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A influência da taxa de reforço local na taxa de resposta local em diferentes tipos de programas de 

intervalo com pombos 

 

RESUMO 

O timing é tipicamente visto como a capacidade de se comportar de acordo com durações fixas, mas os animais 

são sensíveis a contingências temporais, mesmo quando estão perante pistas associadas a durações variáveis. 

Usando diferentes esquemas de intervalo variável (VI), Catania e Reynolds (1968) mostraram que os perfis da 

taxa local de resposta ao longo do tempo se relacionavam com os perfis da taxa local de reforço. Com  base 

nisto, foi elaborada a conceção comportamental de timing, de acordo com  a qual a taxa local de reforço controla 

a taxa local de resposta. No entanto, dados mais recentes obtidos por Swanton, Gooch e Matell (2009) 

demonstraram uma função de resposta em forma de pico num procedimento de pico desenvolvido a partir de 

um programa de intervalo variável (VI) que os autores explicaram como sendo resultado da média de várias 

memórias temporais, uma interpretação incompatível com a conceção comportamental de timing. Na primeira 

parte desta tese, explicamos como um modelo comportamental de perceção temporal, o modelo Learning-

toTime (LeT), pode de fato explicar o pico de resposta observado no momento correspondente ao intervalo 

médio de Swanton et al. (2009). Depois, com uma experiência que estende a manipulação feita por Swanton 

et al. (2009) mostramos que, consistente com o modelo LeT e com a ideia de que a taxa local de reforço se 

traduz em taxa local de resposta mas inconsistente com a teoria da média, a largura do pico de resposta nos 

procedimentos de pico está relacionada com o  intervalo de intervalos. Além disso, mostramos que nenhuma 

das versões da Scalar Expectancy Theory (SET, o principal modelo cognitivo de perceção temporal) pode explicar 

os nossos resultados. Após este primeiro estudo, apresentamos um novo VI, inspirado nos VIs do procedimento 

de pico, que alcançam uma taxa constante de reforço num intervalo de tempo finito. Em seguida, no segundo 

estudo, investigamos a questão da constância de resposta sob VIs de probabilidade constante e os limites dos 

processos de perceção temporal. Numa experiência comparamos o nosso novo método, o VI exponencial 

uniforme, ao popular VI de Fleshler & Hoffman e mostramos que, se ambos os VI sustentam uma taxa de 

resposta aproximadamente constante, o VI exponencial uniforme induz uma função de resposta mais plana se 

excluirmos a aceleração inicial. Numa outra experiência investigamos a evolução das funções de resposta de 

pombos treinados em três condições com intervalos máximos diferentes, com o VI exponencial uniforme e 

observamos que, apenas numa minoria dos casos, os padrões de resposta no tempo apresentaram invariância 

escalar, sugerindo uma situação limite para processos de percepção temporal ocorrerem. Apesar disso, na 

discussão geral argumentarmos que os processos que traduzem a taxa local de reforço em taxa local de 

resposta continuam a  existir num VI de probabilidade constante  mas  estão parcialmente ocultos por um efeito 

de teto do reforço local e / ou por um efeito da resposta motivacional. Concluímos no sentido da validade do 

princípio da conversão de taxas proposto por Catania e Reynolds para dar conta do padrão de respostas nos 

programas intervalo no geral e, portanto, no sentido da validade da conceção comportamental de timing. 

 

Palavras-chave: teoria de averaging; modelo Learning-to-Time; timing; uniform exponential VI; esquema de 

intervalo variável. 
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The influence of local reinforcement rate on local response rate under different types of interval 

schedules with pigeons. 

 

ABSTRACT 

Timing is commonly seen as the ability to behave in accordance with fixed durations, but animals are sensitive 

to temporal contingencies even when facing cues associated to variable durations. Using different variable 

interval (VI) schedules, Catania and Reynolds (1968) showed that profiles of local rate of responding in time 

related to profiles of local rate of reinforcement in time. On this basis was elaborated the behavioral conception 

of timing according to which local rate of reinforcement controls local rate of responding. However, more recent 

data obtained by Swanton, Gooch and Matell (2009) came to show a peak-shaped response function under a 

peak-procedure made of a VI schedule, which the authors have explained by the averaging of temporal 

memories, an interpretation incompatible with the behavioral conception of timing. In the first part of this thesis 

we explain how a behavioral model of timing, the Learning to Time (LeT) model, can in fact account for the peak 

of responding observed at the time corresponding to the mean interval in Swanton et al. (2009). Then, with an 

experiment stretching Swanton et al. (2009) manipulation we show that, consistently with the LeT model and 

the idea that local rate of reinforcement translates into local rate of responding, but at odd with the averaging 

theory, the width of the peak of responding under peak-procedures relates to the range of the intervals. Moreover, 

we show that none of the versions of the Scalar Expectancy Theory (the leading cognitive model of timing), can 

account for our results. After this first study we present a new VI, inspired by the peak-procedure VIs, which 

achieves constant rate of reinforcement in a finite time range. Then, in a second study we investigate the 

question of the constancy of responding under constant-probability VIs and the limits of timing processes. In an 

experiment we compare our new method, the uniform exponential VI, to the popular Fleshler & Hoffman VI and 

show that if both VI sustain roughly constant response rate, the uniform exponential VI induces a flatter response 

function when excluding initial acceleration. In another experiment we investigate the evolution of the response 

functions of pigeons trained across three different maximum interval conditions with the uniform exponential VI 

and observe that only in a minority of cases patterns of responding in time presented scalar invariance, 

suggesting a limit situation for timing processes to happen. Though, in a general discussion we argue that the 

processes translating local rate of reinforcement into local rate of responding still exist under constant-probability 

VI but that there are partially hidden by a ceiling effect of local reinforcement and/or by an effect of motivational 

responding. We conclude in the sense of the validity of the rate translation principle brought by Catania and 

Reynolds to account for responding in interval schedules in general, and thus, in the sense of the validity of the 

behavioral conception of timing.  

 

Key-words: averaging theory; Learning-to-Time model; timing; uniform exponential VI; variable interval 

schedule. 
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GENERAL INTRODUCTION 
 

Timing is commonly defined as the ability of animals to behave in accordance with temporal 

regularities in the environment but there is no consensus about the processes involved. There are two 

main psychological conceptions of timing. One relates to the cognitive approach and sees timing as 

the action to time events, dependent upon operations on temporal memories, the other relates to the 

behavioral approach and sees timing as the control of behavior by temporal contingencies through 

associative mechanisms. 

In a fixed interval schedule (FI), the simplest timing task, animals are reinforced for the first 

response emitted after a given temporal criterion from trial onset; this procedure elicits no responding 

or low responding on the early segment of the trial and high responding near the time of the availability 

of reinforcement. From the cognitive perspective represented by the Scalar Expectancy Theory (SET; 

Gibbon, 1977, 1991), animals possess an internal clock with a pacemaker that emits pulses as the 

trial interval elapses. These pulses amass in an accumulator until reinforcement, at which time the 

count in the accumulator is saved in memory. Once reinforcement in time has been experienced, 

animals retrieve at the beginning of an FI trial, a memory of pulses to food, which is compared to the 

current count of pulses. And, animals respond whenever a comparator module finds a given degree of 

similarity between the memory and the current count. At early times into the trial interval, the count of 

pulses in the accumulator is significantly lower than the count in memory and no responding occur, 

but as time elapses, the count of pulses in the accumulator gets closer to the count in memory and 

responding is emitted. 

From the behavioral perspective represented by the Learning to Time (LeT; Machado, Malheiro 

and Erlhagen, 2009) model,1 animals traverse time from behavioral state to behavioral state, which 

offers a basis for associations to structure in time. At the onset of an FI trial, a series of behavioral 

states is triggered, and, when reinforcement is delivered, the association between the operant response 

and the current behavioral state is strengthened while the association between the operant response 

and all the states that were activated at earlier times decreases. Responding during subsequent trials 

is determined by the strength of association that the behavioral states have with the operant response. 

 
1 The model described in Machado, Malheiro and Erlhagen (2009) is the second version of LeT. We do not consider in this thesis the original LeT from 
Machado 1997. 
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Behavioral states of the series that are activated early in the trial acquire weak associations with the 

operant response, and thus, in turn, sustain little or no responding on the early part of the trial interval; 

behavioral states of the series that are activated late in the trial acquire strong associations with the 

operant response, and thus, in turn, sustain responding on the later part of the trial interval. 

Timing expresses with one major feature which is that the dispersion of the responses around 

the criterion time is proportional to that criterion time. In the FI, this scalar property, appears in the 

fact that the response function obtained with an animal trained under a given criterion time will 

superimpose with the response function obtained with the same animal trained under a different 

criterion time, when the two functions are plotted on normalized axis.2 SET generates the scalar 

property from the pacemaker module that produces pulses at a rate that is variable between trials but 

constant within trials. These two elements make that repeated exposition to the same FI interval 

generates memories of counts of pulses that form a distribution with standard deviation proportional 

to the interval being timed and also make that responding, in turn, form a distribution with standard 

deviation proportional to the FI interval. Similarly, LeT obtains the proportionality to the interval being 

timed, of the diffusion of the strength of associations and, in turn, of the variance of the response 

distribution, from the fact that the speed with which activation proceeds across behavioral states is 

variable between trials but constant within trials. 

Historically, the FI is a procedure that comes from the behaviorists and the pattern of 

responding caused by the FI was in a first place interpreted with the concepts of the behaviorists. The 

shape of the response function, with a mode at the time of the temporal criterion and with a response 

magnitude ordered with the distance to the temporal criterion, was first conceived as a gradient of 

temporal generalization (Dews, 1962; Catania and Reynolds, 1968). It is only later that Gibbon (1977) 

made the demonstration of the scalar property and proposed the information-processing theory SET 

with a mathematical construct to account for this property of what got called timing. Then followed the 

reply of the defenders of the behavioral conception, the behavioral model of timing of Killeen and 

Fetterman (1988), with an alternative mathematical account of timing and its scalar property, which 

inspired LeT. 

Premises of the discovery of the scalar property were in fact already present in Catania and 

Reynolds (1968), noting from an experiment with a two values FI (or mixed FI) that the distribution of 

 
2 We call response function the function relating the response rate to the time into the trial interval obtained from the average of several trials and sessions. 
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the responses around each temporal criterion was large relative to the time since reinforcement. In 

this important paper made of several experiments investigating response rate maintained by different 

interval schedules of reinforcement, including variable interval (VI) schedules of reinforcement, Catania 

and Reynolds pointed to what could be the other major feature associated with the timing phenomenon. 

Comparing VIs made of different distributions of intervals yielding different profiles of rate of 

reinforcement in time, they discovered a relation which they described as the control of local rate of 

responding by the local rate of reinforcement.  

This relation between local rate of reinforcement and local rate of responding is easy to 

conceive when taking responding under an FI as a gradient of temporal generalization around a point 

in time where reinforcement occurs, which gradient will naturally extend and adjust to the regularities 

of the rate of reinforcement if reinforcement is made variable in time like in a VI. On the other hand, 

this relation is more difficult to conceive from the cognitive perspective that comes with the term timing 

which from common usage bears the meaning of an action done accurately in regard to a fixed 

duration. Thus, as the cognitive conception prevailed in the literature since the seventies, what could 

be an important feature of the so-called timing phenomenon has been rather neglected and has not 

been considered in the design of SET. Yet, recent experimental results seem to contradict the findings 

of Catania and Reynolds (1968).  

Comparing rats trained under peak-procedures,3 made of an FI or made of a VI, but with mean 

interval corresponding to the FI value, Matell, Kim and Hartshorne (2014), found two near similar 

response patterns characterized by a peak at the time of the FI criterion. The authors interpreted these 

results using the averaging theory, an alternative version of SET in which the memory of the time to 

reinforcement is not be maintained as a distribution but as an average. From the averaging theory 

viewpoint, animals in the two conditions of Matell et al. (2014) would have form the same memory, 

corresponding to the FI temporal criterion, and therefore would have behave in the same manner. 

It is critical to determine whether the interpretation of Matell, Kim and Hartshorne (2014) is 

correct. If it is, if animals operate averaging of temporal memories, it contradicts the idea that local 

rate of reinforcement controls local rate of responding because the manipulation of the profile of local 

rate of reinforcement would not cause systematic changes in the response function. If this feature is 

 
3 The peak-procedure (Catania, 1970; Roberts 1981), consists in alternating FI (or VI) reinforced trials, with long unreinforced trials that last typically four 
times the FI criterion (or four times the mean of the VI intervals). This procedure was created to observe the expectation of the animals after the temporal 
criterion, which is not possible under a traditional FI wherein the first response after the temporal criterion ends the trial. 
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rejected, it would mean that the behavioral conception of timing which incorporates it, is probably 

wrong. On the other hand, if the feature is real, it is the cognitivist conception of timing, which does 

not incorporate it, that may be wrong. 

In Study 1 we examine how LeT, whose mechanism translates local rate of reinforcement into 

local rate of responding, could in fact account for the apparent averaging of temporal memory 

phenomenon. We show how the surprising peak shape of the response function obtained by Matell, 

Kim and Hartshorne (2014) in their peak-VI condition can be explained by the dispersal of associative 

strength, compensating the attribution of associative strength to a large pool of behavioral states. Then, 

we replicate the experiment of Matell, Kim and Hartshorne (2014), including conditions with larger 

interval ranges. While the tenants of the averaging theory should expect that this manipulation would 

not modify the shape of the response function, we predict that the response pattern should 

systematically broaden and narrow with the increase and the decrease of the range of the intervals. 

After this first study we present a new VI. Inspired by the peak-procedures associated to VIs 

used in Study 1, our method alternates reinforced and unreinforced trials to obtain constant 

reinforcement rate on a finite range from an overall uniform distribution of intervals. The uniform 

exponential VI, as it sustains constant reinforcement rate on a finite range of intervals without the need 

for truncation or approximation may constitute a better control condition for temporal contingencies 

compared to the constant-probability VIs based on approximations of the exponential distribution. 

Having presented this procedure that allows to suppress temporal contingencies, we come to 

question how animals behave in such condition. From a theory-free reasoning, if there is no clue in 

time about the likelihood of reinforcement, animals should respond at a constant rate, or, if they do 

not, it could only be because of issues related to responding in time in itself (e.g., a warm up effects 

causing an acceleration at the beginning of the trial). On the other hand, from the principles of Catania 

& Reynolds (1968), and from our own conclusion in Study 1, we should expect that the process 

translating local reinforcement rate into local response rate, would still be working. And, because this 

translation process is imperfect, with a diffusion of the effect of the rate of reinforcement that is 

proportional to the time within the interval, we should expect a distortion of the constancy of the 

response function that would be scalar invariant. 

 In Study 2, we investigate responding under constant-probability VIs. This class of VI is often 

thought to sustain constant rate of responding, but, closer examination of the few studies which have 
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reported data shows some discordance. If all studies report roughly constant response functions, some 

find a slight acceleration (Catania and Reynolds, 1968; Harzem, Lowe and Priddle-Higson, 1978) 

where other find a slight deceleration (Leslie, 1981; Church and Lacourse, 2001). In a first experiment 

of Study 2 we compare the uniform exponential VI to the popular Fleshler & Hoffman with the idea that 

if imperfections in the constancy of the response rate in constant-probability VIs relate to the 

imperfection of the method, the uniform exponential VI should sustain a flatter response rate than the 

Fleshler & Hoffman VI. In a second experiment we investigate whether the timing processes, or the 

processes that translate local rate of reinforcement into local rate of responding are still working by 

looking for scalar invariance in the shape of the response functions of pigeons exposed to different 

maximum interval conditions of the uniform exponential VI.  
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STUDY 1: Local response rate under fixed and variable interval 

peak-procedures 
 

Introduction 
 

The study of timing with animals started with the invention of the FI schedule and the 

observation that the duration of the post-reinforcement pause depended on the temporal criterion for 

reinforcement (Ferster and Skinner, 1957; Felton and Lyon, 1966), showing adjustment of behavior to 

time itself. Investigations on timing have been mostly concerned with the study of FI schedules, 

modified versions of the FI such as the peak-procedure, or other tasks based on fixed temporal 

relationships such as the bisection task. Yet, from the early work on schedules of reinforcement by 

Ferster and Skinner (1957) it was seen that, even when the reinforcement criterion in an interval 

schedule was made variable, there were signs of the influence of temporal contingencies. Indeed, when 

in VI schedules, more intervals associated with short temporal criteria of reinforcement were added, 

responding increased at earlier times within the trial interval, suggesting a relationship between 

responding and reinforcement dependent upon temporal information. It is possible that the use of the 

term timing, which from common sense suggests the idea of an action done with precision in regard 

to a fixed duration, came to influence the way researchers conceived their object of study and thus 

came to orient research, though, the field of timing should certainly include the study of behavioral 

phenomena related to variable temporal contingencies.  

In line with the work of Ferster and Skinner (1957), Catania and Reynolds (1968) pursued the 

investigations on responding under interval schedules with pigeons. In order to study more precisely 

the relation between the allocation of responses in time and the allocation of reinforcers in time, they 

introduced the concept of local rates, shifting the analyzes from the perspective of responding across 

entire sessions to the perspective of responding across the trial interval (we will come back to this 

methodological evolution in the introduction of Study 2). They defined the local rate of responding, 

considered under a certain time segment into the trial interval, as the number of responses emitted in 

the segment, divided by the time spent in that segment (that is, the duration of the segment itself 

multiplied by the number of times VI intervals lasted at least as long as the latest time point defining 

the segment). Likewise, they defined the local rate of reinforcement, as a ratio between the number of 
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reinforcers on a certain segment and the time spent under that segment. The local rate of 

reinforcement is determined by the distribution of intervals used to build the schedule.4  

Catania and Reynolds (1968) compared the profiles of local rate of responding obtained with 

schedules presenting different profiles of local rate of reinforcement. They observed an increasing rate 

of responding in VI schedules constituted of uniform distributions of intervals, wherein the local rate of 

reinforcement increased as time elapsed into the interval (see explanation for the profile of local rate 

of reinforcement under VIs made of uniform distributions pages 24-25). In VI schedules using 

approximations of exponential distributions presenting roughly constant rate of reinforcement in time 

(see explanation for the profile of local rate of reinforcement under VIs made of exponential distributions 

pages 24-25), they observed a roughly constant rate of responding. From this correspondence between 

the pattern of responding in time and the profile of reinforcement in time they concluded that the local 

rate of responding was under the control of the local rate of reinforcement. Regarding the results under 

the FI schedule, where responding is maximal around the time criterion but ramps in the last third of 

the interval, they concluded that the effect of local probability of reinforcement spreads to adjacent 

times. And, in regard to the results that they obtained under mixed-FIs, wherein the concentration of 

the responses around each criterion was proportional to the length of the interval criterion, they 

concluded that this spread of the effect of the local probability of reinforcement was proportional to the 

length of the interval to food. Although devoid of explanations in terms of processes, this study of 

Catania and Reynolds (1968) had the great interest of establishing relationships between temporal 

variables (i.e. local rate of reinforcement, and time elapsed in the interval) and local responding that 

were consistent across FIs, VIs and their variants. But later studies seemed to contradict these findings.  

Matell, Kim, and Hartshorne (2014) compared two groups of rats trained in peak-procedures 

with the same mean reinforced interval (30s) but associated to different schedules. One group of rats 

was exposed to a 30s FI (peak-FI30) and the other group of rats to a VI with a uniform distribution of 

intervals ranging from 15 to 45s (peak-VI15/45). Figure 1 presents the response rate in function of 

time obtained with the two conditions. As typically observed during the long empty trials of the peak-

procedure, the rats trained in the peak-FI30 showed an increasing rate of responding until about the 

time of the temporal criterion, followed by a more or less symmetrical decrease. At issue but consistent 

 
4 The profile of local rate of reinforcement should not be mistaken with the shape of the distribution of the intervals of the VI. The profile of local rate of 
reinforcement follows the hazard function of that distribution. In mathematics, the hazard function gives the instantaneous risk that the event of interest 
happens. 
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with observations of Church, Lacourse, and Crystal (1998), the rats trained in the peak-VI15/45 

showed a near similar pattern. From these results it seems that the local rate of reinforcement would 

not be the variable controlling the pattern of responding since two different profiles of local rate of 

reinforcement (all reinforcement opportunities at end of the same interval in one case, and the 

opportunities spread along a range of intervals in the other) had produced close forms of response 

functions.  

         

Figure 1: Response rate in function of time under peak-FI30 and peak-VI15/45, replicated from Matell, Kim, and Hartshorne (2014). 

Matell, Kim, and Hartshorne (2014) interpreted their result using the framework of the 

averaging theory. This theory relies on the principles of SET, except that it assumes that, rather than 

to keep in memory a distribution of samples, animals would retain a unique memory, an average of 

the experienced intervals to reinforcement. In this view, rats on the peak-VI15/45 schedule would have 

computed a mean time to food similar to the time to food remembered by the rats of the peak-FI30 

schedule, and therefore, would have behaved in the same manner.  

But, although in Matell, Kim, and Hartshorne (2014) the patterns in the two conditions were 

two resembling peaks, the spread of responding was larger in the peak-VI than in the peak-FI, which 

was also found by Church, Lacourse, and Crystal (1998) comparing rats trained with peak-VI30/60 
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and peak-FI45. It is possible that these response patterns were indeed sustained by unique, averaged, 

temporal memories and that differences between peak-FI and peak-VI conditions were due to variations 

of the threshold for responding (the resemblance that the perception of the current interval has to have 

with the memory sample in order for responding to be emitted) as hypothesized by Matell et al. (2014). 

On the other hand, from the perspective of Catania and Reynolds (1968), there is diffusion in the way 

reinforcement at a particular time affects responding around that time, and this spread of the effect of 

reinforcement could potentially smooth differences in responding under distinct profiles of 

reinforcement in time. Hence, the difference that can be found between the patterns of responding 

obtained with the peak-FIs and peak-VIs conditions might in fact reflect control of the local rate of 

responding by the local rate of reinforcement. Below we develop this account using LeT (Machado 

Malheiro, and Erlhagen, 2009) which proposes a mechanism translating local rate of reinforcement 

into local rate of responding.  

LeT postulates an associative structure upon which temporal contingencies come to control 

behavior. This structure comprises a series of time dependent behavioral states, an operant response, 

and associative links connecting them. The model assumes that a stimulus signaling an interval to 

food (a time marker) recurrently triggers a behavioral chain along which behavioral states get activated 

serially, one after the other. The model functions according to the principles that a behavioral state 

active concomitantly with reward gets more strongly associated with the operant response while a 

behavioral state active at any other moment loses association with the operant response, with, in turn, 

the strength of the association that links a behavioral state to the operant response determining 

whether a behavioral state will sustain responding or not. Because each behavioral state correlates to 

a certain placement in time, the rate of reinforcement at each of these times can control responding 

around these times. The effect of reinforcement or extinction at a certain time diffuses to adjacent 

times because the speed with which activation jumps from one behavioral state to the next is variable. 

And, because this speed of the spread of activation is constant within a trial but variable across trials, 

the biasing effect of low or high speeds increases across the interval, making the diffusion of the rate 

of reinforcement at time t proportional to t. That is, the model conforms to the relationships pointed 

out by Catania and Reynolds (1968), the rate translation principle and the scalar property. 

The model accounts well for many timing phenomena and in particular for the results of the 

peak-procedure (Machado et al. 2009). At the beginning of each trial of a peak-FITs, the time marker 
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triggers the series of behavioral states. In the case of a reinforced trial, the behavioral state that is 

active around T seconds, when a response produces a reward, sees its association with the response 

strengthened while all the behavioral states that had been activated previous to that moment see their 

association with the operant response weakened. During an empty trial more behavioral states of the 

series get activated and all of them loose association with the operant response. Because the speed 

with which activation proceeds across behavioral states varies, many behavioral states will have the 

opportunity of concurrent activation with the operant response while extinction will modulate every link 

of the vector. If on average the rate of activation is of one state per second, the succession of the trials 

yields a gradient in which the strength of association is the greatest for the behavioral states 

surrounding behavioral states nº T and decreases with the distance to these behavioral states. The 

model assumes a threshold according to which a certain associative strength between a behavioral 

state and the operant response is needed in order for the behavioral state to sustain responding, which 

implies that only a pool of strong states of the middle of the series is capable of sustaining responding. 

Because the speed with which activation spreads varies, the pool of states will be placed at different 

locations in time, and due to the fact that this variation follows a Gaussian random variable, the 

responses emitted at the different locations across trials yield a smooth peaked averaged pattern of 

responding. 

The principles of the LeT can be applied to schedules containing variable intervals with no 

additional hypotheses. In the case of a peak-VI with a range of intervals of mean Ts, the variability of 

the time to food makes that more behavioral states have the opportunity of concurrent activation with 

reinforcement than in a peak-FITs. At the same time, this makes that less associative strength is 

attributed to each of the behavioral states susceptible of concurrent activation with the reward. Thus, 

counting also on the modulation of the associations by extinction when behavioral states are activated 

before reinforcement, or activated during empty trials, a peak-VITs generates a pool of strong behavioral 

states that is broader, but not necessarily much broader than that generated by peak-FITs. Hence, 

according to the model, a peak-VITs would yield a broader pattern of responding than a peak-FITs, but 

not necessarily a much broader one.  
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Figure 2: LeT simulations of peak-procedures made of different distributions of intervals sharing the same mean interval of Ts. Time and 

intervals are expressed in proportion of T.  

Figure 2 presents simulations of LeT, using the rules and parameters described in Machado 

et al. (2009), with peak-procedures associated with FI and with VIs of different ranges, with mean 

interval Ts (because the spread of the effect of local rates of reinforcement is proportional to the 

distance to the onset of the interval, the outcomes of the simulations are independent of the absolute 

duration of the mean interval: i.e. scalar property). Here, the comparison peak-FITs - peak-VITs(+/- 

T/2), corresponds to the comparisons peak-FI30 - peak-VI15/45 of Matell et al. (2014). Consistent 

with the data, the simulation generates a pattern of responding for peak-VI-Ts(+/- T/2) resembling to 

the pattern obtained with peak-FITs, but broader. That is, the model can stand as an alternative account 

for the phenomena observed by Matell et al. (2014). 

The aim of the following experiment was to confront the accounts of the averaging theory and 

of the LeT model, and to determine whether the idea that the local rate of reinforcement control the 

local rate of responding holds, or whether timing entails complex operations on temporal memories. 

To do so we adapted the peak-FI/VI experiment with pigeons and manipulated the range of the 

intervals. 

Although it is not possible to circumscribe the predictions of the averaging theory since its 

threshold for responding is not systematized, the basic logic of the theory leads to the expectation that 

the pattern of the response function should not change much as long as the mean interval is 

maintained constant. On the other hand, LeT predicts (see in Figure 2 the conditions with different 

ranges of intervals around the mean Ts) that the pattern will systematically broaden when the range of 

the interval increases and narrow when the range of the interval decreases. But also, LeT predicts that 
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the median of the responses will be displaced to later times when the range of the intervals increases 

and displaced to earlier times when the range of the intervals decreases. This second prediction relates 

to the use of uniform distributions of intervals, making that the probability of reinforcement increases 

from the left bound to the right bound of the range of the intervals: as the range increases and the 

reinforcement probability increases across a longer segment around the mean, more associative 

strength is given to later behavioral states, which, will sustain responding at later times. 

. 

Methods 
 

Subjects 

Eight pigeons (Columba livia) were maintained at approximately 85% of their free-feeding body 

weight. The animals were kept in individual home cages, where water and grit were freely available. 

The pigeon room was maintained in a 13:11-h light/dark cycle, with lights on at 08:00, and its 

temperature was maintained between 20 and 22 °C. The experiment was conducted once a day, at 

approximately the same time for each pigeon, 5 days a week. All birds had experience with peak-

procedures.  

 

Apparatus 

Five LVE (Lehigh Valley Electronics) were used. The LVE chambers measured 34 × 35 × 31 cm 

(height × length × width). On the response panel, three circular response keys with diameter of 2.5 

cm, were arranged horizontally 9 cm apart, center to center, and, vertically 22.5 cm above the wire 

mesh floor. Below the response panel, a food hopper was accessible through a 6-cm wide × 5-cm high 

opening centered horizontally and 8.5 cm above the floor. When the hopper was raised to provide grain 

to the pigeon, a 28-V, 0.04-A light illuminated the opening. On the opposite wall and 30 cm above the 

floor, a 28-V, 0.1-A houselight provided general illumination. 

 

 

Procedure 

At first, all birds were placed in a peak-procedure associated with an FI (peak-FI20A). 

Reinforced trials followed a FI20s and were randomly alternated with empty trials (a session comprised 
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twelve blocks of two trials of each type). A trial started with the simultaneous illumination of the central 

key and houselight. If the trial was a reinforced one, the first peck after the criterion raised and 

illuminated the feeder, giving access to a mix of grain; at the same time, the houselight was turned off. 

Otherwise, the trial ended independently of responding at a variable time between 120s and 160s. 

Trials were separated by an inter-trial interval (ITI) lasting between 20s and 40s, spent in darkness. 

Except for the distribution of the reinforced intervals all following conditions were identical.  

Table 1: Order of conditions for the two groups of the experiment of Study 1. 

 

Table 1 shows the order with which birds went across five conditions. After the initial peak-

FI20 condition (peak-FI20A), birds were exposed to peak-procedures associated with VIs of different 

ranges (corresponding to the ranges of the VIs in the different conditions of Figure 2), all built from 

uniform distributions with spacing of 1s between intervals and with mean 20s. The ranges were 10s 

to 30s (peak-VI10/30), 5s to 35s (peak-VI5/35) and 0s to 40s (peak-VI0/40). For the four birds of 

Group 30-40, peak-VI10/30 was the second condition while peak-VI0/40 was the third, this order was 

reversed for the four birds of Group 40-30. As a fourth condition all birds were placed again in peak-

FI20 (peak-FI20B) before going in peak-VI5/35 as fifth and last condition. Each condition lasted for 

twenty-five sessions. 

 

Analyses 

Responses during empty trials in the last ten sessions of each condition were collected in bins 

of 1 second. Quartiles were computed from the responses on the interval 0-80s cumulated in the last 

ten sessions.  
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Results 

 

Figure 3: Response rate in function of time into the trial interval averaged across birds in the five conditions of peak-procedure of the 

experiment of Study 1. 

Figure 3 presents the response rate in function of time into the trial interval averaged across 

birds in the five conditions. From visual inspection we see that, compared to the narrow peaked 

patterns observed in the peak-FI conditions, the patterns in the peak-VI conditions broadened 

consistently with the order of the range. Peak-VI10/30 presents a broader peak than peak-FI20, peak-

VI5/35 a broader peak than peak-VI10/30 and peak-VI0/40 a stretched peak or plateau-like response 

function larger than all others. The mass of the responses seems to be pushed to the right as the range 

of the interval increases.  

In order to characterize the broadness of the patterns of responding in time, interquartile 

ranges were extracted from the quartiles. An ANOVA comparing the five conditions on interquartile 

range shows a difference between all conditions (F(4,28)= 38.64, p < .001). And, another ANOVA, run 

on the medians to assess the displacement of the mass of the responses, shows a difference between 

all conditions (F(4,28)=31.02, p < .001). 
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Figure 4:  Evolution of the quartiles of the responses across the five conditions in the two groups of the experiment of Study 1. Conditions 
are ordered from the first one, on the leftmost to the last one on the right most. The top graph gives the quartiles of Group 30-40, the 
bottom graph, the quartiles of Group 40-30. Each line correspond the quartile indicated next to it, noted q1 for first quartile, q2 for 
median and q3 for third quartile. 

Figure 4 shows the evolution of the position of the quartiles across the five conditions. In Group 

30-40, going from peak-FI20A to peak-VI10/30 increased the interquartile range (the distance between 

q1 and q3) while displaced the median (q2), to a later position; going from peak-VI10/30 to peak-
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VI0/40 also increased the interquartile range and displaced the median to a later position; going from 

peak-VI0/40 to peak-FI20B decreased the interquartile range and displaced the median to an earlier 

position; going from peak-FI20B to peak-VI5/35 increased the interquartile range and displaced the 

median to a later position. In Group 40-30, going from peak-FI20A to peak-VI0/40 increased the 

interquartile range and displaced the median to a later position; going from to peak-VI0/40 to peak-

VI10/30 decreased the interquartile range and displaced the median to an earlier position; going from 

peak-VI10/30 to peak-FI20B decreased the interquartile range and displaced the median to an earlier 

position; going from peak-FI20B to peak-VI5/35 increased the interquartile range and displaced the 

median to a later position. In every instances, going from a condition with a smaller interval range to a 

condition with a larger interval range increased the interquartile range and displaced the median to a 

later position, while, going from a condition with a larger interval range to a condition with a smaller 

interval range, decreased the interquartile range and displaced the median to an earlier position.  

Post-hoc testing following the ANOVA on the interquartile range using the Bonferroni correction 

rejected significant differences for two pairs of comparisons, peak-FI20A – peak-FI20B (t(7)=0.46, ns), 

and peak-FI20A – peak-VI10/30 (t(7)=2.72, p=0.03), while finding significant differences for the other 

eight comparisons (for all, p < .01). Although significance of the difference was rejected for the 

comparison peak-FI20A – peak-VI10/30 by the post-hoc analyses, its p (0.03) was only slightly greater 

than 0.025 (alpha/2 for the penultimate comparison of the Bonferroni testing), moreover, the post-

hoc analyses found a difference for the pair peak-FI20B – peak-VI10/30 (t(7)=3.47, p=0.017). Hence, 

with caution, a difference may be admitted between the conditions peak-FI20 and peak-VI10/30. Mean 

interquartile ranges were 15.90s and 15.43s in the first and second peak-FI20 respectively; it 

increased with the increase of the range of the interval, it was 18.60s in condition peak-VI10/30, 

21.89s in the condition peak-VI5/35 and, 26.35s in the condition peak-VI0/40.  

Post-hoc testing on medians using the Bonferroni correction revealed that all pairs of 

comparisons were significantly different (for all, p < .01) except the pair peak-VI10/30 - peak-VI5/35 

(t(7)=1.99, p=0.09) and the pair of the two peak-FI20 conditions (t(7)=1.65, p=0.14). The median was 

at its earliest in peak-FI20, at 21.76s in the first one and 20.73s in the second one, it was delayed at 

24.30s in peak-VI10/30, later at 25.75s in peak-VI5/35 (but not significantly later than in the preceding 

condition) and at the latest at 27.75s in peak-VI0/40, altogether with the conclusions on the 

interquartile range index confirming visual analysis. 
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Table 2: Quartiles and interquartile ranges obtained from simulation (left table) and data (right table) in the different condition of the 

experiment of Study 1. 

 

Table 2 presents the quartiles (q1, q2, q3) and the interquartile ranges (q3-q1) for all 

conditions, from the data and from the simulations, showing trends for agreements and disagreements. 

For all conditions, the interquartile range appears greater in the data than in the simulations. q1 

appears systematically earlier in the data than in the simulations. Symmetrically, q3 appears latter in 

the data than in the simulations. Medians (q2) obtained from the data, show good correspondence 

with the simulations, although they are always slightly earlier in the data than in the simulations. 

Importantly, order relations across conditions for the different indices were similar in the data and 

simulations. That is, the first quartile remained stable across conditions while the median and the third 

quartile moved to later times – and so, the interquartile range increased – as the range of the intervals 

increased.  

Figure 5 presents the individual response functions in the five conditions, with response rate 

given in proportion of the rate after 20s into the trial interval (this limitation was used to exclude the 

early high rate discussed below). Individual functions show homogeneity, with only one case in which 

the width of the response function does not covary with the range of the intervals (peak-VI10/30 is 

slightly broader than peak-VI5/35 for PG40). However, individual functions show an intermittent 

phenomenon of early high rate, displayed by some birds in some conditions (peak-FI20B and peak-

VI0/40 for P709; peak-FI20A for P451; peak-VI0/40 for P595).  

Overall, the data and the LeT simulations present a certain agreement in regard to the shape 

of the response functions and order relationships of quartiles indices. But there is a difference between 

the data and the simulations regarding the broadness of the response functions, systematically 

overestimated by the simulations. And, there is an unexpected early high rate phenomenon. 
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Figure 5: Individual graphs of the response rate in function of time in the five conditions of the experiment of Study 1. 

 

Discussion 
 

The results show that the pattern of responding in peak-procedures depends on the variability 

of the criterion interval around its mean. Systematically, the increase of the range of the intervals 

broadened the pattern of the response function, as well as displaced to later times the median of the 

responses, while, the decrease of the range of the intervals narrowed the response pattern and moved 

the median of the responses to earlier times. 
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This could hardly be accounted for by the averaging theory according to which animals should 

have had the same, single, average memory of the time to food in all the present conditions, and thus, 

should have behaved in a similar way in all conditions. Though, certain configurations of the averaging 

model in regard to the threshold for responding may enable it to account for the broadening of the 

response function if the threshold for responding is made dependent upon the variability of the 

reinforced interval (Matell, et al., 2014), but, systematic rules have yet to be explicated. 

It is noteworthy, however, that our observations may be partially accounted for using the 

framework of the expectancy theory (SET), to which the averaging theory relates. As discussed in 

Church, Lacourse, and Crystal (1998) and Brunner, Fairhurst, Stolovitzky, and Gibbon (1997), SET, 

which was not originally designed to deal with variable time to food may be expected to do so in two 

different ways. Following the Minimax model (Brunner, Kacelnik, and Gibbon, 1996), or, two samples 

version of SET, in situation of variable time to food, animals would only maintain two memories, one 

of the shortest experienced reinforced interval, which would determine the onset of responding, and 

one of the longest experienced reinforced interval, which would determine the offset of responding. 

Differently, following the Complete-memory model (Gibbon, Church, Fairshurst, and Kacelnik, 1988), 

or, single sample version of SET, animals would maintain all reinforced intervals in memory, and 

responding during a trial would be determined by a sample drawn from the compound memory at the 

beginning of the trial.5 With these two versions of SET, responding will happen at earlier and at later 

times when the animal is placed under a VI with mean Ts than when it is placed under an FI Ts, 

because the memories of short and long intervals will  diverge in one case (Minimax model) or because 

the compound memory will broaden in the other (Complete-memory model). Thus, under a peak-VI, 

the two versions of SET predict the broadening of the pattern of the response function from the increase 

of range of the intervals.  

In both the single sample and the two samples SET, the memories of reinforced intervals are 

represented as normal distributions with standard deviation proportional to their duration. In the 

Minimax model, the memory for the long interval can thus be retrieve as a more extreme duration than 

can be the memory for the short interval, which creates an imbalance of the runs of responses towards 

longer duration with a magnitude dependent on the range of the intervals experienced. Thus, the 

 
5 Next to these sub-theories, that are single sample SET and two samples SET, the averaging theory which is basically a version of SET in which the 
memory distribution is replaced by an average memory, could have been called average sample SET. 



20 
 

Minimax model predicts the shift of the median of the responses to later times from the increase of 

the range of the intervals in a peak-VI. In the Complete-memory model, the length of a run of responses 

in a trial is proportional to the duration of the sample extracted from memory at the beginning of the 

trial. As the compound memory is skewed because of the summation of the memories of shorter 

intervals with small standard deviation and of longer intervals with larger standard deviation, there is 

an imbalance of the runs of responses towards longer duration, which magnitude depends on the 

range of the intervals experienced. Thus, similarly to the Minimax model, the Complete-memory model 

predicts the shift of the median of the responses to longer durations from the increase of the range of 

the intervals in a peak-VI. 

 

Figure 6: Reproductions of simulations of the complete-memory model and of the minimax model from Brunner, Fairhurst, Stolovitzky, 
and Gibbon (1997), contrasted with the data of experiment 1. The procedure simulated is a peak-procedure associated to a VI made of 
intervals from 5 to 15s in the case of the simulation, whereas the procedure of experiment 1 was a peak-procedure associated with a VI 
made of intervals from 10 to 30s; in absolute time these VIs with mean Ts are made of intervals from T/2 to (3T)/2 s. 
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Notwithstanding the capacity of the Minimax model and of the Complete-memory model to 

account for important features of our results, the shape of the response functions that they predict 

clearly differ from the data. The top graphs of Figure 6 replicate the simulations of the Minimax model 

and of the Complete memory model found in Brunner, Fairhurst, Stolovitzky, and Gibbon (1997), which 

correspond to our peak-VI10/30. The response function obtained in the peak-VI10/30 (bottom graph 

of Figure 6) is bell shaped with an axis of symmetry, at the mode, at a time slightly later than the mean 

duration Ts. Contrarily, the response functions simulated from the two different versions of SET present 

a strong positive skew with the mode appearing earlier than Ts. This skew of the response function 

relates to the skew in the memory distribution. In the Minimax model, there are only two memory 

distributions with very different standard deviations which translates in its simulation of the response 

function by an even stronger skew than that of the complete-memory model, which depends on a 

compound memory containing memories of many intermediate duration intervals. 

LeT accounts for the broadening-narrowing and displacement of the median phenomena. 

Furthermore, the study of the shape of responding by visual inspection and using indices based on 

quartiles, indicates a good correspondence between the model and the data. However, if order relations 

for the different indices, in the different conditions, were similar in simulations and data, the patterns 

of the data show more broadness than expected from the simulations using LeT.  

In part, the magnitude of the broadness comes from steady early bursts that affected some 

birds in some conditions. These early bursts appeared and disappeared abruptly regardless of changes 

of conditions; therefore, we suspect that the phenomenon is unrelated to temporal contingencies. Yet, 

most of the broadness is unrelated to the bursts. From our perspective the fact that the broadness was 

more important in the data than in our simulation would suggest that our current parameters 

underestimate the diffusion of the effect of local reinforcement, which could be due to an 

overestimation of the effect of extinction. We replicated the simulations using a smaller extinction 

parameter.  

As can be seen in Figure 7 comparing the novel simulation (with extinction parameter set to 

0.3; see Machado et al. 2009 for original settings) with the data, the decrease of the extinction 

parameter allows a much finer fitting of the data, and it does so for every condition at the same time. 

The only marked mismatch can be seen on the left limb of the peak-FI20, where the data response 

functions are more to the left than the one from the simulation. But note that considering the usual 
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low rate in the early part of the peak-FI20 condition early bursts have had proportionally an important 

effect.  

 

Figure 7: Comparisons simulation-data (response function averaged across birds), for the four different conditions of variability of the 

experiment of Study 1, with extinction parameter reduced to 0.3. 

The best way to account for the distributions of responses induced by peak-procedures 

associated to an FI, and to VIs of different ranges, was by using the LeT model which translates local 

rate of reinforcement into local rate of responding from an associative structure. That is, our results 

support the conclusions of Catania and Reynolds (1968) according to which responding in FIs, VIs, 

and interval schedules on general, can be apprehended as the control of the local rate of reinforcement 

on the local rate of responding, and supports the idea that this rate translation is mediated by 

associative mechanisms.  

It sounds odd to talk of timing when describing behavioral phenomena produced by schedules 

in which the temporal criterion is variable. In fact, the Cambridge Dictionary gives the following 

definition for timing: the ability to do something at exactly the right time. It does not make sense to do 

something at exactly the right time in a VI. Thus, the term timing does not suit well for the description 

of the behavioral phenomena related to variable temporal contingencies, and, this inadequacy may 

disturb conceptual thinking and hinder the development of research in the line of the work of Catania 
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and Reynolds (1968). Furthermore, the noun timing goes with the verb to time which is an action verb 

suited to describe a cognitive process performed by an agent, but certainly less suited to describe the 

control of behavior by the environment through associative processes, whereas, we argue in the favor 

of the latter conception.  
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UNIFORM EXPONENTIAL VI 

 
The work on the previous study, concerned with local rate of reinforcement under different 

peak-VIs, led us to think about the fact that schedules made of reinforced and unreinforced intervals 

could offer possibilities regarding the design of profiles of local rate of reinforcement not offered by 

traditional VIs. Consider an experimenter who wants to create a VI with a profile of constant rate of 

reinforcement (e.g., as a control condition for the influence of temporal contingencies), he has to get 

the intervals of this VI from a distribution presenting a constant hazard function. But, the only 

distribution with the desired mathematical property is the exponential distribution, which is necessarily 

defined on zero to infinity and is as such impossible to implement as an interval structure without 

alterations (e.g., by truncation, or by using other methods that we will discuss in Study 2). Our interest 

was to find a combination of reinforced and unreinforced intervals that would allow constant rate of 

reinforcement within a finite interval range, with no need for truncation or approximation. In what 

follows we present this search and the method that we found. 

In a traditional VI, wherein all intervals are reinforced, the instantaneous rate of reinforcement 

at any time t into the trial interval corresponds to the ratio of the probability that an interval ends within 

the thin slice of time from t to t+Δ and of the probability that an interval lasts longer than t.6 The 

probability that an interval ends within the thin slice of time from t to t+Δ can be grasped as the relative 

likelihood that an interval sample will equal t in the distribution of the intervals. That is, the 

instantaneous rate of reinforcement at t under a VI build with a distribution of intervals defined by f(x) 

is  

𝑅(𝑡) =
𝑓(𝑡)

∫ 𝑓(𝑥)𝑑𝑥
+∞

𝑡

 

In order to achieve a constant rate of reinforcement, the nominator and the denominator of this ratio 

must decrease at the same rate as time passes in the interval.  

The top graphs of Figure 8 illustrate the evolution of the instantaneous rate of reinforcement 

under a VI made of a uniform distribution of intervals. From the time t1 (left graph) to the time t2 (right 

 
6 While the local rate of reinforcement, in its definition by Catania and Reynolds (1968), calculated on the basis of segments of time, is adapted to 
characterize the reinforcement rate in function of time under VIs made of discrete distributions of intervals, the instantaneous rate of reinforcement, 
calculated at any point in time, is adapted to characterize the reinforcement rate in function of time under VIs made of continuous distributions of intervals. 
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graph), the relative likelihood of the sample, the height to the curve, remains the same, while, the 

probability that an interval will last longer than the time considered, the area under the curve from that 

time, decreases: under a VI made of a uniform distribution of intervals, the rate of reinforcement 

increases as time elapses since the beginning of the interval. The bottom graphs of Figure 8 illustrate 

the evolution of the instantaneous rate of reinforcement under a VI made of an exponential distribution 

of intervals. From the time t1 (left graph) to the time t2 (right graph), the relative likelihood of the 

sample decreases, and, the probability that an interval will last longer than the time considered 

decreases at the same rate: under a VI made of an exponential distribution of intervals, the rate of 

reinforcement remains constant at any time into the interval, from 0s to infinity.  

 

Figure 8: Evolution of the relative likelihood of an interval of length t and of the probability that an interval is longer than t, in the uniform 
distribution and in the exponential distribution, at two different times. The top panel shows that, within a uniform distribution, from t1 to 
t2, the relative likelihood (red height) remains the same, while the probability that an interval last longer than that the considered t  
(shaded area) decreases, which makes increase the ratio of the two elements. The bottom panel shows that, within an exponential 
distribution, from t1 to t2, the relative likelihood (red height) decreases as does, and at the same rate, the probability that an interval last 
longer than that the considered t (shaded area), which makes the ratio of the two constant. 

The exponential distribution is the only distribution within which, as t increases, the relative 

likelihood of an interval of length t will decrease at the same rate as the probability that an interval lasts 
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longer than t. But, if we introduce unreinforced trials, we make that these two elements will depend on 

two distinct distributions and so open new possibilities.  

In a VI made of a combination of a distribution of reinforced intervals and of a distribution of 

unreinforced intervals, an instantaneous rate of reinforcement at a time t, will be determined by the 

relative likelihood of an interval of length t, in the distribution of the reinforced intervals, divided by the 

probability that an interval will last longer than t, within the overall distribution of intervals, comprising 

reinforced and unreinforced intervals. In this new framework it becomes not impossible to maintain 

constant the ratio of the instantaneous rate of reinforcement from intervals of a finite range. 

Let us consider a combination of reinforced and unreinforced intervals with an overall 

distribution of intervals that would be the simplest: uniform. If the overall distribution of the intervals is 

uniform (with mean interval T and maximum interval 2T), then the probability that an interval will last 

longer than t, as t increases, decreases in a linear manner from a maximum at t=0, down to zero at 

t=2T. From there, to have the ratio of the instantaneous rate of reinforcement to be constant from 0 to 

2T, we need to have the relative likelihood in the distribution of the reinforced intervals to decrease in 

a linear manner from a maximum at t=0, down to zero at t=2T. This is achieved simply by a distribution 

having a right triangle shape with right angle on the origin of the axes. 

Figure 9 presents three examples of combinations of distributions that achieve constant rate 

of reinforcement. The triangular sub-distribution of the reinforced intervals is of maximal mass, 0.5, 

when it matches the diagonal of the rectangle formed by the overall distribution intervals (see the 

rightmost graph of Figure 9), but it can be of any smaller mass. That is, under a VI made of such 

combination of distributions, in which reinforced trials would be alternated with unreinforced trials, the 

probability of reinforced trials would be maximal when reinforced and unreinforced trials would be 

equally likely. The probability for reinforced trials has to be comprised between 0, excluded, and 0.5 

Figure 9: Examples of combinations of distributions of reinforced and unreinforced intervals sustaining constant rate of 
reinforcement. While the overall distribution is rectangular and, necessarily remains of the same mass (1), the sub-distribution 
of the reinforced intervals, the triangle with dotted area, can take any mass between 0, excluded, and 0,5. 
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and a probability for unreinforced trials, complementing, has to be comprised between 0.5 and 1, 

excluded. 

Figure 10 illustrates the parallel decrease of the relative likelihood of an interval of length t, 

within the triangular distribution of the reinforced intervals, and of the probability that an interval is 

longer than t, within the rectangular overall distribution of intervals, creating the constant ratio of the 

instantaneous rate of reinforcement. At t=0, the relative likelihood of an interval of length t, within the 

distribution of the reinforced intervals, matching the side of the triangle, is at its maximum as well as 

is the probability that an interval is longer than t, within the overall distribution of intervals, matching 

the complete area of the rectangle. At t=T, the relative likelihood of an interval of length t, within the 

distribution of the reinforced intervals, represented in the figure by the red height, is half of its 

maximum, as is the probability that an interval is longer than t within the overall distribution of intervals, 

represented in the figure by the shaded area.  At t=2T, both elements reach zero. 

Figure 10: Combination of distributions of reinforced and unreinforced intervals with parallel decrease of the relative 
likelihood of an interval of length t, and of the probability that an interval lasts longer than t, as t increases. The big 
rectangle corresponds to the overall distribution of intervals and the big triangle with dotted area corresponds to the 
distribution of the reinforced intervals. The height in red represents the relative likelihood of an interval of length t and the 
shaded area represents of the probability that an interval lasts longer than t, when t=T (the mean interval of the overall 
distribution). At t=0, the height of the triangle and the area of the rectangle are at their maximum. At t=T, the height in 
the triangle is at half its maximal length and the shaded area is half the area of the big rectangle. At t=2T, the height is 
null, as is the area. 
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Guidelines to operationally construct a VI based on this combination of distributions can be 

found in Bugallo, Machado and Vasconcelos (2018). Bugallo et al. (2018) also provides complete 

mathematical description of the method and demonstrates that, while our combination of reinforced 

and unreinforced intervals forms a uniform distribution, the same intervals, when laid end to end until 

reinforcement follow an exponential distribution. From this relation we extracted an original 

representation of the number e, which we present in Appendix 1. And, because of this relation we call 

the VI obtained from our method, uniform exponential VI. 
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STUDY 2: Local response rate under constant-probability VI 

schedules 
 

Introduction 
 

The VI schedule is often casually presented as sustaining constant rate of responding, in 

opposition to the FI which is known to induce break and run patterns. As we have seen in Study 1 this 

belief is generally wrong, as it is only under certain settings that VIs engenders flat response functions 

(Catania and Reynolds, 1968).  

A certain misunderstanding about the behavioral effect of the VIs can be traced back to the 

influential book, Schedules of Reinforcement by Ferster and Skinner (1957), wherein the authors 

investigated the problematic of responding under VI schedules while stating from the introduction of 

the dedicated chapter that “The VI schedule is designed to produce a constant rate”. The chapter in 

question has an awkward structure since it proposes the investigation of local responses rates 

produced by schedules which were designed to promote a certain type of responding; constant 

responding. Rather than to assess the behavioral effects of VIs made of regular distributions of intervals 

(e,g, using true arithmetic and geometric series), the authors used modified versions of arithmetic and 

geometric series (while still calling them arithmetic and geometric VIs; the only accurately named VI 

was their Fibonacci VI), which they apparently already knew from previous observation to sustain flatter 

response patterns.  

Besides, Ferster and Skinner (1957) based their analyzes on cumulative records of responding 

from entire sessions, a tool that is appropriate to study the evolution of response rate across sessions 

but much less appropriate for the study of the regularities within the reinforcer-to-reinforcer interval (or 

time into the trial interval). If the study of the evolution of the response rate within sessions could reveal 

information about acquisition, other relevant observations were to be expected from the analyzes of 

the response rate within the reinforcer-to-reinforcer intervals along which existed relations between 

reinforcement and time. The relatively constant response rate observed across sessions at the steady 

state and the initial statement of the authors on the purpose of the VI may have imprint the idea that 
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the VI sustain constant rate of responding. Yet, Ferster and Skinner (1957) also suggested patterns in 

the reinforcer-to-reinforcer intervals differing between VIs.  

According to Fleshler & Hoffman (1962), in an ideal VI, a VI that could sustain constant rate 

of responding, the probability of reinforcement would not be correlated with any temporal variables. 

The VIs used by Ferster and Skinner (1957) differed from such VI in three ways. First, they used limited 

numbers of intervals, and reinforcement could be obtained only at certain points in time. Second, the 

intervals were arranged as series repeated over and over again. These two limitations, due to the use 

of tape-reading devices, could have led animals to learn patterns of the reinforcer-to-reinforcer-intervals. 

Third, regardless of the order and the gaps in the distributions of the intervals, the series of intervals 

used yielded uneven profiles of local reinforcement rate; as we have seen in Study 1, animals can learn 

the profile of density of reinforcement within a temporal interval. 

An ideal VI, in the sense of Fleshler & Hoffman (1962), should pick at random intervals, from 

a continuous distribution presenting a constant hazard rate, that is, from an exponential distribution. 

Methods have been proposed that only approach the exponential distribution, only approach the ideal 

VI. The first method proposed was that of Fleshler & Hoffman (1962), which consists in the 

segmentation of the exponential distribution in chunks of equal areas and in the extraction as VI 

intervals of the mean of each of these chunks. This method presents the advantage of approximating 

the exponential distribution in a finite time range and was of convenient use for tape-reading systems. 

But it presents the limitations of only approximating a constant probability of reinforcement in time and 

of a discrete distribution of intervals which could permit temporal discrimination, especially regarding 

the spacing of the longest intervals. The second method was presented at the same time by Millenson 

(1963) and Farmer (1963); they proposed the use of the geometric distribution (not to be confounded 

with the geometric progression also used in VIs): the discrete approximation of the exponential 

distribution, which can be obtained by sampling every Tx seconds a probability p of reinforcement. 

With a sufficiently small Tx and a sufficiently small p, this method allows a fair approximation of 

constant probability of reinforcement in time, but it can only approach the continuous distribution of 

intervals and faces the problem of the infinite time range of the exponential distribution (an 

experimenter using this method would sometimes deal with very long intervals).7 

 
7 Back at the time where computer programs were not available for the construction of experiments, the Millenson/Farmer system, with the only need of 
a random generator and of a  timer, was an alternative to the use of the tape-reding device; nowadays, this method as well as the Fleshler & Hoffman 
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These methods, constituting a family of VIs referred to as random-interval or as constant-

probability VIs, are frequently used, but it exists only a rather scarce number of studies which have 

investigated their behavioral effect. Millenson (1963) and Farmer (1963), both with pigeons, were the 

first ones to investigate the response profile induced by such schedules, but like Ferster and Skinner 

(1957), their analyzes were restricted to the visual inspection of cumulative records of responding. 

Thus, they could not precisely address the question of the constancy of the response rate, and their 

conclusions differed. While Farmer (1963) suggested that the random-interval schedule could sustain 

flatter response rate than other VIs, Millenson (1963) came to the conclusion that it had an effect 

similar to other VIs. 

Catania and Reynolds (1968) initiated the study of VIs with the use of graphs relating the rate 

of responding to the time into the trial interval, which permitted to reveal response patterns within that 

interval. As we have already seen in the introduction of Study 1, they were able to show with pigeons 

that VIs made of uniform distributions of intervals, wherein the probability of reinforcement increases 

with the time elapsed, induced accelerating response patterns, whereas, VIs approximating constant 

probability of reinforcement in time induced flat response patterns.  

However, a closer look at Catania and Reynolds (1968) results with the constant-probability VI 

reveals a slight acceleration in the response rate, which could have been caused by the imperfection 

of their schedule using an adaptation of the Millenson (1963) method with a tape-reading device. That 

is, their schedule used discrete intervals but more importantly it presented a longest interval causing 

a necessary increase of the probability of reinforcement at the end of the interval. In the same paper 

Catania and Reynolds (1968) presented the results of an unpublished thesis by Chorney which 

investigated the response rate maintained by a constant-probability VI using the Fleshler & Hoffman 

method which found a roughly constant response rate.  

Three other studies have examined the rate of responding under constant-probability VIs using 

rats. Harzem, Lowe and Priddle-Higson (1978), with the Fleshler & Hoffman method obtained roughly 

flat response patterns with a slight tendency to an acceleration. Leslie (1981) using the Millenson 

(1963) VI, and Church and Lacourse (2001), using an unspecified approximation of the exponential 

distribution, found patterns of responding characterized by an early acceleration followed by a slight 

 
method, may not be better than the use of a computer program picking randomly intervals from a truncated exponential; yet, these methods are still 
popular. 
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deceleration (a similar inconsistency has been found in pavlovian settings using constant-probability 

variable time schedules; see Kirkpatrick and Church, 2000; and Harris, Gharaei and Pincham, 2011).   

From these few studies and their inconsistency, the degree of confidence with which we can 

assert what is the pattern of responding sustained by constant-probability VIs, is weak. The differences 

observed between studies have three main possible sources, the use of different species (pigeon or 

rat), of different amounts of training (from 30 sessions in Church and Lacourse, 2011, up to 127 

sessions in Catania and Reynolds, 1968), and of different methods to approximate the exponential 

distribution (Millenson method, Fleshler & Hoffman method or unspecified method). Taken simply, in 

any of these studies, the divergence from constant response rate could be primarily due to the 

divergence from constant probability of reinforcement in time inherited from the limitations of the 

method employed to approach the ideal VI. 

Previously, we presented the uniform exponential VI (Bugallo, Machado and Vasconcelos; 

2018) which can be taken as an ideal VI since it actually sustains constant probability of reinforcement 

in time over a finite time range. To observe responding under the uniform exponential VI would thus 

inform us on what really is the pattern of responding maintained by a constant-probability VI. 

 

 

Experiment 1: Comparison of the uniform exponential VI with the Fleshler 

& Hoffman VI 
 

From a reasoning devoid of theory, the suppression of the temporal contingencies should 

induce a constant rate of responding. Or, if patterns still emerge in the response function despite the 

suppression of temporal contingencies, these patterns would then have to relate to constrains that 

animals encounter in responding in time (e.g., animals may need a few seconds to reach their steady 

rate when the response key gets turned on, which would cause an acceleration in the early part of the 

response function). 

In this experiment we compare the uniform exponential VI to the popular Fleshler & Hoffman 

VI, in their capacity to sustain constant rate of responding. Whereas the latter only approximates 

constant reinforcement rate in time, the former truly achieves it. The observation of a flatter rate of 

responding in the uniform exponential VI would suggest that the divergences from constant rate of 
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responding found under constant-probability VIs relate to the limitations of the methods used to obtain 

constant rate of reinforcement.  

We trained two groups of pigeons, both exposed to the two VIs, in opposite orders. We inserted 

an extinction phase between the two conditions, to minimize the influence of the first condition on the 

second condition. And we took the opportunity of this extinction phase to look for potential different 

resistance to extinction after the two VIs that differ as to the inclusion of unreinforced trials. 

 

Methods 

 

Subjects 

Ten pigeons (Columba livia) participated in the experiment, all of them had previous experience 

with timing tasks. The birds were maintained at 85% of their free-feeding body weight, with mixed grain 

provided mostly during experimental sessions. Water and grit were freely available in their home cages. 

The colony room was maintained in a 13:11 light/dark cycle, with the lights on at 08:00, and its 

temperature was kept between 20 and 22 ◦C. The experiment was conducted five days per week at 

approximately the same time of day for each pigeon. 

 

Apparatus 

Five Lehigh Valley Electronics Skinner boxes were used. The boxes measured 34 x 35 x 31 

cm (h x l x w). Three circular response keys, 2.5 cm in diameter, were arranged horizontally on the 

response panel. The bottom edge of each key was 22.5 cm above the wire mesh floor, and the keys 

were 9 cm apart, center to center. Each key was equipped with a 12-stimulus IEE (Industrial Electronics 

Engineers) in-line projector. The food hopper was accessible through a 6-cm wide x 5-cm high opening 

that was centered horizontally on the response panel, 8.5 cm above the floor. When the hopper was 

raised, a 28-V, 0.04-A light illuminated its opening and grain became accessible to the pigeon. On the 

wall opposite the response panel, 30 cm above the floor, a 28- V, 0.1-A houselight provided general 

illumination. The boxes were enclosed in outer boxes equipped with exhaust fans. The fans circulated 

air through the boxes and masked outside noises. 
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Softwares 

The experiment was run using ABET II. Randomization of the intervals was made using 

Microsoft Excel and then pasted as lists in each session program. 

 

Procedure 

Table 3 shows the order of the experimental phases for each bird. Half of the birds were first 

exposed to the uniform exponential VI (Group 1) and the other half to the Fleshler & Hoffman VI (Group 

2). Then all birds went through an extinction phase, using the same schedule in which they were 

engaged but with reinforcers removed. Finally, they switched to the other VI condition. The first and 

the last conditions lasted for thirty sessions each and the intermediate extinction phase lasted for five 

sessions. Two pigeons of Group 2 broke their beaks and did not complete the entire experiment. One 

completed only 25 sessions of the first condition (P458), another one completed the first condition and 

the extinction phase (P960). 

Table 3: Organization of Experimental phases for the birds of the two groups of Study 2 Experiment 1. Birds were trained 
under each VI condition for 30 sessions which were separated by a 5 sessions extinction phase. P458 was stopped at the 
end of its first condition; P960 was stopped at the beginning of its second condition. 
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Because the implementation of the uniform exponential VI requires the insertion of ITIs, in 

order to make the comparison of the VIs meaningful, both VIs had trials separated by ITIs. A trial started 

by the illumination of both the central key and the houselight; if the trial was a reinforced one (all trials 

in the Fleshler & Hoffman VI; half of the trials in the uniform exponential VI), the first peck on the 

central key after the interval criterion gave access to the feeder and ended the trial, if the trial was an 

unreinforced trial (half of the trials in the uniform exponential condition), once the interval criterion was 

reached the trial ended independently of the bird’s behavior. ITIs were spent in darkness. Access time 

to the feeder was adjusted for each bird in order to minimize extra feeding outside of the experiment. 

Each VI was defined by two parameters. For the uniform exponential VI we set the maximum 

interval length to 2T = 60s and the probability of reinforcement to p = 0.5. For the Fleshler & Hoffman 

VI we set the mean interval T = 60s and the number of intervals N = 50 (longest interval: 294.7s). With 

these parameters both VI conditions had a mean time to reinforcement during the signal (i.e., key light 

on) of 60s. Figure 11 shows the two distributions from which intervals where drawn. 

Figure 11: Distributions of the intervals of the two VI conditions of Study 2 Experiment 1. The top graph shows the probability 
density function (pdf) associated to the intervals of the uniform exponential VI. This pdf combines two different types of trial 
intervals, reinforced interval (light gray area) and unreinforced interval (dark grey area). The bottom graph shows the 
probability mass function associated to the intervals of the Fleshler & Hoffman VI. 
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In order to equate the number of reinforcers obtained, there were two times more trials in the 

uniform exponential VI (100 trials per session) than in the Fleshler & Hoffman VI (50 trials per session). 

And, to equate the average duration of sessions, ITIs were made half as short in the uniform exponential 

VI (20s) as in the Fleshler & Hoffman VI (40s), thereby also equating the mean time to reinforcement 

taking into account ITIs. 

 

Results 

 

We examine the response rate in function of time from the perspective of responding across 

sessions and from the perspective of responding as a function of time into the trial interval. First, we 

look at the response rate across sessions, laying end to end all trials of the last five sessions (i.e., we 

remove the ITIs) and pooling responses in 10-seconds bins, for each bird, in the two VI conditions. 

Figure 12 shows on pages 37 to 40, the response rate in function of time across the five last sessions 

for each bird in each VI condition. Panel A shows the data of Group 1 in the uniform exponential VI, 

panel B, the data of Group 1 in the Fleshler & Hoffman VI, panel C, the data of Group 2 in the Fleshler 

& Hoffman VI, and, panel D, the data of Group 2 in the uniform exponential VI. From visual inspection 

we can see that across the last five sessions of each VI conditions, most birds show a rather stable 

mean response rate with a stable magnitude of oscillations (exceptions are P088 and P449 in the 

uniform exponential VI). Yet, some birds show session patterns. PG39, in the two conditions, P458 in 

the Fleshler & Hoffman VI, P501 in the uniform exponential VI, and to a lesser extent, P918 and P157, 

both in the two conditions, show a tendency to decline of responding as time into the session elapse. 

For certain birds (P157, P444), the mean response rate seems to change from one condition 

to the other, but none of the VI consistently sustained a higher rate than the other. In the same way 

the variability of the response rate, changed for certain birds (P449, P501), from one condition to the 

next but we do not observe consistent changes across birds. 

It can be seen that two birds, P444 (in the two conditions) and P724 (in the uniform 

exponential VI condition), stopped to respond at certain moments. Whereas we do not know the reason 

of the unique period observed with P724, we were able to see that P444 froze when noise was 

produced in the experimental room in which two or three experiments were conducted at the same 

time (the segments of no responding longer than 20 seconds were removed from quantitative 
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analyses). We also note that P458 shows an important decline of the response rate, which revealed, 

at the end of session 25 of the first condition, that its beak was broken. 
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Figure 12: Response rate in function of time along sessions, from the beginning of the 26th session (20th in the case of 
P458), all trials laid end to end. The number of responses is given per bins of 10 seconds. Panel A presents the data of 
group 1 in the uniform exponential VI condition, panel B presents the data of group 1 in the Fleshler & Hoffman VI 
condition, panel C presents the data of group 2 in the Fleshler & Hoffman condition VI and panel D presents the data of 
group 2 in the uniform exponential VI condition. 
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Table 4: Means and coefficients of variation of the number of responses across 10s bins of the last 5 sessions of each condition for each 

bird in Study 2 Experiment 1. 

                      

Table 4 presents the means and coefficients of variation computed from the number of 

responses in 10-seconds bins, across the five last sessions of each condition, for each bird. The mean 

indexes overall response rate, and the coefficient of variation indexes the variability of the response 

rate. Consistently with visual analysis, differences between conditions in neither overall response rate 

nor variability could be shown from statistical analysis (t(7)=0.71 and t(7)=1.15, respectively). 

Now looking at responding from the trial interval perspective, we extract for every 1-second bin 

(60 bins in the uniform exponential VI, 295 bins in the Fleshler & Hoffman VI), the number of responses 

emitted in the bin and the occurrences of intervals ending after that bin. Then, we sum across the last 

fifteen sessions, for each bird, both the number of responses and the number of occurrences per bin, 

and divide the first sum by the second sum, bin per bin. This variable maximizes the amount of data 

considered (only the responses emitted between the time of the last passed 1-second bin and the 

termination of the current interval are discarded; hence, no data points on the 60th bin in the uniform 

exponential VI and on the 295th bin in the Fleshler & Hoffman VI). Figure 13 shows for each bird, in 

each condition, the response rate in function of the time into the trial interval. Panel A of Figure 13 

shows the data of Group 1 with the uniform exponential VI condition on the left and the Fleshler & 

Hoffman VI condition on the right, panel B of Figure 13 shows the data of Group 2 with the inverse 

mapping. It can be seen that all birds, present a rather constant rate of responding, though with a 
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tendency to acceleration or a tendency to deceleration. In the uniform exponential VI, birds of Group 1 

– except P501 which shows a flat response rate – show a slight increase of response rate, whereas 

birds of Group 2 show a slight decrease of the response rate. In the Fleshler & Hoffman VI, the tendency 

to the deceleration dominates in the two groups. 
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. 

The important oscillations observed in the second half of the trial interval in the graphs of the 

Fleshler & Hoffman VI condition stem from the fact that the response rate on that segment was 

computed from few data. In the uniform exponential condition, this lowest of measurements was only 

Figure 13: Response rate in function of time into the trial interval. Panel A shows the data of group 1, in the uniform 
exponential VI (on the left) and in the Fleshler & Hoffman VI (on the right). Panel B shows the data of group 2 in the Fleshler 
& Hoffman VI (on the left) and in the uniform exponential VI (on the right). 
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approximately matched in the last 4 seconds into the trial interval, which can be seen affecting the 

final segments of the response functions.  

Table 5A shows the mean and coefficients of variation computed from a variable made of the 

same amount of measures for each point of response rate as a function of time in the trial interval for 

the two conditions: the average number of responses in 5-seconds bins on the last 3 long intervals 

(longer than 59 s in the uniform exponential VI; equal to 294.7 s in the Fleshler & Hoffman VI). No 

difference in mean response rate nor difference in variability could be found between the two VI 

Table 5: Means and coefficients of variation on the number of responses per 5 seconds bins on the trial interval, averaged 
across the 3 last long trials in each condition, for each bird in Study 2 Experiment 1. Table A shows the indexes from all 5 
seconds bins and table B shows the indexes computed without the first 10 seconds bins. 
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conditions from the eight birds that completed the entire experiment (mean comparison: t(7)=0.31; cv 

comparison: t(7)=0.56).  

We can see in Figure 13 that in the two VIs, the main changes in rate happen early in the trial. 

In fact, it seems that birds need a few seconds to reach a certain rate which they will approximately 

maintain during the rest of the trial; there is also a tendency of early burst of responding which then 

let place to a steadier rate which can be seen with P449 in the two VI conditions, with P724 in the 

uniform exponential VI, and, with PG39 and P918 in the Fleshler & Hoffman VI.  

Table 5B presents the means and coefficients of variation from the average number of 

responses in the 5-seconds bins on the last 3 long intervals, but, excluding the first two bins 

(corresponding to the first 10 seconds in the trial). Comparison on this new variable for the means still 

finds no difference (t(7)=0.16, ns), but coefficients of variation now appear to be significantly different 

(t(7)=3.23, p=0.01). When excluding the first 10 seconds, the uniform exponential VI sustains a 

response rate less variable, or flatter, than that sustained by the Fleshler & Hoffman VI.  

In the same way that we looked at responding under the VI conditions, we look at responding 

during the extinction phase from the perspective of the sessions and from the perspective of the trial 

interval. Figure 14, on the two next pages, presents the response rate across the five extinction 

sessions. Panel A of Figure 14 shows the data of Group 1, for which extinction trials structure followed 

the uniform exponential VI condition. Panel B of Figure 14 shows the data of group 2, for which 

extinction trials structure followed the Fleshler & Hoffman VI condition. It can be seen that although 

responding dropped for all birds, little responding still happened in the 5th session of extinction (except 

with PG39, which did not respond in this last session). the evolution of the response rate across the 

sessions does not suggest differences dependent on the group and on the VI that preceded the 

extinction phase. 
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Figure 15, on pages 48 and 49, presents the same data as Figure 14 but with response rate 

given in function of time into the interval, and with sessions displayed as separate curves, along with 

the data from the last ten sessions of the previous condition (unique multi-session average curve of the 

graph), so to allow comparison of the shape of the response function as the extinction phase goes on. 

Because sessions were made of a rather small number of trials, running means were used to smooth 
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undue variability. Despite this effort, the lack of data on the last third of the interval under the Fleshler 

& Hoffman VI extinction condition precludes firm interpretation. Nevertheless, it can be noted that the 

shapes of the response functions remained flat in Group 1 under uniform exponential VI extinction 

whereas the response functions in Group 2 under Fleshler & Hoffman VI extinction let appear bumps. 

 

 Figure 14: Response rate in function of time across the interval made from the trials of the 5 extinction sessions laid end 
to end, for each bird of Study 2 Experiment 1. Panel A shows the data of group 1, for which extinction trials structure 
followed the uniform exponential VI condition. Panel B shows the data of group 2, for which extinction trials structure 
followed the Fleshler & Hoffman condition. Rate is calculated from 10s bins. Gray vertical lines separate sessions. 
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Figure 15: Response rate in function of time into the interval during the last 10 session of the first condition (thick line) and 
during each of the 5 extinction sessions, for each bird of Study 2 Experiment 1. Panel A shows the data of group 1, which 
extinction phase followed uniform exponential VI condition. Panel B shows the data of group 2, which extinction phase 
followed Fleshler & Hoffman VI condition. Empirically appreciated running means were applied to each single session curve: 
a 5s running mean in the case of extinction trials structure based on uniform exponential VI distribution (group 1 data) and 
a 11s running mean in the case of extinction trials structure base on Fleshler & Hoffman VI (group 2 data). 

 



50 
 

Discussion 

 

No difference could be found between the uniform exponential VI and the Fleshler & Hoffman 

VI in regard to the behavior they maintain across sessions. Under both VIs, there is a tendency for 

response rate to decrease as time into the session elapses. Such within session pattern with operant 

responding and repeated reinforcement can be attributed to sensitization and habituation (McSweeney, 

Hinson and Cannon; 1996). 

Within the trial interval however, the two VIs appear to sustain different behavioral patterns. 

While the uniform exponential VI, when presented at first, induced a rather flat pattern of responding 

characterized by a slight acceleration, the Fleshler & Hoffman VI, induced in most cases a roughly flat 

response function with a slight deceleration, which emerged even when the Fleshler & Hoffman VI was 

the second condition, and that seemed to have impacted the behavior of the birds of Group 2 in the 

uniform exponential VI despite the extinction phase. The deceleration in the Fleshler & Hoffman VI, 

could stem from the important gaps between the long intervals of that VI (see bottom graph of Figure 

11). If we ignore the initial accelerative segment of the function relating the rate of response to the 

time into the interval, it appears that the uniform exponential VI sustains a flatter rate of responding 

than the Fleshler & Hoffman VI.  

In regard to the observation made during the extinction phase, the Fleshler & Hoffman VI and 

the uniform exponential VI do not seem to induce different resistance to extinction despite the difference 

they present in their inclusion or not of unreinforced trials. We note on the side that It is possible that 

the bumps observed in the panel B of Figure 15, under the Fleshler & Hoffman VI extinction reveal 

expectations of reinforcement at specific times. 

The slight advantage of the uniform exponential VI over the Fleshler & Hoffman VI may relate 

to the better constancy of the probability of reinforcement in time that the new schedule creates. Yet, 

although the uniform exponential VI is based on a distribution of intervals with truly constant rate of 

reinforcement, the response functions it sustains let appear deviations from constant response rate. 

Whereas the early acceleration that most birds present under the uniform exponential VI can certainly 

be attributed to a sort of warm up period, the quasi systematic slight and constant acceleration 

observed when the uniform exponential VI was the first condition can hardly be accounted for using an 

explanation of the constrain-on-responding type. 
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Experiment 2: Effect of different mean time to reinforcement in the 

uniform exponential VI 
 

In the previous experiment we observed that, when presented as initial condition, the uniform 

exponential VI sustained a response function characterized by a small acceleration. This pattern is 

surprising when considering that under the uniform exponential VI the temporal contingencies are 

suppressed, and, from a theory-free reasoning there seem to be no reason to respond more as time 

passes in the trial interval. Though, we may try to account for this phenomenon using the theoretical 

framework that we used to account for the results of the experiment of Study 1. 

From our conclusions of Study 1, supporting the idea that responding in interval schedules 

corresponds to the control of local rate of responding by local rate of reinforcement, we can suppose 

that the behavior of animals under the uniform exponential VI is still determined by the translation of 

reinforcement rates into response rates. And, from this perspective, because the translation process 

is not perfect, the response function obtained under the uniform exponential VI should present a 

divergence from constancy. In fact, the LeT which makes the translation of the rate of reinforcement 

into rate of responding, predicts a response function under the uniform exponential VI with a moderate 

acceleration resembling our results. 

From the perspective of LeT, under the uniform exponential VI, all behavioral states among 

those that have a position in the series sufficiently early to be activated during training, will receive 

associative strength because reinforcement can happen at every time into the trial interval. On the 

other hand, there is considerable extinction pressed on the earlier behavioral states from the fact that 

extinction occurs at each trial for each behavioral states that had been activated previous to the 

behavioral state that gets activated at the time of reinforcement. This makes that, with the repetition 

of trials, emerges a pool of strong behavioral states comprising most behavioral states of the series 

but excluding a part of the early behavioral states of the series. As during training, reinforcement is 

constantly distributed at different point in time, the fulcrum point between behavioral states that are 

below and above the threshold for responding is very variable. This, associated to the variability of the 

spread of the activation of the behavioral states when considering, in turn, responding, makes that the 

model predicts a smoothly accelerative response function. And, because the mean and the variance 
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of the fulcrum point within the behavioral state series are proportional to the maximal interval length 

parameter, the shape of the response function is scalar invariant.  

 

Figure 16: LeT simulations of responding under the uniform exponential VI. One simulation was made with a maximum interval equal to 

30s (gray line with markers) and the other was made with a maximum interval equal to 120s (black line), in both cases the probability 

of reinforcement, p, equals 0.5. Simulations consisted in 1000 stat birds ran for 1200 trials; parameters were the same as in Machado, 

Malheiro & Erlhagen, 2009. 

Figure 16, presents two simulations of LeT under the uniform exponential VI, using different 

maximum interval parameter (2T= 30s and 2T=120s), but the same probability of reinforcement 

p=0.5, and, plotted on normalized x axis. We observe the scalar conservatism with the superimposition 

of the two curves (early deviations and difference in noise in the curves relate to the difference in the 

number of behavioral states considered)8.  

If the pattern observed in the uniform exponential VI condition of Group 1 in the previous 

experiment is due to an imperfect translation of the local rate of reinforcement into local rate of 

responding, as predicted by LeT, this pattern should remain unchanged, in regard to normalized time 

axis, when the maximum interval is changed.  

To verify this, we trained four pigeons with three different maximum interval conditions of the 

uniform exponential VI. Because of the preliminary nature of part of this experiment, two pigeons ended 

having massive amount of training under a same condition; we take this as an opportunity to study the 

evolution of the behavior across long training under a same uniform exponential VI condition.    

 

 
8 In all simulations we kept the same mean rate for the spread of activation: one behavioral state per second, like in Machado, Malheiro and Erlhagen 
2009. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Malheiro%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=20514171
https://www.ncbi.nlm.nih.gov/pubmed/?term=Erlhagen%20W%5BAuthor%5D&cauthor=true&cauthor_uid=20514171


53 
 

Methods 

 

Subjects 

Four adult pigeons (Columba livia) participated in the experiment, only two of them (P229 and 

P068) had previous experience with timing tasks, the two others (P785 and P746) were naïve. P746 

and P229 broke their beaks a couple of times each and received less training, notably P746 was not 

trained in the last condition. 

 

Apparatus 

Four Med Associates Skinner boxes were used for this experiment. Each chamber was 

enclosed in an outer box equipped with a fan to circulate air and mask extraneous noises. In each 

chamber, a 7.5-W houselight located in the back panel provided general illumination. In the front panel, 

a 6 x 5 cm feeder opening, 3.5 cm above the floor and centered horizontally along the wall, provided 

access to mixed grain. When the feeder was activated, a 7.5-W light illuminated the grain. The front 

panel also included three keys, each 2.5 cm in diameter, arranged in a row, 9 cm apart, center-to-

center, and 18.5 cm above the floor.  

 

Softwares 

The experiment was run using ABET II. Randomization of the intervals was made using 

Microsoft Excel and then pasted as lists in each session’s program. 

 

Procedure 

Each bird went across three conditions of uniform exponential VI only varying according to the 

maximum interval parameter (the trial probability of reinforcement, p, was maintained at 0.5). 2T was 

set at 30s in the first condition, at 60s in the second condition, and at 120s in the third condition. 

Table 6 shows the number of sessions for each bird in each condition. 
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Table 6: Number of sessions of each bird in each condition of study 2 experiment 2. 

                            

Trial structure was the same as in the uniform exponential VI condition of the previous 

experiment except for the ITI which is here 45s. That is, except for the duration of the ITI and the 

number of sessions, the second condition (2T=60s) of the present experiment corresponds to the 

uniform exponential VI condition of the previous experiment.  

 

Analyzes 

In this experiment we only look at the response rate in function of time from the trial interval 

perspective, computed in the same way as in the previous experiment. 

 

Results 

 

Figure 17 shows the response rate as a function of time into the interval for the four birds in 

each condition. Response rate was computed from the last twenty sessions of a condition (except in 

the case of P746, whose response function in the second condition was calculated from ten sessions 

it was exposed to). The gray curves of the second condition (2T=60s) can directly be compared to the 

response functions obtained in the uniform exponential VI of the previous experiment. Again, we find 

response functions that are roughly flat, though, one bird (P785) presents a steady acceleration more 

pronounced than that of any bird of the previous study. P068 and P229, present an acceleration on 

the early segment of the interval, followed by a steady rate in the case of P229 and by a slight 

deceleration in the case of P068. P746 shows an early burst, a fast acceleration followed by a 

deceleration, before reaching a steady rate. In the first condition, when the maximum interval was two 

times shorter (2T=30s), the patterns of P068 and P785 were more pronounced, the pattern of the 
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response function of P229 showed a slight deceleration in the second half of the trial interval, while, 

the response function of P746 was already flat with the exception of an already present early burst. In 

the last condition (not completed by P746), where the maximum interval was 120s, response functions 

kept their overall shapes as compared to the second condition although with a much weaker 

acceleration in the case of P785. In all graphs, small but steep increase of the response rate at the 

end of the trial interval very likely corresponds to oscillations due to the lesser amount of data samples 

used to compute the rate on late segments. 

 

Figure 17: Response rate in function of time into the trial in the 3 conditions of uniform exponential VI in Study 2 Experiment 
2: C1 (2T=30s), C2 (T=60s) and C3 (2T=120s). 
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Figure 18: Response rate in function of time into the trial in the three conditions of uniform exponential VI in Study 2 Experiment 2: C1 

(2T=30s), C2 (T=60s) and C3 (2T=120s), on normalized axes. Maximum rate was considered, excluding the first 10 seconds and the 

last quarter of the maximum interval, in order to prevent the influence of early high rate and late oscillations. 

Figure 18 presents the same curves as Figure 17 but plotted in normalized x and y axes (the 

normalization of the y axis on the maximum rate basis was made with the exclusion of the data points 

from the first 10s and the last fourth of the trial intervals to neutralize the influence of early bursts). 

For P068 there is a particularly good match between the curves of the second and third conditions, 
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but that of the first condition presents a longer accelerative segment. Curves of P785 are dissimilar, 

while the curve of the first condition presents a steep acceleration, that of the second condition presents 

a less pronounced acceleration, and that of the third condition is almost flat. For P229, the three 

response functions obviously superimpose on their flat segments, and, they are not far apart on the 

early segments of acceleration. In the case of P746, the flat segments of the response functions of first 

and second conditions superimpose, while the early bursts, which superimposed in the previous figure 

in the absolute time, are now separated.  

 

Figure 19: Response rate in function of time into the trial interval, for P068 (top graph) and P785 (bottom graph), in four periods of 

training along the first condition (uniform exponential VI; 2T=30s) of Study 2 Experiment 2. Each curve corresponds to data averaged 

over 20 sessions (sessions 1 to 20, 21 to 40, 41 to 60 and 61 to 80). 

Figure 19 depicts the evolution of the response function in the course of the first condition for 

P068 and P785, the two birds which were in that condition for more than 80 sessions. The pattern of 

responding of P068 shows a progressive overall decrease, with an elongation of the initial accelerative 

segment and an accentuation of the deceleration in the final part. The pattern of P785 changed more 

considerably: whereas it was flat in the first twenty sessions, it became an accelerative response 

function in the second block of twenty sessions, which became more and more pronounced in the two 

last sessions blocks. 
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Discussion 

 

This experiment is, after the first experiment of this study, another demonstration that the 

uniform exponential VI sustains a roughly constant rate of responding. But whereas we expected to 

find, like with Group 1 of the previous experiment, slight accelerations, we found – at least in the 

second condition that was directly comparable to the exponential VI condition of the previous 

experiment –, with one bird a more pronounced acceleration, with two birds a flat response function, 

and with the last bird a deceleration. The decelerative pattern had only been found with birds of Group 

2 in the previous experiment, which suggested a carryover from the Fleshler & Hoffman VI condition, 

we find here that it well may not have been the case. It so appears that, in the details, the uniform 

exponential VI sustains patterns of responding that differ across birds. But also, as we see in this 

experiment, the pattern of a bird can vary considerably during training within a condition. This variability 

is one difficulty concerning the question we wanted to address in this experiment as to whether the 

shapes of the response functions would present scalar invariance across different conditions of 

maximum interval. 

P785, presents important changes within and across conditions, because of which no 

superimposition of the response functions can be observed in Figure 18. Yet, the strong accelerative 

pattern could be seen as a transient phenomenon since the bird started with a very flat response 

function which slowly became a steep increase during the first condition, reduced during the second 

condition and was again almost flat by the end of the third condition. P785 could so be compared with 

P746 and P229 which response function are very flat. This flatness of the response functions sort of 

dismiss our question regarding scalar invariance as those could be considered as shapeless, though 

patterns on the early segments can be examined. In the case of P785, in all conditions there is an 

early maximal acceleration on the three first seconds, which tend to match on the absolute time axis 

figure and so mismatch on the normalized scales figure. P746, presents a different pattern, an early 

burst, which also did not change in absolute time. On the other hand, the early acceleration of P229 

in the three conditions gives a rather good match on the normalized axis figure. It is the case of P068, 

with a more apparent shape, which is the most intriguing, since it showed a perfect match in the 

normalized axis figure, but, for only two conditions.  
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Overall, the response functions observed in this experiment are largely flat whereas LeT 

simulations had led us to we expect a systematic deviation from constant responding. These flat 

response functions seem compatible with the theory-free assumption that constant rate of 

reinforcement, the unpredictability of the occurrence of reinforcement, would yield a constant rate of 

responding. At the same time, there are shapes and traces of scalar invariance in some of these 

response functions that could reflect the translation of local rate of reinforcement into local rate of 

responding. Could it be that the uniform exponential VI schedule reveals a limit for the “timing” 

processes to operate?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

GENERAL DISCUSSION 
 

In Study 1, we investigated the effect of the range of the intervals in peak-procedures on the 

shape of the function relating response rate to the time into the trial interval. From the initial pattern in 

peak that we replicated in a condition with fixed reinforced interval, we found that the response function 

broadened or narrowed systematically with increase or decrease of the range of the reinforced intervals. 

Furthermore, we found that the median of the responses was shifted to the right or to the left 

systematically with increase or decrease of the range of the reinforced intervals. These facts could not 

be accounted for by the averaging theory which predicted that the peak of the response function should 

have remained stable as long as the mean time to food was kept the same. The Minimax model (or 

two samples version of SET) and the Complete-memory model (or single sample version of SET) could 

account for the broadening of the pattern of the response function and for the shift of the median of 

the responses. But these two versions of SET both predicted – at least in peak-VI condition with 

intermediate interval range from T/2 to (2T)/3 –, an important positive skew of the response function 

with an early mode, where our observations found a bell-shaped response function with a mode slightly 

later than the mean interval T. 

Only LeT predicted the broadening/narrowing and the shift of the median altogether with the 

shape of the response functions under the different conditions of peak-FI and peak-VIs. However, 

original parameter settings of the model underestimated the width of the response functions. But, by 

decreasing the extinction rate, we obtained simulations which accurately fitted the response functions 

of all the different conditions at the same time, showing the ability of LeT to account for the results. 

The LeT model is based on the principles expressed by Catania and Reynolds (1968), and, using an 

associative structure, it functions as a translator of local rate of reinforcement into local rate of 

responding. Thus, the ability of LeT to account for our results supports the view of Catania & Reynolds 

(1968) that in interval schedules the local rate of reinforcement controls the local rate of responding, 

and, supports the view that this translation is governed by associative mechanisms. 

In Study 2 we investigated the shape of responding under constant-probability VIs. In the first 

experiment we compared the Fleshler & Hoffman VI and the uniform exponential VI and found that 

both sustained rather flat responding in function of time into the interval but that the former was 

associated in most cases with a deceleration while the latter was associated in most cases with an 
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acceleration. When excluding the initial 10s within the trial interval, the uniform exponential VI was 

shown to produce a steadier response rate than the Fleshler & Hoffman VI. We suggest that when an 

experimental setting allows ITIs, the uniform exponential VI should be preferred over the other constant-

probability VIs if constancy in responding is wished. 

If the flatness of the response functions under the uniform exponential VI in the two 

experiments of Study 2 could seem to strengthen the conclusion of Study 1 – the response functions 

were flat because birds tracked the probability of reinforcement, which is constant –, the interpretation 

of this result is in fact more complicated. Indeed, as we have seen in Study 1, the translation of the 

profile of reinforcement in time into a profile of responding in time would not be perfect, and, as shown 

in Figure 16, such process, under a constant-probability VI would yield an accelerative curvature. 

Although we found that response functions from Group 1 of Experiment 1 presented a shape 

compatible with the LeT simulation, in a majority of cases, the response functions from Experiment 2 

seemed too flat to be compatible with the LeT simulation.  

Besides the accelerative curvature, the LeT model predicted that this shape of the response 

function would remain scalar invariant under different maximum interval conditions. In the second 

experiment of Study 2, we manipulated the maximum interval in the uniform exponential VI and saw 

that the accelerative segment presented scalar invariance, but in only a few instances. Hence, it was 

not possible to firmly conclude whether the same process that we described in Study 1, with translation 

of local rate of reinforcement into local rate of responding in peak-FI and peak-VI schedules, was still 

in action with the constant-probability VIs. It rather seemed that under constant-probability VIs the 

process may reach a limit and that some birds may simply respond at a constant rate. 

It is an attractive idea that the “timing” processes would reach a limit in conditions under 

which reinforcement was made unpredictable. But the instalment of the unpredictability of 

reinforcement relies on a whole distribution of intervals, of which birds experience only one at a time, 

one after the other. That is, even under the uniform exponential VI birds experience irregularities in the 

constancy of the rate of reinforcement. From this point of view, it would be surprising that the processes 

that we claim are working under other important variability conditions (e.g., peak-VI0/40), would have 

cease to work under the uniform exponential VI. 

Differently, the idea of a limit to the “timing” processes reveals an inconsistency when 

considering the problem of the account of the overall response rate, or mean rate. In Figure 17, it can 
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be seen that magnitudes of the response functions are ordered relative the overall rate of reinforcement 

(or mean rate of reinforcement) associated to the condition. With the all birds, responding is 

consistently higher in the first condition (2T=30s; 2 rf/min) than in the second condition (2T=60s; 1 

rf/min), that itself sustained higher responding than the third condition (2T=120s; 0.5 rf/min). This 

observation of a relation between the overall response rate and the overall reinforcement rate in 

constant-probability VIs was also found by Millenson (1963). In the view of Catania and Reynolds 

(1968), the overall rate of responding is accounted for by the local rate of responding which is 

determined by the local rate of reinforcement. In constant-probability VIs (and in all VIs), the overall 

rate of reinforcement would determine the overall rate of responding because the profile of local rate 

of reinforcement is bound to this overall rate of reinforcement and that the profile of local rate of 

reinforcement determines the profile of local rate of responding, which makes the overall rate of 

responding. If there is no longer translation of the local rate of reinforcement into local rate of 

responding there could no longer be the adjustment of the overall rate of responding to the overall rate 

of reinforcement. From any other reasoning it is not possible to account for the relation between overall 

rates, of reinforcement and of responding, if the amount of time it takes to obtain a reinforcer is not 

“timed” in some way. 

An account for the constancy of the rate of responding observed with part of the birds under 

the uniform exponential VI may in fact be conceived with the LeT framework. Consistently with what 

we noticed in Study 1, it is possible that our simulation of the uniform exponential VI using the 

parameters of Machado, Malheiro and Erlhagen (2009), overestimated the extinction rate. With a lower 

extinction rate, it is possible that the uniform exponential VI condition leads almost all the behavioral 

states to acquire an association with the operant response strong enough to sustain responding, which 

would produce flat response functions. The variability of the sensitivity to extinction among pigeons 

may explain that we found under the same uniform exponential VI schedule, response functions 

characterized by an acceleration and response functions that were almost perfectly flat. Actually, 

individual response functions from Study 1 under the peak-VI conditions with large interval range varied 

in the same way, with some birds showing a defined left limb (an acceleration to a mode) where some 

other birds showed a plateau, a flat responding segment. This plateau pattern is particularly striking 

with P451 in the peak-VI0/40 condition (see below, the top graph of Figure 20), it affected the response 

function until about the time of the maximal interval while the rest of the response function and the 
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response functions of P451 in the other conditions show evident shapes from control by temporal 

contingencies (e.g., the right limbs of all the response functions of P451 are ordered consistently with 

the ranges of intervals associated to the different conditions). It is possible that flat segments relate to 

a ceiling effect of the effect of local reinforcement. 

     

Figure 20: Instances of individual response functions presenting flat responding along with early high rate of responding, from the three 
experiments of this thesis. Graphs are reproductions from previous figures. 
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An alternative explanation to the flat segments could be that birds were anticipating the 

forthcoming high rate of reinforcement, leading them to respond at a rate close to the response rate 

that sustain the higher reinforcement rate expected, from the onset of the trial until the time of the end 

of the high local rate of reinforcement. This possibility is supported by the fact that flat segments appear 

more often with birds that also present the early burst phenomenon. Figure 20 shows such cases from 

the three experiment of this thesis. P451 (top graph of Figure 20), presented a very flat segment from 

the beginning of the trial time in peak-VI04/40, and, presented a strong early burst in the initial peak-

FI20A; P595 (second graph from the top in Figure 20), presented early high rates in peak-VI0/40 as 

well as in peak-VI5/35 and peak-VI10/30, which were followed by flat segment in peak-VI0/40; P724 

(third graph from the top in Figure 20), in the uniform exponential VI with 2T=60s, showed an early 

burst and then a flat rate; P746 (bottom graph of Figure 20), in two conditions of uniform exponential 

VI (2T=30s and 2T=60s), presented an early burst followed by a flat rate. These phenomena are 

consistent with the observations of Ludvig, Balci and Spetch (2011) showing that the left limb of the 

response function in the peak-procedure could be altered by motivational factors without changing the 

peak time. This motivational responding, also discussed by Galtress, Marshall, Kirkpatrick (2012) and 

Daniels & Sanabria  (2017), is not incompatible with the translation of the local rate of reinforcement 

into local rate of responding, but, it would come to partially override this rate translation when it occurs. 

Under the uniform exponential VI we did not only observe flat or accelerative response 

functions, in some cases we also observed patterns characterized by a deceleration. To the exception 

of P068 of the second experiment of Study 2, every noticeably decelerative response functions were 

those of pigeons of the first experiment of Study 2 which went in the Fleshler & Hoffman VI prior to the 

uniform exponential VI. The deceleration could have in a first place affected responding under the 

Fleshler & Hoffman VI from the fact that under this VI there were important gaps between reinforcement 

opportunities associated with the longest intervals. And it seems that the pattern remained in the 

following uniform exponential VI condition. Likewise, it is possible that the curvy aspect of the response 

function of P068 relates to the history of past experiences of the bird which had been trained under a 

peak-procedure. Although we could not find studies in the literature about the effect of experience 

history on the profile of local response rate in VIs, it exists evidence of the influence of history on 

response rate in VIs (Ono and Iwabuchi, 1997). In the particular instance of P785 of the second 

experiment of Study 2, the bird evolved from a stable flat response pattern to a stable steep 
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acceleration, before changing back to the stable flat response pattern. The clue that we have to discuss 

this strange performance, is that the bird changed its responding fashions, with the accelerative 

response function relating to the habit of the bird to direct its head towards the feeder after every peck, 

but only at the beginning of the trial, before switching to a very high rate of responding. All these 

deviations from flat responding or smooth accelerations, we thus believe, were not determined by the 

temporal contingencies that we were manipulating. 

At the end, the present thesis makes a strong case for the validity of the rate translation 

principle introduced by Catania and Reynolds (1968). Although we could only determine the reality of 

the translation of local rate of reinforcement into local rate of responding in schedules with limited 

variability of the time to food, we also have seen that the principle still allows an account of responding 

under constant-probability VIs. More investigations of the local rate of responding under VIs associated 

with diverse profiles of local rate of reinforcement should refine our conclusions. Though, with our 

current knowledge, the ability of the rate translation principle to offer an account of responding in 

interval schedules in general leads us to argue that it might be considered, next to the scalar property, 

as the other main feature of “timing”.  

The rate translation principle is equivalent to the idea of gradient of temporal generalization 

and takes roots in the behaviorist realm. Whereas the rate translation principle is at the core of the 

behavioral conception that explains the control of behavior by temporal contingencies with associative 

mechanisms, it is absent from the cognitive conception that takes timing as the action to time events 

dependent upon operations on temporal memories. At the same time that we argue in the sense of 

the validity of the rate translation principle of Catania and Reynolds (1968) we argue in the sense of 

the validity of the behavioral conception and we argue against the validity of the cognitive conception. 

Consistently, we argue against the use of the term timing as it relates to the cognitive conception and 

as it bears a meaning of exact time hardly compatible with the study of the phenomena related to 

variable temporal contingencies as those that have been the object of our investigations. 

In the studies of this thesis we have not consider the question of the influence of the 

contingencies created by the schedules upon the inter-response times (IRTs), whereas, there are 

findings in the literature suggesting that VI performances would be partly determined by the effect of 

differential reinforcement of IRTs (Skinner, 1938; Anger, 1956; Morse, 1966; Shimp, 1967). Yet, these 
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studies which have shown impact of schedule contingencies over IRTs distributions were all using 

modified VIs having reinforcement dependent upon specific IRT categories. 

 

Figure 21: Probability of reinforcement in function of IRT length in the three experiments of the thesis. Within each 
experiment the maximal IRT length considered correspond to the maximum reinforced interval, all conditions taken 
together. In the condition where there are no empty trials (Fleshler & Hoffman VI), the probability of reinforcement reaches 
1 when IRT length crosses the duration of the maximal interval, in the conditions where there are empty trials (peak-FI/VIs 
and uniform exponential VIs), the probability of reinforcement reaches an asymptote corresponding to the proportion of 
time spent in reinforced trials. 

In interval schedules, in general, the longer a subject waits since the last response, the more 

likely is the next response to be reinforced. In other words, in all interval schedules, longer IRTs are 

associated with higher probabilities of reinforcement than are shorter IRTs. But the differential of the 
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probability of reinforcement of IRTs depends on the distribution of the intervals of the schedule. Figure 

21 shows the functions relating IRTs to their probability of reinforcement for each condition (except the 

intermediate peak-VI5/35) in our three experiments (for the methods of calculation, see Appendix 2). 

Within each experiment, each condition is associated with a different profile of the probability of 

reinforcement in function of IRT length. 

 

Figure 22: Distributions of the IRTs emitted during the last five sessions of the three first conditions (peak-FI20, peak-
VI10/30 and peak-VI0/40), for each bird of Study 1. IRTs are gathered in 0.1s bins 

Figure 22 for the experiment of Study 1, Figure 23 for the first experiment of Study 2 and 

Figure 24 for the second experiment of Study 2, show the distribution of the IRTs of each bird, in each 

condition, in each experiment (the only condition not represented is the intermediate peak-VI5/35 from 

Study 1). Except those of P785 which had shown dramatic evolution in its responding, the IRTs 

distributions remained stable across conditions. That is, despite the changes of the contingencies as 

to the differential probability of reinforcement of IRTs, IRTs distributions remained stable. In the 

experiments of this thesis, consisting of different types of interval schedules, responding was 

determined by the local rate of reinforcement, and was not noticeably affected by the other 

contingencies of the schedules related to the differential reinforcement of IRTs. 
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Figure 23: Distributions of the IRTs emitted during the last five sessions of uniform exponential VI (black line) and Fleshler 
& Hoffman VI (gray line), for each bird of Study 2 Experiment 1. IRTs are gathered in 0.1s bins. 

 

                           

Figure 24: Distributions of the IRTs in Study 2 Experiment 2 at the end of each condition (C1: 2T=30s; C2: 2T=60s; C3: 
2T=120s) for the four bird of the experiment. IRTs were collected over 5 sessions and gathered in 0.1s bins.  
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APPENDIX 1: Novel representation of the number e derived from 

the uniform exponential VI distribution 
 

The uniform exponential VI of Bugallo, Machado & Vasconcelos (2018) creates a constant 

hazard rate from the combination of a one distribution of reinforced intervals and of a distribution of 

unreinforced intervals. Interestingly, whereas these reinforced and unreinforced intervals form together 

a uniform distribution, the same intervals, when laid end to end until reinforcement, form an 

exponential distribution (Bugallo et al, 2018), as presented in Figure 25. In what follows, we extract a 

representation of the number e from this relationship. 

Let us consider the exponential distribution defined by i(x)=λ*e^(-λ*x), wherein x is interval 

length and λ the rate of reinforcement, in the context of its use for a VI. By integrating the function i(x), 

from x to +∞, we obtain a function, whose value at any x, corresponds to the proportion of intervals 

Figure 25: Distribution of the intervals of the uniform exponential VI. The top graph represents the combination of the 
distributions of reinforced intervals (area with dots) and unreinforced intervals (area with horizontal lines), which together 
form a uniform distribution from 0 to 2T, with mean interval T. When laid end to end until reinforcement occurs, the 
intervals drawn from this combination of distributions yield an exponential distribution (see Bugallo et al, 2018). The 
bottom graph represents this resultant exponential distribution. (In our example the, p, the probability of a reinforced trial 
was set at 0,5.) 
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from the initial distribution that are longer than x, defined by j(x)= e^(-λ*x) (j(0) = 1; at x = 0, all intervals 

from the initial distribution are longer than x). 

We know from Bugallo, Machado & Vasconcelos (2018), that the intervals of the uniform 

exponential VI, when intervals are laid end to end until reinforcement follow an exponential distribution 

with λ = T/p (p is the probability of a reinforced trial, it can only be comprised between 0 and 0,5 as 

shown in Bugallo et al, 2018); we call Y the variable corresponding to the length of the interval obtained 

when intervals from the uniform exponential VI are laid end to end until reinforcement. We consider 

the distribution of a uniform exponential VI with parameters 2T = 1 and p = 0.5 (Figure 26 presents 

separately the density functions of the reinforced and unreinforced intervals obtained under these 

parameters); it corresponds to an exponential distribution with λ = 1.  

Let us then consider the outcome of x = 1 in j(x) when λ = 1: (e^(-1*x)), it equals e^(-1). That 

is, we have a height which is equal to 1/e and that corresponds to the proportion of the Y intervals 

longer than 1. And, we can calculate this height by summing, from n=1 to n is infinity, the products of, 

P(Y=nX), the probability that an inter-reinforcement interval is made of n intervals, with P(Y>1|nX), the 

probability that an inter-reinforcement interval is longer than 1 given that it is made of n intervals. Of 

this sum we will take the inverse to obtain the number e. 

Intervals are drawn randomly, one after the other, from the combined distribution of reinforced 

and unreinforced intervals, and the final interval, the reinforced interval, has always one chance in two 

to be drawn at each round. Therefore, the probability associated to the number of X intervals in a Y 

interval is defined by a geometric distribution, and, 

𝑃(𝑛𝑋) =
1

2𝑛
 

Figure 26: Separated distributions of the reinforced intervals (graph on the left) and of the unreinforced intervals (graph 
on the right), with parameters of maximal interval set at 2T=1 and of reinforced trial probability set at p=0,5. 
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The probability that an inter-reinforcement interval is longer than 1 given that it is made of n 

intervals, needs to be decomposed. P(Y>1|nX) corresponds to the sum of, the probability that the sum 

of the unreinforced intervals is greater than 1, and of the probability that, Y is greater than 1 and the 

sum of the unreinforced intervals is smaller than 1. We have 

𝑃(𝑌 > 1|𝑛𝑋) = 𝑃 (∑ 𝑋 −𝑛

𝑛−1

𝑛=1

> 1) + 𝑃 (𝑌 > 1 ∩ ∑ 𝑋 −𝑛

𝑛−1

𝑛=1

< 1) 

(where X-n is the interval length of unreinforced interval number n), which gives, 

𝑃(𝑌 > 1|𝑛𝑋)  = 𝑃 (∑ 𝑋 −𝑛

𝑛−1

𝑛=1

> 1) + 𝑃 (∑ 𝑋 −𝑛

𝑛−1

𝑛=1

< 1) × 𝑃 (𝑌 > 1| ∑ 𝑋 −𝑛

𝑛−1

𝑛=1

< 1) 

We first consider the probability that the sum of the X-s is smaller than 1. The probability that 

the first X- is smaller than 1 is 1. To find the probability that the sum of the two first X-s is smaller than 

1, we calculate the probability that this sum is greater than 1, which we will subtract to 1. For the sum 

of the two first X-s to be greater than 1, the length x obtained from the distribution of the first X- (the 

same for any X-: m(x)=2x; see Figure 26), must be associated to a second interval of a length greater 

than 1-x. Within the distribution of the second X- on 0 to 1, we have to take at any x the proportion of 

intervals that would be longer than 1 if associated to a first X- of this certain x length. That is, 

𝑃(𝑋 −1+ 𝑋 −2> 1) = ∫ (2𝑥 ∫ 2𝑥 𝑑𝑥
1

1−𝑥

) 𝑑𝑥
1

0

 

Thus, we have, 

𝑃(𝑋 −1+ 𝑋 −2< 1) = [1 − ∫ (2𝑥 ∫ 2𝑥 𝑑𝑥
1

1−𝑥

) 𝑑𝑥
1

0

] 

To obtain then the probability that the sum of three X-s is smaller than 1, we multiply the 

probability that the sum of the first two X-s is smaller than 1 by the probability that the adding of the 

third X- would still not make 1 when the sum of the previous two X-s was smaller than 1. On the 0 to 

1 segment, the distribution of the summed intervals corresponds to the shape of a power of x; at any 

point of the area of the previous distribution of the summed X-s, on the 0 to 1 segment, each new X- 

comes to add its own distribution of intervals. Thus, we find the density function of the intervals formed 

by the sum of n X-s (n>1), on the 0 to 1 segment, 

𝑧(𝑥) =
𝑥2𝑛−3

∫ 𝑥2𝑛−31

0
𝑑𝑥
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And with it, we obtain the probability that the sum of n X-s is smaller than 1, 

𝑃 (∑ 𝑋 −𝑛

𝑛

𝑛=1

< 1) = 𝑃 (∑ 𝑋 −𝑛

𝑛−1

𝑛=1

< 1) × (1 − ∫ (
𝑥2𝑛−3

∫ 𝑥2𝑛−3𝑑𝑥
1

0

∫ 2𝑥 𝑑𝑥
1

1−𝑥

)
1

0

𝑑𝑥) 

with, 

𝑃(𝑋 −1< 1) = 1 

we resolve, 

𝑃 (∑ 𝑋 −𝑛

𝑛

𝑛=1

< 1) =
1

∏ 𝑛(2𝑛 − 1)𝑛
𝑛=1

 

We now consider the probability that the sum of all intervals, including the reinforced one, is 

greater than 1, given that the sum of the unreinforced intervals is smaller than 1. Pictured within the 

distribution of the reinforced intervals defined by n(x)=2-2x (see Figure 26), it corresponds at any x to 

the proportion of reinforced intervals that will be greater than 1 when summed with an interval from 

the distribution of the sum of the X-s. 

𝑃 (𝑌 > 1| ∑ 𝑋 −𝑛

𝑛−1

𝑛=1

< 1) = ∫ ((2 − 2𝑥) ∫
𝑥2𝑛−1

∫ 𝑥2𝑛−1𝑑𝑥
1

0

𝑑𝑥
1

1−𝑥

) 𝑑𝑥
1

0

 

=
𝑛

𝑛 + 1
 

Thus, we have all elements to obtain the probability that an inter-reinforcement interval is 

longer than 1. Being careful to stop the pi products from the probabilities concerning only the X-s at n-

1 in this equation where n is the total number of intervals, we have: 

𝑃(𝑌 > 1|𝑛𝑋) = (1 −
1

∏ 𝑛(2𝑛 − 1)𝑛−1
𝑛=1

) +
1

∏ 𝑛(2𝑛 − 1)𝑛−1
𝑛=1

×
𝑛

𝑛 + 1
 

which simplifies in, 

𝑃(𝑌 > 1|𝑛𝑋) = 1 −
1

𝑛 ∏ 𝑛(2𝑛 − 1)𝑛−1
𝑛=1

 

and simplifies further in, 

𝑃(𝑌 > 1|𝑛𝑋) = 1 −
1

𝑛(2𝑛2 − 5𝑛 + 3)!
 

Finally, we assemble 
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𝑒 =
1

∑
1

2𝑛 [1 −
1

𝑛(2𝑛2 − 5𝑛 + 3)!
]∞

𝑛=1
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APPENDIX 2: Methods of calculation for the probability of 

reinforcement of IRTs 
 

In this appendix we explain how the probabilities of reinforcement as a function of IRTs length 

were calculated for each type of schedule used in this thesis. Our method is inspired by the Appendix 

1 of Catania & Reynolds (1968), which we extend to deal with empty trials and continuous distribution 

of intervals. 

An IRT is defined as the duration between two consecutive responses (a latency, the duration 

between trial onset and the first response is not an IRT); a reinforced IRT is an IRT which terminal 

response gives access to reinforcement. We call the first response of an IRT a start time, which can be 

used to grasp IRT occurrence. In an interval schedule, an IRT is reinforced when its start time occurs 

at a time into the trial interval which distance to reinforcement criterion is smaller than the length of 

the IRT considered. Hereof, the probability of reinforcement of an IRT can be defined as the ratio of, 

all start times belonging to a reinforced IRT, over all possible start times. 

Yet, it is not possible to directly quantify all possible start times. Take the simplest example of 

an FI20 under which we want to know the probability of reinforcement of a 5s IRT. There are in fact 

an infinity of moments at which start times belonging to a reinforced IRT, or start times in general, can 

be emitted. To circumvent this, we consider the different segments of intervals along which the two 

categories of start time belong. In our example, the start times that will lead to a reinforced IRT are 

those happening from 15s to 20s into the interval, that is along a 5s segment, while start times in 

general can happen between 0s and 20s into the trial interval (responses emitted after the 

reinforcement criterion cannot be start times because they are reinforced responses that end the trials 

within which IRTs are considered). That is, the probability of reinforcement of a 5s IRT in a FI20 is 

equal to the ratio 5/20 or 1/4; probabilities with different IRT values are found by replacing their length 

value in the numerator of the previous ratio (e.g., 10s IRTs have a probability of reinforcement of 

10/20=0.5).  

This principle can be easily extended to VIs made of discrete distributions of intervals, by 

summing across all possible intervals, on one hand, the segments of intervals in which happen start 

times belonging to reinforced IRTs, and on the other hand, the segments of intervals in which start 

times in general can happen.  
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In this paragraph we apply the method to a Fleshler & Hoffman VI60 as that used in Study 2 

Experiment 1 but with five intervals instead of the fifty intervals for more clarity. These intervals are: 

6.4s, 21.6s, 42.0s, 73.4s and 156.6s. The probability of reinforcement of an IRT is given by taking 

the ratio of, the sum of the segments corresponding to the IRT length within each interval, over the 

sum of the possible intervals. Each interval will so contribute to the sum in the numerator, or by its 

own length (when the IRT is longer than the interval) or by the IRT length (when the IRT is smaller than 

the interval). That is, for example, the probability of reinforcement of a 10s IRT is equal to 

(6.4+10+10+10+10)/(6.4+21.6+42.0+73.4+156.6). From there, an excel table can easily me made 

to obtain the probability of a wide range of IRTs. 

Let us now consider the case of schedules containing empty trials but still made of discrete 

distributions of intervals as the peak-FI/VIs conditions in Study 1. When there are as much reinforced 

trials as empty trials, as it is the case with the schedules that we used, we can get the picture in the 

simplest situation of a fixed reinforcement criterion that start times associated to reinforced IRT would 

still correspond to the IRT length (or interval length if the IRT is longer than the interval) while all 

possible start times would correspond to the criterion interval plus the duration of an empty trial. That 

is, in our peak-FI20 where empty trials lasted 140s on average, the probability of reinforcement of an 

IRT would be IRT/(20+140) for any IRT shorter than 20s, and, it would be 20/(20+140) for any IRT 

longer than 20s. The probability of reinforcement of IRTs reaches an asymptote after the interval value; 

this asymptote, equals to 20/160=1/8 corresponds to the proportion of time spent under reinforced 

trials and will be same for all peak-VI conditions sharing the mean interval value of 20s with mean 

empty trial of 160s, and be reached from the first IRT longer than the longest interval of the schedule.  

For the peak-VIs, the probability of reinforcement of an IRT is then simply the ratio of the sum 

of the segments corresponding to the IRT length within each interval, over the sum of the possible 

intervals to which we add the mean empty trial duration multiplied by the number of possible intervals. 

For example, the probability of a 2s IRT in the peak-VI0/40 made of 41 intervals with 1s spacing is: 

(0+1+2*39)/[(0+1+2+3+… +40)+140*41]. 

Let us consider now the case of VIs made of intervals from continuous distributions. It is not 

possible any longer to sum segments of intervals and intervals which are now uncountable; in place 

we will use areas. In a VI made of intervals from a continuous distribution, the probability of 

reinforcement of an IRT is the mass of the start times which belong to reinforced IRTs within the 
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distribution of the start times. The crucial step in the process to obtain this probability is to determinate 

the distribution of the start times from the distribution of the intervals. Any instant spent during an 

interval can be the occasion of a start time, so that the distribution of the start times can be conceived 

as the distribution of the instants. The height in this distribution of the instants must be, at any t value 

on the abscissa, proportional to the mass of the intervals longer than t in the original distribution of 

intervals. Hence, the distribution of the instants (or distribution of the start times) is obtained by, 

integrating the distribution of the intervals, at any t into the interval axes, from t to the maximum interval 

of the VI considered, and then by dividing the resulting function by its own integral from 0 to maximum 

interval value (this last step is to obtain a proper pdf of mass 1). 

      

Figure 27: Intervals and start times distributions associated to the uniform VI. The dotted slice, the distribution of the start times belonging 
to reinforced IRTs, has an area corresponding to the probability of reinforcement of the IRT considered. The duration of the IRT considered 
determines the width of the slice. 
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Before considering the uniform exponential VI which not only is made of a continuous 

distribution but also contains empty trials, let us treat the simpler case of the uniform VI. Figure 27 

illustrates the method. We consider a VI with mean Ts, maximum interval 2Ts and with pdf f(x)=1/2T 

(this distribution of interval is presented in the top graph of Figure 27). To obtain the distribution of the 

instants under the uniform VI we integrate f(t) from t to 2T, which gives 2*(2T-t)/(2T)^2 and which we 

will call g(t) (this distribution of the start times is presented in the middle graph of Figure 27). Next, we 

need the distribution of the start times belonging to non-reinforced IRTs within the distribution of the 

IRTs, and, take the complement of its mass to find the mass of the start times associated to reinforced 

IRTs (see bottom graph of Figure 27) . To obtain this distribution we need to shift the distribution of 

the start times by one IRT length to the left, so that would only be left start times belonging to non-

reinforced IRTs; it is done by replacing t per t + IRT in g(t), this gives 2*(2T-t-IRT)/(2T)^2, a function 

that we restrict to 0 ≤ t ≤ 2T-IRT and call i(t). The mass of the start times of interest is the complement 

of the integral of i(t) from 0 to 2T-IRT. That is, the probability of reinforcement of an IRT in the uniform 

(continuous) VI is given by the formula:  

𝑃(+|𝐼𝑅𝑇) = 1 − (
2𝑇 − 𝐼𝑅𝑇

2𝑇
)

2

 

This formula is only valid from 0 to 2T (a corollary to the fact that the formula was constituted 

in part by a function defined on 0 ≤ t ≤ 2T-IRT) where it reaches the asymptote of 1. For any IRT greater 

than 2T, reinforcement is certain. 

Finally, let us consider the case of the uniform exponential VI. Figure 28 illustrates the method 

Since the overall distribution of intervals in this VI is uniform, its pdf is f(t)=1/2T (see top graph of 

Figure 28) and the related distribution of start times is defined by the function g(t)= 2*(2T-t)/(2T)^2 

(see middle graph of Figure 28). But this VI is made of a combination of a distribution of reinforced 

trials with a distribution of unreinforced trials. Thus, to obtain the probability of reinforcement of IRTs, 

we will need, to search for the distribution of the start times conditional to being in a reinforced trials, 

then, to obtain the mass of the start times belonging to non-reinforced IRTs within the latter distribution, 

from which mass we will take the complement that we will weight according to the mass of the start 

times happening during reinforced trials. 
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Figure 28: Intervals and start times distributions associated to the uniform exponential VI. The dotted slice, the distribution of the start 
times belonging to reinforced IRT, has an area corresponding to the probability of reinforcement of the IRT considered. The duration of 
the IRT considered determines the width of the slice.  In this example the VI parameter p, is 0.5. 

The distribution of the reinforced intervals is given by the function w(t)= 2p*(2T-t)/(2T)^2 (the 

sub-distribution in light gray in the top graph of Figure 28), where p is the probability that a trial will be 

reinforced; it is only a portion of the complete distribution and has a mass of 0.5. To obtain the 

distribution of the start times happening during reinforced trials within the distribution of the start times 

we integrate this latter partial distribution from t to 2T, which gives 2p*(2T-t)^2/(2T)^3 and which we 

call v(t) (the sub-distribution in light gray in the middle graph of Figure 28). Now, we divide v(t) by its 
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own integral from 0 to 2T in order to obtain the distribution of the start times given that we are in a 

reinforced trial, we call it u(t)=3*(2T-t)^2/(2T)^3; in the process we obtained the mass of v(t) from 0 

to 2T, it is equal to 2/3 of p. The next step is to shift of one IRT to the left the distribution defined by 

u(t) in order to obtain the distribution of the start times belonging to non-reinforced IRTs given that we 

are in a reinforced trial, which we do by replacing t per t+IRT in u(t); we obtain the function j(t)= 3*[(2T-

IRT)^2-2t(2T-IRT)+t^2]/(2T)^3 which we restrict on 0 ≤ t ≤ 2T-IRT (in the bottom graph of Figure 28, 

the area of the start times belonging to reinforced IRTs is represented directly within the sub-division 

of the start times happening during reinforced intervals). By taking the complement of the integral of 

j(t) from 0 to 2T we obtain the mass of the start times belonging to reinforced IRTs given that we are 

in a reinforced trial, which we multiply by the mass of start times happening during reinforced trial 

within the distribution of the start times, the mass of v(t) from 0 to 2T; we obtain the formula of the 

probability of reinforcement of an IRT: 

𝑃(+|𝐼𝑅𝑇) =
2

3
𝑝 [1 − (

2𝑇 − 𝐼𝑅𝑇

2𝑇
)

3

] 

This probability reaches the asymptote 2/3 of p at 2T (the asymptote is thus 1/3 in all uniform 

exponential VI that we used in Study 2). As with the previous case with the formula for the uniform VI, 

this formula is only valid for IRTs comprised between 0s and 2Ts, a corollary to the fact that the formula 

was constituted in part by a function defined on 0 ≤ t ≤ 2T-IRT. For greater values of IRTs, the part 

between parenthesis in the formula, which correspond to the probability of reinforcement of an IRT 

given that we are in a reinforced trial, should be replaced by 1 (we justify this by the simple fact that 

an IRT which is longer than 2T, when the current trial is a reinforced one, will be reinforced for certain). 
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