were observed, 

OH-TE condition seems to induce a higher expression of soluble VEGF compared to the NH2-TE 

condition, after 7 days of culture. 

 

3.4.5.3.  Endothelial cells morphology  

After 1, 3 and 7 days, the morphology of adhered endothelial cells to the eTF scaffolds was 

investigated by SEM (Figure 3. 10). Along the time-course of the experiment, it was possible to 

observe in the SEM micrographs an increase on cell number, in agreement with the DNA content 

results. In particular, at day 7, the presence of a confluent endothelial cell monolayer was observed, 

covering most of the scaffolds surface.  

 

 

 

(A) 

(B) 

Figure 3. 9 - Total protein synthesis (A) and soluble VEGF production (B) human endothelial cells seeded 

on untreated, activated (OH), aminolysed (NH2) and tropoelastin-immobilized on activated (OH-TE) or on 

aminolysed (NH2-TE) eTF scaffolds after 1, 3 and 7 days of culture. Data were analysed by the Krustal-

Wallis test, followed by the Tukey´s HSD test (p<0.01): a denotes significant differences compared to the 

untreated condition; b denotes significant differences compared to the activated condition; c denotes 

significant differences compared to the aminolysed condition and d denotes significant differences 

compared to the OH-TE condition. 
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3.4.5.4.  Immunoexpression of CD31 surface marker  

The analysis of the fluorescence images showed that CD31 at the cell-cell interface was 

synthetized for all conditions throughout the experiment (Figure 3. 11). At day 1 and 3, a well-

U
nt

re
at

ed
 

O
H

 
N

H
2 

O
H

-T
E 

N
H

2-T
E 

1 day 3 days 7 days 

Figure 3. 10 - Morphological analysis by SEM of human endothelial cells cultured on untreated, activated 

(OH), aminolysed (NH2) and tropoelastin-immobilized on activated (OH-TE) or on aminolysed (NH2-TE) eTF 

scaffolds surface after 1, 3 and 7 days of culture. Scale bar: 100 µm (250x magnification) and 10 µm 

(1000x magnification). 
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marked expression of CD31 on the endothelial cells membrane was visible due to their low 

confluent stage. Nevertheless, this endothelial cell marker at the cell-cell interface was more 

noticeable after 7 days, particularly on NH2-TE constructs, demonstrating its role in stimulating the 

formation of endothelial intercellular junctions. 
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Figure 3. 11 - Fluorescent images of human endothelial cells seeded on untreated, activated (OH), 

aminolysed (NH2) and tropoelastin immobilized on activated (OH-TE) or on aminolysed (NH2-TE) eTF scaffolds 

surface after 1, 3 and 7 days of culture. Cell nuclei are stained in blue by DAPI and the CD31 endothelial 

cell marker is stained in green. Scale bar: 50 µm. 

DAPI 

CD31 



Chapter III. Tubular fibrous scaffold functionalized with tropoelastin as a small-diameter vascular graft 

98 

3.5  Discussion 

There is a demand to develop vascular grafts with biomechanical properties compatible to 

those of blood vessels, whilst supporting endothelial cell attachment and proliferation, as well as 

having non-thrombogenic properties [35,36]. The present study reports the development of a 

tubular fibrous scaffold functionalized with tropoelastin as a biomimetic approach for vascular 

tissue engineering. The immobilization of tropoelastin at its luminal surface is proposed to provide 

biochemical cues that endothelial cells recognize from the native ECM. Taking advantage of the 

low thrombogenicity of tropoelastin [37], this approach aims at improving the endothelialization 

and hemocompability without affecting the mechanical properties.  

An ideal vascular graft should mimic the native ECM and the electrospinning is able to 

produce tubular fibrous structures that mimic its structure. Porous and fibrous tubular scaffolds 

were fabricated with a thickness of 240.85 ± 46.91 µm, comprising a mix of micro to 

submicrometer fibers. They present a porous luminal surface composed of randomLy oriented 

fibers at the first layers, showing evidences of a transition to more oriented fibers along the axial 

direction due to the low rotation speed of the mandrel. The eTF scaffolds presented pore sizes that 

vary significantly, ranging from 1 µm to 23 µm, and pore areas up to 70 µm2. In fact, It was 

reported an ideal pore size between 10 and 45 µm that do not induce fibrous tissue infiltration and 

blood leakage [38]. Therefore, the morphology of the obtained eTF scaffolds luminal surface will 

allow the endothelial cells adhesion and proliferation.  

To favour the biofunctionalization of eTF scaffolds, a surface modification was performed 

to allow the covalent binding of tropoelastin to the inner surface of the PCL fibers. Firstly, given the 

long-term application of these constructs, a wet chemical method was selected which promotes a 

random chemical scission of PCL ester linkages. Then, aminolysis was successfully achieved by 

inserting 0.5 ± 0.04 nmol/mg NH2 groups to the eTF scaffolds surface without affecting the fibers 

morphology, as reported previously in the literature by our group [39,40]. Concerning the fiber 

diameter distribution, the surface treatment promoted a decrease of the group of fibers with 

diameters less than 1 µm, maintaining a similar distribution for the larger fibers, also reported by 

other authors [41,42]. Zeta potential measurement has been carried out to identify chemical 

modifications of materials [43,44]. Untreated PCL fibers presented a negative surface charge at 

physiological values which can be explained by the preferential orientation of the carbonyl groups 

at the surface [45]. The NaOH treatment introduced polar groups such as carboxyl (-COOH) and 

hydroxyl (OH), at the surface of the fibers, as confirmed by the decrease on the surface zeta 
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potential values, along the pH. After the aminolysis reaction, NH2 groups were inserted at the fibers 

surface and their protonation led to an increase on surface charge, confirming the effectiveness of 

this functionalization procedure.  

Since surface functionalization may induce changes in the bulk properties of eTF scaffolds, 

the impact of NaOH and aminolysis treatments over the mechanical properties was also assessed. 

In addition to the dry condition, the specimens were also analyzed after hydration since it closely 

reflects the in vivo environment. Healthy arteries are relatively deformable with linear elastic 

behaviour under stress-strain cycles [12]. The stress-strain curves of eTF scaffolds on axial and 

radial directions, before and after functionalization, exhibited an initial elastic behaviour, followed 

by stiffening, which is similar to the tensile behaviour of native vessels. The uniaxial tensile 

properties, on axial and radial directions, for every condition were found to be relatively different. 

Generally, the axial direction presented higher values of maximum stress and its corresponding 

strain in comparison to the radial direction. Since the axial direction presents some fibers aligned 

with the tensile test direction, these fibers were able to stretch more and support higher stresses, 

providing higher mechanical properties. After the aminolysis treatment, the strength and elongation 

of the constructs decreased in the axial direction, which indicates that the treatment slightly 

affected the bulk properties of the polymer. Considering the mechanical properties obtained after 

the surface functionalization, the functionalized eTF scaffolds showed sufficient strength and 

stiffness for vascular applications. The reported Young´s modulus and maximum stress were found 

to be within the range of those obtained for various native vessels (Table 3. 1). Moreover, these 

scaffolds were able to elongate in a higher extent compared to, for instance, the strain of human 

coronary arteries reported in the literature, which was less than 100% [12]. 

Tropoelastin is the monomer of elastin which possesses hydrophobic domains responsible 

for the elasticity, alternated with hydrophilic domains containing lysine residues involved in the 

cross-linking [46]. The N-terminal of the molecule is characterized by the presence of a 26-amino-

acid signal peptide, while the other end comprises the C-terminal which terminates with a positively 

charged amino acid motif [46], responsible for cell-binding [47]. It has been extensively described 

the effect of the C-terminal in cell adhesion, mainly, for fibroblasts [48] and endothelial cells [37], 

promoting their adhesion, spreading and proliferation. Additionally, endothelial cells were reported 

to strongly interact with the N-terminal, influencing their attachment and proliferation [49]. In this 

sense, both interactions and their effect over endothelial cell behaviour was herein investigated. 
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Tropoelastin was immobilized on activated and aminolysed substrates, which allowed its 

immobilization at two different orientations, exploring different exposed moieties of the molecule. 

In one hand, the activated surface presented -COOH and -OH groups which mediated the 

immobilization of tropoelastin by its -NH2 groups and, probably, would expose the C-terminal for 

cell recognition. Alternatively, the -NH2 groups from the aminolysed surface reacted with -COOH 

groups from the tropoelastin to expose the N-terminal for cell binding. Herein, tropoelastin was 

successfully immobilized on activated and aminolysed surfaces with reasonable efficiency, about 

14.11 ± 2.89 µg/mL and 8.57 ± 3.36 µg/mL, respectively. From the surface charge analysis, the 

immobilization of tropoelastin by its -NH2 (OH-TE) and -COOH (NH2-TE) groups promoted a more 

positive and stable surface charge of the eTF scaffolds. 

A rapid endothelialization of a vascular graft is crucial for its anti-thrombogenic properties 

and to keep long-term patency [36]. Therefore, the interaction between HUVECs cell line and the 

eTF scaffolds was studied. The surface functionalization did not negatively affect the endothelial 

cells behaviour when compared with untreated eTF scaffolds. Indeed, endothelial cells were 

metabolically active and were able to adhere and proliferate in vitro, as demonstrated by the MTS 

assay and DNA quantification. The eTF scaffolds modified with tropoelastin showed a trend to have 

enhanced biological performance. Specifically, when immobilized on activated eTF scaffolds (OH-

TE), the tropoelastin improved cell viability and protein synthesis. Additionally, enhanced VEGF 

production in its soluble form, at day 7, was observed which may indicate that tropoelastin 

immobilized in this manner may have a positive influence over the endothelial cell activity, but no 

statistical significant differences were observed. Alternatively, when exposing its NH2 groups (NH2-

TE), tropoelastin significantly induced endothelial cells to synthetise their own proteins, showing 

clear differences compared to all other conditions after 7 days. Overall, tropoelastin, when 

covalently immobilized, demonstrated to have an impact on endothelial cells-biomaterial 

interaction, as reported by other authors [50,51], using both conformations. Endothelial cells 

expressed the endothelial cell adhesion molecule CD31 at cell-cell junctions along the time-course 

of the experiment, being also more evident for NH2-TE condition at day 7. Regardless the presence 

of the tropoelastin, the CD31 staining confirmed that eTF scaffolds supported cell adhesion and 

proliferation, as well as phenotype maintenance. After 7 days, the presence of an endothelial layer 

on the luminal surface, fully covering the eTF scaffolds, was confirmed by SEM analysis. These 

findings suggest that endothelial cells were able to form an anti-thrombogenic luminal surface at 
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early stages of cell culture. Hence, this feasible approach is attractive to produce blood vessel 

substitutes with demonstrated and enhanced cell-material interactions towards endothelialization.  

3.6  Conclusions 

We have successfully developed a biofunctional eTF scaffold for vascular applications with 

appropriate uniaxial tensile properties within the same range of those of native blood vessels. By 

tailoring the surface functionality, different interactions between the biofunctional substrate and 

endothelial cells can be achieved. Indeed, exposing tropoelastin -COOH groups to cells seemed to 

influence the endothelial cells behaviour towards enhancing its viability and activity. Otherwise, 

exposing its -NH2 groups stimulated endothelial cells to produce higher amounts of protein. After 7 

days of culture, a confluent endothelial cell monolayer was present on the eTF scaffolds surface 

which promoted a rapid endothelialization. This study suggests that by combining the fibrous and 

porous structure, and the mechanical properties obtained from eTF scaffolds with biochemical 

cues provided by tropoelastin, it is possible to design a biofunctional and bioactive tubular scaffold 

as a valid alternative to functional engineered vascular grafts. 
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Chapter IV. General Conclusions and Future Work 

4.1.  General conclusions 

Extensive research was made to develop functional biomechanical vascular substitutes for 

vascular bypass applications. Matched mechanical properties and rapid endothelialization are the 

most critical requirements that vascular substitutes should accomplish to suit the purpose of 

replacing vessels segments. Herein, the proposed work aimed at developing an electrospun tubular 

fibrous scaffold biofunctionalized with tropoelastin, as a biomimetic approach to address the 

vascular grafts needs.  

The eTF scaffolds were successfully fabricated by electrospinning, presenting a porous 

luminal surface with fibers diameters ranging from submicron to several microns. The fibers were 

randomly organized, showing some degree of alignment in the axial direction. The porosity obtained 

was about 34%, the pore sizes ranged between 1 and 23 µm and the pore areas were up to 70 

µm2. 

The functionalization of the luminal surface of eTF scaffolds was carried, firstly, by NaOH 

treatment and, then, by aminolysis to insert oxygen-containing groups (-COOH and -OH) and -NH2, 

respectively. The surface functionalization was effectively confirmed by the quantification of amine 

groups by Ellman´s reagent method, as well as the presence of different surface functionalities by 

the surface charge analysis. The surface treatments did not affect the fibers morphology, as 

confirmed by SEM, but promoted a decrease in the group of fibers with diameters lower than 1 

µm. Uniaxial tensile tests were performed along the axial and radial directions, under dry and 

hydrated conditions, for untreated, activated and aminolysed eTF scaffolds. The radial tensile 

properties exhibited lower maximum stress and its corresponding strain when compared with the 

axial properties due to the presence of fibers axially aligned. Although the surface treatments have 

affected the maximum stress and the corresponding strain, their values were within the range of 

those of native vessels.  

Taking advantage of the different surface functionalities, tropoelastin was immobilized on 

activated and aminolysed eTF scaffolds, and further confirmed by microBCA assay. The activated 

substrate presented a higher binding capacity of tropoelastin in comparison to the aminolysed 

substrate. The protein immobilization on eTF scaffolds surface with two different functionalities 

aimed at exposing the C-terminal and N-terminal of tropoelastin to, consequently, study their effect 

over ECs behaviour. The eTF scaffolds supported endothelial cell adhesion, spreading and 
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proliferation, as evaluated by MTS and DNA results. Generally, the presence of tropoelastin 

influenced positively the ECs behaviour. Particularly, exposing tropoelastin -COOH groups to ECs 

seemed to promote enhanced viability and protein synthesis at the early stages of culture, as well 

as the cells activity due to an apparent higher production of VEGF at day 7. On the other hand, 

exposing its -NH2 groups stimulated endothelial cells to synthetize higher amounts of protein. ECs 

maintained their phenotype along the time-course of the experiment as confirmed by the staining 

of the endothelial cell adhesion molecule (CD31), being more evident for NH2-TE condition at day 

7. Regardless tropoelastin presence, eTF scaffolds supported cells adhesion and proliferation, as 

well as phenotype maintenance. Besides, after 7 days, the presence of an endothelial layer on the 

luminal surface, fully covering the surface, was confirmed by SEM analysis. In conclusion, our 

biofunctional eTF scaffolds possess mechanical properties similar to those of native vessels and 

enhanced cell-material interactions towards endothelialization, demonstrating to be a valid strategy 

for development of successful blood vessels replacement. 

4.2.  Future work 

The work developed under the scope of this thesis produced promising findings and, 

thereby, can be complemented with other studies to ultimately confirm its suitability for vascular 

tissue engineering applications. Although these eTF scaffolds were biofunctionalized with an anti-

thrombogenic protein and supported endothelial cell coverage, hemocompability studies could be 

also performed to give an insight of their thrombogenic properties. Particularly, a study of platelets 

adhesion, morphology, activation and coagulation activity could be conducted with fresh blood to 

understand the behaviour of these scaffolds, before and after the biofunctionalization with 

tropoelastin.  

Since SMCs play an important role on blood vessels along with ECs, a co-culture system 

comprising ECs seeded in the luminal surface and SMCs seeded in the outer surface could be 

implemented. Additionally, these constructs would also benefit from dynamic cell culturing under 

physiological conditions (pressure and flow) for longer periods to understand the interaction of both 

cell types on tissue remodelling and ECM synthesis. Envisioning the future application, culture of 

fibroblasts could also be explored in an attempt to develop a highly functional vascular tissue, 

mimicking the native architecture and cell composition of blood vessels. 

 Considering the mechanical testing, biomechanical properties, such as burst pressure, 

dynamic compliance and suture retention strength should be also evaluated to assess the 
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mechanical response of eTF scaffolds. Moreover, performing this mechanical testing on human 

vessels would be a better strategy to compare directly with the scaffolds under the same conditions.  

Finally, the evaluation of these constructs in vivo would be also of interest to assess their 

response in living tissues, as well as their function in replacing blood vessels. A study on in vivo 

compliance, intimal hyperplasia, patency, thrombosis, in vivo calcification, polymer degradation, 

mechanical properties maintenance and tissue regeneration of eTF scaffolds would be challenging, 

yet motivating, since only few studies have focused on the in vivo performance of synthetic vascular 

grafts.

 


