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Abstract. Expected utility theory can be relevant for decision-making
under risk, when different preferences should be taken into account. The
goal of this paper is to present a quantitative risk analysis methodology,
depending on expected utility, where the risk consequences are deter-
mined quantitatively, the risk is modelled using a loss random variable
and the expected utility loss is used to classify and rank the risks. Con-
sidering the relevance of risk management to reduce workers’ exposure
to occupational risks, the methodology is applied to the analysis of acci-
dents in industry, where six different injury categories are distinguished.
The ranking of the injury categories is determined for three different
utility functions. The results indicate that the slope of the utility func-
tion influences the ranking of the injury categories. The choice of the
utility function may thus be relevant for the risk classification in order
to prioritize different aspects of risk consequences.

Keywords: risk assessment, risk analysis, expected utility, utility func-
tion, accidents, industry

1 Introduction

In the theory of decision making under risk the expected utility theory developed
by von Neumann & Morgenstern (1947) describes the representation of prefer-
ence relations on risky alternatives using expected utility. The expected utility
model is used to model how decision makers choose between uncertain or risky
prospects [1]. According to that model, there exists a utility function, which de-
pends on the individual’s preferences, to appraise different risky outcomes and a
decision maker chooses the outcome which maximizes expected utility. Expected
utility theory has applications in the context of economic and actuarial sciences,
however it can also be useful for applications in industrial settings, as it will be
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shown in the present paper. There exist applications of the theory to risk anal-
ysis in industry (e.g. in the examples presented below), where utility functions
are introduced, however we could not find applications of expected utility, where
the utility functions are applied to random risk consequences.

Considering the risk analysis in industry, one important aim is to order
risks quantitatively, so that higher ranked risks can be identified and risk-
handling approaches can be applied, such as risk-controlling, risk-avoiding and
risk-mitigating actions [2].

One common method used in industries, e.g. in many applications of safety
analysis or in systems development, is to evaluate risks based on the determina-
tion of the level of risk (see [3]) or of the risk factor (see e.g. [4]), which are both
expressed in terms of combinations of the occurrence probability of a certain
risk event and of the size of its consequence. For example in the risk analysis
of accidents, the risk matrix is a popular and common approach to evaluate
occupational risks, where the probability of the occurence of accidents and the
consequences of accidents are categorised and each cell of the matrix is associ-
ated with a level of risk. Several risk matrices have been used and proposed. In
the end, risk can be classified in relation to its acceptance or ranked, as e.g. [3]
intolerable, undesirable, tolerable and negligible; or high, medium high, medium
and low.

Another approach, for example in the failure analysis in systems development
(see [4]), is to determine a risk factor RF , more used for complex systems,
which depends on the probability of failure P and on the consequence of failure
or measure of the consequence of failure C. A failure can be generalized to a
broader sense of risk and therefore the risk factor RF can be defined as the
product of the probability of risk occurence and the consequence of risk, which
can be interpreted as a loss. A simple formulation of the risk factor is to define
it as the product of both factors [4]

RF = PC. (1)

The values for C are determined based on the classification of different risk
categories by assigning a value between 0 (negligible impact) and 1 (high or
catastrophic impact) to C. This classification can be performed by experts in
the various technological areas and several tables with decision criteria have been
developed to facilitate the assessment and to evaluate the consequences of risk
(see e.g. [5],[6],[7],[8],[9]). Some tables, for example, consist of 4 risk categories:
catastrophic, critical, marginal, negligible and the risk factor RF ranges then
between 0 and 1, where 0 means that there is no risk and 1 means that there is
a high or maximal risk [9].

Based on this risk assessment formulation, Ben-Asher [9] developed a risk
assessment method using utility theory, which improves the previous model (1).
Due to symmetries, drawbacks were identified in the formula for the risk factor,
e.g. high probabilities with negligible consequences and low probabilities with
high (catastrophic) consequences can be ranked equally. However, as remarked
in [9] most people emphasize risks with higher catastrophic consequences, so
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that more attention should be payed to the latter case and it should therefore
be ranked differently from the first case. Using utility theory the new proposed
model was formulated by [9]

RF = Pu(C), (2)

where u is a utility function, called utility-based loss function.

The loss value for the worst possible outcome is defined by u(Cworst) = 1 and,
in the absence of risk, the value is given by u(Cbest) = 0. For other intermediate
consequences Ci, the values are determined by asking the agent (or risk manage-
ment board) for which value of p ∈ (0, 1) he would be indifferent between getting
the outcome Ci with certainty and a lottery yielding the outcome 1 (worst out-
come) with probability p and 0 with probability 1 − p. The utility based loss
values are then defined by u(Ci) = p, so that Ci is the certainty equivalent of
the lottery. In this context, a typical utility function is convex, which increases
more for higher values of consequences. This resolves the mentioned drawback.

Other applications of utility theory to the risk analysis in the industrial
settings were proposed in [10], where risk matrices were established that integrate
risk attitudes quantified by utility functions, in [11], where the assessment of
safety risks in oil and gas industry was considered, or in [12], where in the context
of ports vulnerability analysis in shipping and port industries the ranking of
vulnerable levels was determined by utility values.

In this work we present a methodology for the analysis of risks in indus-
try, where the risk evaluation and classification is based on expected utility
theory. The main difference between this methodology and the methodologies
based on utility theory mentioned above is that this is a quantitative method-
ology, where the risk consequences are determined numerically and modelled as
random variables and expected utility is used to assess the risks, whereas the
other methodologies are semi-quantitative, the consequences being determined
qualitatively and ranked subjectively through the utilities. Here, a loss random
variable is defined and the expected utility loss is used to rank the different
risks. Different utility functions are introduced presenting more or less agressive
decision-makers, so that a given risk can be classified differently, more or less
severe, according to the different properties related with the first and second
derivative of the utility function, modelling the decision-maker’s risk attitude.
The risk analysis based on expected utility is applied to a case study of risk
analysis of occupational accidents in the furniture industry, considered in [13],
and the results are compared with the results of that previous study. In [13], the
risks, associated with lost days due to different injury categories, were modelled
by loss random variables and expected loss, loss variance and risk measures, such
as Value-at Risk and Tail-Value-at-Risk (or Expected Shortfall), were used to
analyse the risk levels of different accident categories. The data used in the case
study corresponds to accidents in the furniture industry in Portugal in the year
2010, this industry being one of the most relevant activity sectors in Portugal
[14], which consists predominantly of small and medium-sized enterprises [15].
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2 Risk assessment based on expected utility

Consider the following decision problem. Suppose that a decision maker with
wealth w must decide between two random losses X and Y . A simple decision
model that one can apply in order to choose betweenX or Y is the expected value
model. According to the expected value principle, a decision maker compares
E[w −X] with E[w − Y ] and chooses the random amount which maximizes the
expected value, so that he would prefer X to Y if E[w − X] > E[w − Y ], he
would choose Y if E[w −X] < E[w − Y ] and in the case E[w −X] = E[w − Y ]
the decision maker would be indifferent between X and Y .

In the expected utility theory developed by von Neumann and Morgenstern
(1947) a utility function u(·) : R → R is introduced that represents the preference
ordering of the decision. The decision maker judges the utility of a given quantity
instead of the simple value of that quantity, so that he takes into account the
utility of the wealth u(w) instead of w. The utility function is an increasing
function, u′(·) > 0, since utility increases with wealth.

According to the expected utility model, if the decision maker must decide
between two random losses X and Y , he compares the expected utilities E[u(w−
X)] with E[u(w−Y )] and opts for the quantity having the higher expected utility,
so that he chooses X if E[u(w − X)] > E[u(w − Y )], or Y if E[u(w − X)] <
E[u(w− Y )] and if E[u(w−X)] = E[u(w− Y )] the decision maker is indifferent
between X and Y .

The decision that an individual takes depends on his attitude towards risk,
which is characterized by the second derivative of the utility function, by its
shape. A decision maker can be classified into three risk attitude categories:
risk-seeking, risk-neutral and risk-avoiding (or risk-averse). For a risk-seeking
individual the utility function is convex, u′′(·) > 0, for a risk-avoiding individ-
ual the utility function is concave, u′′(·) < 0, and for a risk-neutral individual
the utility function is linear, u′′(·) = 0. The following example illustrates this
characterization.

Example 1. Consider a lottery, where the decision maker can win 2 monetary
units with probability 0.5 or 0 with the same probability, and let X denote
the random variable representing the corresponding monetary outcome. The
expected utilities for the three different utility functions: u1(x) = x2 – risk-
seeking, u2(x) = x – risk-neutral, u3(x) =

√
x – risk-avoiding, are given by:

E[u1(X)] = 2, E[u2(X)] = 1, E[u3(X)] =

√
2

2
≈ 0.71. (3)

Comparing the expected value of the monetary outcome of the lottery, given
by E[X]=1, with the certainty equivalents corresponding to the different utili-
ties (a certainty equivalent is the amount of cash that an individual would ac-
cept with certainty instead of facing the lottery), which are determined through
CE(X;ui) = u−1

i (E[ui(X)]), i = 1, 2, 3:

CE(X;u1) =
√
2 ≈ 1.41, CE(X;u2) = 1, CE(X;u3) =

1

2
, (4)
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one can observe that the lottery for a risk-seeking decision maker is valued higher,
CE(X;u1) > E[X], than for a risk-avoiding decision maker, CE(X;u3) < E[X].
For the risk-neutral utility, the certainty equivalent coincides with the expected
value.

In risk theory, a risk can in certain situations be modeled by a loss random
variable X, a random risk, of the form (see for example [1]):

X = IB, (5)

where I is the indicator random variable, which can take the values I = 1,
indicating that a risk event or a loss has occurred, or I = 0, indicating that no
risk event or no loss has occurred, and B represents the random amount of loss.

The indicator random variable I can be described by a Bernoulli(p) distri-
bution, 0 ≤ p ≤ 1. The occurrence probability of the risk event is p = P (I = 1)
and 1 − p = P (I = 0) corresponds to the probability of no risk occurrence. If
I = 1, then the loss X is drawn from the distribution of the random variable B
and if I = 0, then X = 0, meaning that no loss has occurred.

The moments ofX can be calculated using the iterative formula of conditional
expectations. The expected loss is determined as follows

E[X] = E[E[X|I]] = pE[B]. (6)

In the particular case, where the amount of loss is fixed B = b, then the formula
for the expected loss simplifies to

E[X] = pb. (7)

The expected utility loss of X = IB is given by

E[u(X)] = pE[u(B)] + (1− p)u(0) (8)

and the expected utility for X = Ib, considering a fixed loss B = b, by

E[u(X)] = pu(b) + (1− p)u(0). (9)

Using a normalization condition u(0) = 0, the formulas (8) and (9) become,
respectively,

E[u(X)] = pE[u(B)] (10)

and

E[u(X)] = pu(b). (11)

Comparing the previous formulas for the expected loss and expected utility loss
of a random risk with the definitions for the risk factor used in the industry con-
text (1) and (2), the latter depending on the utility function, then the expected
loss defined in (7) resembles formula (1) and (11) resembles formula (2), where
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p plays the role of P of the risk occurrence probability and b the role of C, since
a risk consequence can be perceived and represented as a loss in a certain sense.
In the expected utility framework, that we will adopt here, the consequences or
losses will also considered to be random variables, so that the definitions (6) and
(10) would represent the analogous risk factors for random consequences.

In the risk assessment approach based on expected utility we will use the
utility function to characterize the outcome of the risk representing a loss (or
a consequence), so that as in [9] the utility function u is a utility loss function
(or utility-based loss function). Thus, u(·) is an increasing function of loss or
consequence, u′(·) > 0. We will apply the definitions (11) and (10), where the
losses are modelled as fixed or random variables, respectively. In order to assess
and classify the risks in industry, we will use the expected utility losses to rank
the risks. We will say that a risk X is higher or more severe than the risk Y , or
simply that X is riskier than Y , if the expected utility loss of X is higher than
those of Y and we will represent this risk relation order by X ≻ Y . Thus, we
have that

X ≻ Y ⇔ E[u(X)] > E[u(Y )], (12)

meaning that X is riskier than Y .

3 A case study – risk assessment of industrial accidents

We will apply the expected utility based risk analysis method to a case study
that was considered in [13]. The aim is to classify and assess injury categories
of occupational accidents that occurred in the furniture industry in Portugal in
2010. Official accident reports data were provided by the Portuguese Office of
Strategy and Planning (GEP), which are aligned with European Statistics on
Accidents at Work (ESAW III). The six categories of contact-modes of injuries,
denoted by Ci, i = 1, . . . , 6, are presented in Table 1.

Table 1. Contact mode of injury categories.

Ci injury category

C1 Contact with electrical voltage, temperatures, hazardous substances
C2 Horizontal or vertical impact with or against a stationary object (victim in motion)
C3 Struck by object in motion, collision with
C4 Contact with sharp, pointed, rough, coarse Material Agent
C5 Trapped, crushed, etc.
C6 Physical or mental stress

The occurrence of a safety risk, which in the present case is a occupational
accident belonging to one of the six injury categories, is accompanied by a con-
sequence and its severity can be measured by the number of lost work days.
Therefore, here the loss (or consequence, or severity) will be measured in terms
of number of lost days implied by an accident. Different injuries will lead to
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different numbers of lost work days, where the case of zero lost work days is also
possible to occur. The risk of accident can then be characterized by its occur-
rence probability, estimated based on the past accidents’ frequencies, and by its
loss, measured in terms of lost work days.

The risk corresponding to the injury category Ci will be modeled using the
loss random variable

Xi = IiBi, (13)

where Ii ∼ Ber(pi), with pi being the accidents’ occurrence probability in cate-
gory Ci, and the random variable Bi represents the number of lost work days in
category Ci.

We will consider two cases, where in the first case a fixed estimated number
of lost work days will be used, Bi = bi, and in the second case a random variable
Bi will be used, where further the number of zero and non-zero lost work days
will be taken into account. The estimated number of lost work days due to an
accident of category Ci, i = 1, . . . , 6, will be defined by

bi =
bTi

ni
, (14)

where bTi
represents the total number of lost days associated with accidents of

category Ci and ni is the number of accidents in category Ci. The occurrence
probability of an accident in category Ci is given by

pi =
ni

n
, (15)

where ni stands for the number of accidents in category Ci and n is the total
number of accidents that occurred in the furniture industry. The probability
that an accident belonging to category Ci will lead to at least one lost work
day can be estimated taking into account the number of accidents that had as
consequence one or more than one lost work day as follows

qi =
ni,≥1

ni
, (16)

where ni,≥1 denotes the number of accidents in category Ci leading to at least
one lost work day. Table 2 contains the results for accidents of each category Ci.

Table 2. Results for the contact modes of injury categories.

Ci ni ni,≥1 qi bTi bi pi
C1 97 77 0.79 1135 11.70 0.02
C2 523 361 0.69 17457 33.38 0.12
C3 958 585 0.61 18082 18.87 0.22
C4 1406 1188 0.84 53661 38.17 0.33
C5 331 270 0.82 13594 41.07 0.08
C6 998 809 0.81 27062 27.12 0.23
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Case 1: Risk model with a fixed number of lost work days
Considering the risk model Xi = Iibi, we will apply the expected utility loss

(11) E[u(Xi)] = piu(bi) using three different utility functions exemplifying the
different risk attitudes: the linear utility u1(x) = x, a quadratic utility u2(x) = x2

and the exponential utility u3(x) = ex. Note that for the linear utility the ex-
pected utility corresponds to the expected value. The other two utility functions
are convex, where the exponential utility increases more for higher losses than
the quadratic utility. Table 3 contains the calculated expected utility losses for
each injury category.

Table 3. Expected utility losses of injury categories.

Ci E[u1(Xi)] E[u2(Xi)] E[u3(Xi)]

C1 0.23 2.74 2411.43
C2 4.01 133.71 3.77× 103

C3 4.15 78.34 3.45× 107

C4 12.60 480.79 1.25× 1016

C5 3.29 134.94 5.49× 1016

C6 6.24 169.16 1.38× 1011

The injury categories can be ordered with respect to their risks using the
results of Table 3 and the representation (12) for each utility function (see Ta-
ble 4).

Table 4. Risk ordering of injury categories using expected utility losses.

E[u1(Xi)] C4 ≻ C6 ≻ C3 ≻ C2 ≻ C5 ≻ C1

E[u2(Xi)] C4 ≻ C6 ≻ C5 ≻ C2 ≻ C3 ≻ C1

E[u3(Xi)] C5 ≻ C4 ≻ C6 ≻ C3 ≻ C2 ≻ C1

In this case, the utility function is applied to the loss model depending on
the accident ocurrence probability and on the estimated number of lost work
days, which is fixed, with the effect that only the number of lost work days, bi,
is influenced by the utility function.

From the results in Table 4 one concludes that the injury category C1 is
classified as the lowest risk category with all three utility functions. The linear
and the quadratic utility classifiy C4 as the higher risk category, followed by C6.
However the exponential utility classifies C5 as the higher risk category, followed
by C4. The reason for this difference can be explained as follows. As one can see
from Table 2, C5 has the highest estimated number of lost days b5 = 41.07 and
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a low occurrence probability p5 = 0.08, whereas C4 has the highest occurence
probability p4 = 0.33 and the number of lost days is also considerable large
b4 = 38.17. With an increasing slope of the utility function the impact on bi
also increases. Thus, the increasing slope penalizes the risk and the penalization
is more accentuated for higher values of bi. This has the influence that C5 is
considered with u1 the fifth risk category, with u2 the third risk and with u3

(the exponential utility having the highest slope), the highest risk category. For
low values of bi, as in C1, the influence of the slope has low impact, leaving C1

at the same risk level. In general, one can conclude that attention should first
be paid to the injury category C4 and then to the category C6 which occupy
higher risk positions in the different orderings. There is a further evidence to
consider C5 as the third risk category. If one wants to weight more the number
of lost days and the aim is to reduce accidents with higher number of lost days,
although the occurence probability being low, then more attention should be
paid to injury category C5.

With the given model the results of Table 4 suggest the following ranking:

C4 ≻ C6 ≻ C5 ≻ C2, C3 ≻ C1, (17)

where the position of C2 and C3 varies more with the utility function and it is not
clear, in general, which of both should be prioritized. This depends effectively
on the decision-makers’ attitude reflected by the utility function.

One can conclude that the utility function influences the risk ordering of
the injury categories, where different utility functions weight the number of lost
days differently. A utility function with a higher slope, as the exponential utility,
could be employed if one wants to prioritize risks with higher number of lost work
days.

Case 2: Risk model with a random number of lost work days

Now, we will consider the risk model Xi = IiBi, where Bi is a random
variable. In this case, we will further take into account the occurrence probability
of accidents with non-zero lost work days, given by qi (see (16)). The distribution
of Bi can be defined by: P (Bi = bi) = qi, P (Bi = 0) = 1 − qi. The expected
utility loss for category Ci, using (10), is then given by

E[u(Xi)] = piqiu(bi). (18)

Calculating the expected utility losses for the utility functions u1(x) = x, u2(x) =
x2 and u3(x) = ex, one obtains the results in Table 5.
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Table 5. Expected utility losses of injury categories.

Ci E[u1(Xi)] E[u2(Xi)] E[u3(Xi)]

C1 0.18 2.16 1905.03
C2 2.76 92.26 2.60× 1013

C3 2.53 47.79 2.10× 107

C4 10.58 403.87 1.05× 1016

C5 2.69 110.65 4.50× 1016

C6 5.05 137.02 1.12× 1011

The injury categories can be ordered with respect to their risks using the
results of Table 5 and the representation (12) for each utility function (see Ta-
ble 6).

Table 6. Risk ordering of injury categories using expected utility losses.

E[u1(Xi)] C4 ≻ C6 ≻ C2 ≻ C5 ≻ C3 ≻ C1

E[u2(Xi)] C4 ≻ C6 ≻ C5 ≻ C2 ≻ C3 ≻ C1

E[u3(Xi)] C5 ≻ C4 ≻ C2 ≻ C6 ≻ C3 ≻ C1

Analysing the results presented in Table 6, one can observe that, as with the
application of the previous model, C4 and C6 occupy the first and second risk
position with u1 and u2, respectively, and using u3, C5 occupies the first and C4

the second risk position. The values for the new introduced quantity qi are in
fact also higher for C4, C5 and C6 (see Table 3), so that these categories remain
unchanged in the ranking, and this also due to the fact that in formula (18), the
utility function continues influencing only the quantity bi. Considering the low
risk injury category, C1 is also classified with this model as having the lowest
risk with all three utility functions. The difference is now that, furthermore, the
category C3 is classified with the three utilities as second lowest risk category,
whereas in the other model C3 appeared in the third, fourth and fifth risk posi-
tion, depending on the utility function. The reason for C3 appearing now in the
fifth risk position with all three utilities is that C3 has the lowest probability
of accidents with non-zero lost work days: q3 = 0.61 (see Table 2). In general,
if one should rank the injury categories with the proposed model and the three
utilities, the results of Table 6 suggest the following ranking:

C4 ≻ C6 ≻ C5 ≻ C2 ≻ C3 ≻ C1. (19)

With this second model, the aspect of the probability of non-zero lost work days
was further taken into account, so that, with the low probability q3, the category
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C3 was classified consistently as second lowest risk category. Considering the
impact of the number of lost work days on the risk classification, the exponential
utility with its higher slope is more sensitive to this aspect than the other utilities
and also in this case the expected utility loss with u3 prioritizes the risk of injury
category C5. On the contrary, the expected utility loss with u1 and u2 ranks C4

as the highest risk category, which has the highest occurence probability and the
highest probability of non-zero lost work days.

Comparing the ranking of the six injury categories of industrial accidents ob-
tained with the expected utility loss models with the classification obtained with
other risk measures, such as the Value-at Risk (VaR), in the study conducted in
[13], where the proposed ranking was

C4 ≻ C6 ≻ C2 ≻ C5 ≻ C3 ≻ C1,

one can conclude the following. The ranking based on VaR coincides with the
expected loss (expected utility loss with linear utility u1) with random number
of lost days (cf. Table 6). In general, the expected utility loss models (cf. (17)
and (19)) and VaR prioritize the risk of category C4 followed by C6 and all
classify C1 as the category with minimum risk. The main difference lies in the
classification of the intermediate risk levels. For example, considering the third
risk position in the ranking, the expected utility loss models select C5, whereas
VaR selects C2. Here, one can observe the role of the utility function, which
penalizes C5, that in fact has the highest estimated number of lost work days.

4 Conclusions

In this work we proposed a risk analysis approach based on expected utility.
The industry risk was modelled by a loss random variable and the expected
utility loss was used to classify and rank industry risks. The role of the utility
function is to weight differently certain aspects of risk and the utility function
can represent the risk attitude of a decision-maker.

The methodology was applied to the risk analysis of accidents in industry,
which can be categorized into six classes of injuries. A loss random variable,
depending on the number of lost work days, which in a first model was consid-
ered fixed and in a second model was considered random, and on the accident
occurence probability was defined. Then, the expected utility loss was calculated
for each injury category. In the second model, the number of non-zero lost work
days was further distinguished for each injury category. Different utility func-
tions, a linear utility, a quadratic utility and an exponential utility, were used
to determine the expected utility loss. The results showed that different utility
functions provide different rankings of the categories, where the higher the slope
of the utility function was, the higher was the penalization of categories with high
accident numbers. The introduction of the utility function in the risk assessment
can therefore be useful to prioritize certain aspects of risk, penalizing more or
less a given risk event (or risk consequence). The utility function serves therefore
also to model the preferences and the risk attitude of the decision-maker. This
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analysis method, besides being a quantitative method, considers a qualitative
or subjective evaluation through the utility function. The selection of the utility
function, based e.g. on empirical studies in risk judgement in industry, is a topic
that can further be studied, also a possible relation of the utility function with
existing risk matrices can be investigated.

The risk analysis approach can be extended to other domains, in situations
where it is possible to quantify the risk consequence, having an associated oc-
curence probability, and represent it by a loss random variable. The case study
serves as an example of how to apply the approach and how to model the risk.
One of the main and new achievements is the introduction of the utility function
to take into account the decision-maker’s risk attitude and the possiblity of rank-
ing the risks accordingly using expected utility. In the future we will use more
actual data, apply the different risk methodologies, based on expected utility, on
VaR and on the risk matrix and analyse and compare the results. We also plan
to apply the methodologies to different industry sectors.
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