
Construction and Building Materials 337 (2022) 127613

0950-0618/© 2022 Elsevier Ltd. All rights reserved.

Innovative modeling framework of chloride resistance of recycled 
aggregate concrete using ensemble-machine-learning methods 

Kai-Hua Liu a, Jia-Kai Zheng a, Fernando Pacheco-Torgal b, Xin-Yu Zhao c,* 

a School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China 
b University of Minho, C-TAC Research Centre, Engineering School, Guimarães, Portugal 
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A B S T R A C T   

This study investigates the feasibility of introducing machine learning algorithms to predict the diffusion 
resistance to chloride penetration of recycled aggregate concrete (RAC). A total of 226 samples collated from 
published literature were used to train and test the developed machine learning framework, which integrated 
four standalone models and two ensemble models. The hyperparameters involved were fine-tuned by grid search 
and 10-fold cross-validation. Results showed that all the models had good performance in predicting the chloride 
penetration resistance of RAC and among them, the gradient boosting model outperformed the others. The water 
content was identified as the most critical factor affecting the chloride ion permeability of RAC based on the 
standardized regression coefficient analysis. The model’s interpretability was greatly improved through a two- 
way partial dependence analysis. Finally, based on the proposed machine learning models, a performance- 
based mixture design method and a service life prediction approach for RAC were developed, thereby offering 
novel and robust design tools for achieving more durable and resilient development goals in procuring sus
tainable concrete.   

1. Introduction 

Sand and gravel are the largest portion of resource materials used in 
the built environment and the most extracted materials around the 
world [1]. At the same time, the amount of construction and demolition 
wastes (CDW) is growing rapidly with the acceleration of urbanization 
process worldwide [2]. This makes the circular economy crucial for 
sustainable development and the valorization of CDW of paramount 
importance for the construction industry [3,4]. With these pre
dicaments, the reuse of CDW becomes inevitable. 

Concrete recycling, among many other strategies in support of sus
tainability, is technically feasible. Waste valorization is achieved by 
crushing concrete rubble into recycled aggregates (RA) and then being 
used to replace, partly or totally, natural aggregate (NA) in new concrete 
manufacture [5]. Despite some negative effects brought by such sub
stitution, the resulting products, i.e., recycled aggregate concrete (RAC), 

is believed to be able to meet general engineering needs [6–9]. As a 
result, RAC is increasingly encouraged for structural applications 
[10–12]. 

Chloride ion ingress will cause corrosion of steel reinforcement in 
concrete and, hence, reduce safety and durability of structures [13]. 
Understanding the resistance to chloride erosion of RAC is a prerequisite 
for ensuring its durability robustness and boosting its use. Generally, 
RAC is marked to be less resistant to chloride penetration than its natural 
aggregate concrete (NAC) counterpart [14,15]. This happens because 
the porous structure of adhered mortar to RA renders RAC more 
permeable and, in technical terms, elevates its chloride penetration rate 
and chloride migration coefficient [16]. As RA replacement ratio in
creases, the chloride resistance of RAC decreases [17,18], especially for 
cases where fine RA is incorporated [19]. Reducing the water-cement 
ratio [20], prolonging curing time [21], and adding mineral admix
tures (fly ash [22], silica fume [23], blast furnace slag [24], etc.) can 
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compensate for the side effects of RA and in turn enhance the resistance 
of RAC to chloride-induced deterioration. Due to the high uncertainty of 
RA, some authors suggested that there is no significant difference in the 
chloride diffusion between NAC and RAC [25,26]. Yet in other cases, the 
chloride resistance of RAC is reported to be even slightly higher than 
that of NAC [27]. On the plus side, the porosity of RA could provide an 
internal curing effect [28] and additional chloride binding capacity for 
RAC [29], which is conducive to improved chloride resistance. But these 
beneficial effects are hard to quantify and likely to be offset by the 
negative contributions. Taken together, the foregoing studies indicate 
that the impact of RA incorporation on the chloride penetration of RAC 
is complex; the issue remains controversial, and different approaches to 
address it are sorely needed. 

Experiment method is regarded as the most direct way to investigate 
RAC’s durability performance; however, it is time-consuming and 
costly. On the other hand, numerical and analytical methods are helpful, 
but still difficult to replicate the characteristics of RAC. Notably, in 
recent years artificial intelligence (AI) has developed rapidly, which is 
changing the way humans perceive the world [30]. As a subset of AI, 
machine learning (ML) has become a key enabling technology in mul
tiple regimes of civil engineering [31]. Compared with traditional 
methods, ML can achieve more desirable results at a lower cost [32,33]. 
Several researchers have tried to introduce ML methods into the eval
uation of RAC’s attributes. Topçu and Sarıdemir [34] showed that the 
artificial neural network (ANN) and fuzzy logic (FL) have good potential 
in predicting the mechanical performance of RAC. Omran et al. [35] 
compared different ML algorithms on estimating the compressive 
strength of RAC and found all models can obtain good results with their 
coefficients of determination higher than 0.90. It was confirmed by 
Duan et al. [36] that ANN can be leveraged to predict the compressive 
strength and elastic modulus of RAC with high accuracy—so can it 
determine the classification of RA. Similar results were observed by 
Golafshani et al. [37] and Naderpour et al. [38]. Xu et al. [39] performed 
a sensitivity analysis on the parameters affecting the triaxial behavior of 
RAC using grey correlation; several ML algorithms were then developed 
which showed superior accuracy over empirical models. Note that 
existing ML-based studies focus mainly on forecasting the mechanical 
properties of RAC, while research on predicting the durability of RAC is 
scarce. An attempt is thus worthwhile in this regard, as recent studies 
[40,41] have shown the utility of ML methods for evaluating the dura
bility of concrete. 

Chloride attack on concrete is a sophisticated process that is affected 
by many factors. The meso-pores as well as micro-pores present in RA 
[42] and the existence of multiple interfacial transition zones [43] 
further complicate this process. Unlike traditional methods, ML algo
rithms provide an unprecedented pattern that allows identifying the 
hidden and interrelated mechanisms behind a complex system by data 
mining. This paper presents a novel modeling framework for predicting 
the chloride penetration resistance of RAC. The framework integrated a 
host of ML methods, including four standalone methods (artificial neural 
network, Gaussian process regression, support vector regression, and 
decision tree) and two ensemble methods (random forest and gradient 
boosting). With the dataset collated from published literature, the 
incorporated ML models were developed, discussed, and compared. The 
importance of each input variable was revealed through standardized 
regression coefficient analysis. Moreover, calculations drawing on the 
partial dependence concept were made to improve the models’ inter
pretability. Finally, a performance-based mixture design method and a 
service life prediction approach were proposed for RAC structures based 
on the validated models. 

2. Methodology 

In this section, the principles of each ML algorithm included in the 
framework are briefly described, which helps understand the key ideas 
as well as compare their differences. 

2.1. Artificial neural network (ANN) 

ANN is perhaps the most popular ML model yet. It mimics the human 
nervous system to establish input–output relationships [44]. The first 
layer of an ANN model is the input layer, the last is the output layer, and 
what connects the two is the hidden layer(s). Each layer has neurons that 
receive input signals and generate outputs through a transfer function. 
Each connection is assigned a weight, which modifies the strength of 
signals sent downstream. In addition to weights, there is another crucial 
parameter called bias. Weights and biases are initially assigned random 
values and then adjusted to reduce the errors between the predicted and 
observed values. 

2.2. Gaussian process regression (GPR) 

GPR is a non-parametric regression method, which is based on 
Bayesian theory. It continuously updates the posterior probability dis
tribution through measured data until the posterior distribution basi
cally matches the real distribution. Compared with other ML algorithms, 
GPR is more of a kernel-based algorithm designed for small samples and 
has advantages in solving problems with a high degree of nonlinearity 
[45]. It quantifies the uncertainty of predictions in a principled way. 

2.3. Support vector regression (SVR) 

In a broader scope, the support vector machine (SVM) is an algorithm 
based on statistical learning, developed from optimal hyperplane with 
linear differentiability [46]. When SVM is extended for regression 
analysis, it becomes SVR. The advantage of SVR lies in that it can 
approximate complex nonlinear continuous functions with high accu
racy, especially be suitable for the small sample size. 

2.4. Classification and regression tree (CART) 

The Decision tree (DT) has an inverted tree-like structure consisting 
of nodes and directed edges. Each node in the tree represents a test for a 
certain feature, while each branch corresponds to a result of the test for 
that feature. The Classification and regression tree (CART) model is a 
widely used DT method, among its many variants [47]. It is composed of 
feature selection, tree generation, and pruning. As a powerful tool for 
classification and regression, CART uses a heuristic method to divide the 
input space. It traverses all input variables to find the optimal segmen
tation variable, recursively divides each region into two sub-regions, 
and determines the output value on each sub-region. 

2.5. Random forest (RF) 

Bagging is an ensemble ML algorithm that draws datasets from 
original data with put-back to train the model. RF is a type of bagging, 
which adopts decision trees as weak learners [47]. By aggregating 
multiple decision trees and improving the prediction accuracy through 
voting or averaging, the RF model has high accuracy and better gener
alization ability. For a regression problem, the prediction of RF K(x) can 
be calculated as: 

K(x) =
1
T
∑T

i=1
ki(x) (1)  

where ki(x) is the predicted value of ith decision tree; and T represents 
the number of trees. 

2.6. Gradient boosting decision trees (GBDT) 

Boosting is another ensemble ML algorithm. It is composed of a series 
of dependent base learners with different weights. Gradient boosting 
(GB) belongs to the category of boosting. It borrows the idea of gradient 
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descent, trains the newly added weak learner according to the negative 
gradient information of the current model loss function, and combines 
the trained weak learner into the current model in an accumulated form 
[48]. GB using decision trees as weak learners is GBDT. This algorithm 
can be formulated as: 

G0 = argmin
λ

∑T

i=1
L(yi, λ) (2)  

Gr = Gr− 1 + argmin
hr∈H

∑T

i=1
[L(yi,Gr− 1(xi) + hr(xi) ) ] (3)  

∇Loss =
∂L(yi,Gr− 1(xi) )

∂Gr− 1(xi)
(4)  

where G0 represents the initial weak learner, Gr represents the final 
strong learner, hr represents the subsequent weak learner, ∇Loss repre
sents the gradient for the loss function. 

3. Dataset description 

There are two common methods to evaluate the chloride penetration 
resistance of concrete, i.e., the Coulomb passed electric charge (CEF) 
method and the rapid chloride ions migration coefficient (RCM) method 
[49]. The CEF method evaluates chloride penetration of concrete by 
measuring the electric charge passed through specimens at a specified 
voltage and energization time. It has the advantages of easy operation, 
short test period, and high stability of test results, which make it one of 
the most accepted methods for evaluation of chloride resistance of 
concrete. By comparison, the RCM method measures the chloride ion 
diffusion coefficient of concrete according to Fick’s second law. 
Although this method enables an expeditious quantitative calculation of 
chloride penetration, it is more complicated and less convenient than the 
CEF method. In addition, based on a thorough review of existing studies, 
there are relatively few test results using the RCM method. Therefore, 
only test data from the CEF method were used to quantify the chloride 
durability of RAC. 

The factors affecting the chloride penetration of RAC were grouped 
into three categories. The first is related to the RAC mixture, including 
the amounts of cement (C), water (W), sand (S), natural coarse aggre
gate (NCA), recycled coarse aggregate (RCA), and mineral admixtures 
(fly ash (FA) and ground granulated blast slag (GGBS)). The second is 
related to aggregates quality, including the water absorption (WA) and 
the apparent density (D) of aggregates. Considering the NCA and RCA 
were mixed to prepare the RAC, the WA and D of the mixed aggregates 
were calculated by a weighted method as follows [37]: 

WA = WARCA × mRCA/(mNCA + mRCA)+WANCA × mNCA/(mNCA + mRCA)

(5)  

D = DRCA × mRCA/(mNCA + mRCA)+DNCA × mNCA/(mNCA + mRCA) (6)  

where WARCA and WANCA represent the water absorption of RCA and 
NCA, respectively; mRCA and mNCA represent the amounts of RCA and 
NCA, respectively; DRCA and DNCA are the apparent density of RCA and 
NCA, respectively. The third factor is concrete curing. Only one factor, i. 
e., the curing age (CA), was considered. Finally, an experimental data
base including 226 samples related to the chloride penetration resis
tance of RAC from the available literature [50–60] was established 
(Table A1), in which the three groups of parameters (as input variables) 
were well defined and documented. 

4. Performance measurements 

To quantitatively evaluate the prediction performance of each ML 
method in the framework, four statistical parameters were used, 

including root mean square error (RMSE), scattering index (SI), mean 
absolute percentage error (MAPE), and determination of coefficient 
(R2): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
(ei − pi)

2
/m

√

(7)  

SI = RMSE/ei (8)  

MAPE = 100%

(
∑m

i=1
|(ei − pi)/ei |

)/

m (9)  

R2 =

⎡

⎢
⎢
⎣

∑m
i=1(ei − ei)(pi − pi)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑m

i=1
(ei − ei)

2∑
m

i=1
(pi − pi)

2
√

⎤

⎥
⎥
⎦

2

(10)  

where m represents the number of samples; ei and pi represent the 
experimental and predicted results, respectively; ei and pi represent the 
average of ei and pi values, respectively. A good model should have a 
higher R2 and lower RMSE, SI, and MAPE. 

In some cases, different performance measures may probably give 
different estimates. To avoid this trap, a comprehensive performance 
indicator called OBJ was proposed to synthesize the evaluation in
dicators: 

OBJ =
1
2

(
SItr + MAPEtr

R2
tr

)

+
1
2

(
SIte + MAPEte

R2
te

)

(11)  

where the subscripts of tr and te represent the training set and the testing 
set, respectively. It should be noted that as the order of magnitude of 
RMSE is much higher than those of the other evaluation metrics, and 
meanwhile, SI and RMSE are closely correlated, this paper integrated R2, 
SI, and MAPE to calculate the OBJ value. At the same time, the same 
weight (i.e., 1/2) was used for the model performance of the training set 
and testing set, considering that the two are equally important for 
evaluating the overall performance. By doing so, the integrated perfor
mance of a model can be ranked from the worst to the best according to 
the OBJ value. A lower OBJ value represents a better overall prediction 
performance. 

5. Model development and discussion 

5.1. Dimensionality reduction 

Linear correlations between inputs and output can introduce the 
undesirable effect of information duplication. If they are ignored in 
developing ML models, wrong conclusions may be drawn. Therefore, it 
is important to perform collinearity diagnosis before ML modeling and 
reduce the dimensionality of inputs if necessary. In this study, a linear 
regression analysis was used to identify the collinearity for input 
variables. 

Some evaluation indexes to quantify the extent of collinearity have 
been proposed, such as the pairwise correlation coefficient, the condi
tion index, and the variance inflation factor (VIF) [61]. The VIF refers to 
the ratio of the variance between input variables with and without 
multicollinearity, which can reflect the degree of increase in variance 
caused by multicollinearity. VIF can be determined as follows: 

VIFi = 1/
(
1 − R2

i

)
(12)  

where Ri represents the square of the multiple correlation coefficient 
between the ith input variable and the rest. The closer the VIF value is to 
1, the less collinearity it is, and vice versa. Generally, a VIF value greater 
than 10.0 is used as a collinearity indicator [62]. When VIF is less than 
10.0, it can be considered that there is no significant multicollinearity. 

K.-H. Liu et al.                                                                                                                                                                                                                                  



Construction and Building Materials 337 (2022) 127613

4

Fig. 1(a) shows the VIF values of the 10 input variables. The VIF 
values of NCA, RCA, WA, and D are all greater than the threshold 
(=10.0), especially for NCA (VIF = 107.5) and RCA (VIF = 93.5). For 
ordinary concrete, the amount of coarse aggregates in the mixture is 
basically stable, accounting for around 50% of the total concrete weight 
[63]. This is equivalent to setting up a potential link between NCA and 

RCA, making their VIF values dramatically high. As to WA (VIF = 12.0) 
and D (VIF = 11.0), they are higher than 10.0 because the two variables 
are distributed in a relatively narrow range, but are intimately related to 
the quality of mixed coarse aggregates. In most cases, RCA with lower 
water absorption has a higher density as the attached mortar is usually 
more compact. 

(a) Inputs without adjustment (b) Inputs after dimensionality reduction
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Fig. 1. Results of the VIF value.  
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To eliminate the potential effect of collinearity, some adjustments 
were adopted. The variables NCA and RCA were combined into one 
variable, i.e., the replacement ratio (R), which can be calculated as: 

R = mRCA/(mNCA + mRCA) (13) 

Further, the variable D was removed whereas WA was retained, 
given a more representative distribution of WA than that of D in the 
database. 

Results of the VIF values of inputs after the dimensionality reduction 
are shown in Fig. 1(b). All VIF values are less than 10.0, indicating no 
significant collinearity among the input variables. 

Fig. 2 shows the frequency distribution of each variable after the 
dimensionality reduction. The statistics (i.e., the maximum, minimum, 
mean, and standard deviation) for all variables (also including the 
output) are listed in Table 1. 

5.2. Construction and comparison of predictive models 

After the dimensionality reduction, eight variables including C, W, S, 
R, FA, GGBS, WA, and CA were set as inputs, and Q was set as the output. 
The whole ML framework was developed based on the MATLAB plat
form [64]. The source codes can be obtained upon reasonable request. 

5.2.1. Model development 
The experimental dataset was randomly divided into the training set 

(80%) and the testing set (20%). For the ANN model implemented in the 
framework, the activation functions in the hidden layer and output layer 
were set as the hyperbolic tangent function and linear transfer function, 
respectively. The back-propagation algorithm was adopted to train the 
three-layer feedforward network [65,66]. The number of neurons for the 
hidden layer was a hyperparameter to be tuned. Fig. 3 shows the 
structure of the ANN model developed. For the GPR model, four kernel 

functions including the quadratic rational kernel, the Matern kernel, the 
exponential kernel, and the squared exponential kernel, were tested and 
compared with each other. For the SVR model, three kernel functions 
including the linear kernel, polynomial kernel, and Gaussian kernel 
were tested to determine the optimum one. For the CART model, the 
maximum tree depth and the minimum number of leaf node observa
tions are two hyperparameters that need to be optimized and can also be 
used to prevent overfitting. For the RF model, two hyperparameters, the 
number of decision trees and the minimum leaf size, need to be 

Table 1 
Statistical information for input and output variables (226 samples).  

Attribute C W S R FA GGBS WA CA Q * 

Unit kg/m3 kg/m3 kg/m3 – kg/m3 kg/m3 % d C 
Maximum 485 225 780 1 225 214 9.6 90 6910 
Minimum 176 117 530 0 0 0 0.5 28 444 
Average 361 183 674 0.50 47 16 3.0 49 2985 
Standard deviation 74 28 55 0.40 62 46 1.9 28 1444 

Note: Q represents the passed electric charge (PEC) in Coulomb (C). 
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Fig. 3. The ANN model structure.  

Table 2 
The range and optimal value of hyperparameters for ML models.  

Model 
type 

Hyperparameters 

Type Range * Optimal value 

ANN number of neurons 
in the hidden layer 

[5:1:20] 10 

GPR kernel function quadratic rational 
kernel, 
Matern kernel, 
exponential kernel, 
squared exponential 
kernel 

squared exponential 
kernel 

SVR kernel function linear kernel, 
polynomial kernel, 
Gaussian kernel 

polynomial kernel 
with three order 

CART maximum tree 
depth 

[4:1:10] 9  

minimum leaf size [2:1:10] 2 
RF number of decision 

trees 
[10:10:100] 50  

minimum leaf size [2:1:10] 2 
GBDT number of decision 

trees 
[10:10:100] 60  

minimum leaf size [2:1:10] 2  
learning rate [0.05,0.05,0.50] 0.10  

* The values in brackets are the lower limit, step size, and upper limit for the 
range of each hyperparameter in turn. 

Table 3 
Results of performance metrics for ML models.  

Model Dataset R2 RMSE SI MAPE OBJ 

ANN Training  0.952  308.329  0.103  0.103  0.274  
Testing  0.925  473.002  0.158  0.148   
All  0.945  347.562  0.116  0.112  

GPR Training  0.969  245.234  0.082  0.075  0.272  
Testing  0.903  519.266  0.174  0.170   
All  0.951  319.435  0.107  0.094  

SVR Training  0.962  268.370  0.090  0.081  0.288  
Testing  0.906  517.926  0.174  0.187   
All  0.946  333.568  0.112  0.102  

CART Training  0.904  427.475  0.143  0.145  0.389  
Testing  0.891  558.596  0.187  0.222   
All  0.900  456.721  0.153  0.161  

RF Training  0.957  320.708  0.107  0.117  0.336  
Testing  0.918  554.919  0.186  0.216   
All  0.945  379.302  0.127  0.137  

GBDT Training  0.982  194.258  0.065  0.067  0.199  
Testing  0.958  360.935  0.121  0.131   
All  0.975  237.158  0.079  0.080   
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optimized, while for the GBDT model, besides the above two hyper
parameters, the learning rate was also considered. 

Grid search, random search, and Bayesian optimization are three 
common hyperparameter optimization methods [67]. Considering the 
small number of hyperparameters involved in the ML models used in this 
study, the grid search in combination with 10-fold cross-validation was 
used to determine the hyperparameter values of each model. The range 
and optimal values for each hyperparameter are shown in Table 2. Other 

model parameters are set as default values. 

5.2.2. Model validation 
Table 3 summarizes the performance metrics of all the ML models 

integrated into the framework. Clearly, all the models show good per
formance in predicting the resistance to chloride penetration of RAC. 
Specifically, among the four standalone models, the GPR model has the 
best overall performance with the highest OBJ value of 0.272, slightly 

(a) ANN model (b) GPR model

(c) SVR model (d) CART model

(e) RF model (f) GBDT model
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Fig. 4. Illustration of regression plot between the actual and predicted value of PEC.  
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surpassing the ANN model. Nevertheless, the GPR model performed well 
in the training set but shows a decreased accuracy in the testing sets. The 
GPR model can quantify the prediction uncertainty in a principled way, 
but the single kernel function limits its generalization ability to some 
extent. Meanwhile, the dataset used in this paper is not large (226 
samples), so the adverse effect of the computational complexity of the 
GPR model is negligible. The ANN model, in contrast, achieved similar 
good performance in both sets, reflecting a better generalization ability. 
This may be due to the optimization of the structure of the neural 
network, i.e., the appropriate activation function and the number of 
neurons in the hidden layer after optimization. The performance of the 
SVR model is close to that of the ANN model, but the performance is 
decreased for test set. This is similar to the GPR model, limited by the 
kernel function. Compared with the other three standalone models, the 
CART model has the lowest R2 value and the largest OBJ value, signaling 
a less accurate performance. The CART model is sensitive to data and 
prone to overfitting. Its generalization performance is generally 
improved by limiting the number of node samples and the depth of the 
tree, at the expense of the prediction accuracy. 

When it comes to the two ensemble models, both the RF and GBDT 
yielded better results than the CART model, which proved the effec
tiveness of bagging and boosting algorithms, especially boosting algo
rithms. The GBDT model shows the best performance among all the ML 
models developed. Compared with the CART model, the relative 
improvement of the RF model and GBDT model is 5.0% and 8.3%, 
respectively, based on the R2 value of the CART model. In addition, the 
GBDT model outperformed the RF model, as its OBJ value is reduced by 
approximately 40% relative to that of the RF model. The RF model can 
be highly parallelized to reduce the variance of the model, but its pre
dictive performance is mediocre for data beyond the training set. The 
GBDT model integrates each weak learner based on the weight and has 
strong robustness to outliers, which makes it have better generalization 
ability. 

To visualize the predictive performance, Fig. 4 shows the comparison 
between the experimental and predicted values. The better the model 
performance, the narrower the distribution area of data points. For each 
model, the data points are almost evenly distributed on both sides of the 
y = x line, except for the RF model; it appears to underestimate the 
experimental values. Moreover, the data points for the CART model are 
the most scattered among all the models, being consistent with its 
maximum OBJ value (=0.389). 

5.3. Model interpretability 

Although the presently developed ML models have shown their good 

performance in predicting the chloride resistance of RAC, their inter
pretability is another critical issue. The more explainable the ML 
models, the more credible the prediction results, upon which more 
meaningful decisions can be made. The standardized regression coeffi
cient (SRC) was utilized herein to identify the importance and impact of 
each input variable on the output. Then the robustness of the framework 
was verified by partial dependence analysis. 

5.3.1. SRC analysis 
As an instrumental index, SRC is determined by dividing a parameter 

estimate by the ratio of the sample standard deviation between input 
and output variables. After the data standardization, the influence of 
differences in dimension and order of magnitude is eliminated, so those 
different variables can be compared. SRC can therefore be used to 
compare the effects of different input variables on output variables. The 
SRC value ranges from − 1 to 1. The greater the absolute value of SRC, 
the stronger the impact of input on output. A negative value represents 
the variable is inversely proportional to the output, while a positive one 
means the opposite is true. 

Fig. 5 shows the SRC values computed for all the input variables. The 
water content has the highest absolute value of SRC (=0.87), more than 
1.5 times the second place (FA content). This suggests the predominant 
role of water content (W) on the chloride penetration of RAC in terms of 
PEC. Then GGBS, C, S, and CA have statistically similar effects on PEC. In 
contrast, the RCA-related parameters, including R and WA, show rela
tively small effects on PEC, with their SRC values around 0.10. More
over, the input variables W, S, R, and WA show positive effects on the 
output PEC, while C, FA, GGBS, and CA show the opposite. As a higher 
PEC value represents a lower chloride penetration resistance, the SRC 
values help identify the relative influence of each input. This mathe
matical information is indeed consistent with the physical behaviors 
observed in previous experiments. In specific, reducing the water- 
cement ratio (adding cement content and/or decreasing water con
tent) [20], adding mineral admixtures [22–24], extending the curing 
time [21], and using high-quality aggregates [68] can help improve the 
resistance to chloride attack of RAC. 

5.3.2. Partial dependence analysis 
How each input affects output is a key real-world concern for model 

users. Partial dependence analysis not only provides a valuable pathway 
to uncover such information but also extracts design insights from the 
ML models. Partial dependence plots (PDPs) can visually display the 
dependency relationship between the target function and the features of 
interest. The influence of variations of the eight input variables on the 
chloride ion permeability of RAC was investigated by the two-way PDPs 
based on the best predictor, the GBDT model. 

Fig. 6(a) to Fig. 6(e) disclose that as the curing age increases, a 
decreasing trend of passed electric charge can be observed, regardless of 
the changes in the amount of other materials (water, cement, sand, fly 
ash, and ground granulated blast slag). Surely, this trend corresponds to 
the fact that the chloride ion permeability becomes progressively 
weaker. Existing experiments [21] also demonstrate extending the 
curing age can increase the volume of hydration products and the 
compactness of RAC, which effectively slow down the chloride ion 
permeability. 

The adverse effect of water content stands out when it exceeds 170 
kg/m3, while the beneficial effect of cement content is not obvious when 
it is lower than 420 kg/m3 (Fig. 6(f)). This quantitative trend is intuitive 
as well as conducive to the durability design of RAC. 

Changes in sand content will affect the void ratio and total surface 
area of aggregates in fresh concrete. At a given cement slurry, excessive 
sand (larger than 650 kg/m3) will increase the total surface area and 
porosity of the aggregate, consume more cement to fill and wrap the 
aggregate, increase the porosity and adversely affect the permeability of 
RAC [69]. Interestingly, the threshold of 650 kg/m3 is suggested in Fig. 6 
(b). 

-0.28

0.87

0.33

0.15

-0.55

-0.37

0.12

-0.29

C W S R FA GGBS WA CA-1.0

-0.5

0.0

0.5

1.0
SR

C
 v

al
ue

Fig. 5. The SRC value of input parameters.  
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(c) Cement content versus curing age (d) Fly ash content versus curing age

(e) GGBS content versus curing age (f) Cement content versus water content

(g) GGBS content versus fly ash content (h) Aggregates water absorption versus 
replacement ratio of RCA

(a) Water content versus curing age (b) Sand content versus curing age

Fig. 6. Two-way partial dependence plots for input variables.  
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Fly ash and ground granulated blast slag can reduce the passed 
electric charge. Just adding more than 50 kg/m3 of mineral admixtures 
(Fig. 6(d) and Fig. 6(e)) can effectively improve the chloride penetration 
resistance of RAC, even at a short curing age. As seen in Fig. 6(g), the 
combination use of fly ash and blast slag can also lead to improved 
chloride penetration resistance of RAC. Chloride ions exist in concrete 
mainly in three forms: chemical binding (in the form of Friedel’s salt, 
Ca6Al2O6.CaCl2⋅10H2O), physical adsorption (adsorbed by calcium sil
icate hydrate (CSH) gel), and free state. The pozzolanic reaction of 
mineral admixtures can reduce the amount of cement hydration prod
ucts Ca(OH)2, improve the interface transition zone, and generate low- 
alkalinity CSH gel with higher strength and better stability [22,24]. 
This consequently lowers the porosity of cement paste, improves the 
pore structure of RAC, and then enhances the physical adsorption ca
pacity of RAC. More low-alkalinity CSH gel increases the chemical 
combination of chloride ions. 

Fig. 6(h) shows the PDP of the two parameters related to RCA. As the 
replacement rate of RCA increases, the passed electric charge tends to 
increase. It should be noted that the above trend is not obvious when the 
replacement rate is below 50%. When the water absorption of aggre
gates is lower than 7%, the increase in the water absorption is detri
mental to the chloride penetration resistance of RAC. Nevertheless, the 
adverse impact of large water absorption suddenly decreases when it 
exceeds 7%. This may be explained as follows. The large water ab
sorption of RCA is caused by the high porosity of the attached mortar. 
High porosity then increases the physical adsorption capacity of RAC to 
chloride ions to a certain extent, thereby improving its resistance to 
chloride ion erosion [29]. It should be noted that this limited positive 
effect is only effective against chloride ion erosion; the high porosity is 
detrimental when it comes to the mechanical performance of RAC. 

6. Potential application of the proposed ML framework 

6.1. Performance-based mixture design method 

RAC mixture designs are mostly based on the traditional strength- 
based design method for NAC [70]. In this process, the durability of 
RAC is loosely guaranteed by additional restrictions, such as upper limits 
on water-cement ratio and lower limits on binder content. This dura
bility design method has failed to keep up with modern design re
quirements, which raise higher expectations for precise control of 
durability and more sustainable constructions. Under this background, 
the establishment of a performance-based RAC mixture design method 
in conjunction with durability evaluation indicators is the key to 
improving RAC’s service life reliability. 

ASTM C1202 [71] classifies the chloride ion penetrability of concrete 

into five grades based on the passed electric charge (Table 4). Similarly, 
TB10005-2010 [72] puts forward requirements for the upper limit of the 
passed electric charge of concrete in terms of the design working life and 
the strength grade of concrete (Table 5). 

As illustrated above, the ML modeling framework proposed in this 
paper can accurately predict the passed electric charge of RAC. This 
superiority can be further harvested with the strength-based mixture 
design method to dynamically adjust the mixture parameters according 
to the prediction results, to optimize the dosage of each ingredient. 

The specific implementation process is shown in Fig. 7. First, the 
targeted strength grade and design working life for RAC are set as inputs. 
The strength-based mixture design method is then used to determine the 
initial amount of each gradient, which is also the input for the ML 
models. Afterward, the passed electric charge values can be predicted 
and compared with the threshold value to verify the acceptability of the 
mixture, either by adjusting the controlling parameters (such as 
lowering water/cement (w/c) ratio, adding mineral admixtures, etc.) for 
re-verification or by outputting the optimized mixture according to the 
feedback. 

6.2. Service life prediction model for RAC 

Service life prediction models can be used to design, construct and 
maintain structures with expected service life, thereby reducing the life 
cycle cost [73]. In a chloride environment, the corrosion process of 
reinforced concrete structures can be divided into three stages, namely, 
the corrosion induction stage, the corrosion development stage, and the 
corrosion damage stage. The period of the first stage accounts for more 
than 70% of the service life of concrete structures [74]. It is usually 
regarded as the service life of a concrete structure, and the remaining 
two stages are deemed as the surplus of the design life. The first stage 
begins when the concrete structure is exposed to the corrosion envi
ronment until the chloride ion concentration at the depth of the concrete 
cover reaches the critical concentration for steel corrosion. 

Table 4 
Chloride ion penetrability based on charge passed [71].  

Charge passed (coulombs) Chloride ion penetrability 

>4000 High 
2000~4000 Moderate 
1000~2000 Low 
100~1000 very low 
<100 Negligible  

Table 5 
Requirements for passed electric charge (coulombs) of concrete [72].  

Strength grade of 
concrete 

Design working life 

More than 100 
years 

More than 60 
years 

More than 30 
years 

<C30 <1500 <2000 <2500 
C30~C45 <1200 <1500 <2000 
≥C50 <1000 <1200 <1500  

Fig. 7. The flow chart of performance-based mixture design method of RAC.  
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The existing service life prediction models of concrete structures in a 
chloride environment can be divided into three categories: original 
Fick’s second law of diffusion, improved Fick’s second law of diffusion, 
and physical models [75]. Among them, the improved Fick’s second law 
is easy to use and can cover various exposure conditions. It is generally 
the first choice for the service life prediction of concrete structures. 
Representative methods are the DuraCrete method and Life-365 Com
puter program. The DuraCrete method is a design method based on 
probability reliability theory, which uses partial safety factor expres
sions for calculations. This paper developed a service life prediction 
model for RAC structures based on the DuraCrete method. 

The model is carried out in three stages, as shown in Fig. 8. In the 
design stage, the preliminary mixture satisfying the requirements of 
strength grade and design working life T is given through the 
performance-based mixture design method described previously. In the 
construction phase, the material parameters and environmental condi
tion parameters are determined through in-situ tests. There is a strong 
correlation between the passed electric charge and the chloride migra
tion coefficient [74]. Inspired by that, a linear relationship between 
them for RAC was suggested by Silva et al. [76]: 

Dcl,0 = F(Q) = 0.0034Q (14)  

where Dcl,0 represents the chloride migration coefficient at age t0, usu
ally taken as t0 for 28 days. Finally, in the operation stage, other model 
parameters including the surface chloride concentration cs, partial safety 
factor γs, critical chloride concentration cc, partial safety factor γc, 

environmental factor ke, curing factor kc, and age factor n, have not yet 
been available. The chloride ion diffusion coefficient of RAC at time t 
can be firstly calculated with default parameters. Based on in-situ test 
results, the model parameters are continuously revised and updated 
until the accuracy meets the requirements. Then the chloride ion 
diffusion coefficient is introduced into the analytical solution of Fick’s 
second law to obtain the service life expectancy tpre and output the 
revised model parameters. According to the expected service life, the 
RAC structure should be inspected regularly and performed mainte
nance and/or rehabilitation if necessary. 

7. Conclusions 

This paper explores how machine learning methods can be effec
tively leveraged for predicting the chloride penetration of RAC. The 
main conclusions are as follows:  

(1) All the ML models incorporated into the framework show good 
performance in predicting the chloride resistance of RAC, with 
their R2 values larger than 0.900. Among them, GBDT performs 
the best. With reference to the OBJ value, the overall perfor
mance of all the models can be ranked as GBDT > GPR > ANN >
SVR > RF > CART;  

(2) Based on the SRC analysis, the water content is identified as the 
most critical factor affecting the chloride ion permeability of 
RAC, followed by the content of FA and GGBS. Parameters related 

Fig. 8. The flow chart for establishing service life prediction model for RAC.  
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to aggregates quality, such as water absorption and replacement 
ratio, have a less noticeable influence on the chloride perme
ability of RAC. As a trend, reducing water-cement ratio, adding 
mineral admixtures, extending curing time, and using high- 
quality aggregates have positive effects on the resistance of 
RAC to chloride penetration to varying degrees;  

(3) The two-way PDPs visualize the influences of the input variables 
on the chloride ion permeability of RAC, which is consistent with 
previous experimental results. Consequently, the partial depen
dence analysis sheds light on better understanding the hidden 
mechanisms of the proposed ML models, clarifies its values in 
verifying the robustness of the ML models, and builds trust for 
potential model users;  

(4) The application scenarios of the ML models are further extended. 
A performance-based RAC mixture design method and service life 
prediction model are established, which can be assembled into an 
intelligent decision-making system to help engineers improve 
design efficiency and, ultimately, reap further sustainability 
benefits from RAC applications. 

The work presented in this paper falls under the category of data- 
driven predictive modelling, which is fundamentally fueled by the 
growing demand for sustainable concrete and constructions. All the 
models are trained using the database collected from laboratory exper
iments. Further research is therefore needed on the durability of RAC 
served in the natural environment. 
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M.H. Dai. [53] A0, B0, B1, B2, C0, C1, C2. 
C.S. Poon et al. 

[54] 
R0, R50, R100, R0F25, R50F25, R100F25, R0F35, R50F35, 
R100F35, R0F55, R50F55, R100F55. 

H. D. Zhen et al.  
[55] 
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C80RA2, C80RA3 

Thomas et al.  
[56] 

300/0.4/0, 300/0.4/0.25, 300/0.4/0.5, 300/0.4/1, 350/0.4/0, 
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Z. Pan et al. [57] Control28, Control90 
Bao et al. [58] NC-0.33-0, NC-0.39-0, RC-II-0.33-30, RC-II-0.33-50, RC-II-0.33- 

100, RC-III-0.33-30, RC-III-0.33-50, RC-III-0.33-100, RC-III- 
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