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Resumo

RISC-V Lightweight Virtualization Extensions

Na última década, a virtualização tornou-se uma tecnologia essencial para os servidores, mas também

para várias indústrias, tais como a indústria automóvel e controlo industrial. Em sistemas embebidos, o

número de requisitos tem vindo a aumentar de forma constante nos últimos anos. Ao mesmo tempo, a

pressão do mercado para minimizar o tamanho, peso, consumo e custo (SWaP-C) tem impulsionado a

consolidação de vários subsistemas, tipicamente com níveis de criticidade distintos, na mesma plataforma

de hardware. Em resposta, o meio académico e a indústria têm-se focado no desenvolvimento de suporte

de hardware para apoiar a virtualização, e no suporte para estas tecnologias em hypervisors de referência.

Os recentes avanços na área de aquitetura de computadores estão ligados ao desenvolvimento de uma

arquitetura inovadora designada de RISC-V. RISC-V distingue-se das plataformas convencionais ao oferecer

uma arquitectura de conjunto de instruções (ISA) livre e aberta, com um esquema de extensão modular

e altamente personalizável. Todo o ecosistema RISC-V tem crescido a um ritmo alucinante, motivado

pela promessa de transformar a indústria de hardware, da mesma forma que o sistema operativo Linux

transformou a indústria de software. A especificação da arquitetura RISC-V define que todo o suporte de

hardware para a virtualização é especificado através extensão de hypervisor (H-extension ).

Esta dissertação descreve a primeira implementação e avaliação pública da última versão da especi-

ficação da extensão hypervisor RISC-V (H-extension v0.6.1) num processador RISC-V (Rocket Chip). A

avaliação foi feita em um hypervisor de partição estática open-source com suporte para RISC-V, denomi-

nado Bao. O controlador de interrupções, designado de PLIC na arquitetura RISC-V, foi também extendido

para permitir a injecção de interrupção directa em máquinas virtuais com latência baixa e determinística.

A infra-estrutura de gestão de temporização do sistema também foi modificada para evitar suporte via

emulação (e toda a perda de desempenho associada). Todos os testes foram realizados no FireSim, um

simulador acelerado por FPGA (precisão ao ciclo), e o sistema foi também testado com sucesso numa

Zynq UltraScale+. Disponibilizamos a nossa implementação de hardware para a comunidade RISC-V, que

está atualmente a ser utilizada como referência para ratificar a especificação da H-extension .

Palavras-chave: Virtualização, RISC-V, H-extension , Hypervisor, Sistemas Embebidos
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Abstract

RISC-V Lightweight Virtualization Extensions

In the last decade, virtualization has become a key enabling technology for servers, but also for several

embedded industries such as the automotive and industrial control. In the embedded space, the number

of requirements has been steadily increasing for the past few years. At the same time, the market pressure

to minimize size, weight, power, and cost (SWaP-C) has pushed for the consolidation of several subsys-

tems, typically with distinct criticality levels, onto the same hardware platform. In response, academia

and industry have focused on developing hardware support to assist virtualization, and adding upstream

support for these technologies in mainstream hypervisor solutions.

Recent advances in computing systems have brought to light an innovative computer architecture

named RISC-V. RISC-V distinguishes itself from traditional platforms by offering a free and open instruction

set architecture (ISA) featuring a modular and highly customizable extension scheme that allows it to

scale from tiny embedded microcontrollers up to supercomputers. RISC-V is going towards mainstream

adoption under the premise of disrupting the hardware industry, such as Linux has disrupted the software

industry. As part of the RISC-V privileged architecture specification, hardware virtualization support is

specified through the hypervisor extension (H-extension).

This dissertation describes the first public implementation and evaluation of the latest version of the

RISC-V hypervisor extension (H-extension v0.6.1) specification in a Rocket Chip core. To perform a mean-

ingful evaluation for modern multi-core embedded and mixed-criticality systems, we used an open-source

static partitioning hypervisor with support for RISC-V, named Bao. We have also extended the RISC-V

platform-level interrupt controller (PLIC) to enable direct guest interrupt injection with low and deterministic

latency, and we have enhanced the timer infrastructure to avoid trap and emulation overheads. Exper-

iments were carried out in FireSim, a cycle-accurate, FPGA-accelerated simulator, and the system was

also successfully deployed and tested in a Zynq UltraScale+ MPSoC ZCU104. Our hardware implemen-

tation was open-sourced and is currently in use by the RISC-V community towards the ratification of the

H-extension specification.

Keywords: Virtualization, RISC-V, H-extension, Hypervisor, Embedded Systems
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Chapter 1

Introduction

Embedded and cyber-physical systems have been evolving exponentially over the years. Traditionally,

embedded systems were single-purpose systems with limited functionalities, minimal communication,

and simple interfaces. Nowadays, modern embedded systems are evolving and assuming characteristics

of general-purpose systems while maintaining real-time constraints. Embedded systems that were typically

low on complexity are now a sophisticated collection of subsystems with different critical levels interacting

with each other. This growth in complexity, coupled with the desire to join together all of these subsystems

into one platform, forced researchers and industries to search for new methodologies and technologies.

Embedded virtualization technology arises as a natural response to consolidate several systems with

different criticality levels into a single platform while guaranteeing isolation and security. This technology

introduces an extra layer of software, denoted hypervisor, that virtualizes resources for one or more OSes

running atop of it, giving the OSes the illusion of complete control over the system hardware [Masood et al.,

2015]. Each guest OS runs on its partition, which guarantees spatial and temporal isolation. This allows a

general-purpose system (GPOS) to run alongside a real-time operating system (RTOS) while leveraging from

the best of the two systems, i.e., the rich set of API offered by GPOSs for graphical user interfaces and the

real-time execution offered by the RTOS. Additionally, the possibility of consolidating several functionalities

in separate partitions on the same hardware platform also enables re-using legacy software stacks and

maximizes overall performance and hardware usage. Consequently, this means less engineering effort and

time-to-market, which eventually increases revenue. In response, efforts have been made in the academia

and industry on adding hardware support virtualization (e.g., Arm Virtualization Extensions) and adding

upstream support for these technologies in mainstream hypervisor solutions [Kloda et al., 2019, Dall and

Nieh, 2014].

Embedded software stacks are progressively targeting powerful multi-core platforms, endowed with

complex memory hierarchies [Burgio et al., 2017, Xu et al., 2019]. Despite the logical CPU and memory

1



Chapter 1. Introduction 2

isolation provided by existing hypervisor layers, there are several challenges and difficulties in proving

strong isolation due to the reciprocal interference caused by micro-architectural resources (e.g., last-level

caches, interconnects, and memory controllers) shared among virtual machines (VM) [Kloda et al., 2019,

Martins et al., 2020]. This issue is particularly relevant for mixed-criticality applications, where security-

and safety-critical applications need to coexist along with non-critical ones. In this context, a malicious VM

can either implement denial-of-service (DoS) attacks by increasing their consumption of a shared resource

[Bechtel and Yun, 2019, Bechtel and Yun, 2020] or indirectly access other VM’s data leveraging existing

timing side-channels [Ge et al., 2018]. To tackle this issue, the industry has been developing specific

hardware technology (e.g., Intel Cache Allocation Technology), and the research community has been

very active in proposing techniques based on cache locking, cache/page coloring, or memory bandwidth

reservations [Yun et al., 2013, Mancuso et al., 2013, Kloda et al., 2019, Xu et al., 2019, Farshchi et al.,

2020].

Recent advances in computing systems have brought to light an innovative computer architecture

named RISC-V. RISC-V distinguishes itself from traditional platforms by offering a free and open instruction

set architecture (ISA) featuring a modular and highly customizable extension scheme that allows it to scale

from tiny embedded microcontrollers up to supercomputers. RISC-V is going towards mainstream adoption

under the premise of disrupting the hardware industry, such as Linux has disrupted the software industry.

As part of the RISC-V privileged architecture specification, hardware virtualization support is specified

through the hypervisor extension (H-extension). The H-extension specification is currently in version 0.6.1,

and no ratification has been achieved so far.

Although virtualization is well established in desktops and servers, shifting it to the embedded world

can be demanding. While on servers, each OS runs in its independent partition, the same does not

apply to embedded systems where the functionalities are spread across multiple cooperating subsystems.

Hardware support for virtualization is seen as a significant improvement, but few studies address the

low/high tier gap, i.e., while some of these architectural features could be essential in the high tier systems,

in low tier systems, it could be overkill and even introduce overhead. This dissertation intends to contribute

to the maturity of current hardware virtualization support in the embedded world, mainly focusing on RISC-

V. This will be accomplished by implementing the RISC-V hypervisor extension in a RISC-V Rocket Chip and

re-examining existing virtualization support, and, if necessary, proposed some modifications that could be

beneficial in the context of the embedded systems.
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1.1 Goals

This dissertation aims at contributing to the embedded virtualization space, in particular for RISC-V, with

the following goals:

• Implement the RISC-V H-extension in a RISC-V Soc generator (i.e., Rocket Chip). This means to study

the inner structure of the Rocket Chip generator and extend all necessary modules accordingly to

the H-extension specification.

• Evaluate RISC-V H-extension’s effects in a multi-core environment by using an embedded hypervisor

named Bao, with focus on the following metrics: performance and inter-VM interference, hardware-

resources, interrupt latency.

• Analyze the RISC-V virtualization support and propose new extensions that could improve virtualiza-

tion efficiency.

1.2 Document Structure

This remaining document is organized as follows:

• Chapter 2 provides background knowledge and related work regarding virtualization, hypervisors,

and RISC-V.

• Chapter 3 discusses the RISC-V hypervisor extension and explains some of the main features.

• Chapter 4 identifies some issues with current timer virtualization support in RISC-V platforms and

proposes some virtualization extensions to the current RISC-V specification.

• Chapter 5 identifies some issues with current external interrupt controller (PLIC) virtualization sup-

port in RISC-V platforms and proposes some virtualization extensions to the PLIC.

• Chapter 6 describes how we extended a RISC-V SoC generator and a RISC-V core, i.e., Rocket Chip

and Rocket core, with hypervisor extensions and our interrupt virtualization enchantments on the

PLIC and timer interrupt controller, i.e., CLINT.
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• Chapter 7 presents all tests and evaluations conducted on an FPGA and RISC-V simulator, i.e.,

Firesim. Our focus is hardware-resources, performance and inter-VM interference, and interrupt

latency.

• Chapter 8 concludes this dissertation. We identify some existing gaps in the RISC-V privilege spec-

ification and suggest future work to address such existing limitations.



Chapter 2

Background Concepts and Related Work

In the following chapter, firstly, we introduce some basic theoretical concepts regarding virtualization and

hypervisors architectures. Next, we expose how other mainstream instruction set architectures (ISAs)

add hardware support for virtualization. Then, we make a brief description of RISC-V ISA and present a

well-known RISC-V system on chip (SoC) generator and a popular RISC-V core. Lastly, we present some

hypervisors and microkernels with support for RISC-V.

2.1 Virtualization

In the last decade, virtualization has been gaining popularity among researchers and enterprises as it en-

ables multiple operating systems (OSes) to run concurrently on the same physical machine by introducing

a thin software abstraction layer (hypervisor), thus providing security and isolation [Garcia, 2015, Masood

et al., 2015]. Virtualization has been used mainly on desktop and server environments for load balanc-

ing across clusters, power management, and firewalling by isolating high-risk services [Heiser, 2008]. In

the last few years, developments have been made in embedded virtualization as a solution to integrate

real-time control functionalities with rich environments, providing real-time and non-real-time characteris-

tics [Heiser, 2011, Reinhardt and Morgan, 2014, Lee et al., 2016]. Various applications can be identified

ranging from mobile devices [Liao et al., 2017] to medical devices, automotive [Thiebaut et al., 2016, Mas-

mano et al., 2009] and aerospace [Pinto et al., 2016], where the urge to consolidate several subsystems

of different critical levels, also called mixed-criticality systems (MCSs), is present [Heiser, 2011].

5
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2.1.1 Hypervisor Architectures

To properly classify a hypervisor architecture, three aspects must be taken into account: the hierarchy (its

position on the system stack), the internal hypervisor architecture, and the virtualization technique. When

defining the hypervisor in terms of hierarchy, two different types can be identified:

• Type 1 hypervisors (bare-metal Hypervisors): located at the first level of the software stack, as so,

controlling the hardware and managing the VMs.

• Type 2 hypervisors: located at the second level of the software stack, it runs on top of an OS (located

at the first level). The OS is responsible for managing the hardware, and the hypervisor is seen as

just another application, enabling several Virtual Machines (VMs) to run atop the hypervisor.

Figure 2.1: Type 1 and Type 2 Hypervisors, in [Nakivo, 2018].

In terms of the internal architecture of the hypervisor, two main architectures can be identified [Shrop-

shire, 2014]:

• Monolithic Hypervisors: condenses a set of subsystems, i.e., CPU scheduling, memory manage-

ment, file management, device drivers, and other operating system functions within a single static

binary file. This means that all the subsystems share a common address space and privileged

mode. Although this induces a larger memory footprint, it allows subsystems to interact more

quickly and efficiently. One main disadvantage is that any service crash would mean an overall

system failure.

• Microkernel Hypervisors: designed to minimize memory footprint, microkernel architectures retain

basic tasks, i.e., CPU scheduling, memory management, and inter-process communication and

use a separate partition to handle storage, hypercalls, and other support functions.
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In terms of virtualization technology, there are three major approaches:

• Full-virtualization enables guest OSes to run in isolation without any modifications [Menascé, 2005].

Two main approaches can be identified [Lingeswaran, 2017], software-assisted which relies on

either binary translation or trap-and-emulate of privileged instructions and hardware-assisted full

virtualization uses CPU hardware virtualization extensions [Dall, 2018, Varanasi and Heiser, 2011].

• Paravirtualization [Lingeswaran, 2017] requires changes to the guest OSes source code, as privi-

leged code needs to be replaced by the corresponding hypercall, i.e., set of APIs provided by the

hypervisor to the VMs to deal with privileged operations. Although it provides some performance

advantages, as each OS needs to be changed to fit the hypervisor, it also leads to high design cost

[Garcia, 2015].

• Previrtualization [Lingeswaran, 2017] is similar to paravirtualization, except that it attempts to elim-

inate the additional engineering effort with it. Instead of manually changing the guest OS source

code to be compatible with the hypervisor, the porting is done automatically by changing sensitive

instructions and replacing them with calls to the hypervisor, also called hypercalls.

2.2 Hardware Virtualization Technology

Modern computing architectures such as x86 and Arm have been adding added hardware extensions to

assist virtualization to their CPUs for more than a decade. Intel has developed the Intel Virtualization

Technology (Intel VT-x) [Uhlig et al., 2005], the Advanced Programmable Interrupt Controller (APIC) vir-

tualization extension (APICv [Nguyen, 2016]), and Intel Virtualization Technology for Directed I/O (Intel

VT-d [Uhlig et al., 2005]). Intel has also included nested virtualization hardware-based capabilities with

Virtual Machine Control Structure (VMCS) shadowing. Arm included the virtualization extensions (Arm VE)

since Armv7-A and developed additional hardware to the Generic Interrupt Controller (vGIC) for efficient

virtual interrupt management [Limited, 2016]. Recently, Arm has announced a set of extensions in the

Armv8.4-A that includes the addition of secure virtualization support [Arm Ltd., 2018b] and the Memory

System Resource Partition and Monitoring (MPAM) [Arm Ltd., 2018a]. There are additional COTS hard-

ware technologies that have been leveraged to assist virtualization, namely the MIPS virtualization module

[Moratelli et al., 2016], AMD Virtualization (AMD-V), and Arm TrustZone [Pinto and Santos, 2019, Pinto
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et al., 2019]. The academia has also been focused on devising and proposing custom hardware virtu-

alization support, and mechanisms [Garcia et al., 2014, Xu et al., 2017, Lim et al., 2017]. Garcia et al.

proposed a hardware-based hypervisor implementation [Garcia et al., 2014]. Xu et al. proposed vCAT

[Xu et al., 2017], i.e., dynamic shared cache management for multicore virtualization platforms based

on Intel’s Cache Allocation Technology (CAT). With NEVE [Lim et al., 2017], Lim et al. developed a set

of hardware enhancements to the Armv8.3-A architecture to improve nested virtualization performance,

which was then included in Armv8.4-A.

2.2.1 Arm Virtualization Extensions

Originally, Arm architecture was not developed to be a virtualizable architecture, as it contains sensitive

and unprivileged instructions [Dall, 2018]. This violates Popek and Goldberg’s [Popek and Goldberg,

1974] virtualization theorem, which states that architecture is classically virtualizable if all the ISA sensitive

instructions (instructions that are critical for correct virtualization) are also privileged (instructions that trap

in user mode but not in kernel mode). Arm introduced Virtualization Extensions (VE) to the Armv7-A and

Armv8-A architectures.

Running VMs implies the existence of privileged CPU virtualization mode as the hypervisor needs to

control the physical hardware. To accomplish that, Arm changed its sensitive operations to act over a

virtual state instead of a physical CPU, thus providing isolation and reduce traping to the hypervisor. Arm

implemented this by introducing a new and more privileged CPU mode, the hypervisor mode, designed

to run hypervisors as simply as possible. Software running in hypervisor mode can configure hardware to

trap from kernel or user into hypervisor mode in specific events, e.g., the hypervisor can choose if reading

CPU ID registers should trap or not to the hypervisor.

In terms of virtual memory support, Arm virtualization extensions added a 2-stage address translation

to allow the hypervisor to have full control over all the guest physical memory accesses. The first stage

translates Virtual Addresses (VAs) into Guest Physical Addresses (GPAs), and the second stage translates

GPAs into Physical Addresses (PAs). Typically, in a non-virtualized memory-management unit (MMU), traps

to the hypervisor were required every time the VMs accessed virtual memory for keeping track over guests

page tables (PTs) by resorting to the shadow tables technique. With the 2-stage translation, the hypervisor

no longer needs to keep shadow tables in memory, leaving the MMU responsible for doing the address

translation. Consequently, this leads to a reduction in the VM exits and eventually overall performance

improvement [Garcia, 2015].
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It is worth mentioning Arm optional Security Extension, called Trustzone. The Trustzone splits execution

into two separate worlds, secure and non-secure and provides a special mode (monitor mode) to switch

between the two worlds. When this extension is implemented, the system boots up at the secure world

and then switches to the non-secure. With the rising of the Internet of Things (IoT) era, embedded OSes

have been including features to ease the implementation of IoT applications [Silva et al., 2019, Costa

et al., 2020]. Trustzone has also been used in IoT applications for security purposes by providing a trusted

execution environment (TEE) and therefore separate critical software components from non-critical [Oliveira

et al., 2018b, Cerdeira et al., 2020]. Originally, Trustzone technology was not targetted for virtualization,

but efforts have been made to leverage this technology for embedded systems applications [Martins et al.,

2017]. In Ref.[Pinto et al., 2014], a Trustzone assisted hypervisor, called LTZVisor [Pinto et al., 2017b], was

presented, where a general-purpose operating system (GPOS) in the non-secure world runs side-by-side

with a real-time operating system (RTOS) in the secure world. The LTZVisor runs in a secure mode (monitor

mode) to manage the whole platform. The hypervisor is responsible for configuring memory, interrupts,

devices assigned to each VM, and inter VM-communication [Oliveira et al., 2018a]. To ensure that real-time

environment constraints are met, an asymmetric design was followed, dictating that the secure VM has

greater scheduling priority than the non-secure one. This prevents the OS from preempting the RTOS but

can cause starvation in the non-secure world. To tackle this problem, an extension to the LTZVisor was

presented in [Pinto et al., 2017a], where a multicore asymmetric multiprocessing configuration was used.

The GPOS runs in the non-secure world in one core, and the RTOS runs in the secure world in another core.

One of the main limitations founded in LTZVisor is the number of supported virtual machines, as it only

supports two VMs. In Ref.[Cicero et al., 2018], a dual-hypervisor design for Arm platforms is presented. It

proposes one hypervisor for the non-secure world that leverages the Arm-VE and another one that relies on

para-virtualization. There are benefits in terms of performance, reliability, and security in such approach.

First, in case of failure in the non-secure world, the secure world is not affected. Second, no switch from

a secure world to a non-secure is required to handle virtualization in the non-secure world.

The Generic Interrupt Controller(GIC) [Limited, 2016] v2 and v3 is the system interrupt controller used

in Arm architectures. The GIC architecture splits into two parts, a Distributor (only one in all systems) and

a CPU interface (one interface per CPU), which are accessed over a Memory-Mapped interface (MMIO).

GIC Virtualization Extensions introduced another CPU interface to each processor, specially dedicated

to interacting with VMs. A VM running in a processor with interrupt virtualization extensions communi-

cates with the virtual CPU interface. Also, a VM that receives virtual interrupts from this interface cannot



Chapter 2. Background Concepts and Related Work 10

Figure 2.2: Armv7 modes, in
[Dall, 2018].

Figure 2.3: Armv8 modes, in
[Dall, 2018].

distinguish them from physical interrupts, which eases the programmer’s model, as virtual and physical

interrupt handling is identical.

The virtual CPU interface is divided into two blocks, each separated into 4KiB address regions:

• Virtual Interface Control - The GIC virtual interface control registers comprise all the active and

pending virtual interrupts; this block is typically programmed by the hypervisor. A special subset of

registers was added to the control registers, the ListRegisters (LRs), to generate virtual interrupts.

• Virtual CPU interface - Each virtual CPU interface block provides physical signaling of virtual inter-

rupts to the connected processor. The hypervisor signal these interrupts to the current VM running

on that processor. The GIC virtual CPU interface registers, accessed by the VM, provide an interrupt

control and status information for the virtual interrupts. The format of these registers is similar to

the format of the physical CPU interface registers.

The GIC virtual interface control registers and the virtual interface registers are held at a non-secure

memory map. Therefore, the hypervisor uses the 2-stage translation to prevent access from the VM to the

virtual interface control registers. Moreover, given that there is only one distributor, the hypervisor needs

to trap and emulate any access performed by the VM’s.

The hypervisor is responsible for handling all IRQs and selecting which ones are forwarded to which

VM by injecting virtual interrupts through programming the LRs that state the currently visible interrupts

to that machine. There is a limit to the total number of pending, active, or active and pending interrupts

inherent to the maximum number of registers in the LR. This means that when an interrupt arrives and

there is no space left in the LRs, the hypervisors needs save the interrupt details and insert them into the

LRs when available. Additionally, to handle de complexity of injecting interrupt using LR, Arm provides a
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special type of interrupt, denoted maintenance interrupts, that signaled the hypervisor when certain events

occur in the LRs, e.g., no pending interrupt or the guest interrupt acknowledge.

Looking at the Arm GIC interrupt virtualization support, we can identify some advantages and disad-

vantages:

Advantages:

• Provides a guest interface called virtual CPU interface, which he can interact with no need to trap

and emulate accesses;

• Direct injection of virtual interrupts;

• Supports an unlimited number of interrupts;

• The VM can acknowledge physical interrupts;

• Provides interrupt number translation, meaning that a physical interrupt ID can be different from

the virtual interrupt ID viewed by the guest.

Disadvantages:

• In case of the interrupts are intended for the current VM, and there is no space in the LR, interrupt

details need to be stored in memory, e.g., interrupt ID and priority. Then, the hypervisor will wait

for the guest to acknowledge at least one interrupt from LR and insert the previous stored one;

• Needs to trap all guest OS accesses to the GIC Distributor, as there is only one instance;

• Each context switch, the hypervisor needs to re-configure the LRs.

2.2.2 Intel Virtualization Extensions

The Intel x86 architecture was not developed to be classically virtualizable. Robin et al. [Robin and Irvine,

2000] proved that x86 contained several instructions that violated the Popek and Goldberg theorem, e.g.

pushf, popf. To tackle this problem, Intel introduced Intel Virtualization Technology (VT) as a hardware

virtualization support technology. Instead of having a separated mode for the hypervisor like Arm, Intel

has two different modes (root and non-root mode) independent of the CPU protection mode. The hyper-

visor runs in root mode while the guest in non-root mode. Moreover, to support virtualization, sensitive
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operations in non-root cause traps to the hypervisor, allowing the hypervisor to fully control the guest’s ex-

ecution. Additionally, Intel added hardware support for a VM control structure in memory (VMCS), used to

automatically save a restore de CPU’s state when switching to or from root mode using the VMX transitions,

defined as a single atomic operation. Each VM has its own VMCS, which is divided into six logical groups:

guest-state area, host-state area, VM-execution control fields, VM-exit control fields, VM-entry control fields,

and VM-exit information fields.

Regarding memory virtualization, Intel has a similar mechanism as the Arm 2-stage address trans-

lation, called Extended Page Table (EPT) [Bhargava et al., 2008], which enables the guest to have full

control over page tables reducing the VM exits to VMM and memory footprint, as no shadow page-tables

are required [Ke, 2009].

Intel uses the Advanced Programmable Interrupt Controller (APIC) [Intel, 2011] for interrupt handling.

Each processor core as one local APIC, which deals with both internal and external I/O APIC interrupts.

In a multiprocessor system, the local APIC also sends and receives messages from other processors,

also called inter-processor interrupt (IPI). For handing external interrupts, the external I/O APIC gathers

interrupt events caused by I/O devices and routes them to the local APIC as interrupt messages. Each

local APIC consists of memory-mapped registers used to control interrupt delivery and generation of IPI

messages. When an interrupt is signaled to the CPU core, the Interrupt Descriptor Table (IDT) is used to

decide which interrupt handler to take.

Typically, in virtualized environments without hardware support, the hypervisor needs to emulate local

APIC registers accesses and adequately deliver them to the guest IDT. This incurs in a high VM-exit as

the hypervisor needs to intercept interrupts and inject them into the guest and emulate the APIC behavior

when the guest handles the interrupt. This impacts performance as each VM exit involves context save and

restore and running the hypervisor code, which also pollutes the CPU cache. LAPIC registers emulation

is one of the major causes of virtualization overhead due to the high rate of VM exits [Tu et al., 2015].

Intel address this issue by introducing the APICv, which virtualizes the LAPIC registers in the processor.

Control fields were added to VMCS to allow APIC virtualization and virtual interrupt delivery. Each VM was

presented with a 4KiByte virtual-APIC page to virtualize the APIC register’s access and manage virtual

interrupts. APIC-reads are emulated and no longer cause VM-exit, and APIC-write not longer causes a fault

VM-exit but a trap-like VM-exit.
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Posted Interrupts

Intel’s developed a mechanism for posting virtual interrupts into a currently running vCPU without any VM

exit. Posted Interrupts adds a new hardware data structure that the hypervisor uses to post interrupts. The

process is quite complex and involves several steps. First, an interrupt arrives, and the hypervisor decides

which vCPU is going to receive it. Then, it posts this virtual interrupt into the post-interrupt descriptor of

the target vCPU. Next, the hypervisor sends an IPI with the posted-interrupt notification vector to the core

in which vCPU is running. Finally, the hardware detects the IPI and synchronizes the posted interrupt with

its virtual APIC page, delivering the pending virtual interrupt directly. The interrupts are then decoded into

a specific handler based on the guest IDT. The interrupt completion is done without any VM-exit as it can

directly interact with the EOI registers in the virtual APIC page. This mechanism allows the hypervisor to

directly update the state of the guest interrupts while the VM is still running. Additionally, hypervisors can

direct-assign devices to guests by configuring the interrupt remapping table to inject external interrupts

directly to the guest [Zhang et al., 2018].

Advantages:

• Provides a virtual APIC interface, which the guest can interact with without causing a VM-exit;

• Direct injection of virtual interrupts through posted interrupts mechanism;

• Use trap-like APIC-write without the need to trap and emulate;

• Guest device direct-assignment.

Disadvantages:

• Interrupt mechanism is complex;

• Guest cannot access the I/O APIC;

• APIC virtual page is stored in memory.

2.3 RISC-V

RISC-V is a popular instruction set architecture (ISA), originally targeted for educational purposes [Patterson

and Waterman, 2017]. The RISC-V distinguishes itself from its competitors by offering a free and open
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standard ISA with a highly customizable and modular extension scheme that allows it to scale from small

embedded systems with restricted resources up to high-performance computers.

It offers a base integer ISA with a minimal set of instructions (RV32I, RV64I, and RV128I) that every

core must implement and a set of optional extensions to the base ISA [Waterman et al., 2014]. The RV128I

is still being developed and has not yet achieved a frozen state, while the RV32I and RV64I are already

frozen by the RISC-V foundation [Waterman et al., 2014]. The RISC-V specification for each new extension

follows a well-defined extension development lifecycle. First, it starts as a draft, and when it has been

stable for quite some time, it approaches a frozen state, after which it will enter a period of public review

before finally being ratified. Table 2.1 presents all optional extensions available and their current state.

Additionally, the ISA is very flexible to custom implementations, so opcode space is also reserved for non-

standard extensions so that designers can easily add new features to their processors that will not conflict

with existing software compiled to the standard.

Name State Description

M Frozen Integer Multiplication and Division Extension

A Frozen Atomic Instructions Extension

F Frozen Single-Precision Floating-Point Extension

D Frozen Double-Precision Floating-Point Extension

Q Frozen Quad-Precision Floating-Point Extension

L Open Decimal Floating-Point Extension

C Frozen Compressed Instructions Extension

B Open Bit Manipulation Extension

J Open Dynamically Translated Languages Extension

T Open Transactional Memory Extensions

P Open Packed-SIMD Instructions Extension

V Open Vector Operations Extensions

N Open User-Level Interrupts Extension

H Open Hypervisor Extension

S Open Supervisor-level Instructions Extension

Table 2.1: RISC-V standard extensions.
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The RISC-V ISA defines three privilege levels of protection for hardware threads or harts (RISC-V ter-

minology for CPUs) (see table 2.2). These privileged levels provide protection between different software

stack components, and any attempts to perform operations not allowed by the current privilege mode will

cause an exception to be raised. The machine mode (M-mode) is the highest privileged mode and the only

mandatory level for a RISC-V platform. The code running on this level has low-level access and is usually

trusted. User-mode (U-mode) and supervisor-mode (S-mode) are intended for conventional applications

and OSes usage, respectively. Recently, the RISC-V privileged ISA was endowed with hardware virtualiza-

Encoding Abbreviation Name
0 U-mode User mode
1 S-mode Supervisor mode
2 Reserved Reserved for future use
3 M-mode Machine mode

Table 2.2: RISC-V privileged levels.

tion support, which is the main scope of this dissertation, and as such, we will address it separately (see

Chapter 3). Each privilege is endowed in a set of control and status registers (CSRs) to control the execu-

tion mode behavior and trap handling (see Table 2.3), e.g., M-mode and S-mode havemcause and scause

to store the exception/interrupt code when a trap occurs. By default, all interrupts and exceptions are

Mode Register Description

M-mode

mstatus machine status register
mtvec machine trap-vector base-address register
medeleg and
mideleg

machine trap delegation registers

mip and mie machine pending and enable interrupt registers
mtime and mtimecmp machine timer registers
mepc machine exception program counter
mcause machine cause register
mtval machine trap value register

S-mode

status supervisor status register
stvec supervisor trap-vector base-address register
sepc supervisor exception program counter
scause supervisor cause register
stval supervisor trap value register

Table 2.3: M-mode and S-mode available CSRs.

handled by the execution environment running in M-mode, which can delegate it to S-mode by writing to

mideleg andmedeleg . Additionally, the execution environment is also responsible for defining the number
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of harts and privileges available, protect memory region accesses and control virtual memory translations,

and trapping and emulating CSRs or sensitive instructions not allowed to execute in lower privilege levels.

When running in M/S/U systems, the M-mode provides the supervisor execution environment (SEE) for

the OS running in S-mode by implementing the Supervisor Binary Interface (SBI). The SBI acts as an

abstraction layer between the supervisor and the actual hardware platform, which increases portability

and allows OSes to run seamlessly in every platform. The SBI is implemented via ecall from S-mode

to M-mode and temporarily registers (a0-a7 ) to pass arguments. There are several implementations of

the SBI interface, e.g., OpenSBI, and Berkely Boot Loader (BBL), which implement several functionalities

defined by the SBI interface, e.g., timer, IPIs, serial and fence instructions.

2.3.1 Rocket Chip Overview

Rocket Chip [Asanovi et al., 2016] is an open-source SoC generator based on RISC-V Instruction Set

Architecture (ISA) developed by UC Berkeley, suitable for research and industrial purposes. Rocket Chip is

a design generator with extensive parametrization which makes it flexible and highly customizable for any

application [Asanovi et al., 2016, Berkeley, 2019b].

Rocket Chip generator is implemented in Chisel [Berkeley, 2019a], an open-source hardware construction

language (HDLs) embedded in Scala. Chisel has some features that are not found in conventional hardware

descriptions languages, e.g., rich type system with support for structured data, width inference for wires,

high-level descriptions of state machines and bulk wiring operations [Asanovi et al., 2016]. Chisel can

easily be converted to synthesizable Verilog suitable for FPGA and ASIC design tools. Additionally, it also

allows designers to generate fast, cycle-accurate RTL simulators implemented in C++ that can be used to

simulate a Rocket Chip instance. An example of a Rocket Chip instance featuring a dual Rocket core is

presented in figure 2.4.

The Rocket core is an in-order core generator with a 5-stage pipeline (see Figure 2.5) that implements

the RV32IMAFD and RV64IMAFD ISAs and supports M-mode, S-mode and U-mode privilege levels. Each

Rocket core has its own page-table walker (PTW) unit, translation look-aside buffer (TLB), and L1 instruction

and data caches on what is known as Rocket Tile. Each Tile is connected to the rest of the system through

the central SystemBus using the TileLink protocol [SiFive, 2017]. The Tilelink is the free and open standard

bus protocol used in RISC-V systems to interconnect multiple peripherals, caches, memory processors,

and coprocessors. Due to the extensive parameterization supported in Rocket Chip, the TileLink is built

on top of a framework for negotiating parameters (e.g., bus width), denoted Diplomacy [SiFive, 2017].
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The Rocket Chip provides multiple buses with different purposes, defined as follow:

• MemoryBus - Connects to DRAM controller using a TileLink to AXI converter.

• Control Bus - Connects all standard peripherals such as the BootROM, the PLIC, the CLINT, and

the Debug Unit to the SystemBus, so that these MMIO devices may be accessible in memory.

• FrontBus - Serves as an interface so that DMA devices may access the memory system directly.

• PeripheryBus - Connects all additional peripherals and also offers the possibility to attach a vendor-

supplied AXI4IP through the Tilelink to AXI converter.

• InterruptBus - Connects both external and local interrupts (software and timer) to each hart coming

from the PLIC and CLINT, respectively.

L2 Bank L2 Bank

BootROM PLIC CLINT Debug 
Unit

Other
Device

TL To AXI

AXI to TL

System Bus

Control Bus

Memory Bus

Periphery Bus

TL To AXI

Rocket PTW
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Rocket Tile 0

Rocket PTW

L1DL1I

Tile Bus
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AXI 
Mem

AXI 
Slave

Interrupt Bus

Figure 2.4: Rocket Chip SoC block diagram (adapted from [Chipyard, 2020])



Chapter 2. Background Concepts and Related Work 18

Figure 2.5: Rocket core pipeline, in [Asanovi et al., 2016].

2.4 Hypervisors and Microkernels for RISC-V

KVM [Lublin et al., 2007] and Xvisor [Patel et al., 2015] were the first hypervisors adding support for

the RISC-V H-extension in QEMU. KVM [Lublin et al., 2007] is a type-2 hosted hypervisor integrated into

Linux’s mainline as of 2.6.20. KVM targets mainly enterprise virtualization setups for data centers and

private clouds. Xvisor [Patel et al., 2015] is a type-1 monolithic hypervisor targeting embedded systems

with soft real-time requirements. Both hypervisors are officially part of the RISC-V Software Ecosystem

and naturally have been used by technical groups as reference implementations to validate and evolve

the H-extension. RVirt is an S-mode trap-and-emulate hypervisor for RISC-V, written in Rust. Contrarily to

KVM and XVisor, RVirt [Behrens et al., 2020] can run in RISC-V processors without hardware virtualization

support. Diosix [Williams, 2020] is another lightweight bare-metal hypervisor written in Rust for RISC-V.

Similar to RVirt, Diosix can run in RISC-V cores that lack the H-extension, leveraging the physical memory

protection (PMP) to achieve isolation. Xtratum [Crespo et al., 2010], a hypervisor primarily developed

for safety-critical aerospace applications, has also recently been ported to support RISC-V ISA [Gómez

et al., 2020], following the same PMP-based concept for isolation as Diosix. Xen [Hwang et al., 2008]

and Jailhouse [Ramsauer et al., 2017], two widely used open-source hypervisor solutions, have already

given preliminary steps towards RISC-V support. However, as of this writing, upstream support for RISC-V

is not yet available, but it is expected to be included in the foreseeable future. seL4 [Klein et al., 2009],

a formally verified microkernel, is also verified on RISC-V [Heiser, 2020]. Other commercial microkernels

already support RISC-V. Preeminent examples include the SYSGO PikeOS and the Wind River VxWorks.

2.4.1 Bao

Bao [Martins et al., 2020] is an open-source static partitioning hypervisor developed with the main goal of

facilitating the straightforward consolidation of mixed-criticality systems, thus focusing on providing strong
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safety and security guarantees. It comprises only a minimal, thin-layer of privileged software leveraging

ISA virtualization support to partition the hardware, including 1-to-1 virtual to physical CPU pinning, static

memory allocation, and device/interrupt direct assignment. Bao implements a clean-slate, standalone

component featuring about 8 KSLoC (source lines of code), which depends only on standard firmware to

initialize the system and perform platform-specific tasks such as power management. It provides minimal

inter-VM communication facilities through statically configured shared memory and notifications in the

form of interrupts. It also implements from the get-go simple hardware partitioning mechanisms such as

cache coloring to avoid interference in caches shared among the multiple VMs. Bao has already been

ported to RISC-V using the QEMU implementation of the H-extension.



Chapter 3

RISC-V Hypervisor Extension

The RISC-V privilege architecture splits the execution modes into three privileges: (i) the M-mode is the

most privileged and where the firmware implementing the standard SBI (supervisor binary interface) lives,

(ii) the S-mode whose primary targets are rich operating systems (e.g., Linux) a offers virtual memory

capabilities through a dedicated memory management unit (MMU) and (iii) U-mode for running regular

applications. The ISA modularity allows implementations from simple embedded systems (featuring M-

mode) to high-end systems (featuring M/S/U) targetting personal or server computing.

The ISA was designed from the ground-up to be classically virtualizable [Popek and Goldberg, 1974] by

allowing to selectively trap accesses to virtual memory management control and status registers (CSRs) as

well as the timeout and mode change instructions from supervisor/user to machine mode (e.g.,mstatus ’s

TVM bit enables trapping of satp , the root page table pointer, while setting the TSR bit will cause the trap

of the sret instruction used by the supervisor to return to user mode). Furthermore, RISC-V provides fully

precise exception handling, guaranteeing the capturing of the exact state of execution at the time of an

exception. The ISA simplicity coupled with its virtualization-friendly design allows the easy implementation

of a hypervisor recurring to traditional techniques (e.g., full trap-and-emulate, shadow page tables) and the

emulation of the hypervisor extension from machine mode.

The RISC-V specification was recently endowed with hardware virtualization support, aiming to aid

hypervisors and ease virtualization overhead while increasing efficiency with optional hypervisor extensions

(”H”). The hypervisor extension is still on version 0.6.1 in draft state, soon to be ratified, and in the scope

of this dissertation, only this version will be addressed.

20
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3.1 Execution Modes

Like most other mainstream ISAs, the latest draft of the RISC-V privilege architecture specification offers

hardware virtualization support, i.e., the optional hypervisor extension (”H”), to increase virtualization

efficiency. As illustrated by Figure 3.1, the H-extension modifies the supervisor mode to an hypervisor-

extended supervisor mode (HS-mode), which similarly to Intel’s VT-x [Intel, 2011] root mode, is orthogonal

to the new virtual supervisor mode (VS-mode) and virtual user mode (VU-mode), and therefore can easily

accommodate both bare-metal and hosted (a.k.a. type-1 and -2) as well as hybrid hypervisor architectures.

Unavoidably, the extension also introduces a 2-stage address translation where the hypervisor has

control over the page-tables mapping from Guest Physical Address (GPA) to Host Physical Address (HPA)).

The virtualization mode , which encodes if the hart is running in a virtual machine, is controlled by the V bit.

When V=1, the hardware thread is either in VS-mode or in VU-mode, and the 2-stage address translation

is active. When V=0, the hardware thread is either in M-mode, in HS-mode or, in U-mode, and the 2-

stage address translation is disabled. With the newly added execution modes, novel CSRs and hypervisor

instructions appeared, and the old ones were extended (e.g., M-mode mip, mie ), so that the hypervisor

could easily have control over virtual execution and the 2-stage address translation.
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Figure 3.1: RISC-V privileged levels: machine (M), hypervisor-extended supervisor (HS),
virtual supervisor (VS), and virtual user (VU).

3.2 Hypervisor and Virtual Supervisor CSRs

The RISC-V privilege specification offers hardware support for virtualization (H-extension) by virtualizing

the S-mode execution into a virtualized supervisor (VS) and extending the S-mode into an HS-mode. The
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HS-mode execution is the same as S-mode, with additional hypervisor CSRs to control the guest virtual

memory and behavior, defined as follow: hstatus, hedeleg, hideleg, hvip, hip, hie, hgeip, hgeie, hcoun-

teren, htimedelta, htimedeltah, htval, htinst, and hgatp . Furthermore, it defines a set of background virtual

supervisors CSRs, which are copies of the original S-mode registers for when running in VS-mode, there-

fore allows regular S-mode OS to run unmodified in VS-mode. Table 3.1 summarizes all HS- and VS-mode

registers and their respective functionalities. The virtualization mode dictate which set of registers are

effectively active. In VS-mode (V = 1), normal S CSRs are swapped by the VS CSRs and vice-versa in

HS-mode.

Mode Register Description

HS-mode

hstatus hypervisor status register
hedeleg and
hideleg

hypervisor trap delegation registers

hvip, hip and
hie

hypervisor interrupts registers

hgeip
hypervisor guest external interrupts
register

htimedelta hypervisor time delta register
htval hypervisor trap value register
htinst hypervisor trap instruction register

hgatp
hypervisor guest address translation and
protection register

VS-mode

vsstatus virtual supervisor status register

vsip and vsie
virtual supervisor interrupt pending and
enable registers

vstvec
virtual supervisor trap-vector base address
register

vsscratch virtual supervisor scratch register

vsepc
virtual supervisor exception program
counter register

vscause virtual supervisor cause register
vstval virtual supervisor trap value

vstap
virtual supervisor address translation and
protection register

Table 3.1: HS-mode and VS-mode CSRs summary.

Given the ISA simplicity and virtualization-aware design, the hypervisor extensions are also easily em-

ulatable on M/S/U systems by traping to M-mode. In that case, the guest in S-mode and the hypervisor

in M-mode encapsulating the former by intercepting page table accesses (using the mstatus.TVM feature



Chapter 3. RISC-V Hypervisor Extension 23

allied with shadow PTs technique) and swapping the background S CSRs upon privilege switching (using

the mstatus.TVM feature).

The VS-execution exception behavior is controlled by the hypervisor status register (hstatus ). Similar

to the M-mode register mstatus in M/S/U systems, the hstatus CSR enables the hypervisor to trap

virtual memory management control and status registers (CSRs) as well as the timeout and mode change

instructions from virtual supervisor/user to hypervisor mode (e.g., hstatus.VTVM bit enables trapping

of vsatp , the root page table pointer, while setting the VTSR , VTW bit will cause the trap of the sret

instruction used by the virtual supervisor to return to user mode and the trap of the wfi instruction). These

particular features are most convenient in nested virtualization. The guest hypervisor and guest OS run at

VS-level, and the host hypervisor performs all background tasks of swapping CSRs state upon privileged

level transfers and by controlling the page-tables (PTs) by resorting to shadow tables. Furthermore, hstatus

is used to store VS-mode to HS-mode trap-related information, e.g., the virtualization mode (SPV ) and the

privileged mode (SPVP ) at the time of the trap.

Regarding interrupts, the RISC-V ISA defines three types per hart: (i) external interrupts (EI), (ii) timer

interrupts (TI), and (iii) software interrupts (SI) (normally used as IPIs). Each interrupt can be re-directed

to one of the privileged modes by setting the bit for target interrupt/mode in a per-hart interrupt pending

bitmap, which might be directly driven by some hardware device or set by software. This bitmap is fully

visible to M-mode through themip CSR, while the S-mode has a filtered view of its interrupt status through

sip . These concept was extended to the new virtual modes through the hvip , hip , and vsip CSRs. As

further detailed in Chapter 4, in current RISC-V implementations, a hardware module called the CLINT

(core-local interrupter) drives the timer and software interrupts, but only for machine mode. Supervisor

software must configure timer interrupts and issue IPIs via SBI, invoked through ecall (environment calls,

i.e., system call) instructions. The firmware in M-mode is then expected to inject these interrupts through

the interrupt bitmap in the supervisor. The same is true regarding VS interrupts as the hypervisor must

itself service guest SBI requests and inject these interrupts through hvip while in the process of invoking

the machine-mode layer SBI. When the interrupt is triggered for the current hart, the process is inversed:

(i) the interrupt traps to machine software, which must then (ii) inject the interrupt in HS-mode through

the interrupt pending bitmap, and then (iii) inject it in VS mode by setting the corresponding hvip bit.

Regarding the exceptions, the H-extension augments the trap encoding with multiple exceptions to

support VS execution. For instance, it adds guest page fault exceptions for when guest translations at the

2-stage MMU unit fails and VS ecall exception to support system calls performed at VS-mode.
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Additionally, to ease the hypervisor extension emulation when running nested hypervisors, the H-

extension adds the virtual instruction exception for when invalid operations are taken in VS-mode (e.g.,

HS- and VS- mode CSRs access in VS-mode, sfence instruction or to access satp , when hstatus.VTVM =1

and others). The virtual instruction exception is basically the same as an illegal instruction exception but

for VS/VU-mode access. By distinguishing between virtual and regular illegal instructions, virtual traps are

expected to be handled much quicker as the M-mode can directly delegate them to HS-mode. Whereas

with only illegal instructions, it would require to first trap to M-mode, which would then delegate it by

software to HS-mode.

3.2.1 Guest External Interrupts

The H-extension hgeip register introduces a novel mechanism that allows direct assignment of interrupts

to individual virtual machines running in VS-mode without hypervisor intervention. The hgeip is a bitmap

register where each bit holds all interrupt status intended for a given vhart. The number of implemented

bits in hgeip , denoted GEILEN , limits the number of virtual harts that may directly receive guest external

interrupts. Note that bit 0 of the hgeip is hardwired to zero, so the maximum number that GLEIN can

be for any hart is 31 (RV32 implementations) or 63 (RV64 implementations). The hypervisor selects

the current running vhart through the hstatus.VGEIN field. So, when a vhart is running, the assigned

hgeip bit is converted to a VSEIP interrupt. Moreover, the hypervisor can still receive non-active guest

context interrupts by simply enabling the corresponding guest context hgeie bit and enable guest external

interrupts by setting hie.SGEI bit. However, this feature needs to be supported by the external interrupt

controller. Unfortunately, the PLIC is not yet virtualization-aware. A hypervisor must fully trap-and-emulate

PLIC accesses by the guest and manually drive the VS external interrupt pending bit in hvip . The sheer

number of traps involved in these processes is bound to impact interrupt latency, jitter, and, depending on

an OS tick frequency, overall performance. For these reasons, interrupt virtualization support is one of the

most pressing open-issues in RISC-V virtualization. In Chapter 5, we describe our approach for addressing

this issue.

3.3 Traps

As stated earlier, the RISC-V ISA supports the delegation of interrupts/exceptions to less privileged execu-

tion modes. For instance, when a trap occurs in VS-mode, it only goes to VS-mode if M-mode delegates
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it to HS-mode by writing to mideleg/medeleg and if HS-mode further delegates it to VS-mode by writing

to hedeleg/hideleg . Furthermore, at each trap, the machine performs a simple context save, specifies

the cause, and provides, when necessary, some exception specific information ( e.g., when page faults

occur in VS-level, htval is set with the guest physical address) before traping to the appropriate mode

for handling. Additionally, there a two optional registers, the htinst and mtinst , which expose a trapping

instruction in an easily digestible, pre-decoded form so that the hypervisor can more quickly handle the

trap while avoiding reading the actual guest instruction and polluting the data cache. After completing

handling, a return must be performed by using mret or sret instruction to restores the machine state.

Note that both VS-mode and HS-mode use the sret to end trap handling.

3.3.1 Trap Cause Encoding

The hypervisor extension augments the trap cause encoding with virtual supervisor, and hypervisor-specific

exceptions/interrupts as listed on Table 3.2 highlighted in bold. It defines VS-level related interrupts (Code

2,6 and 10) and hypervisor level guest external interrupts (code 12). As for the exceptions, it adds codes for

guest page faults (exceptions 20, 21, 23) and virtual instruction trap (Code 22). Finally, it assigns different

codes for environment calls coming from VS-level (cause 10) and HS-level (same as usual S-mode, i.e.,

cause 9). This allows them to be separately delegated so that the firmware can directly re-direct VS ecall s

to be handle by the hypervisor.

3.4 Two-Stage Address Translation

As stated earlier, the RISC-V H-extension includes hardware support for memory virtualization by intro-

ducing two-stage address translations to the MMU, where the hypervisor has control over the page tables

mapping guest-physical to host-physical addresses. Figure 3.2 presents a diagram overview of RISC-V

MMU with a 2-stage translation MMU.

When the guest is active, memory accesses are subject to two stages of translation. The first stage (VS-

stage) converts guest virtual address (GVA) to guest physical address (GPA) controlled by the VS-mode vstap

registers, and the second stage (G-Stage) translates GPA to supervisor physical memory (SPA) controlled by

the HS-mode hgatp register. This also includes translating page table entries (PTEs) accesses performed

during the VS-stage of translation. Additionally, all guest memory accesses are subject to both R/W/X

(read/write/execute) permissions from the VS and G stage translation.
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Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2 Virtual supervisor software interrupt
1 3 Machine software interrupt
1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Virtual supervisor timer interrupt
1 7 Machine timer interrupt
1 8 Reserved
1 9 Supervisor external interrupt
1 10 Virtual supervisor timer interrupt
1 11 Machine external interrupt
1 ≥12 Reserved
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode or VU-mode
0 9 Environment call from S/HS-mode
0 10 Environment call from VS-mode
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16-19 Reserved
0 20 Instruction guest-page fault
0 21 Load guest-page fault
0 22 Virtual instruction
0 23 Store/AMO guest-page fault

Table 3.2: Trap cause codes, in [Waterman et al., 2020].

Each stage involves several levels of page table walks depending on the selected scheme mode in

hgatp and vstap . Currently, the ISA defines four modes targetting different virtual address space sizes:

(i) bare metal mode - guest physical addresses are not subject translation therefore equal to supervisor

physical memory, (ii) Sv32 ( RV32 only) - support 32-bit address space (RV32 only) 20-bit VPN is trans-

lated to a 22-bit using a two-level page table, (iii) Sv39 (RV64 only) - a 27-bit VPN is translated into a 44-bit
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PPN using a three-level page table, while the 12-bit page offset remains untranslated and (iv) Sv48 (RV64

only) - a 36-bit VPN is translated into a 44-bit PPN using a three-level page table, while the 12-bit page

offset remains untranslated. The same schemes were extended to the G-stage (bare , Sv32x4 , Sv39x4 ,

or Sv48x4 ), selected through the hgatp , but with a slight variation where the GPAs are widened by two

bits, thus supporting larger guest physical address spaces. Moreover, the hgatp supports virtual machine

identifiers VMIDs to tag each TLB entry with a unique number that identifies the virtual machine, thus

optimizing the context switch as the hypervisor no longer needs to flush the TLB at each context switch.

Consequently, this allows fences to be performed on a per-virtual-machine basis [Waterman et al., 2020].

Virtual Page Number (VPN) Page Offset

hgatp

2-Stage
Translation

1-Stage
Translationvstap

Physical Page Number (PPN) Page Offset

Figure 3.2: Diagram overview of MMU featuring a two stages of address translation.

The RISC-V ISA defines three types of exceptions that may arise during translation: (i) instruction

access faults, (ii) load page fault, and (iii) store page fault. The H-extension extended these exceptions so

that errors during VS-stage execution are reported as guest page fault exceptions. Additionally, to assist

software when handling guest page fault exceptions, registers htval/mtval2 are written, if possible, with

the guest physical address, and vstval with the guest virtual address.

3.5 Hypervisor Instructions

The RISC-V H-extension adds two sets of hypervisor instructions to ease virtualization : (i) hypervisor virtual

machine load/store instructions and (ii) hypervisor fence instructions. The hypervisor virtual machine
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load/store instructions introduce a rather ingenious mechanism that allows the hypervisor to directly peek

into the guest virtual address space with the same address translation and protection as a normal VS

access without actually mapping it into its own address space. Furthermore, because all accesses are

under the influence of the same protections as a normal VS access, it protects against confused deputy

attacks when, for example, accessing indirect hypercall arguments. This capability is also available at

the U-mode (by setting hstatus.HU bit), which further simplifies the implementation of type-2 hypervisors

such as KVM [Dall and Nieh, 2014], which hosts device back-ends in userland QEMU, or microkernel-

based hypervisors such as seL4 [Klein et al., 2009], which implement virtual machine monitors (VMMs)

as user-space applications.

The H-extension defines for each existing normal load/store instruction there is a virtual-machine

version, defined as follows: (i) hlv.b , hlv.bu - load 8-bit values from memory,(ii) hlv.h and hlv.hu - load 16-

bit values, (iii) hlv.w and hlv.wu - load 32-bit values and (iv) hlv.d and hlv.du - load 64-bit values (RV64I

only),(v) hsv.b - store 8-bit values,(vi) hsv.h - store 32-bit values and (vii) hsv.h - store 64-bit values (RV64I

only). Additionally, it provides two extra load instructions (hlvx.hu/wu ) to peek into guest memory, which

is executable but possibly not readable, i.e., the memory being read must be executable in both pages

independently of the read permission.

The H-extension also adds two hypervisor fence instructions, which allow the hypervisor to selectively

invalidate only first (by executing hfence.vvma ) or both (by executing hfence.gvma ) stages of memory-

management structures used during a guest translation, e.g., guest TLB entries and guest walk-cache

entries.
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Timer Virtualization

Timekeeping is one fundamental task required by almost every modern OS. However, managing correctly

the time in virtualized systems is one of the most challenging tasks. Thus time is shared between the host

and possibly multiple virtual machines.

RISC-V timer specifications are restricted to the M-mode, through themtime andmtimecmp memory-

mapped registers. These are typically implemented as a part of the CLINT. mtime is a free-running

counter and a machine timer interrupt is triggered when its value is greater than the one programmed in

mtimecmp . There is also a read-only time CSR accessible to all privilege modes, which is not supposed

to be implemented but converted to a memory access of mtime or emulated by firmware. Thus, M-mode

software implementing the SBI interface (e.g., OpenSBI) must facilitate timer services to lower privileges via

ecalls, by multiplexing logical timers onto the M-mode physical timer. Naturally, this mechanism introduces

additional burdens and impacts the overall system performance for HS-mode and VS-Mode execution,

especially in tick-driven OSes. As explained in Chapter 3, a single S-mode timer event involves several

M-mode traps, i.e., first to set up the timer and then to inject the interrupt in S-mode. This issue is further

aggravated in virtualized environments as it adds extra HS-mode traps. The simplest solution to mitigate

this problem encompasses providing multiple independent hardware timers directly available to the lower

privilege levels, HS and VS, through new registers analogous to the M-mode timer registers. This approach

is followed in other well-established computing architectures. For instance, the Armv8-A architecture has

separate timer registers across all privilege levels and security states.

We can conclude that RISC-V systems running without timer virtualization have two major sources of

performance degradation:

• The timer interrupt and management is restricted to the M-mode. Software running on M-mode

needs to virtualize timer to lower levels, following the interface specifications stated at the SBI.

29
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• Guest OS timer management implies two traps, one to the hypervisor and another to the M-mode.

4.1 RISCV Timer Virtualization Specification

To address the aforementioned problems, we proposed a set of modifications to the current specification

that could benefit the system’s overall performance. Concurrently to our work, there have been some

proposals discussed among the community to include dedicated timer CSRs for HS and VS modes. The

latest one which is officially under consideration, at a high-level, is very similar to our implementation.

However, there are differences with regard to: firstly, it does not include stime and vstime registers but

only the respective timer compares; secondly, and more important, we add the new timer registers as

memory-mapped IO (MMIO) in the CLINT, and not as CSRs. The rationale behind our decision is based on

the fact that the RISC-V specification states that the original M-mode timer registers are memory-mapped,

due to the need to share them between all harts as well as due to power and clock domain crossing

concerns [Waterman et al., 2020]. As the new timers still directly depend on the original mtime source

value, we believe its simpler to implement them as MMIO, centralizing all the timer logic. Otherwise, every

hart would have to continuously be aware of the global mtime value, possibly through a dedicated bus.

Alternatively, it would be possible to provide the new registers, as well as htimedelta , through the CSR

interface following the same approach as the one used for time , i.e., by converting the CSR accesses to

memory accesses. This approach would, however, in our view, add unnecessary complexity to the pipeline

as supervisor software can always be informed of the platform’s CLINT physical address through standard

methods (e.g., device tree).

Next, we describe our timer registers specification extensions to S/HS-mode and VS-mode. We start

by presenting the S-mode timer registers and by providing a full description of their purpose and how they

are supposed to work. After that, we describe the VS-mode timer registers and their interaction with the

hypervisor. Also, we introduce some necessary changes to an existing guest timer offset register called

htimedelta , required by our newly introduced registers. Finally, we describe all modifications to the VSTIP

and STIP bits specification on mip , sip and hip registers.

4.1.1 Supervisor Timer Registers (stime and stimecmp )

The stime is a 64-bit read/write register, responsible for holding the HS/S-mode time for hypervisor or

OSes. The stime register has the same time base as the mtime and must increment at a constant
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frequency. Also, we include a 64-bit width memory-mapped supervisor mode timer compare register, i.e.,

stimecmp . Whenever the stime value is greater than or equal to the stimecmp value, the supervisor timer

interrupt becomes pending. Writing a value greater than stime to the stimecmp clears the interrupts. If

not, the interrupt remains pending. Supervisor timer interrupts will only be taken if the STIE bit of the sie

is set, and the STIP bit of mideleg is set. The STIP bit state is influenced by writing to the stime and

stimecmp registers.

63 0

stime
64

Figure 4.1: Supervisor time register (memory-mapped control register).

63 0

stimecmp
64

Figure 4.2: Supervisor time compare register (memory-mapped control register).

4.1.2 Virtual Supervisor Timer Registers (vstime and vstimecmp )

The vstime is a 64-bit memory-mapped read/write register, responsible for holding the VS-mode time

for guest OSes. The vstime value is, as stated by the latest specification, the sum of the mtime with

the htimedelta value. Also, we include a 64-bit width memory-mapped virtual supervisor mode timer

compare register vstimecmp . Whenever the vstime value is greater than or equal to the vstimecmp

value, the supervisor timer interrupt becomes pending. The interrupt remains posted until a value greater

than vstime is written to the vstimecmp . Supervisor timer interrupts will only be taken if the VSTIE bit of

the sie is set and the same VSTIP of mideleg and hideleg is set. As expected, writes to the vstime and

vstimecmp influence the VSTIP state.

63 0

vstime
64

Figure 4.3: Virtual supervisor time register (memory-mapped control register).
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63 0

vstimecmp
64

Figure 4.4: Virtual supervisor time compare register (memory-mapped control register).

4.1.3 Machine Interrupt Pending Register (mip )

The mip register holds information on pending interrupts for all privilege levels, including timer, external,

and software interrupt, as stated in Chapter 3. Currently, the STIP bit is writable in mip , and the M-mode

uses it to deliver timer interrupts to S-mode. By including S-mode timer registers, it allows OSes running

in S-mode to access the timer directly. We propose some modifications to the description STIP bit in the

mip registers to be in accordance with our newly added registers.

If the supervisor mode and supervisor timer registers (stimecmp and stime ) are implemented, STIP

is a read-only bit in mip , and it is set and cleared by the platform-interrupt timer controller, which must

implement the supervisor timer registers. STIP is set and cleared by writing stimecmp a value less or

equal, or greater than the current stime value.

4.1.4 Supervisor Interrupt Pending Register (sip )

The sip register holds information on pending interrupts S-mode privilege, as stated in Chapter 3. Cur-

rently, the STIP bit is read-only in sip and is set and cleared by the M-mode software implementing the

SBI. By modifying the STIP behavior in mip , we also need to perform changes in the sip, as it represents

a restricted view of mip register. We propose some modifications to the description STIP bit in the sip

registers to be in accordance with our newly added registers.

Bits sip.STIP and sie.STIE are the interrupt-pending and interrupt-enable bits for supervisor level

timer interrupts. If implemented, STIP is read-only in sip , and it can be set and cleared in two different

approaches: (i) by the execution environment (when stimecmp and stime are not implemented), and

(ii) by a platform-specific timer interrupt controller, which implements the memory-mapped S-mode timer

registers that affect the timer interrupts signal (when stimecmp and stime are implemented). The sip.STIP

bit, in response to timer interrupts generated by stimecmp , is set and cleared by writing stimecmp with

a value that respectively is less than or equal to, or greater than, the current stime value.
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4.1.5 Hypervisor Interrupt Pending Register (hip )

The hip register holds information on pending interrupts for VS-level and hypervisor-specific interrupts, as

stated in chapter 3. We extend the hip to support the virtual supervisor timer by extending the VSTIP ,

i.e., bit hvip.VSTIP is the interrupt pending bit for VS-level timer interrupts. If vstimecmp is implemented,

VSTIP is read-only in hip, and is the logical-OR of hvip.VSTIP and the virtual supervisor timer interrupt

generated by the timer interrupt controller. Bit hvip.VSTIP is set and cleared by writing to the memory-

mapped register vstimecmp with a value that respectively is less than or equal to, or greater than, the

current (mtime + htimedelta ) value.

Finally, themip.VSTIP bit is an alias of hip.VSTIP , so it is expected these modifications also be reflected

on the mip register.

4.1.6 Hypervisor Time Delta Register (htimedelta )

The htimedelta is a CSR that contains the difference between the actual time and time value read in

VS-mode or VU-mode. The hypervisor could use this register to show both virtual time (the time the vhart

was running) and wall-clock time (i.e, the physical time) by keeping the delta 0. Since vstime depends on

htimedelta , we purpose some minor changes to the specification to change the htimedelta to a memory-

mapped control and status register.

The htimedelta is a read/write memory-mapped control and status register containing the delta be-

tween the value of the time CSR and the value returned in VS or VU-mode. Reading the vstime memory-

mapped CSR in VS or VU mode returns the sum of the contents of htimedelta and the actual value of

mtime .
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PLIC Virtualization

Interrupt virtualization is one of the major sources of performance loss in virtualized systems, mainly due

to its asynchronous and frequent nature. The platform-level interrupt controller (PLIC) is the RISC-V global

system interrupt controller responsible for managing and delivering external interrupts to all RISC-V harts.

Currently, its specification does not offer any virtualization support. Therefore, the hypervisor needs to

virtualize it to the guest by trapping and emulating all guest accesses to the RISC-V interrupt controller

registers. As it is commonly known, VM-exits tend to be costly, especially with high rate interrupts that

cause multiple transitions to the hypervisor. In this chapter, we will discuss the problems of having a non

virtualized interrupt controller and present our proposal to extend the current RISC-V PLIC architecture

with virtualization support. First, we will start by overviewing the current PLIC architecture. Next, we will

discuss what problems arise from not virtualizing the PLIC and, based on that, discuss the requirements to

add hardware virtualization in the PLIC. Finally, we will provide a full detailed view of our PLIC virtualization

extensions proposal.

5.1 PLIC Architecture Overview

The Platform-Level Interrupt Controller (PLIC) is the external interrupt controller responsible for managing

and delivering all devices interrupts to one or more harts in most RISC-V systems. The PLIC is able

to multiplex up to 1023 devices interrupt to the different contexts on the same hart. The PLIC contexts

represent a set of control registers and associated external interrupts lines, aiming at each available external

interrupt pending bit privilege level on each hart. Currently, only M-mode and S-mode are supported, as

shown in figure 5.1.

34
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The PLIC general control registers are defined as follow:

• Interrupt priorities registers - The interrupt priority for each interrupt source;

• Interrupt pending registers - The interrupt pending state for each interrupt source;

• Interrupt enables registers - The interrupt source enable for each context;

• Priority thresholds registers - The interrupt threshold of each context;

• Interrupt claim registers - The interrupt claim register to acquire the source interrupt ID of each

context;

• Interrupt complete registers - The register to send interrupt completion message to the asso-

ciated gateway.

M
-m

ode External Interrupt

S-M
ode External Interrupt

PLIC

Hart 0Hart 1Hart N

Device 0Device 1Device D

Figure 5.1: PLIC interrupt architecture block diagram.

The PLIC can be slipt among two sets of registers: (i) the interrupt source registers , which control

the interrupt source priority and provide their current status, and (ii) the interrupt context registers , which

controls and handles context interrupts. Figure 6.3 despites the PLIC internal operation block diagram with

all aforementioned registers and their interactions, as described by the specification. Firstly, we identify

two main high-level components that compose the PLIC internals structure:
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Figure 5.2: PLIC general architecture, in [Drew Barbier, 2020]

• PLIC Gateway - module responsible for receiving and delivering devices interrupts signals to the

PLIC Core. Also, it prevents the interrupt from being asserted while the PLIC Core is servicing the

interrupt;

• PLIC Core - the main component where all operation registers and logic are implemented. Its

primary concern is to route and manage interrupts to each context external line.

Next, we discuss the internal function of each high-level module. Firstly, the Gateway makes requests to

the Core whenever the device asserts an interrupt. Secondly, the Core receives the request and checks if

the interrupt is enabled. If so, the Core assesses which interrupt is to deliver (1 or 2 in this case) based

on their priority. If the priority is greater than the threshold, the external interrupt line is asserted, and

the claim register is written with the interrupt source ID. Below, we describe each PLIC operation registers

in detail, as we think it is a necessary background to propose and implement virtualization extensions

adequately.
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5.1.1 PLIC Interrupt Source Registers

PLIC supports a maximum of 1024 interrupts where each interrupts source is associated with a set of

two control registers: the interrupt priorities registers and the interrupts pending registers . The interrupt

priorities registers are a 32-bit memory-mapped register to store each interrupt source priority. Note that

interrupt ID 0 is reserved and does not exist effectively. The priority value ranges from 0, meaning disabled,

to a maximum level, which is implementation-defined. The interrupt pending register is read-only registers

that hold the current interrupt status and are organized as a pending array of 32-bit registers. Like the

priorities registers , interrupt ID 0 (bit 0 of word 0) is reserved as a non-existent interrupt and is hardwire

0. Each pending bit is associated with an interrupt source. So, interrupt ID N pending bit is stored in a bit

(N mod 32) of the word (N/32). The pending bit directly reflects the interrupt source signals coming from

the PLIC gateway.

PLIC Context Registers and Claim/Complete Process

PLIC supports up to 15872 contexts where each has a set o three control registers: interrupt enables

registers , context threshold registers , and claim/complete registers . Each context may define the inter-

rupt priority threshold by writing to a 32-bit memory-mapped register called the threshold registers . PLIC

will only deliver interrupts with a priority value greater than the threshold value. By setting the value zero

means allowing all interrupts to be delivered to the context. The interrupt enables registers allows each

context to enable and disabled interrupt sources selectively. The registers are organized as a continuous

array of 32-bit registers, following the same structure as the pending bits. The claim/complete registers

act as a means of communication between the contexts and the PLIC, known as the claim/complete pro-

cess . Upon entry on an interrupt handler, the hart needs to know which interrupt ID was asserted by

using a process called a claim. Reading the claim/complete register returns the ID of the highest priority

pending interrupt or zero if there is no pending interrupt. A successful claim will also atomically clear

the corresponding pending bit on the interrupt source by blocking the gateway. The claim operation can

be performed at any time, and the claim operation is not affected by the setting of the priority threshold

register . When the interrupt is serviced, the hart writes back to the claim/complete register the same

interrupt ID to complete the interrupt handling process.
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5.1.2 Memory Map

The PLIC memory map base address is a platform implementation-specific parameter. So only the offset

within the memory map is taken as reference. Table 5.1 shows how each register is organized in memory.

On the first page, we have 1024 32-bit width priority registers , one for each interrupt. Next page, we have

the pending bits organized as arrays of 32-bits, as stated before. On the third page (offset 0x2000), we

have the enable bits for each context organized as arrays of 32-bit registers. PLIC exposes the claim/-

complete and threshold registers into separate pages (4K alignment + 4) for each context, starting from

offset 0x200000 and a maximum of 0x4000000, encompassing the 15872 contexts.

Field
Offset

(hex)

Size

(Bits)

Reset

(hex)

Access

Type
Description

priority i
0x0000000 +

(i * 4)
1 0x0 R/W Interrupt ID i priority register

pending 0x0001000 32 0x0 RO
Interrupt source pending bits.

Up to 32 sources per register.

enable c
0x0002000 +

(c * 0x80)
32 0x0 R/W

Interrupt source enable registers

bits for context c. Upto 32

sources per register.

threshold c
0x0200000 +

(c * 0x1000)
32 0x0 R/W

Priority threshold register for

context c

claim/complete c
0x0200004 +

(c * 0x1000)
32 0x0 R/W

Claim/Complete register for

context c

Table 5.1: PLIC memory map.

5.2 PLIC and Virtualization problem

Currently, PLIC specification does not offer any external interrupt virtualization support, leaving the hyper-

visor responsible for emulating PLIC control registers accesses and managing injections into VS-mode.

One major drawback of this approach is that all device interrupts must be redirected to the HS-mode con-

text, including interrupts from guest-assigned devices. Moreover, each time an interrupt is triggered, the
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hypervisor must receive the interrupt and perform calculations based on the interrupt priority to assess

which interrupt to deliver and inject it by writing to the SEIP bit of hvip . Although emulating PLIC interrupt

configuration registers, such as enable and priority registers, may not be a critical task as it is often a

one-time-only operation performed during OS initialization, the same does not apply to claim/complete

registers , which must be accessed before and after every interrupt handler, i.e., to read the interrupt vec-

tor number and signal interrupt completion to the controller. It is foreseeable that all these traps cause

a drastic increase in interrupt latency and seriously impact overall system performance, especially in sys-

tems with real-time constraints (determinism and predictability). Based on previous statements, we can

identify two major issues with a non-virtualized PLIC that could impact performance:

• Physical interrupts intended for guest context still need to be received at the hypervisor context and

injected into guest context;

• Claim/complete registers need to be emulated. This means that at least three exceptions will

occur for every interrupt: the actual interrupt directed to HS-mode and then the claim/complete

accesses.

Once PLIC maps each context registers (claim/complete and threshold ) to separate physical pages, it

simplifies the process of including a new context for the VS-mode. The hypervisor can then map the

context directly to the VS address space. On the other hand, we identify one problem with the PLIC

memory map specification. The enable registers are mapped to the same page for different contexts,

which breaks encapsulation, i.e., there is no way to individually block access to these registers, which

allows the hypervisor to freely access at any time, even M-mode context enable registers .

Based on the premises above, we propose a virtualization extension for the PLIC specification that

could greatly improve the system’s performance. We developed the PLIC virtualization extension under

the following main requirements:

• Physical interrupts direct assignment - PLIC must allow guest to interact with assigned devices

directly without hypervisor intervention;

• Injection of pure virtual interrupts - PLIC must provide a mechanism to inject pure virtual interrupts

into contexts;

• Minimal traps to the hypervisor, namely by removing trap-and-emulate of the claim/complete reg-

isters ;
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• Limited amount of additional registers and low complexity;

5.3 Extending PLIC with virtualization support

This section describes the PLIC virtualization extensions specification proposal. Before diving into details,

one must first refer to the guest external interrupts hypervisor extension Chapter 3. The hypervisor exten-

sions specify a guest external interrupt mechanism that allows an external interrupt controller to directly

drive the VS external interrupt pending bit. This allows an interrupt to be directly forward to a virtual

machine without hypervisor intervention (albeit in a hypervisor-controlled manner). To properly leverage

this functionality, the PLIC must be capable of collecting and delivering virtual machine-directed interrupts

separated from other interrupts. Thereby, we propose a modification to the PLIC specification to include

an array of VS-Mode context to each hart. Each VS-mode context external interrupt line is connected to an

associated bit in the hgeip registers, corresponding to a VM context running at VS-level. The maximum

number of VS-context per hart is limited by the GLEIN (hgeip and hgeie register maximum size) minus

the 0 bit, which is reserved. Therefore, we can have a maximum of 63 (for the RV64 implementation) or

31 (for the RV32 implementation) active vharts for each physical hart. Figure 5.3 illustrates a PLIC block

diagram with virtualization awareness (VS- contexts external lines highlighted in blue). N is limited to the

number of implemented bits in the hgeip register.

M-m
ode External Interrupt

S-Mode External Interrupt

VS-Mode External Interrupt 0

VS-Mode External Interrupt GLEIN -1 

PLIC

Hart 0Hart 1Hart N

Device DDevice 1Device 0

Figure 5.3: High-level virtualization-aware PLIC logic.
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5.3.1 Pure Virtual Interrupt Support

By giving the guest direct control over the claim/complete registers, injection of purely virtual interrupts

must also be done through the PLIC, so there are unified and consistent forwarding and handling for all the

vhart’s interrupts. To this end, and inspired by Arm’s GIC list registers, we added two newmemory-mapped

32-bit wide register sets to the PLIC to support this operation:

• Virtual Interrupt Injection Registers (VIIR) - register used to inject virtual interrupts.

• Virtual Context Injection Block ID Registers (VCIBIR) - register that holds the injection block number

assigned to the context. So, there is one for each context.

• Injection Block Management and Status Registers (IBMSR ) - register used to manage each VIIR

block events, e.g., no VIIR pending.

When pure virtual interrupts support is implemented, the hypervisor can use the VIIR to inject pure virtual

interrupts into a vhart. The VIIR s 32-bit registers are organized into separate indexed blocks attachable to

each context by writing the corresponding block number to VCIBIR. When a block is attached to a context,

it behaves as an additional source of interrupts, which means physical interrupts are still available to the

context. In this way, virtual interrupts for multiple harts belonging to a specific VM can be injected through a

single injection block, precluding the need for complex synchronization across hypervisor harts. Also, this

allows a hart to directly inject an interrupt in a foreign vhart without forcing an extra HS trap. Additionaly,

each virtual context block is associated with a block management interrupt (akin to GIC’s maintenance

interrupt) fed back through the PLIC itself with implementation-defined IDs. It serves to signal events

related to the block’s VIIRs lifecycle. Currently, there are two well-defined events: (i) no VIIR pending,

and (ii) claim write of an non-present interruptID. The enabling of each type of event, signaling of currently

pending events and complementary information are done through a corresponding IBMSR . We must point

out that all of these registers are optional and may not be implemented. In that case, the hypervisor has

two available options: (i) continues to inject pure virtual interrupts into the VM using a trap-and-emulate

model, or (ii) a VM with only physical interrupts, which the VM controls the claim/complete registers .

5.3.2 Virtual Interrupt Injection Registers (VIIR )

The VIIR are 32-bit width registers used to inject virtual interrupts into any context. We grouped the VIIR

into 240 memory-mapped blocks with 4KB (page size). So, each block can have a maximum o 1024
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injection registers, illustrated in Table 5.2. Each VIIR register has three different fields required to inject

a virtual interrupts: (i) a 10-bits intId field to specify the interrupt source, (ii) 1-bit inFlight to state the

interrupt state (active or not), and (iii) 10-bits prio field to specify the interrupt priority. It is expected these

registers are under the control of the hypervisor.

31 21 20 11 10 1 0

rev[0:11] prio[0:10] intID[0:10] inFlight
12 10 10 1

Figure 5.4: VIIR register layout.

A virtual interrupt is only pending when the field intId > 0 and the inFlight is not set. The bit inFlight

is set when the virtual interrupt is pending, and a claim is performed, indicating that the interrupt is

active and preventing the virtual interrupt from being pending. Moreover, every PLIC implementation with

virtualization support must implement at least one injection register for each block. In reality, we believe

that only a small amount of VIIR s will be required, similar to the ARM LRs.

5.3.3 Virtual Context Block ID Register (VCIBIR )

Each context has one register to specify the block source for virtual interrupt injection. For instance, if

context 1 sets this field to 1 means block 1 of the 240 memory-mapped blocks is attached to context 1.

Note that setting this field zero indicates that no injection block is attached to the context. In this way,

virtual interrupts for multiple harts belonging to a specific VM can be injected through a single injection

block, precluding the need for complex synchronization across hypervisor harts. Also, this allows a hart

to directly inject an interrupt in a foreign vhart without forcing an extra HS trap.

5.3.4 Virtual Interrupt Claim/Complete Process

The process of claiming and completing a virtual interrupt is quite different from a physical, as now only the

virtual interrupt structures, i.e., VIIR , will be affected. Therefore, we extended the PLIC claim/complete

process for virtual interrupts as follow: When a claim is performed, the inFlight bit is set, indicating that

the interrupt is active. When a complete is performed, the interrupt intid field is set to zero, and the

inFlight bit is cleared.
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5.3.5 Virtual Extended Mapping

To accommodate the aforementioned registers, we extend the PLICmemorymap starting at offset 0x4000000.

All PLIC implementations which implement the virtualization extensions must follow the offsets describe

in the table 5.2.

Field
Offset

(hex)

Size

(Bits)

Reset

(hex)

Access

Type
Description

priority i
0x0000000 +

(i * 4)
1 0x0 R/W Interrupt ID i priority register

pending 0x0001000 32 0x0 RO
Interrupt source pending bits.

Up to 32 sources per register.

enable c
0x0002000 +

(c * 0x80)
32 0x0 R/W

Interrupt source enable registers

bits for context c. Upto 32

sources per register.

threshold c
0x0200000 +

(c * 0x1000)
32 0x0 R/W

Priority threshold register for

context c

claim/complete c
0x0200004 +

(c * 0x1000)
32 0x0 R/W

Claim/Complete register for

context c

vcibir c
0x4000000 +

(c * 0x4)
32 0x0 R/W

Virtual context c injection

block ID register

viir j block n

0x4010000 +

(n * 0x1000) +

(j * 0x4)

32 0x0 R/W
Virtual interrupt injection

register j of block n

ibmsr block n
0x4110000 +

(n * 4)
32 0x0 R/W

Injection block management

and status register for block n

Table 5.2: Extended memory map for the virtualization-aware PLIC.
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Extending Rocket With Virtualization

Support

This chapter delves into details the implementation of the hypervisor extensions and interrupts virtualization

in a RISC-V system. The H-extensions were implemented in the open-source Rocket core, a modern 5-

stage, in-order, highly configurable core, part of the Rocket Chip SoC generator and written in the novel

Chisel HCL. Additionally, we also extended other Rocket Chip components, namely the PLIC and the CLINT,

to tackle some of the previously identified drawbacks in Chapter 3 regarding interrupt virtualization. This

chapter is divided into three main topics. Firstly, we present our H-extension implementation on the Rocket

core. Secondly and thirdly, we describe how we extended other Rocket Chip components with virtualization

support, namely the PLIC and the CLINT.

6.1 H-extension

The bulk of our H-extension implementation in the Rocket core revolves around the CSR module, which

implements most of the privilege architecture logic: exceptions triggering and delegation, mode changes,

privilege instruction and CSRs, their accesses, and respective permission checks. Thesemechanisms were

straightforward to implement, as very similar ones already exist for other privilege modes. Although most

of the new CSRs and respective functionality mandated by the specification were implemented, we have

left out some optional features. For example, htinst andmtinst are hardwired to zero. Nevertheless, all the

mandatory H-extension features are implemented, and, therefore, our implementation is fully compliant

with the RISC-V H-extension specification. Table 6.1 summarizes all the included and missing features.

Despite being possible to configure this core according to the 32- or 64-bit variants of the ISA (RV32 or

RV64, respectively), our implementation currently only supports the latter. The extension can be easily

44
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enabled by adding a WithHyp configuration fragment in a typical Rocket Chip configuration. Listing 6.1

shows a typical Rocket Chip configuration featuring two cores with hypervisor extensions.

1 c l a s s R o c k e tH y p ZCU e x t e n d s C o n f i g (

2 new f r e e c h i p s . r o c k e t c h i p . s u b s y s t em . W i t h N E x t T o p I n t e r r u p t s ( 2 ) ++

3 new f r e e c h i p s . r o c k e t c h i p . s u b s y s t em . W i t h G u e s t I n t e r r u p t s ( 1 ) ++

4 new f r e e c h i p s . r o c k e t c h i p . s u b s y s t em . W i t hH y p ++

5 new f r e e c h i p s . r o c k e t c h i p . s u b s y s t em . W i t h N B i g C o r e s ( 2 ) ++

6 new R o c k e t F P G A C o n f i g

7 )

Listing 6.1: Rocket Chip configuration with hypervisor extensions

CSRs

hstatus/mstatus  
hideleg/hedeleg/mideleg  
hvip/hip/hie/mip/mie  
hgeip/hgeie  
hcounteren G#
htimedelta G#
mtval2/htval  
mtinst/htinst #
hgapt G#
vsstatus/vsip/vsie/vstvec/vsscratch
vsepc/vscause/vstval/vsatp

 
Intructions

hlv/hlvx/hsv  
hfence.vvma/gvma G#

Exceptions & Interrupts

Environment call from VS-mode  
Instruction/Load/Store guest-page fault  
Virtual instruction  
Virtual Supervisor sw/timer/external
interrupts

 
Supervisor guest external interrupt  

Table 6.1: Current state of Hypervisor Extension features implemented in the Rocket core:
 fully-implemented; G#partially implemented; #not implemented.

6.1.1 Traps

Regarding the trap handling, some modifications to the current implementation were required to support

the VS-mode execution. Listing 1 presents how we extended the trap entry at M-, HS-, and VS-mode to

support virtualization. Upon a trap entry, the machine performs a context save by storing the virtualization
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mode state, the program counter, and privilege encoding before traping to the target mode. Additionally,

some registers are written with exception information to ease the software handlers implementation (e.g.,

cause code, virtual address, or guest physical address in case of page fault or guest page fault).
Algorithm 1: Trap entry implementation for M-mode, HS-mode and VS-mode.
if Delegated to M-mode then

Stores the current program counter into mepc;
Sets mcause with trap code;
Stores the virtualization mode (mstatus.v) into mstatus.mpv and clears mstatus.v;
Stores instruction virtual address into mtval;
if is a guest fault exception then

Stores instruction guest virtual address into mtval;
else

Sets mtval2 to 0;
end
Stores M-mode global interrupt enable into mstatus.mpie and disable all M-mode interrupts;
Stores the current privilege encoding in mstatus.mpp;
Disable all M-mode interrupts;
Changes the privilege to M-mode;

end
if Delegated to HS-mode then

Stores the current program counter into sepc;
Sets scause with trap code;
Stores the virtualization mode (mstatus.v) into mstatus.spvp;
Stores the virtualization mode (mstatus.v) into hstatus.spv and clears mstatus.v;
Stores instruction virtual address into stval;
if is a guest fault exception then

Stores instruction guest virtual address into htval;
else

Sets htval to 0;
end
Stores HS-mode global interrupt enable into mstatus.spie;
Stores the current privilege encoding in mstatus.spp;
Disable all HS-mode interrupts;
Changes the privilege to HS-mode;

end
if Delegated to VS-mode then

Stores the current program counter into vsepc;
Sets vscause with trap code;
Stores HS-mode global interrupt enable into mstatus.spie;
Stores instruction virtual address into vstval;
Stores the current privilege encoding in vsstatus.spp;
Disable all VS-mode interrupts;
Changes the privilege to VS-mode;

end
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Listing 2 shows how we implemented the trap return behavior following the H-extension specification.

Returns in VS-mode are performed using sret as in a normal S-mode execution. Our implementation sim-

ply checks if the sret instruction was performed by VS-mode or HS-mode and restores the machine state

accordingly.

Algorithm 2: Trap return implementation.
if virtualization mode active and sret then

Sets vsstats.sie with vsstatus.spie;
Sets vsstatus.spie to true;
Changes the privilege to vsstatus.spp;
Sets vsstatus.spp to U-mode;
Sets program counter to vsepc

else
Sets mstatus.sie with mstatus.spie;
Sets mstatus.spie to true;
Changes the privilege to mstatus.spp;
Sets virtualization mode to hstatus.spv;
Sets hstatus.spv to false ;
Sets vsstatus.spp to U-mode;
Sets program counter to sepc;

end
if mret then

Sets mstatus.mie with mstatus.mpie;
Sets mstatus.mpie to true;
Changes the privilege to mstatus.spp;
Sets virtualization mode to mstatus.mpv;
Sets mstatus.mpv to false;
Sets mstatus.spp to U-mode;
Sets program counter to mepc;

end

6.1.2 2nd-stage Translation

The next largest effort focused on the MMU structures, specifically the page table walker (PTW) and

translation-lookaside buffer (TLB), in particular, to add to support for the 2nd-stage translation. The imple-

mentation only supports the bare translation mode (i.e., no translation) and the Sv39x4 , which defines a

specific page table size and topology which results in guest-physical addresses with a maximum width of

41-bits (see figure 6.1).

The modification to the PTW extends the module’s state-machine so that it switches to perform 2nd-

stage translation at each level of the 1st translation stage by adding a new state called s_switch . At each
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Page Offset

Page Offset

TLB

tlb_hit

ptw_hit

tlb_miss

PTW
PTE Cache

VPN[2] VPN[1] VPN[0]

PPN[2] PPN[1] PPN[0]

38 30 29 21 20 12 11 0

55 30 29 21 20 12 11 0

L1 TLB
CACHE

L2 TLB
CACHE

Figure 6.1: Example of a translation using mode SV39x4.

step, it merges the results of both stages. When a guest leaf PTE (page table entry) is reached, it performs

a final translation of the targeted guest-physical address. This proved to be one of the trickiest mechanisms

to implement, given the large number of corner cases that arise when combining different page sizes at

each level and of exceptions that might occur at each step of the process. TLB entries were also extended

to store both the direct guest-virtual to host-physical address as well as the resulting guest-physical address

of the translation. This is needed because even for a valid cached 2-stage translation, later accesses might

violate one of the RWX permissions, and the specification mandates that the guest-physical address must

be reported in htval when the resulting exception is triggered.

Note that the implementation does not support VMID TLB entry tagging. We have decided to neglect

this optional feature for two mains reasons. Firstly, at the time of this writing, the Rocket core did not

even support ASIDs. Secondly, static partitioning hypervisors (our main use case) do not use it at all. A

different hypervisor must invalidate these structures at each context-switch. As such, the implemented

support for hfence instructions ignores the VMID argument. Furthermore, they invalidate all cached TLB

or walk-cache entries used in guest translation, despite it specifying a virtual address argument or being

targeted at only the first stage (hfence.hvma ) or both stages (hfence.gvma ). To this end, an extra bit was

added to TLB entries to differentiate between the hypervisor and virtual-supervisor translations. Finally, we

have not implemented any optimizations such as dedicated 2nd-stage TLBs as many modern comparable

processors do, which still leaves room for important optimizations.
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6.2 Timer Virtualization

This subsection describes the CLINT timer virtualization implementation on the Rocket Chip. First, we will

describe the CLINT overall micro-architecture with virtualization support. Next, we will present the CLINT

extended map with all timer virtualization control registers. Finally, we will present all the implementation

details accompanied by code written in Chisel.

6.2.1 CLINT Virtualization Micro-Architecture

On the Rocket Core, as illustrated by figure 2.4, timer support is implemented as part of the core local

interrupter (CLINT) responsible for maintaining memory-mapped control and status registers handling the

timer and inter-processor communications interrupts.

Originally, the CLINT only supported the machine mode timer interrupts. We have extended it support

for both HS-mode and VS-mode following the specification defined in Chapter 4. Figure 6.2 shows the

CLINT micro-architecture block diagram for one hart. Our architecture simply defines all S/HS- and VS

mode timer registers (stime, stimecmp, vstime, vstimecmp and htimedelta ) as memory-mapped registers

into the CLINT device. Moreover, we add extra logic with two extra comparators for both HS-mode and

VS-mode, each associated to a corresponding timer interrupt, i.e, supervisor timer interrupt (STIP ) and

virtual supervisor timer interrupt (VSTIP ). When the value of stime or vstime is greater than stimecmp or

vstimecmp , respectively, an interrupt is triggered. The value of vstime is, as defined by the specification,

the sum of htimedelta with mtime .

To propagate the extended timer interrupts from the CLINT to each hart, we augmented the CLINT IO

with two extra signals, as depicted on table 6.2 highlighted in bold, one for each extra privileged mode.

Signal Name Size Direction Description
clock 1 input Input clock tick

msip 1 output
Software interrupt pending bit. Drive the MSIP bit in mip CSR
of each core.

mtip 1 output
Machine mode timer interrupt pending bit. Drive the MTIP bit
in mip CSR of each core.

stip 1 output
Supervisor mode timer interrupt pending bit. Drive
the STIP bit in mip CSR of each core.

vstip 1 output
Virtual supervisor mode timer interrupt pending bit.
Drive the VSTIP bit in hip CSR of each core.

Table 6.2: Extended CLINT IO signals.
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Figure 6.2: CLINT micro-architecture with virtualization support.

6.2.2 CLINT Extended Memory-Mapped

The CLINT holds three memory-mapped registers (shown in Table 6.3 not in bold). One msip register for

each hart located at 0x0 offset with maximum size 0x4000, one mtime register to hold the current time

value with 0xBFF8 offset, and finally one mtimecmp for each hart at located at 0x4000 with maximum

0x4000 size. We have extended the CLINT register map to include the previously defined five extra regis-

ters: stime, vstime, stimecmp, vstimecmp, and htimedelta . Table 6.3 shows the CLINT extended memory

layout, with the new registers highlighted in bold. The stime register is located immediately after the last

mtimecmp register at 0x1bff8 offset. The stimecmp follows the same layout as the mtimecmp but lo-

cated at an offset of 0xc000. As for VS-level timer registers, both vstime and vstimecmp have the same

maximum number of registers as we need a pair for each hart and are located at 0x14000 and 0x1c000,

respectively. Once, vstime is equal tomtime+htimedelta, we included htimedelta immediately after

vstimecmp at 0x24000 offset. Note that each type of timer registers is mapped onto separate pages.

However, hart replicas of the same register are packed contiguously on the same page. As such, with

this approach, the hypervisor still needs to mediate VS- register access as it cannot isolate VS registers

of each individual virtual hart (or vhart) using virtual memory. Nevertheless, traps from HS- to M-mode

are no longer required, and when the HS and VS timer expires, the interrupt pending bit of the respective

privilege level is directly set.
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Field
Offset

(hex)

Size

(Bits)

Reset

(hex)

Access

Type
Description

msip n
0x00000 +

(n * 4)
1 0x0 R/W M-mode hart n software interrupt.

mtimecmp n
0x04000 +

(n * 8)
64 0x0 R/W

Compare value for the M-mode

hart n timer.

mtime 0x0BFF8 64 0x0 R/W Current time. value

stimecmp n
0x0c000 +

(n * 8)
64 0x0 R/W

Compare value for the S

or HS-mode hart n timer.

stime 0x1BFF8 64 0x0 RO
Current time value for S-mode

(RO replica of mtime).

vstimecmp n
0x1c000 +

(n * 8)
64 0x0 R/W

Compare value for the

VS-mode hart n timer.

vstime n
0x14000 +

(n * 8)
64 0x0 RO

Current time value for the

VS-mode hart n

(mtime + htimedelta n ).

htimedelta n
0x24000 +

(n * 8)
64 0x0 R/W

Holds the current time delta

between the value of the time

CSR and the value returned

in VS-mode hart n .

Table 6.3: CLINT extended memory map.

6.2.3 Implementation

Regarding the implementation, all modifications were performed mostly to CLINT module and some minor

changes to the InterruptBus , and CSR module to connect stip and vstip interrupts from the CLINT to each

hart. We started by adding all memory-mapped stime, stimecmp, vstime, vstimecmp and htimedelta

as described on the table 6.3. The CLINT is connected to the ControlBus using the standard Tilelink

interface. To add new memory registers to a device, Rocket Chip provides a Chisel Regmap interface,

where we can easily associate memory-mapped registers to a device by merely supplying a mapped list of

registers with two objects: (i) base address and (ii) structure called RegField where registers information
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are hold (width, description, and attributes). Furthermore, we also include stip and vstip logic to generate

interrupts described earlier, shown in Listing 6.2.

1 v a l ( i n t n o d e _ o u t , _ ) = i n t n o d e . o u t . u n z i p

2 i n t n o d e _ o u t . z i p W i t h I n d e x . f o r e a c h { c a s e ( i n t , i ) =>

3 i n t ( 0 ) : = S h i f t R e g i s t e r ( i p i ( i ) ( 0 ) , p a r ams . i n t S t a g e s ) // ms i p

4 i n t ( 1 ) : = S h i f t R e g i s t e r ( t i m e . a s U I n t >= t imecmp ( i ) . a s U I n t , pa r ams .

i n t S t a g e s ) // m t i p

5 i n t ( 2 ) : = S h i f t R e g i s t e r ( s t i m e . a s U I n t >= s t ime cmp ( i ) . a s U I n t , p a r ams .

i n t S t a g e s ) // s t i p

6 i n t ( 3 ) : = S h i f t R e g i s t e r ( v s t i m e ( i ) . a s U I n t >= v s t im e cmp ( i ) . a s U I n t ,

pa r ams . i n t S t a g e s ) // v s t i p

7 }

Listing 6.2: CLINT timer logic implementation.

Listing 6.3 shows modifications to the CSR module. All interrupts are implemented in themip register.

Both sip and hip are only restricted views of mip . So, we assign mip.stip and mip.vstip bits as a logical

or between the writable stip and vstip bits and the lines comming from the CLINT module.

1 i o . i n t e r r u p t s . s t i p . f o r e a c h { mip . s t i p : = r e g _m i p . s t i p || _ }

2 i o . i n t e r r u p t s . v s t i p . f o r e a c h { mip . v s t i p : = r e g _m i p . v s t i p || _ }

Listing 6.3: CSR module S/HS-mode and VS-mode timer interrupts implementation.

6.3 PLIC Virtualization

This subsection presents the implementation of the virtualization extension in the Rocket Chip PLIC. First,

we start by giving a little background on the current PLIC implementation in the Rocket Chip. Next, we

provide a micro-architecture diagram with our PLIC with virtualization support, describe in Chapter 5.

Thirdly, we describe some of the components that comprise the architecture and explain how we have

implemented them.

6.3.1 Rocket Chip PLIC Module Background

The Rocket Chip is already packed with PLIC implementation compliant with the current specification.

When diving into the PLIC module, we were able to distinguish three major submodules (see Figure 6.3):

(i) Gateway module, (ii) Claim/Complete logic block, and (iii) PLICFanIn module.
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Figure 6.3: PLIC micro-architecture.

The Gateway serves as the interface between the device interrupts and the PLIC main logic. When a

device asserts an interrupt, the Gateway issues a request for handling to the Claim/Complete logic block

using a ready/valid interface and an extra complete signal. The interrupt only becomes pending when

the Claim/Complete logic block is ready to receive another interrupt, and the gateway interrupt line is

valid. When these conditions are met, the Claim/Complete logic block asserts the corresponding interrupt

pending bit and Gateway blocks until a complete is signaled. Finally, there is one PLICFanIn module for

each attached context. This module acts as the center of decision and defines which interrupts to deliver to

each context, based on the priority, pending state, and context interrupts enables. Additionally, interrupts

are only delivered to the context if not masked by the context threshold register .

6.3.2 Micro-Architecture

Themajority of modifications were performed at the PLICFanIn and Claim/Complete logic block. Figure 6.4

illustrates the PLIC general architecture with virtualization support. We refactored the PLICFanIn module to

handle both virtual and physical interrupts (highlighted in blue in figure 6.4), and additionally, we modified

the Claim/Complete logic block to handle virtual interrupts (see section 6.3.7).
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Figure 6.4: PLIC micro-architecture with virtualization support.

6.3.3 Configurations Options

The Rocket Chip PLIC generator is packed with multiple configuration options that allow us to customize

it fully. For example, the PLIC base address in memory, the maximum number of contexts, and device

interrupt lines. We extended the PLIC parameters so that we could easily customize our virtualized PLIC

with, for example, the number of injection blocks available in our design or the number of injection regis-

ters implemented per block. Table 6.4 depicts all PLIC configurations parameters with our custom ones

highlighted in bold.

Configuration Description

Base address The base address where the memory map registers begin.

maxVirtualInjectionRegsPerBlk
Defines the number of implemented VIIR per

implemented ranging from 0 to 1024.

nVirtBlks
Defines the number of injection blocks implemented

ranging from 0 to 240.

Table 6.4: PLIC available configuration options extended with virtual interrupts.

Furthermore, we also added a new parameter to the Rocket core so that we could easily select the

size of the VS-context array per block. Associated with this parameter, we created a configuration, denoted
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nGuestInterrupts , so that we could effortlessly enable/disable it in the Rocket design configuration. The

nGuestInterrupts is the implementation of the GLEIN stated in the specification. By default, in Rocket

Chip, the PLIC starts at address 0xc000000. However, we can easily change it by modifying the base

address configuration option.

6.3.4 VS-Mode Contexts

The PLIC uses the Diplomacy framework for negotiating configuration parameters, e.g., the number of

interrupts lines. So, by adding a vector of guest interrupts to each Rocket Tile (see Listing 6.4) and add a

new interrupt connection from Rocket Tile to the PLIC, it automatically assesses the number of contexts

and creates the registers accordingly. To increase versatility, the number of guest interrupts per core

(GLEIN ) is defined by the previously stated nGuestInterrupts parameter.

1 c l a s s T i l e I n t e r r u p t s ( i m p l i c i t p : P a r am e t e r s ) e x t e n d s C o r e B u n d l e ( ) ( p ) {

2 v a l d ebug = B o o l ( )

3 v a l m t i p = B o o l ( )

4 v a l s t i p = u s i n g VM . o p t i o n ( B o o l ( ) )

5 v a l v s t i p = u s i n g H y p e . o p t i o n ( B o o l ( ) )

6 v a l ms i p = B o o l ( )

7 v a l me ip = B o o l ( )

8 v a l s e i p = u s i n g S u p e r v i s o r . o p t i o n ( B o o l ( ) )

9 v a l g e i p = Vec ( c o r e P a r am s . n G u e s t I n t e r r u p t s , B o o l ( ) )

10 v a l l i p = Vec ( c o r e P a r am s . n L o c a l I n t e r r u p t s , B o o l ( ) )

11 }

Listing 6.4: Tile Interrupt definition endowed with VS-context external interrupts.

On the CSR module, we drive each hart VS-context interrupt line to hgeip bit, starting at bit 1 (bit 0 is

hardwired to 0).

6.3.5 Virtual Interrupt Registers

To ease implementation and provide a more readable code, we divided the VIIR registers definitions into

two chisel bundles (see Listing 6.5). One named InjRegBlock defining a block of injection registers and

two methods to obtain all pending and inFlight , and another defining an injection register, denoted InjReg .
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We also define a method to assess if a virtual interrupt is pending (is_pend ) by checking if the interrupt

ID different from 0 and the interrupt is not active.

1 c l a s s I n j R e g B l o c k e x t e n d s B u n d l e {

2 v a l i n j e c t i o n _ r e g s = Vec ( P L I C C o n s t s . m a x V i r t u a l I n j e c t i o n R e g s P e r B l k , new

I n j R e g )

3

4 d e f p e n d _ b i t s ( ) : U I n t = {

5 R e v e r s e ( i n j e c t i o n _ r e g s . z i p W i t h I n d e x . map { c a s e ( i n j , i ) => i n j . p e n d _ b i t

( ) } . r e d u c e ( _| _ ) . a s U I n t )

6 }

7 d e f i n F L i g h t _ b i t s ( ) : U I n t = {

8 R e v e r s e ( i n j e c t i o n _ r e g s . z i p W i t h I n d e x . map { c a s e ( i n j , i ) => i n j . i n F l i g h t

} . r e d u c e ( _| _ ) . a s U I n t )

9 }

10 }

11

12 c l a s s I n j R e g e x t e n d s B u n d l e {

13 v a l r e v = U I n t ( w i d t h = 10 )

14 v a l p r i o = U I n t ( w i d t h = 10 )

15 v a l i n t _ i d = U I n t ( w i d t h = 10 )

16 v a l i n F l i g h t = B o o l ( )

17 d e f p e n d _ b i t ( ) : U I n t = ( i s _ p e n d ( ) << i n t _ i d ) . a s U I n t

18 d e f i s _ p e n d ( ) : B o o l = ( i n t _ i d > 0 && ! i n F l i g h t ) . a s B o o l

19 }

Listing 6.5: Injection Blocks and VIIR definition in Chisel.

6.3.6 PLICFanIn

As stated earlier, the PLIC attaches a PLICFanIn module to handle physical interrupt delivery to each con-

text. By including support for virtual interrupts injection in each context, a few modifications were required

at PLICFanIn so that both virtual interrupts and physical could coexist (see Figure 6.4). Initially, physical

and virtual interrupts were packed into two very distinct formats, one in injection registers and the other

as arrays of bits (pending registers ) and 32-bits (priority registers ). To ease implementation, we decided

that first, we needed to process all interrupts in a unique format. In that case, we opted to convert physical

interrupts into block injection registers and concatenate them with virtual injection blocks before driving
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into the PLICFanIn module. Moreover, we modified the PLICFanIn internal logic to perform a search on

the input injection registers block (as shown in Listing 6.6) and return the register index that causes the

interrupt, a field required to handle virtual interrupts in the Claim/Complete logic block.

1 c l a s s P L I C F a n I n V i r t u a l C o n t x t ( n D e v i c e s : I n t , n I n j R e g s : I n t , p r i o B i t s : I n t )

e x t e n d s Modu l e {

2 v a l i o = new B u n d l e {

3 v a l i n j _ b l k = Vec ( n I n j R e g s , new I n j R e g ) . f l i p

4 v a l e n b l = U I n t ( w i d t h = n I n j R e g s ) . f l i p

5 v a l d e v = U I n t ( w i d t h = l o g 2 C e i l ( n D e v i c e s +1 ) )

6 v a l r e g _ i d = U I n t ( w i d t h = l o g 2 C e i l ( n I n j R e g s +1 ) )

7 v a l max = U I n t ( w i d t h = p r i o B i t s )

8 }

9

10 d e f f i n d M a x ( x : Seq [ U I n t ] ) : ( U I n t , U I n t ) = {

11 i f ( x . l e n g t h > 1 ) {

12 v a l h a l f = 1 << ( l o g 2 C e i l ( x . l e n g t h ) − 1 )

13 v a l l e f t = f i n d M a x ( x t a k e h a l f )

14 v a l r i g h t = f i n d M a x ( x d r o p h a l f )

15 MuxT ( l e f t . _1 >= r i g h t . _1 , l e f t , ( r i g h t . _1 , U I n t ( h a l f ) | r i g h t . _2 ) )

16 } e l s e ( x . head , U I n t ( 0 ) )

17 }

18

19 v a l e f f e c t i v e P r i o r i t y = ( U I n t ( 1 ) << 9 ) + : ( i o . e n b l . a s B o o l s z i p i o . i n j _ b l k

) . map { c a s e ( e n b l , i n j ) => C a t ( i n j . i s _ p e n d ( ) & e n b l , i n j . p r i o ) }

20 v a l ( ma xP r i , maxDev ) = f i n d M a x ( e f f e c t i v e P r i o r i t y )

21 i o . max : = m a x P r i // s t r i p s t h e a l w a y s−c o n s t a n t h i g h ’ 1 ’ b i t

22 i o . d e v : = Mux ( maxDev === 0 . U , 0 . U , i o . i n j _ b l k ( maxDev − 1 . U ) . i n t _ i d )

23 i o . r e g _ i d : = Mux ( maxDev === 0 . U , 0 . U , maxDev − 1 . U )

24 }

Listing 6.6: PLICFanIn implementation in Chisel.
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6.3.7 Claim/Complete Process

PLIC specification has a well-defined protocol to handle device interrupts at each context, also denoted as

the claim/complete process . Although the original PLIC implementation already provided such a mech-

anism, it is only ready to handle physical interrupts. Therefore, with the addition of virtual interrupts, the

claim/complete process needed to be reformulated to handle both physical interrupts and virtual inter-

rupts as described by the specification. Given that, we implemented claim/complete process as depicted

on Listing 3 and 4.

Algorithm 3: Claim process implementation.

if context claimed interrupt and is virtual interrupt then
sets injection register field int_id = 0;
sets injection register field inFlight = false;

else
if context claimed interrupt and is a physical interrupt then

if physical interrupt is pending then
sets the pending bit to true;
blocks Gateway interrupt input line;

end
if device claimed then

clears pending bit;
releases Gateway interrupt input line;

end
end

end

According to our specification, when claiming virtual interrupts, we must clear the interrupt id field

and set the interrupt as active by writing to inFlight . We extended the PLIC Claim/Complete logic block

so that when the interrupt handler acquires the interrupt ID, an internal flag is set, indicating that claimed

was performed. First, it checks whether or not the interrupt is virtual. If so, it clears the int_id field

and sets the interrupts to active. Otherwise, it is a physical interrupt, and the pending bit is cleared, and

Gateway is locked until a complete is performed. The complete algorithm also needs to handle virtual

interrupts. Originally, the complete process only unlocked the Gateway allowing new interrupts requests

to be handled by the PLIC. With support for virtual interrupts, when a write is performed to the complete

register, an internal flag is set, and the complete process begins. First, it must check if the complete is

targeted to a virtual interrupt or not. If so, the virtual interrupt handler is finished, and the inFLight bit

is cleared, freeing the injection register to inject a new virtual interrupt. If not, it behaves like a normal
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physical interrupt complete and frees the Gateway to trigger new interrupts.
Algorithm 4: Complete process implementation.
if context completed and is virtual interrupt then

sets injection register field int_id = 0;
sets injection register field inFlight = false;

else
sends a complete signal to Gateway;

end



Chapter 7

Evaluation

In this chapter, we describe and discuss the tests and experiments performed on the Rocket Chip extended

with virtualization support. All experiments were mainly conducted under six-core Rocket Chip Soc with

per-core 16 KiB L1 data and instruction caches and a shared unified 512 KiB L2 LLC (last-level cache).

The software stack encompasses the OpenSBI (version 0.9), Bao (version 0.1), and Linux (version 5.9),

and bare metal VMs. OpenSBI, Bao, and bare metal VMs were compiled using the GNU RISC-V Toolchain

(version 8.3.0 2020.04.0), with -O2 optimizations. Linux was compiled using the GNU RISC-V Linux

Toolchain (version 9.3.0 2020.02-2). Our evaluation focused on: functional verification (Section 7.1),

hardware resource (Section 7.2), performance and inter-VM interference (Section 7.3), and interrupt latency

(Section 7.2).

7.1 Functional Verification

The functional verification of our hardware was performed on a Verilator-generated simulator and on a

Zynq UltraScale+ MPSoC ZCU104 FPGA.

7.1.1 Zynq UltraScale+ MPSoC ZCU104 FPGA Setup

To run tests on the ZCU104, we develop a custom Rocket Chip top Verilog module with all required con-

nections: serial interrupts, memory AXI connections, clock, and system reset. Our design uses 2 AXI

Interconnects for MMIO operations (UART0 and UART1 peripherals) and memory accesses (BRAM). Addi-

tionally, we connected both UART0 and UART1 interrupts directly to the Rocket Chip. Figure 7.1 illustrates

the final FPGA design used during our tests.

60
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Figure 7.1: Zynq UltraScale+ MPSoCZCU104 FPGA Rocket Chip design.

7.1.2 Testing Framework

We develop an ad-hoc testing framework as a bare-metal application. Our goal was to test individual fea-

tures of the hypervisor specification without any additional software complexity and following a test-driven

development (TDD). The testing framework offers a simple API with four useful features for debugging and

testing:

• Possibility to fully resetting processor state at the beginning of each test unit;

• Fluidly and transparently changing across privilege modes;

• Easy access a virtual guest address with any combination of 1st and 2nd stage permissions;

• Easy detection and recovery of exceptions with a full log of its state and causes.

At the time of development, we have written a comprehensive set of tests suites targetting various

features such as interrupts delegation, exception delegation, virtual exceptions, two-stage translation, hy-

pervisor load-store instructions, VS and HS-mode CSRs read/write access, and PLIC and CLINT virtualiza-

tion extensions, all despited in table 7.1. These tests also serve as regression tests when a new feature

was added and something went sideways. Nevertheless, the framework still has some limitations, such

as not allowing user-mode execution or experimenting with superpages. This hypervisor extension testing

framework and accompanying tests suite are openly available and can be easily adapted to other platforms.
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Test Name Unit Description
interrupt_tests Tests VSSI injection with and without delegation

check_xip_regs
Tests VS-contexts interrupts correct behaviour by setting/clearing
mip and hvip registers

hfence_test
Tests hfence intructions (hfence.gvma and hfence.vvma ) and
sfence at VS and HS-level, by checking if the TLB was correctly
flushed (only hypervisor entries or only guest entries).

two_stage_translation Tests to the two stage translation unit.
second_stage_only_translation Tests to the two stage translation unit without first stage.
m_and_hs_using_vs_access Tests to the hypervisor load/store instructions to the guest space.

virtual_instruction
Tests all possibly scenarios that trigger a virtual instruction when
running in VS-mode (sret when VTSR is set, wfi when VTW
is set, and others)

plic_registers Tests all PLIC registers acess (read/write)

plic_virtual_injection
Tests external interrupt virtual injection at the VS-context and to
a non-active guest to HS-mode.

plic_direct_inj
Tests external interrupt direct-passthrough at the VS-context and
to a non-active guest to HS-mode.

Table 7.1: List of all available test units.

7.1.3 Hypervisor Validation

As a second step to reinforce our functional validation, we have successfully run two open-source hyper-

visors that support H-extensions: our Bao and the XVisor. Additionally, XVisor provides a ”Nested MMU

Test-suite”, which mainly exercises the two-stage translation and allows us to test our 2nd stage translation

unit extensively. At the time of this writing, our implementation fully passed this test suite. Some bugs

uncovered while running these hypervisors were translated into tests and incorporated into our test suite.

In particular, Bao was mapping incorrectly the PLIC guest context into PLIC physical context when the

guest was running on a multi-core configuration.

7.2 Hardware Overhead

To assess the hardware overhead, we synthesized multiple SoC configurations with an increasing number

of harts (2, 4, and 6). We used Vivado 2018.3 targetting the Zynq UltraScale+ MPSoC ZCU104 FPGA. Table

7.2 presents the post-synthesis results, depicting the number of look-up tables (LUTs) and registers for the

three SoC configurations. We focus our evaluation on three main components: Rocket Cores, CLINT, and

PLIC, as illustrated in table 7.2. Each is reflecting the impact of the H-extensions, timer virtualization, and
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PLIC virtualization, respectively. For each cell, there is the absolute value for the target configuration and,

in bold, the relative increment (percentage) compared to the same configuration without the hypervisor

extensions. We withhold data on other resource usages (e.g., BRAMs or DSPs) as they were irrelevant and

almost non-existing.

Dual-Core Quad-Core Six-Core

Rocket

Cores

LUTs 50922/11% 101744/12% 152957/12%

Regs 25086/30% 50172/30% 75258/30%

CLINT
LUTs 68/375% 196/296% 269/373%

Regs 194/297% 324/336% 454/277%

PLIC
LUTs 90/140% 144/236% 220/263%

Regs 83/325% 116/412% 149/460%

Others
LUTs 11207/2% 13242/3% 91821/0,5%

Regs 4257/0,1% 4628/0,2% 4728/2%

Total
LUTs 62287/11% 115356/11% 167753/11%

Regs 29620/27% 55250/28% 80589/29%

Table 7.2: Rocket Chip hardware resource overhead with virtualization extensions.

According to Table 7.2, we can draw five key conclusions. Firstly, there is an overall non-negligible

cost to implement the hypervisor extensions support: an extra 11% LUTs, and 27-29% registers. A deeper

analysis shows that this overhead comes almost exclusively from two sources: the CSR and TLB modules.

The CSR increase is explained by the amount of HS and VS registers stated by the H-extension specification.

The increase in the TLB is mainly due to the widening of the data store to hold guest-physical addresses

(see Chapter 6) and the extra privilege-level and permission match and check complexity. Secondly, there

increase of hardware usage in the CLINT module is explained by the number of registers required by the

HS-mode (stime and stimecmp per hart) and by VS-level (one vstime , vstimecmp and htimedelta per

hart). Thirdly, the PLIC virtualization increase is explained by the additional context and injection block

registers on each hart and the hardware complexity added to support virtual interrupt injection on each

context. Fourthly, although the enhancements to the CLINT and PLIC reflect a large relative overhead, as

these components are simple and small compared to the overall SoC infrastructure, there is no significant

impact on the total hardware resources cost. Lastly, we can also conclude that increasing the number of

available harts in the SoC does not impact the relative hardware costs.



Chapter 7. Evaluation 64

7.3 Performance and Inter-VM Interference

To assess performance overhead and inter-hart / inter-VM interference, we select the MiBench Embedded

Benchmark Suite. MiBench comprises a set of 35 benchmarks divided into six suites, each one targeting

a specific area of the embedded market (automotive, consumer devices, office automation, networking,

security, and telecommunications). We focus our evaluation on the automotive as it is one of our Bao’s

primary targets subset. The automotive suite includes three high memory-intensive benchmarks, i.e.,

more susceptible to interference due to LLC and memory contention (qsort, susan corners, and susan

edges).

The experiments were conducted in Firesim, an FPGA-accelerated cycle-accurate simulator, deployed

on an AWS EC2 F1 instance, running with a 3.2 GHz simulation clock. Each benchmark was ran for seven

different system configurations targeting a six-core design:

• bare - guest native execution;

• solo - hosted execution running in one core;

• solo-col - hosted execution with cache coloring for VMs;

• solo-hypcol- hosted execution with cache coloring for VMs and the hypervisor;

• interf - hosted execution under interference from multiple colocated VMs;

• interf-hypcol - hosted execution under interference with cache coloring for VMs and the hypervisor.

Hosted scenarios with cache partitioning aim at evaluating the effects of partitioningmicro-architectural

resources at the VM and hypervisor level and to what extent it can mitigate interference. We execute the

target benchmark in a Linux-based VM running in one core, and we add interference by running one

VM pinned to five harts, each running a bare-metal application. Each hart runs an ad-hoc bare-metal

application that continuously writes and reads a 1 MiB array with a stride equal to the cache line size (64

bytes). The platform’s cache topology allows for 16 colors, each color consisting of 32 KiB. When enabling

coloring, we assign seven colors (224 KiB) to each VM. The remaining two colors were reserved for the

hypervisor coloring case scenario.

Fig. 7.2 presents the results as performance normalized to bare execution, meaning that higher values

translate to worse results. Each bar provides the average value of 100 samples and the standard deviation.
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For each benchmark, we added the execution time (i.e., absolute performance) at the top of the bare-metal

execution bar.

According to Fig. 7.2, we can draw six main conclusions. Firstly, hosted execution (solo) causes a

marginal decrease of performance (i.e., average 1% overhead increase) due to the virtualization overheads

of 2-stage address translation. Secondly, when coloring (solo-col and solo-hypcol) is enabled, the perfor-

mance overhead is further increased. This extra overhead is explained by the fact that only about half of

the L2 cache is available for the target VM, and that coloring precludes the use of superpages, significantly

increasing TLB pressure. Thirdly, when the system is under significant interference (inter), there is a con-

siderable decrease of performance, in particular, for the memory-intensive benchmarks, i.e., qsort (small),

susan corners (small), and susan edges (small). For instance, for the susan corners (small) benchmark,

the performance overhead increases by 62%. Fourthly, we can observe that cache coloring can reduce

the interference (inter-col and inter-hypcol) by almost 50%, with a slight advantage when the hypervisor is

also colored. Fifthly, we can observe that the cache coloring, per se, is not a magic bullet for interference.

Although the interference is reduced, it is not completely mitigated, because the performance overhead for

the colored configurations under interference (inter-col and inter-hypcol) is different from the ones without

interference (solo-col and solo-hypcol). Finally, we observe that the less memory-intensive benchmarks

(i.e., basicmath and bitcount) are less vulnerable to cache interference and that benchmarks handling

smaller datasets are more susceptible to interference.

Curiously, the achieved results for RISC-V on this dissertation share a similar pattern to the ones

assessed for ARM [Martins et al., 2020]. In our previous work [Martins et al., 2020], we have deeply

investigated the micro-architectural events using a performance monitoring unit (PMU), which proves that

shared cache and memory is one major bottleneck of virtualized systems.
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Figure 7.2: Relative performance overhead of MiBench automotive suite relative to bare-
metal execution.
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7.4 Interrupt Latency

To measure interrupt latency and respective interference, we develop a custom MMIO timer (0x22000000)

with auto-restart feature, and an interrupt line connected to the PLIC. This timer offers a simple interface

with 3 control registers: the time (counter timer value), the timecmp (counter compare value, i.e., when

time > timecmp the interrupt is trigger) and enable register (enable and disables the interrupt). We

developed a custom bare-metal benchmark application to measure the interrupt latency using our custom

timer. The application programs the timer to trigger an interrupt at 100Hz (each 10 ms). The latency is

given by the value read from the time registers at the interrupt handler minus the value programmed. We

invalidate the L1 instruction cache at each measurement using the fence.i instruction as we believe it is

more realistic to assume this cache is not hot with regard to the interrupt handling or the hypervisor’s

interrupt injection code.

For the hosted executions, we performed measurements for both trap-and-emulate and PLIC interrupts

direct injection. Figure 7.3 shows the average of the results obtained from 100 samples (the first two

discarded).
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Figure 7.3: Interrupt latency for bare-metal execution and hosted execution.

The interrupt latency for the bare (in Figure 7.3, no virt) execution is quite low (approx. 80 ns) and

steady. The trap-and-emulate approach introduces a penalty of an order of magnitude (740 ns) that is even

more significant under interference (up to 2280 ns, about 300%) both in average and standard deviation.

Applying cache partitioning via coloring helps to mitigate this, which shows that most of the interference

happens in the shared L2 LLC. The difference between inter-col and interf-hypcol shows that it is of utmost
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importance to assign dedicated cache partitions to the hypervisor: the interfering VM also interferes with

the hypervisor while injecting the interrupt and not only with the benchmark code execution itself.

Figure 7.3 also shows that the effect of the direct injection achieved with guest external interrupt and

PLIC virtualization support can bring guest interrupt latency to near-native values. Furthermore, it shows

only a fractional increase under interference (when compared to the trap-and-emulate approach) which

can also be attenuated with cache coloring. As the hypervisor no longer intervenes in interrupt injection,

for this case, it suffices to color guest memory. A small note is that the use of cache coloring does not

affect the benchmark for solo execution configurations, given that the benchmark code is very small.

Thus, the L1 and L2 caches can easily fit both the benchmark and hypervisor’s injection code. Finally, we

can conclude that with PLIC virtualization support, it is possible to significantly improve external interrupt

latencies for VMs.

7.5 Discussion

The RISC-V H-extension is currently in its 0.6.1 version and is being developed within the privileged spec-

ification working group of RISC-V International, following a well-defined extension development lifecycle.

The specification draft has been stable for quite some time and therefore is approaching a frozen state,

after which it will enter a period of public review before finally being ratified. However, to enter a frozen

state, it will need both (i) open RTL core implementations suitable for deployment as soft-cores on FPGA

platforms and (ii) hypervisor ports that exercise its mechanisms and provide feedback. Until the extensions

are ratified, we do not expect any commercial IP or ASIC implementations to be available. With this work,

we have contributed with one open RTL implementation, but more are needed. Xvisor and KVM have

been the open-source reference hypervisors used in the extension development process. We have further

contributed with the Bao port, but the more hypervisor ports are available to evaluate the suitability of the

H-extension for different hypervisor architectures, the better.

As discussed in this dissertation, there are still some gaps in RISC-V, particularly with respect to vir-

tualization. At the ISA level, features like cache management operations are needed. Fortunately, there

is already a working group defining these mechanisms. At a platform level, timer and external interrupt

virtualization support is needed. Our results show the importance of these mechanisms to achieve low and

deterministic interrupt latency in virtualized real-time systems. There are already efforts within the RISC-V

community to provide this support: a new extension proposal is on the fast track to include dedicated timers
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for HS- VS-modes; and a new interrupt controller architecture featuring support for message-signaled in-

terrupts (MSI) and virtualization support is under development within the privileged specification working

group. Another missing component critical for virtualization is the IOMMU. An IOMMU is needed to im-

plement efficient virtualization by allowing the direct assignment of DMA-capable devices to VMs while

guaranteeing strong isolation between VMs and the hypervisor itself. Static partitioning hypervisors such

as Bao ultimately depend on IOMMU, as they do not provide any kind of device emulation and only pass-

through access. At the moment, in a RISC-V platform, a Bao guest that wishes to use a DMA device must

have all its memory configured with identity mapping. Unfortunately, this still completely breaks encapsu-

lation, serving only for experimentation and demonstration purposes, not being suitable for production.

In the conducted evaluation presented in this chapter, we have demonstrated something well-understood

and documented in the literature [Yun et al., 2013, Mancuso et al., 2013, Kloda et al., 2019, Xu et al.,

2019, Martins et al., 2020, Farshchi et al., 2020], i.e., that (i) in multi-core platforms, there is signif-

icant inter-core interference due to shared micro-architectural resources (e.g., caches, buses, memory

controllers), (ii) which can be minimized by mechanisms such as page coloring used to partition shared

caches. Other techniques such as memory bandwidth reservations [Yun et al., 2013] and DRAM bank par-

titioning [Yun et al., 2014] can minimize interference further ahead in the memory hierarchy. These parti-

tioning mechanisms are important in embedded mixed-criticality systems both from the security and safety

perspectives by protecting against side-channel attacks and guaranteeing determinism and freedom-from-

interference required by certification standards (e.g., ISO26262). They are also useful for server systems

by helping to guarantee quality-of-service (QoS) and increase overall utilization [Lo et al., 2015]. However,

software-based approaches typically have significant overheads and increase the trusted computing base

(TCB) complexity. Academic works such as Hybcache [Dessouky et al., 2020] or the bandwidth regulation

unit (BRU) [Farshchi et al., 2020] propose the implementation of this kind of mechanism in RISC-V cores

(Ariane [Zaruba and Benini, 2019] and Rocket, respectively). SiFive has provided cache partitioning mech-

anisms in hardware via way-locking. During this work, we found it would be useful to have a standard set

of mechanisms and interfaces to rely on. We argue that RISC-V is also missing a standard extension to

provide such facilities. Other ISAs have already introduced these ideas, e.g., Intel’s CAT and Arm’s MPAM

[Arm Ltd., 2018a]. MPAM functionality is also extended to other virtualization-critical system-bus masters,

including the GIC and the SMMU (Arm’s interrupt controller and IOMMU, respectively), something that

should also be taken into account when developing similar RISC-V specifications.

Even without virtualization support, it is possible to implement static partitioning in RISC-V leveraging
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the trap-and-emulate features described in Chapter 3 and using the PMP for memory isolation instead of

two-stage translation. The PMP is a RISC-V standard component that allows M-mode software to white-list

(or black-list) physical address space regions on a per-core basis. This results in a kind of para-virtual

approach, as the guest must be aware of the full physical address space and possibly recompiled for

different system configurations. To provide direct assignment of DMA devices, the host platform would also

need to provide IOPMPs (akin to IOMMU, without translation), which is a specification already on course.

Furthermore, the hypervisor would be forced to flush micro-architectural state such as TLBs or virtual

caches at each context switch resulting in significant performance overheads. The use of VMIDs, part of

the H-extension, tackles this issue. Notwithstanding, this is not a real problem for statically partitioned

systems. Thus, once there is no commercial hardware featuring the H-extension available in the market,

this is the approach of some of the hypervisors mentioned in Chapter 2. We are currently developing a

customized version of Bao to run in RISC-V platforms without H-extension support (e.g., Microchip PolarFire

SoC Icicle or the upcoming PicoRio). Nevertheless, we believe the hypervisor extension is still a better

primitive for implementing these systems, given the higher flexibility and scalability it provides.
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Conclusion and Future Work

In this dissertation, we have implemented the first public implementation of the RISC-V H-extension in a

real RISC-V core, i.e., Rocket core. Moreover, during our research, we identify some critical components

not covered by the RISC-V virtualization extensions, particularly the interrupt subsystem and the timer

infrastructure. Without hardware virtualization support in the interrupt controller, the hypervisor has to

fully emulate the PLIC, which involves many traps. Furthermore, the RISC-V specification defines only

one physical timer infrastructure at the most privileged level (M-Mode), which is multiplexed into logical

timers to the lower privileged levels. To tackle these issues, we propose a set of hardware enhancements

to the interrupt controller and the timer infrastructure in the spirit of reduce hypervisor intervention and

improve overall virtualization efficiency. To validate and evaluate our hardware implementation, we used

the open-source Bao hypervisor, which already had support for the H-extension specification.

As of this writing, we achieved functional verification of our implementation on a Verilator-generated

simulator and on a Zynq UltraScale+ MPSoC ZCU104 FPGA using a dedicated testing framework for that

purpose and later the Bao hypervisor. During the tests and evaluation phase, we have carried out an

extensive set of experiments in FireSim, a cycle-accurate simulator with performance results nearly to

what is found in a taped-out chip. Our evaluation focuses on four main metrics: performance, inter-

VM interference, interrupt latency and hardware overhead. Results show that the H-extension, per se,

introduces a slight performance penalty compared to what is observed in bare-metal execution. Moreover,

we demonstrated that without additional hardware to minimize interference and interrupt latency can

impose a prohibitive cost for MCSs. Our proposed architectural enhancements considerably minimize

these effects by reducing hypervisor intervention interrupt latency and interference by order of magnitude.

We have also shown that most interference origin from shared L2 cache level, which we mitigate by

applying cache coloring to both VM’s and hypervisor. Finally, we concluded that although our architecture

virtualization enchantments assume a cost in hardware resources, it is somehow bearable considering the

70
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benefits.

Lastly, we discussed identified gaps existing in RISC-V regarding virtualization and outlined ongoing

internal efforts within RISC-V virtualization. Our hardware design was made freely available for the RISC-V

community and is currently being used by the KVM hypervisor as the single reference implementation to

ratify the H-extension.

8.1 Future Work

With this dissertation, we have successfully augmented Rocket Core with all mandatory H-extension specifi-

cations. Nevertheless, some optional features of the hypervisor extensions were left out of implementation

for future work. For example, the htinst and mtinst which were defined in the core but left as hardwire to

zero. These registers would provide a quicker and less intrusive manner to read the trapping instruction

in a pre-decoded format. This architectural feature would be a great advantage as the hypervisor could

handle all traps more efficiently and with less code without actually reading guest instruction from mem-

ory and decoding it, which consequently means less data cache pollution. Furthermore, the RV32 CSRs

version of the H-extension is yet to be implemented, as we only support the RV64.

However, we believe there are more pressing issues to be resolved which could greatly benefit vir-

tualization overall’s performance. Firstly, at the shared micro-architectural level, we identify four major

improvements that could be performed as future steps:

• Although we have successfully implemented a 2-stage address, there are still some features missing

andmuch room for optimizations. For instance, our implementation only supports bare and Sv39x4

address-translation schemes modes for guest physical addresses, leaving still missing the extended

version for 44-bit virtual addresses. Moreover, we have not included VMID at the TLB entry tagging.

Although this is a useless feature in Bao as it is a statically partitioning hypervisor, the same does

not stand for other types of hypervisors. Without it, each context-switch would require invalidation

of such structures.

• Results shown that inter-VM interference at cache level is one major source of performance degra-

dation. So, as future work, we believe a deeper evaluation of micro-architectural interference effects
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would be required. Moreover, in turn, develop additional mechanisms to help reduce inter-VM inter-

ference on shared hardware subsystems, such as Hybcache [Dessouky et al., 2020] or the band-

width regulation unit (BRU) [Farshchi et al., 2020], or SiFive cache partition, already mentioned in

the discussion.

• At the time being, RISC-V still has no IOMMU support for DMA capable devices. Without this

feature, it would be impossible to direct assign devices to VM’s as it would mean a breach in

isolation between VMs and the hypervisor itself. For instance, static partitioning hypervisors such

as Bao ultimately depend on IOMMU, as they do not provide any kind of device emulation and

only pass-through access. Given that, we believe that developing an IOMMU specification is one

necessary step to achieve a fully capable virtualized RISC-V based system.

Finally, there is still one crucial topic that needs to be addressed soon: IPIs support virtualized RISC-

V systems. At the time being, communication across harts is solely restricted to M-mode execution,

normally accessed to memory-mapped registers as part of the CLINT specification. Like the timer feature,

IPIs for lower privilege levels are implemented by the firmware and available through the SBI interface.

Thus guests running on VS-mode that which to communicate with other vhart, need to trap to HS-mode

and then to M-mode. More traping, in turn, translates to less performance, which will surely take more

impact on embedded systems with real-time constraints. Therefore, as future work, it would be interesting

to propose changes to the current specification to provide architectural support for IPIs directly without

firmware intervention at HS-level and VS-level.
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