
H. Chad Lane
Susan Zvacek
James Uhomoibhi (Eds.)

12th International Conference, CSEDU 2020
Virtual Event, May 2–4, 2020
Revised Selected Papers

Computer Supported
Education

Communications in Computer and Information Science 1473

Editors
H. Chad Lane
University of Illinois
Urbana-Champaign, IL, USA

Susan Zvacek
University of Denver
Denver, CO, USA

James Uhomoibhi
School of Engineering
University of Ulster
Newtownabbey, UK

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-86438-5 ISBN 978-3-030-86439-2 (eBook)
https://doi.org/10.1007/978-3-030-86439-2

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-86439-2

Contents

Strategies for the Utilization of Virtual Reality Technologies in the First
Year of Architectural Education . 1

Salih Ceylan

MOOCs, Learning Analytics and OER: An Impactful Trio for the Future
of Education! . 21

Martin Ebner and Sandra Schön

Human Factors 4.0 for Engineering and Design Education 37
Donovan Manuel Esqueda-Merino, Luis Enrique Villagómez-Guerrero,
and Yuliana Tónix-Cuahutle

The Effect of Online Discussions on Student’s Cognitive and
Metacognitive Development . 63

Ahmed Mohamed Fahmy Yousef and Eman Mohammed Makram

Practising Reading Fluency with Virtual Voice Assistants: Theoretical
Perspectives and Experiences . 78

Sara Durski, Wolfgang Müller, and Ute Massler

Participation in Asynchronous Online Forums for Prediction of
Learning Performance . 93

M. E. Sousa-Vieira, O. Ferreira-Pires, J. C. López-Ardao,
and M. Fernández-Veiga

The Code.org Platform in the Developing of Computational Thinking with
Elementary School Students . 118

Rolando Barradas, José Alberto Lencastre, Salviano Soares,
and António Valente

Improving Learner Experience, Motivation and Knowledge Gain When
Using Mulsemedia-Based Technology Enhanced Learning 146

Irina Tal, Longhao Zou, Margaret Farren, and Gabriel-Miro Muntean

Effects of Adaptive Educational Games on Adults’
Computational Thinking. 162

Nour El Mawas, Danial Hooshyar, and Yeongwook Yang

Using Augmented Reality in an Inquiry-Based Physics Laboratory Course . . . 177
Sebastian Kapp, Michael Thees, Fabian Beil, Thomas Weatherby,
Jan-Philipp Burde, Thomas Wilhelm, and Jochen Kuhn

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

The Code.org Platform in the Developing
of Computational Thinking with Elementary

School Students

Rolando Barradas1,2,4(B) , José Alberto Lencastre3 , Salviano Soares1,4 ,
and António Valente1,2

1 School of Sciences and Technology, University of Trás-os-Montes and Alto Douro,
Quinta de Prados, Vila Real, Portugal

rolando.barradas@inesctec.pt
2 INESC TEC, Porto, Portugal

3 CIEd - Research Centre On Education, Institute of Education, University of Minho,
Campus de Gualtar, Braga, Portugal

4 IEETA, UA Campus, Aveiro, Portugal

Abstract. Computational thinking is the thinking process involved in formulating
problems to admit a computational solution. This article describes a study inwhich
the code.org platform was used to develop computational thinking with Elemen-
tary school students. After proper introduction and contextualization, we describe
the 198 students from 4th grade involved in the study, following the process of
collecting and analyzing data from the code.org platform. We conclude with the
evaluation carried out by the students. The main conclusion of this study is that
code.org is a valid option for developing computational thinking with Elementary
school students. Also, a reliable way for students to start solving real-life prob-
lems, stimulating the capacity for abstraction through simulated and experienced
practice.

Keywords: Computational thinking · Code.org platform · Technology-enhanced
learning · Elementary school students

1 Introduction

Computational thinking is used in the design and analysis of problems and their solu-
tions. The most crucial thought process in computational thinking is abstraction [1, 2].
Abstraction is used in determining patterns, generalizing from instances, and param-
eterization. It is used to let one object stand for many. It is used to capture essential
properties common to a set of objects. For instance, an algorithm is an abstraction of a
process that receives input, performs a sequence of steps, and produces an output. An
abstract data type defines an abstract set of values and operations for manipulating those
values, hiding the actual representation of the benefits from the user of the abstract data
type. Designing efficient algorithms inherently involves creating abstract data types.
Abstraction gives us the power to scale and deal with complexity [3].

© Springer Nature Switzerland AG 2021
H. C. Lane et al. (Eds.): CSEDU 2020, CCIS 1473, pp. 118–145, 2021.
https://doi.org/10.1007/978-3-030-86439-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86439-2_7&domain=pdf
http://orcid.org/0000-0001-9399-9981
http://orcid.org/0000-0002-7884-5957
http://orcid.org/0000-0001-5862-5706
http://orcid.org/0000-0002-5798-1298
https://doi.org/10.1007/978-3-030-86439-2_7

The Code.org Platform in the Developing of Computational Thinking 119

2 Contextualization

Today we can find computers everywhere. Regardless of the physical form in which we
find them, they are used daily in fields like industry, science, education, and entertain-
ment. First in our desktops, and now in our pockets. Nowadays, most of us carry smart-
phones millions of times more capable than all the computing power NASA (National
Aeronautics and SpaceAdministration) had in 1969whenApollo 11 landed on theMoon
[4].

From 1946 to present day, we watched an exponential evolution that drove us from
the 27 ton and roughly 2,4 m× 0,9 m× 30 m, military-developed Electronic Numerical
Integrator and Computer (ENIAC) to the smallest computer in the world, capable of
fitting on a grain of rice, a small cube with 0,3 mm per side [5].

The use of computers is a constant in our daily lives and the processing power of
computers has continuously increased. Yet we rarely think about this evolution, since
for most users today all this technology and processing power it’s taken for granted as
they’ve always lived surrounded by it.

Generation Z was the one of true digital natives. To them nothing exists without
Google or a smartphone and commanding devices by voice it’s part of everyday life.
But their children already belong to Generation Alpha, the first generation who will be
immersed in technology their whole lives. They are more comfortable using a touch-
screen device or speaking to a voice assistant than most of their adult relatives. Tech-
nology is somehow intuitive to them and they are massive content consumers. Also, soft
skills entered their learning plans as they concentrate on things like problem-solving,
multi-tasking, and quick thinking [6], essential skills for the 21st century [7].

Regardless of age, educational background, or professional occupation, computers
are easily usable by anyone, At the same time, it is now almost imperative for everyone
to have, at least, basic computer skills, that include Internet and email, word processing,
graphics and multimedia, and spreadsheets. Thanks to increasingly user-friendly inter-
faces, applications and computers can now be used without expert knowledge to solve
complex problems or technical tasks as well as for the most varied situations of everyday
life. Yet, according to Resnick, Maloney, Monroy-Hernández, Rusk, and Astmon [2, 8],
one of the biggest challenges that users face nowadays is the need to stop from being
mere content consumers of programs and games to become creators of such contents. To
do so, one needs only to be aware of a small number of basic applications and tools and
sufficiently curious to search for information on the Internet or be able to do so through
a trial and error process.

Since the beginning of themillennium, ICTclasses (Information andCommunication
Technologies) have become mandatory in schools. However, until recently, the study of
ICT focused on the transmission of knowledge about computer tools and a basic set of
software and hardware, and how to use them to solve everyday tasks. Things like writing
a text, browsing the internet, and learning how to use it to communicate efficiently are
some of the knowledge that was transmitted in ICT classes. A natural evolution of the
contents would be to make users understand how these tools work and how they are
built.

Coding is a way of developing creative activities with children from Generation
Alpha as it allows them to gain a broader view of computer uses, creatively solving

120 R. Barradas et al.

real-world problems, by focusing primarily on design, planning, and implementation of
a project.

It’s in this context that it becomes necessary tomention another essential competence
for the 21st century: computational thinking [9].

2.1 Computational Thinking

Computational thinking can be defined as the set of processes involved in formulating
a problem and its solutions so that a human or machine can effectively solve it [10, 11],
and it’s more connected to conceptualization than to coding itself [9].

The development of computational thinking implies developing other skills such as
(i) abstract thinking – understanding problems and solving them using different levels of
abstraction -, (ii) algorithmic thinking – expressing a solution to find the most effective
way to solve a problem - (iii) logical thinking - formulating and excluding hypotheses
- and (iv) measurable thinking - breaking up a big problem into small parts or joining
small parts to attain a more complex solution [2].

Brennan and Resnick’s studies on computational thinking and the creation of inter-
active media products allowed them to create a framework of reference for studying
and evaluating the development of computational thinking. This framework consists of
three dimensions: (i) computational concepts, (ii) computational practices, and (iii)
computational perspectives.

Concerning computational concepts (i), Brennan and Resnick [3] were able to
identify seven:

Sequences – A set of steps or instructions that can be executed to complete a coding
task. In a sequence of instructions, it is important to define the correct order of execution
since changing the order of one of them could lead to completely different results;
Loops – Mechanisms that allow the execution of the same sequence a given number of
times. In certain types of problems, it is possible to identify patterns of repetition and
use them to simplify the Code;
Events – An event is an occurrence of something that causes an action to execute;
Parallelism – The solution to certain problems implies that several sequences take place
at the same time;
Conditionals – Conditions allow a program to make decisions and, through the use of
decision structures, execute, or not, some piece of Code;
Operators – Used to express and solve mathematical and logical operations;
Data – Data structures are used to store, retrieve, and update values needed for the
execution of a program.

The computational practices (ii) associated with the act of programming, are
focused on the construction process [3]. They also target the processes of thinking and
learning by changing the focus from what is learned to how it is learned. In their studies,
Brennan and Resnick identified four sets of practices:

Being Incremental and Iterative – Is the practice by which children develop and check
whether a project works and continue to develop new approaches to the solution, in case
it’s not the final one;

The Code.org Platform in the Developing of Computational Thinking 121

Testing and Debugging – Is the practice by which, through trial-error processes and
the analysis of previously solved problems, children check what is wrong and does not
work and correct it;
Reusing and Remixing – Is the practice in which children learn by building something
new, using their old projects or projects that others have already done and shared;
Abstracting and Modularizing – Is the practice by which it’s possible to reach a big
solution by joining sets of smaller parts since complex problems can be divided into
smaller and simpler problems, easier to solve.

While studying interactive media products, Brennan and Resnick identified three
major computational perspectives (iii) of children in their relation to computing, and
categorized them as:

Express - as computing is a means of creation and self-expression, it allows students to
start to see themselves not only as consumers but also as builders;
Collaborate/Connect - computing gives freedom of creation with and for the others.
Therefore, it allows the development of a critical spirit by making one’s creations an
inspiration for new projects and those of others;
Questioning - Trying to understand how certain problems were solved can lead to
questioning the functioning of other real-world problems [12].

Therefore, analyzing the execution of projects and activities, taking into account the
three dimensions described above, it will be possible to evaluate the development of
computational thinking in young people.

Using coding as a way to develop computational thinking also stimulates students’
creativity by making them solve real-world problems, tangible or not. According to
Jonassen [13], the most relevant educational activities that students can perform are
problem-solving activities because the knowledgebuilt during the process is better under-
stood and more easily retained. Also, by using the problem-solving method, students
“learn how to learn” [14] because while looking for a solution for a problem instead
of waiting for an answer they develop their domain of the procedures [15]. Using these
teaching methods tends to increase the motivation of students. They become the main
agent in the learning process.

3 Code.org

Code.org (Fig. 1) is a nonprofit organization and website, founded in 2013, dedicated
to expand access to computer science in schools all over the world and to increase the
participation of women and underrepresented minorities.

Their learning platform maintains an extended set of educative resources and tools
that can be used in almost every platform, smartphones, and tablets included, thus being
very flexible and easy to use.

Its vision is that every student in the world should have the opportunity to learn
computer science, just like they learn biology, chemistry, or algebra [16].

122 R. Barradas et al.

Fig. 1. Code.org homepage (adapted from [19]).

But what explains such impressive numbers, as the ones observed in Fig. 1? What
makes the platform so attractive to young students? In our analysis we conducted to the
platform we identified several details that we consider important and might explain its
success.

3.1 Assessing the Content

Everyone can try toCode inCode.org. Students can even start testing the platformwithout
creating an account. Nevertheless, access to the platform has been built to respond to
almost any existing combination today. If students already have a pre-existing account
from other platforms, such as Google, Facebook, andMicrosoft, they can use it to access
the contents. If not, they can create an account on the platform (see Fig. 2).

Fig. 2. Login page from the Code.org platform (adapted from [19]).

Any situation in which students log in, allows them to keep track of their progress
and Sign in at a later time so that they can continue solving tasks.

Notice that, for a teacher to be able to monitor the learning process of each one of
his students individually, they must have an account and the teacher should have created
a class and assigned students to it.

The Code.org Platform in the Developing of Computational Thinking 123

Also, the fact that the platform is built as a web application, running entirely in a
web browser allows you to start working more rapidly as there is no need to pre-install
or configure the devices that will be used. All the learning process is done in a graphical
environment through drag-and-drop of instruction blocks that students use to build their
programs and solve each of the challenges (see Fig. 3).

Fig. 3. Coding by blocks.

3.2 Course Organization and Self-efficacy Control Tools

The Computer Science Fundamentals, Course 2, the object of this study, is organized
in 19 Lessons, online and offline, grouped by computing concepts and with increasing
difficulty. Note that for this study, only online lessons finishing with Lesson 16 - Flappy
Bird were considered. Every lesson starts with an introductory video that explains the
lesson’s objectives and gives students some insight into the type of problems they will
encounter. The course includes Lessons about sequences, loops, and all the other com-
putational concepts identified by Brennan and Resnick [3], and ends with slightly more
complex concepts such as nested loops and functions.

Fig. 4. Viewing progress for self-efficacy control.

In each coding task, students have information about themaximum number of blocks
that they can use to solve the problem with the optimal solution. If a student can solve

124 R. Barradas et al.

a problem using the optimal solution, the problem number will be painted in green, on
their progress overview. If they manage to solve it but not with the optimal solution, the
problem number will be painted with a light green color, as seen in Fig. 4. This way,
students can easily see the problems that need attention and retry that problem at a later
time to find the optimal solution.

The course overview is a tool that allows students to monitor their effectiveness, and
to compare their progress with their peers, serving as motivation for task solving.

3.3 Well-Chosen Characters

When designing the platform challenges, the designers had in mind the target audience.

Fig. 5. Example of a challenge involving familiar student characters.

All the challenges were created using animations, sounds, and characters according
to the age of the target group. Angry Birds, pictured in Fig. 5, and Plants vs. Zombies are
some of the themes and characters used in many of the challenges, turning them even
more attractive to students.

3.4 Instant Feedback

Talking about gamified instruction, Kapp, Blair, and Mesch [17], stated that instant
feedbackwas one of themost important elements in aGamification system.Gamification
can be described as the use of characteristic elements of games in non-game situations,
for example, the existence of reward systems, levels of difficulty, scoring tables, time
limits, resource limits, definition of clear objectives, variety of game type and a narrative
that contextualizes them [18].

Code.org created a gamified system that maximizes feedback. At the end of each
challenge, students are notified about what they have already completed and what mis-
takes they have made (See Fig. 4). When students are successful in their task they are
immediately rewarded with a message and sound that indicates success and joy (see
Fig. 6).

The Code.org Platform in the Developing of Computational Thinking 125

Fig. 6. Instant feedback associated with positive reinforcement.

On the other hand, when the solution found is not the right one, students are informed
immediately with messages of encouragement (see Fig. 7).

Fig. 7. Instant feedback associated with non-success.

This simple process of instant feedback proves itself very effective by allowing
students to immediately check their progress and compare it with others.

3.5 Reward System

Fig. 8. Certificate of completion of course 2 (adapted from [19]).

126 R. Barradas et al.

As part of their implemented reward system, and in addition to the already men-
tioned elements of motivation in a gamified environment [18], Code.org implemented a
Certificate of Completion, allowing students to print one with their name, at the end of
each course they complete (see Fig. 8), serving as another motivation tool.

3.6 Points to Improve

Despite all these success factors, as the students got to work, we found that the plat-
form also has some points to improve, namely regarding the translations into national
languages, in our case, Portuguese, both in its Portuguese and Brazilian Portuguese
versions.

Since it is designed to be used by small children, the platform offers translations into
several languages. Despite this, and it the fact that is possible to choose between Por-
tuguese and Brazilian Portuguese, among others, as already mentioned, the translations
are not always the most correct. Typically, students in this study used the platform with
the Portuguese translations. However, several exercises had their statements written in
Brazilian Portuguese, as can be seen in the message shown in Fig. 9.

Fig. 9. Example of a message in Brazilian Portuguese.

On the other hand, some exercises in the Portuguese version (and also in the Brazil-
ian Portuguese) are displayed in English, although the programming interface is set to
Portuguese, as shown in Fig. 10.

Fig. 10. Example of a message in English.

In other cases, such as the example shown in Fig. 11, in addition to being written in
English, the language level is relatively complex for young, non-English native children.
These cases required the teacher to translate the questions for them.

Another language question was the fact that some translations to Portuguese were
better understood when read in Brazilian Portuguese than when done in Portuguese from

The Code.org Platform in the Developing of Computational Thinking 127

Fig. 11. Example of a message in English that students had difficulties reading.

Portugal. This forced the students to constantly change the language of the interface in
an attempt to better understand certain questions.

In addition to these language issues, students also reported some issues related to
the platform freezing in certain browsers and platforms but, given the small number of
occurrences, this fact was considered residual and of no greater importance to the results
of the study.

4 Method

The participants were 198 students from eight 4th grade (9–10 years old) over three
school years, divided as follows: 2017/18, 28 students from Class 1 and 28 students
from Class 2; 2018/19, 25 students from Class 3, 26 students from Class 4 and 23
students from Class 5; 2019/20, 24 students from Class 6, 23 students from Class 7 and
21 students from Class 8. Of those, 99 were females and 99 were males. It’s important
to note that the first partial results of this study have already been published in 2020,
without important data from school year 2019/20 [19].

The study was conducted over three different realities, concerning the way classes
were taught. In the school year 2017/18, the classes were taught in regular classroom
sessions in a pedagogical pair regime, with the ICT teacher always assisted by the
headteacher of the classes, because the students were very young and it was the first
time that most of them worked with computers and platforms such as Code.org. In the
2018/19 school year, it was not possible to maintain this organization, so they were
taught in regular classroom sessions but only by the ICT teacher. In the school year
of 2019/20, schools closed in mid-march due to the COVID-19 pandemic, so classes
were taught using remote education methods, with the ICT teacher being supported by
the parents at home. Additionally, students from school years 2017/18 and 2018/19 had
previously taken offline coding classes [20] based on the CS unplugged book [21].

Initially, the basic concepts of the Code.org platform were taught to all students.
They learned how to grad-and-drop the blocks, how to fit them together, the workspace
locations, and interface details such as the action stage and execution buttons. They
also learned how to use their credentials to enter the platform, consult their progress,
and access the challenges. Then, they worked on a hands-on laboratory with problem-
solving exercises [22] that allowed them to develop their computational thinking. The
exercises/challenges involved computational concepts like sequences, loops, parallelism,
events, conditionals, operators, and data, which would allow students to create their first
Flappy game and share it with their relatives.

128 R. Barradas et al.

Data from these activities was collected through the platform’s automatic records for
statistical processing. For this statistical treatment, only data from the online exercises of
the first 16 lessons of Code.org’s Computer Science Fundamentals, Course 2 was used
as the goal set for the course was for students to create their Flappy Bird game. Also
used as instruments for data collection were an online questionnaire for the students
(two questionnaires for the students of the school year 2019/20) and the notes of the
ICT teacher on how the regular classes and online interaction (with the students of the
school year 2019/20) worked.

5 Results

The results of the 115 different problems were evaluated for each of the 198 students
involved in the study, in a total of 22770 problems. The global results of the study are
summarized in Table 1.

Table 1. Global results (adapted from [19]).

Different problems/total
analyzed

Conclusion rate (%) Conclusion rate,
non-optimal solution (%)

Global Results 115/22770 86,5% 3,99%

In the first analysis, we found that the percentage of problems solved is 86,5%. Of
these, only 3,99% of them did not get the optimal solution to the problem, which is a
very positive result.

Examining the results according to the three dimensions of Brennan and Resnick’s
framework [3], (i) computational concepts, (ii) computational practices and (iii)
computational perspectives, we obtained the following results:

(i) Computational Concepts.
The number of different problems indicated in Table 2 refers to the number of
exercises in which each one of the concepts was covered. Also, the same problem
could address more than one concept. Also, it is possible to notice a dispropor-
tion between the number of problems covered by each concept but this fact was
already expected since this is an introductory course and complex concepts like
Events, Parallelism, and Data are only little addressed and only near the end of the
course. Sequences were the concept that students had less trouble acquiring, with
a completion rate of 89,6%. Of these, only 2,4% of the results were not an optimal
solution. On the opposite side, the Events, Parallelism, and Data concepts were
those in which students had the most difficulties. Despite this, the completion rate
is very positive, at 73,9%, of which only 0,1% did not reach the optimal solution.
In global terms, the obtained average completion rate per concept was 78,7%.

The Code.org Platform in the Developing of Computational Thinking 129

Table 2. Global test results, grouped by computational concepts.

Concept No. of different
problems/total analyzed

Completion rate Completion rate with
non-optimal solution

Sequences 46/9108 89,6% 2,4%

Loops 67/13266 86,3% 5,8%

Events 10/1980 73,9% 0,1%

Parallelism 10/1980 73,9% 0,1%

Conditionals 15/2970 77,2% 3,9%

Operators 25/4950 75,9% 2,4%

Data 10/1980 73,9% 0,1%

(ii) Computational Practices.
All computational practices mentioned by Brennan and Resnick [3] were covered,
although, like in the case of computational concepts, due to the type of problems
present in the course, not all computational practices were given equal emphasis.

Table 3. Global test results, grouped by computational practices.

Practice No. of different
problems/total analyzed

Completion rate Completion Rate with
non-optimal solution

Being incremental and
iterative

82/16236 89,6% 4,2%

Testing and debugging 23/4554 80,6% 4,6%

Reusing and remixing 67/13266 86,3% 5,8%

Abstracting and
modularizing

10/1980 73,9% 0,1%

It is important to note that the number of problems indicated in Table 3 refers to the
number of exercises in which each practice was addressed and that some problems
addressed more than one computational practice.
Analyzing the results grouped by computational practices, it is possible to conclude
that the practices of Being incremental and iterative were the most addressed
throughout the course with 82 different problems. It was in these practices that
students showed less difficulty, obtaining a completion rate of 89,6%. The students
showed to be comfortable with the practices that involved Reusing and Remixing.
In these problems, they achieved a completion rate of 86,3%, with only 5,8% of
these not reaching the optimal solution. The obtained average completion rate per
practice was 82,6%. The practices that involved Abstracting and modularizing
were those in which students obtained lower results. However, it was not possible
to determine the real reason for those results. Theymay be due to actual abstraction

130 R. Barradas et al.

difficulties or simply lack of time to solve the problems given the slow pace of
some students.

(iii) Computational Perspectives.
Althoughnot objectivelymeasured, the three computational perspectives -Express,
Collaborate, and Question - were cross-sectional throughout the process of
problem-solving. Although the students had guidelines to solve most of the tasks,
in some cases, they also had the freedom to create something new and to per-
sonalize something already existing through the inclusion of personal elements in
the provided scenarios - Express. Most of their work was done individually, but,
typically as soon as a student ended a lesson, they tried to help their most delayed
colleagues by doing peer work - Collaborate. Also, curiosity about the processes
and the different problem-solving methods led them to Question the technology,
to try to solve problems with different levels of abstraction, and even to suggest
some improvements that could be made in the existing games or challenges.

5.1 Flappy Bird Challenge

Programming a Flappy bird game was the final objective considered for this study.

Fig. 12. Generic scenario used in the Flappy Lesson (adapted from [19]).

Starting with a generic scenario represented in Fig. 12, students created their own
personalized Flappy Bird games (see Fig. 13).

The results for the final task on Lesson 16 were very positive, with a 69,7%
completion rate of the challenge.

They were also encouraged to share their games with family and friends, via email,
by sending a link that could be executed on all platforms where code.org works. In
statistical terms, in the 1463 problems solved by the students in Lesson 16, only 1 of
those was not solved with the optimal solution. However, regarding the data analysis,
this fact might not be considered of much relevance, since, in the case of a work of
creation, personalization, and sharing, almost all the solutions presented by the students
could be considered optimal.

The Code.org Platform in the Developing of Computational Thinking 131

Fig. 13. Student-customized flappy bird examples.

5.2 Working @ Home

The three classes from the year 2019/20 had a completely abnormal year. As we are
aware, the Covi-19 pandemic, locked us all at home and, in the particular case of Classes
6, 7 and 8, all classes since March, 13th 2020 were taught remotely via Microsoft teams
Meetings, for Tasks, chatting and synchronous learning activities, and via YouTube
videos, for asynchronous activities and tasks. This fact makes it important to analyze the
results of these 3 classes inmore detail. As previously referred, data from task completion
of Classes 1–5 has already been published and analyzed thoroughly [19].

Using data fromMicrosoft Teams Insights, it’s possible to summarize the interactions
of each one of the classes with the teacher during this period (see Table 4).

Table 4. Online interaction between students and teacher.

Interaction Class 6 Class 7 Class 8

Posts 201 210 146

Answers 621 163 209

Reactions 649 953 839

Answers per post (Avg) 3,1 0,8 1,4

Reactions per post (Avg) 3,2 4,5 5,7

Tasks delivered on time 79% 88% 73%

Although the contents covered, the main posts from the teacher and the tasks to
perform were the same for the three classes, the interaction levels are quite different
from class to class. It is possible to observe that, for example, Class 6 has more than
doubled the answers per post of the other two classes. However, in that same class, only

132 R. Barradas et al.

79% of the Tasks were delivered within the specified time whereas, in Class 7, the one
with the lowest interaction levels, the tasks delivered on time reached 88%.

Specifically, on Code.org, the data collected from the platform allowed us to build a
table of results per Class (Table 5).

Table 5. Test results of classes 6–8, grouped by computational concepts (in percentage).

Concept Class 6 Class 7 Class 8 Average

Sequences 96,7 81,4 93,8 90,6

Loops 93,9 73,1 90,8 85,9

Events 82,1 77,8 86,7 82,2

Parallelism 82,1 77,8 86,7 82,2

Conditionals 88,3 78,3 90,5 85,7

Operators 85,8 78,1 89,0 84,3

Data 82,1 77,8 86,7 82,2

Average per class 87,3 77,8 89,1

Observing the averages per Computational Thinking Concept, it is possible to verify
that the minimum value obtained is 82,2% which represents a very high value, close to
the overall test results of 86,5% (see Table 1) and above the average global results per
concept of 78,7%, leading us to believe that the fact that these particular Classes were
working at home did not interfere with the results of the test.

Visually comparing the three Classes (see Fig. 14), it is possible to see that Class 7’s
results were always below the results from the other two Classes.

60.0
70.0
80.0
90.0

100.0

Sequences Loops Events Parallelism Condi!onals Operators Data

Computa!onal thinking concepts

Class 6 Class 7 Class 8

Fig. 14. Test results of classes 6–8, grouped by computational concepts (in percentage).

It was also possible to obtain data to analyze the computational practices by Classes.
In these results (see Table 6), it is possible to observe that theminimum average value per

The Code.org Platform in the Developing of Computational Thinking 133

class was 75,1%, a very positive result. Also, the minimum average value per practice
was 83,9%, a value higher than the average of the entire study of 82,6% (see Table 3).

Table 6. Test results of classes 6–8, grouped by computational practices (in percentage).

Practice Class 6 Class 7 Class 8 Average

Being incremental and iterative 94,7 81,7 92,5 89,6

Testing and debugging 93,5 67,7 90,7 83,9

Reusing and remixing 93,9 73,1 90,8 85,9

Abstracting and modularizing 82,1 77,8 86,7 86,7

Average per class 91,0 75,1 90,2

Observing the graphic of the results per practice (see Fig. 15), it is also possible to
verify that, although very positive, in this dimension it was also Class 7 that obtained the
lower results of the three classes. It is possible to observe that, despite some fluctuations
in the values, in the case of the practice of Abstracting and modularizing, the values for
all three classes are very close to each other. The greatest disparity in values occurred in
the Testing and debugging practice of Class 7. Data shows that the real reason for this
lower result is not that the problems were badly resolved, but that they were not resolved
at all. According to the data collected from the platform, the students from Class 7 did
not resolve 32% of the exercises related to that practice, hence the poor results. However,
it was not possible to identify the reason why students in Class 7 did not try to solve this
particular set of problems.

60.0
70.0
80.0
90.0

100.0

Being incremental and
itera!ve

Tes!ng and debugging Reusing and remixing Abstrac!ng and
modularizing

Computa!onal thinking prac!ces

Class 6 Class 7 Class 8

Fig. 15. Test results of classes 6–8, grouped by computational practices (in percentage).

Although not objectively related in this study, the results of the 2019/20 school year
seem to point that lower levels of interaction on the communication platforms used by
teachers lead to lower results as, in this case, could be observed by the data related to
Class 7.

134 R. Barradas et al.

5.3 Daily Classes

As previously mentioned, this study is divided into three different learning realities:
regular classroom sessions, in a pedagogical pair regime; regular classroom sessions but
with only the ICT teacher; and children working at their homes, with the help of the
ICT teacher, in synchronous and asynchronous activities, and their families for closer
support.

The overall results of the study were excellent but, given these pedagogical changes,
we found it relevant to analyze the partial results per school year.

Observing Table 7, it is possible to verify the evolution of the average results of
classes, by Computational Thinking Concepts, in the three different learning realities.

Table 7. Results by computational thinking concepts (in percentage).

Computational
thinking concept

Average (Classes 1–2) Average (Classes 3–5) Average (Classes 6–8)

Sequences 96,5 83,6 90,6

Loops 96,2 79,4 85,9

Events 89,3 55,6 82,2

Parallelism 89,3 55,6 82,2

Conditionals 89,5 60,8 85,7

Operators 89,4 58,7 84,3

Data 89,3 55,6 82,2

Average per
school year

91,4 64,2 84,7

Reading the radar chart in Fig. 16, representing the same results, it is possible to
better understand these values. It is possible to notice that, compared to Classes 1–2
and Classes 6–8, the lines referring to Classes 3–5 are always closer to the center of the
chart, moving away from the optimum results.

Also, when analyzing the results by Computational thinking practices, it is possible
to verify very different levels from one school year to another (see Table 8).

On the radar chart in Fig. 17, representing the same results by practice, it is possible
to notice that, once again, compared to the other results, the lines referring to Classes
3–5 are always closer to the center of the chart, moving away from the optimum results.

Objectively, and comparing the results by Computational thinking concepts and
practices, it’s possible to verify that Classes 3–5, although with positive results, were
the ones whose results were further away from the optimum objectives.

Also, when analyzing the completion results of the final task of Lesson 16, in the
school year of 2017/18, (Classes 1–2), only 14,28% of the students did not complete
the last challenge of the programmed course. On the other hand, in the school year
of 2018/19, (Classes 3–5), this number rose to 55,4%. In the school year of 2019/20,
(Classes 6–8) the value decreased again to 19,1%.

The Code.org Platform in the Developing of Computational Thinking 135

0.0
20.0
40.0
60.0
80.0

100.0
Sequences

Loops

Events

ParallelismCondiƟonals

Operators

Data

ComputaƟonal thinking concepts

AVG(Classes 1-2) AVG (Classes 3-5) AVG (Classes 6-8)

Fig. 16. Results by computational thinking concept (adapted from [19]).

Table 8. Results by computational thinking practices (in percentage).

Computational
thinking practice

Average (Classes 1–2) Average (Classes 3–5) Average (Classes 6–8)

Being
incremental and
iterative

96,9 84,4 89,6

Testing and
debugging

93,2 68,6 83,9

Reusing and
remixing

96,2 79,4 85,9

Abstracting and
modularizing

89,3 55,6 82,2

Average per
school year

93,9 72,0 85,4

Although the students were not the same, pedagogically speaking, the main variable
that changed throughout the study was the fact that the students had more support in
some school years than in others. In all three school years, whether in regular classroom
sessions or remotely, the doubts that most students had were solved with explanations of
specific problem-solving methods to the entire class at the same time. Individual doubts
were explained to each of the students in their place in the classroom or via chat/video
meetings when working remotely. Yet, when working in a pedagogical pair regime, the
fact that there were always two teachers in the classroom allowed a faster response to
problems that could arise with both the computers and the platform which left more time

136 R. Barradas et al.

0.0
20.0
40.0
60.0
80.0

100.0

Being incremental
and

itera!ve

Tes!ng and
debugging

Reusing and
remixing

Abstrac!ng and
modularizing

Computa!onal thinking prac!ces

AVG(Classes 1-2) AVG (Classes 3-5) AVG (Classes 6-8)

Fig. 17. Results by computational practices (adapted from [19]).

for students to focus on problem-solving, thus obtaining better results. When working at
home, that same support was provided by parents with the help of the ICT teacher, via
Microsoft Teams. This kind of extra support was not possible in 2018/19 with Classes
3–5.

Despite its effects were not objectively measured, one should not underestimate the
importance of that extra support when working in this type of subject given the number
of students in the classroom and their age.

5.4 Evaluation by Students

To allow students to evaluate their work, we used an adapted questionnaire based on
previous studies [23]. This questionnairewasmade available to students in an anonymous
online form, with some free text questions, allowing students to express their feelings
about the work they developed. This questionnaire contained the following questions:

• Question 1. Did you have difficulties with the process of solving the problems? If
you answered Yes or Some, say what were the difficulties.

• Question 2. Was it possible to solve the various problems in several different ways?
Did you try to do it?

• Question 3. Do you think the Code.org platform is easy to use?
• Question 4. Did you have any problems with the platform?
• Question 5. What was your favorite Lesson of Code.org course 2?
• Question 6. And what Lesson did you like least in Code.org course 2?
• Question 7.What do you think were the benefits (what did you learn) of coding using
Code.org?

• Question 8. Do you like coding?

The Code.org Platform in the Developing of Computational Thinking 137

• Question 9. What would you like to learn more about coding?
• Question 10. Would you like to improve your knowledge?

In each school year, after the end of classes, students involved in this study were
invited to answer the online questionnaire.We collected 146valid responses and canceled
4 due to repeated submission and inconsistent data in the responses, such as “I had
difficulties” but at the same time “I had no problems”.

Examining the obtained answers, it was possible to retain the following conclusions:
When asked about (1) difficulties in the problem-solving process, 41 students

reported that they had no problem in the problem-solving process. Only 6 students con-
sidered that they had problems. 99 students reported that they had some minor problems
with this process.

However, when asked to refer the actual difficulties, we observed that only 4 of
the 146 students reported real problems with the process and the platform - “I had
difficulties in executing it”; “Had to reset to drag the blocks”; “At the beginning, I had
somedifficulties dragging the blocks”. The remaining responses referred to problems that
aren’t related to the resolution process, but rather to some issues of previous knowledge,
namely, notions of laterality [“to know if I needed to turn left or right”, “I had difficulties
in those problems that asked to turn right or turn left”], mathematical questions [“I had
difficulties calculating the angles”, “I had difficulty finding the angles and number of
pixels needed”, “calculating the pixels and degrees.”], or even problems interpreting
or solving the problems [“Sometimes it was more difficult to pass the level because I
didn’t quite understand how it was supposed to be done”, “Some exercises were harder
than others”]. Interpretation issues could be related to the previously mentioned fact
concerning some of the incomplete or partially wrong translations to the local language.

When asked about if (2) it was possible to solve the proposed problems in several
different ways, 87,7% of the students reported that they tried to do it, and 90,4% of those
reported that theywere able to do it in differentways. This fact was proved by the analysis
of the results provided by the platform, where 3,99% of the problems were solved with
non-optimal solutions, compared to the total number of exercises solved. This shows that
despite the students realized that it would be possible to solve the problems differently,
as they appeared signaled in a different color, not all of themwere able to do so, to obtain
the optimal solution.

Regarding the (3) ease of use of the Code.org platform, 88,4% of the students who
answered the survey found the platform to be easy to use [“Code.org is very easy to
use and I had no problem with the platform. It is very easy, it is practical because it
is suitable for all electronic devices and to enter it you just have to enter the password
and enter, and you have a solution if you forget your password”, “Yes I think it is easy
to use Code.org platform”]. Interestingly, some of the students who considered that the
platform is not easy to use, consider that they had no problems in its use because when
asked if they had had (4) problems with the platform, 80,8% of the students reported
that they did not have problems.

When referring to their (5) favorite Lesson of the course, the survey obtained
131 valid answers. 15 of the answers were considered null because students referred
to Lessons not considered in the study or to other courses on the code.org platform.
Considering the valid answers, the students elected first place, Lesson 16, FLAPPY, the

138 R. Barradas et al.

last considered for this study, with 31 votes, followed by Lesson 3,MAZE: SEQUENCE,
the first they worked on, with 23 votes.

Lessons 7: ARTIST: LOOPS, 8: ARTIST: SEQUENCE LOOPS and 13: BEE:
LOOPS, were also the ones that most pleased the students, with 12, 12 and 11 votes
respectively. Although many students chose as favorite the Lessons that focused on sim-
pler concepts, 64,1% of the students who answered the survey chose as a favorite Lesson
one of the ones that already involved more complex computing concepts such as Loops,
Events, Parallelism, Conditionals, Operators, and Data. This result is in line with the
general results of the study, and it demonstrates that students appreciated the complexity
brought to the problems by the application of computational concepts with a higher level
of difficulty. They enjoyed using their recently developed computational thinking.

On the other hand, when they referred to the (6) Lesson that they liked least,
students who had preferred lessons with more elaborated concepts tended to like less
the first lessons of the course with only basic concepts and the opposite was also noted.
Students who preferred the lessons with simpler concepts tended to dislike the more
complex lessons. Also, 10,3% of the students who answered the questionnaire said that
they could not enumerate one, because they loved all the Lessons.

When asked about what they (7) learned through the Code.org platform, the
students gave the most diverse answers. Table 9 highlights the main categories that
emerged from the content analysis after a first floating reading [24].

Table 9. Excerpt from the free-text responses about what students learned while working in
Code.org.

Category Evidence (examples) Frequency

Learn to work with computers “Now I can easily use the computer and
keyboard”; “Learn how to work with
computers”; “They helped me to be more
comfortable working with the computer”;
“I learned to work better on the computer”

21

Programming “I learned what gives rise to programs and
that through Code we can simplify some
programs.”; I learned “how to program
games.”; “The benefits were learning to
program.”; “I learned to program very
well.”; “I learned how to create some
things”

20

Autonomy “I learned to be more patient and not ask
for help right away.”; “I learned to solve
problems on my own”; “I with Code.org
learned that we can never give up.”; “I
learned to work alone.”; “I learned that
one should never give up and that we have
to be patient”

17

(continued)

The Code.org Platform in the Developing of Computational Thinking 139

Table 9. (continued)

Category Evidence (examples) Frequency

Think faster and better to solve
problems

“At Code.org I was able to: (…) think
faster to execute problems”; “I learned to
think twice before doing it”; “I learned to
solve problems”; “By coding at Code.org:
I learned to think better (…).”; “I learned
to use the brain more easily.”; “I was
amazed to do things in different ways and
with creativity”; “I learned how to solve
problems”

17

Learn Math “I was also able to look at a certain angle
and identify it”; “I learned a lot of math.”;
“I learned to use angles”; “To take it easy
and learn math”

14

Play “I learned to play Code.org games.”; “play
and at the same time learn.”; “I learned to
play games on the site.”; I learned “to
work, to play, and to have fun”

11

Problem Solving Skills “I was amazed to solve problems in
different ways and with creativity”; “I
learned how to solve problems on my own”

6

Notions of Laterality “I learned right and left”; “I used to swap
left with right”

5

Analyzing the collecteddata, itwas possible to verify that, in general, students learned
that they “should never give up” and “must-have patience” to solve the problems, in a
clear reference to the development of autonomy and resilience inherent to the problem-
solving process. They also learned “to think better” and “to solve problems in different
ways”, by themselves, and to do things “in different ways”, with “creativity”, facts also
related to the development of problem-solving skills.

In terms of acquired knowledge, students generally refer to “better understanding
the computer Codes” and to “be more comfortable working with the computer”. They
also use the term “Programming” and phrases like “I learned to do logical reasoning”
or “I learned how to develop programs” a significant number of times. Since it was
important not only to learn to program but also to learn while programming [25], it
is worth mentioning the fact that some students consider that they have perfected their
notions of laterality andMathematicswhile solving exercises that involvedmathematical
concepts such as angles and drawing with pixels.

Also important is that the students were learning while having fun since, as they
said, it was ‘play and learn at the same time’.

To the question (8) Do you like to program? we obtained 135 positive responses
(92,5%) confirming that students were enjoying programming, at least in the visual form
they have known so far. We also obtained 8 responses from students (5,5%) who said

140 R. Barradas et al.

they like to program, but only certain types of problems. As for negative responses, we
obtained only three.

Regarding (9) improving/deepeningknowledge, students tended to answer that they
would like to learn more about building and coding robots and coding games. Content
analysis was also performed to these free-text answers [24] and the two main categories
found were replicated in Table 10.

Table 10. Excerpt of categories for the content analysis of the answers about deepening
knowledge.

Category Evidence (examples) Frequency

Coding robots “In terms of coding I liked to control robots and many more things
about coding and would like to improve my knowledge.”; “I
would like to build robots”; “I would like to know if the robots are
programmed the same way we program the Code.org characters
and yes I would like to improve my knowledge.”; “I would like to
assemble robots”

36

Coding games “I liked to learn how to make my own games”; “What I liked to
learn most in programming, was programming games”; “I would
like to make other games”; “Program games like this.”; “Make
games. Yes, I would like to know more.”; “I would like to invent
my games”; “I would like to know how to program my own game”

22

Regarding (10) learning more/improving knowledge, we obtained 98,6% of affir-
mative answers, with phrases similar to “I would like to improve my knowledge, as I
still know very little about the world of programming”, “I would love to learn more” or
“Yes, I would like to”. As for negative responses, we obtained only one - from the same
student who said he does not like to program - and another student stated that he would
like to learn “more or less”.

Additionally, to evaluate the work developed by the students at home, during the
distance education period, the students from Classes 6, 7, and 8 (school year of 2019/20)
were invited to answer a second online questionnaire in which we collected 70 valid
responses.

This questionnaire was available in an anonymous online form, with some closed
answer, multiple-choice and Likert scale questions and contained the following
questions:

• Question 1.Do you think it was more difficult to work at home with their own devices
than with computers from the classroom?

• Question2.Regarding the functioning of the classes…Doyou think that the one-week
period for the tasks was sufficient?

• Question 3. Did you enjoy having synchronous classes?
• Question 4. Would you like to have had more synchronous classes? Answer this
question only if you answered Yes to the previous question.

The Code.org Platform in the Developing of Computational Thinking 141

• Question 5. How much time did you dedicate to solving Code.org problems? If you
don’t remember, ask the family at home… they may have a better idea than you…

• Question 6. What devices did you use to work with?
• Question 7. How do you rate the help of your family members to USE THE
TECHNOLOGY in this Distance education phase?

• Question 8. How do you rate your family members’ help to SOLVE Code.org
PROBLEMS?

Analyzing the obtained answers, it was possible to retain the following conclusions:
Regarding the fact that the students spent a great part of the school year at home

and comparing the (1) difficulty to work at home with their own electronic devices,
with the work at school, the opinions were well divided: 50% of the students referred
that it was harder to work at home than at school whereas the other half of the students
stated that it was not more difficult to work at home.

To cope with the distance between teacher and students, and using the fact that
the Course 2 of Code.org is already divided in Lessons, students were given minimum
objectives for each week, in the form of Microsoft Teams Tasks. Question (2) intended
to assess whether they thought that the one-week period for the tasks was sufficient.
This question was in the form of a 5-points Likert scale [26] question where 1 meant
“No, the time wasn’t enough” and 5 meant “Yes, I made it all very quickly”. Examining
the responses, we obtained a mode of 5, considered a measure of central tendency [27],
which points to the fact that students were very satisfied with the time for each one of
the tasks.

Although students were comfortable with the work developed at home, mostly in
the form of asynchronous tasks, they also enjoyed the synchronous classes. Based on
question (3) answers, 67 of the 70 students (95,7%) that answered the questionnaire,
said they” enjoyed the synchronous classes and doing the tasks at the same time as the
other colleagues”. Also, in this matter, 77,1% of the students referred that they would
have liked to have more synchronous classes (Question 4). By comparing these two
values where 95,7% liked the synchronous classes but only 77,1% would like to have
more, we can perceive that despite liking the synchronous instructional mode in which
they contacted via videoconference with the teacher and their colleagues, some of the
students were not very comfortable with it and would prefer to do the tasks on their own,
at their own pace.

Question 5 was used to try to assess the time that the students spent working
at home, to compare it to the other classes from previous school years. 37 of the 70
students (52,9%) that answered the questionnaire stated that they spent less than 1 h
per week working on Code.org, 32 of the students (45,7%) spent between 1 and 2 h per
week and only 1 of the students (1,4%) spend more than 2 h per week. Comparing these
figures with previous school years is somehow difficult. Typically, students in Classes
1 to 5, worked on Code.org for 1 h when they attended the regular classroom sessions
and were instructed to work on Code.org only in those sessions. Of course, at this time,
it’s impossible to know if they worked at home, after class. However, with the results
obtained, a weighted average of 1,2 h per week, we believe that the results of the school
year 2019/20 are comparable with the ones from previous years.

142 R. Barradas et al.

One of the computer skills that might have been developed in the case of these
students, confined at home, is the ability to use different electronic devices to work.
Typically, when they start ICT classes at school, most of them have never or rarely
worked with personal computers because at home, they work only with smartphones
and tablets. It was surprising to analyze the results of Question 6, to find out that only
a small number of students used Tablets and Smartphones to perform their tasks. The
results are summarized in the following Table 11 .

Table 11. Devices used to perform tasks at home.

Device used Number of references

Laptop/Notebook computer 44

Tablet 20

Desktop computer 17

Smartphone 6

Is was also interesting to observe that 15 of the 70 students used more than one
device to perform their tasks and attend synchronous classes. In some cases, a simple
“computer setup” was created at home, with the help of their parents, so that children
could perform their tasks in the computer but used their smartphones or tablets to attend
synchronous classes and share video and audio at the same time, without interrupting
their work.

Regarding Question 7, we used it to evaluate the technological aptitude level
of the students. As it was the first time that all of them were involved in this kind of
learning activities, it is important to know if they had difficulties in the adaptation to
the new methods. The question was in the form of a 5-points Likert scale [26] question
where 1 meant “I never needed help. I already knew or learned to do everything myself.”
and 5 meant “I needed a lot of help. It was all new and different than usual.”. Examining
the responses, we obtained a central tendency mode of 3 [27] which points to the fact
that a great number of the students were already “computer fluent” and had some, but
not many problems adapting to the tools they needed to use while accessing the class
contents. This fact might be explained by the fact that they already had 5 months of
regular classroom sessions, they had already developed the necessary skills to work
with these tools.

The last question of this questionnaire,Question 8, intended to evaluate the level of
help that students had from their families while working at home. This question was
also in the form of a 5-points Likert scale [26] question where 1 meant “I did everything
myself” and 5 meant “I had help with many of the problems”. Examining the obtained
responses, we obtained a mode of 2 [27] which points to the fact that most students have
developed a high level of autonomy and problem-solving skills that don’t require adult
help or supervision at all times. Also, it’s important to refer that 13 of the 70 students
that answered the questionnaire mentioned that they did everything on their own. Only
5 of the students considered that they had a lot of help from their families. This fact

The Code.org Platform in the Developing of Computational Thinking 143

may also have been determined by the fact that when they started working at home, the
students already had 3 regular classroom sessions with their ICT teacher, in which the
basics of Code.org and the problem-solving methods have been explained, in a similar
way to what happened in previous school years.

6 Conclusions

Children live in a technology environment,marked by access to an abundance of informa-
tion, rapid changes in technology tools, and the ability to collaborate andmake individual
contributions on an unprecedented scale. Capable children of the 21st century must be
able to exhibit a range of functional and critical thinking skills related to information,
media, and technology. Learning and innovation skills increasingly are being recognized
as those that separate students who are prepared formore complex life in the 21st century,
and those who are not. A focus on creativity and computational thinking are important
to prepare students for the future.

The study described in this article used the code.org platform to analyze the develop-
ment of computational thinking with Elementary school students. To assess the devel-
opment of computational thinking, we use a framework that identifies computational
concepts, practices, and perspectives. As all tasks proposed to students included the
search for the solution of a problem, concepts, practices, and computational perspec-
tives, it can be said that computational thinking was promoted. Students attained very
positive results, while training problem-solving skills, building and retaining knowledge
better.

Code.org is a handy tool to use in introductory coding classes. The fact that students
have to solve different types of unfamiliar problems in creative and innovative ways
makes them ask meaningful questions that clarify various points of view and lead to
better solutions. The use of gamification strategies like narratives, trophies, and instant
feedback, works as an engagement factor for students. Also, the fact that some exercises
have clues that help children understand them, the possibility of partially solving the
exercises and being able to return to complete them at a later time, makes code.org a
very flexible and appropriate tool for the age group under study. It was also possible
to perceive the involvement of the students with some of the characters used in the
challenges, as they already knew them from the games they played. Also significant is
the fact that they were learning computer science concepts while having fun.

There are, however, other conclusions to be drawn from the experience, namely
concerning the importance of the support that students should have. When working in
standard classrooms, the organization of this type of class should be favored in terms
of pedagogical pairs or smaller groups of students for better results. The proposed tasks
require very close monitoring, which is extremely difficult to be performed by a single
teacher in a classroom. Doing it in remote learning, due to the COVID-19 pandemic,
increased the difficulties, which may have somehow affected the final results.

However, this study made it possible to obtain positive conclusions and create
working methods, both for students and teachers, which could be used in the future.

144 R. Barradas et al.

Acknowledgments. This work was partially financed by the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia, through national funds, and co-funded by the FEDER,
where applicable.

This work was partially funded by CIEd – Research Centre on Education, project
UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of
FCT/MCTES-PT.

We would like to thank the Colégio Paulo VI (Gondomar, Portugal) the authorization to carry
out this study on its premises, and students of the 4th grade of the school years of 2017/18, 2018/19
and 2019/20 by their collaboration.

References

1. Wing, J.M.: Computational thinking. Commun. ACM 49, 33–35 (2006)
2. Resnick, M.: Point of view: reviving Papert’s dream. Educ. Technol. 52(4), 42–46 (2012)
3. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of

computational thinking. In: Annual American Educational Research Association Meeting,
Vancouver, BC, Canada, pp. 1–25 (2012). https://doi.org/10.1.1.296.6602

4. Puiu, T.: Your smartphone is millions of times more powerful than all of NASA’s combined
computing in 1969. https://www.zmescience.com/research/technology/smartphone-power-
compared-to-apollo-432/. Accessed 21 Feb 2019

5. Popular Mechanics Website. https://www.popularmechanics.com/technology/a22007431/
smallest-computer-world-smaller-than-grain-rice/. Accessed 01 Aug 2020

6. BizzCommunity Website. https://www.bizcommunity.com/Article/196/423/195991.html.
Accessed 01 Aug 2020

7. Partnership For 21ST Century Skills: Framework for 21st Century Learning (2009). http://
www.p21.org/storage/documents/docs/P21_framework_0816.pdf

8. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52, 60–67 (2009). https://
doi.org/10.1145/1592761.1592779

9. Wing, J.M.: Computational thinking (2007). https://www.cs.cmu.edu/afs/cs/usr/wing/www/
Computational_Thinking.pdf. Accessed 01 May 2019

10. Wing, J.: Computational thinking’s influence on research and education for all. Ital. J. Educ.
Technol. 25(2), 1–12 (2017). https://doi.org/10.17471/2499-4324/922

11. Cuny, J., Snyder, L., Wing, J.M.: Demystifying computational thinking for non-computer
scientists (2010). http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

12. Brennan, K., Chung, M., Hawson, J.: Scratch curriculum guide draft. Nature 341(6241), 73
(2011)

13. Jonassen, D.: Learning to Solve Problems. A Handbook for Designing Problem-Solving
Learning Environments. Routledge, New York (2011)

14. Papert, S.: The Children Machine. BasicBooks, New York (1993)
15. Echeverría, M., Pozo, J.: Aprender a resolver problemas e resolver problemas para aprender.

In: Pozo, J. (ed.) A Solução de Problemas: Aprender a Resolver, Resolver Para Aprender.
Artmed, Porto Alegre (1998)

16. Code.org Website. https://Code.org/about. Accessed 05 Apr 2019
17. Kapp, K.M., Blair, L., Mesch, R.: The Gamification of Learning and Instruction Fieldbook.

Wiley, San Francisco (2012)
18. Barradas, R., Lencastre, J.A.: Gamification e game-based learning: estratégias eficazes para

promover a competitividade positiva nos processos de ensino e de aprendizagem. In: Revista
Investigar em Educação (Issue Mundo digital e Educação), pp. 11–37. Sociedade Portuguesa
de Ciências da Educação, Porto (2017)

https://www.zmescience.com/research/technology/smartphone-power-compared-to-apollo-432/
https://www.popularmechanics.com/technology/a22007431/smallest-computer-world-smaller-than-grain-rice/
https://www.bizcommunity.com/Article/196/423/195991.html
http://www.p21.org/storage/documents/docs/P21_framework_0816.pdf
https://doi.org/10.1145/1592761.1592779
https://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational_Thinking.pdf
https://doi.org/10.17471/2499-4324/922
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://Code.org/about

The Code.org Platform in the Developing of Computational Thinking 145

19. Barradas, R., Lencastre, J.A., Soares, S., Valente, A.: Developing computational thinking in
early ages: a review of the code.org platform. In: Chad Lane, H., Zvacek, S., Uhomoibhi, J.
(eds.) Proceedings of the 12th International Conference on Computer Supported Education
(CSEDU2020), vol. 2, pp. 157–168. SCITEPRESS – Science and Technology Publications,
Prague (2020)

20. CS Education Research Group Website. http://csunplugged.org. Accessed 7 Sept 2015
21. Bell, T.,Witten, I.H., Fellows,M.: CS unplugged. University of Canterbury, NZ (2015). http://

csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf
22. Jonassen, D.: Learning to Solve Problems - An Instructional Design Guide. Pfeiffer, São

Francisco (2004)
23. Kalelioğlu, F.:Anewwayof teaching programming skills toK-12 students: code.org.Comput.

Hum. Behav. 52, 200–210 (2015)
24. Bardin, L.: Análise de conteúdo, p. 70. Edições, Lisboa (1979)
25. Resnick, M.: Learn to Code, Code to Learn (2013). https://www.edsurge.com/news/2013-05-

08-learn-to-Code-Code-to-learn. Accessed 07 Feb 2019
26. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 1–55 (1932)
27. Jamieson, S.: Likert scales: how to (ab) use them. Med. Educ. 38(12), 1217–1218 (2004)

http://csunplugged.org
http://csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf
https://www.edsurge.com/news/2013-05-08-learn-to-Code-Code-to-learn

