Ana Rita Almeida Abreu Sintese de novos derivados heterociclicos com potencial atividade para o combate de parasitas numanos

UMinho|2019

Universidade do MInho Escola de Ciências

Ana Rita Almeida Abreu

Síntese de novos derivados heterocíclicos com potencial atividade para o combate de parasitas humanos

abril de 2019

Universidade do Minho Escola de Ciência

Ana Rita Abreu Almeida

Síntese de novos derivados heterocíclicos com potencial actividade para combate de parasitas humanos

Declaração

Nome: Ana Rita Almeida Abreu Endereço Eletrónico: anariabreu93@gmail.com Telefone: (+351) 914 022 042 Cartão de Cidadão: 14382243 Orientadora: Professora Doutora Maria Alice Carvalho Título da Dissertação: Síntese de novos derivados heterocíclicos com potencial atividade para o combate de parasitas humanos Ano de Conclusão: 2019

Mestrado em Química Medicinal

DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER PARTE DESTA TESE/TRABALHO.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Universidade do Minho, 30 de abril de 2019

Assinatura:

Declaração de integridade

Declaro ter atuado com integridade na elaboração do presente trabalho académico e confirmo que não recorri à prática de plágio nem a qualquer forma de utilização indevida ou falsificação de informações ou resultados em nenhuma das etapas conducente à sua elaboração. Mais declaro que conheço e que respeitei o Código de Conduta Ética da Universidade do Minho.

Universidade do Minho, 30 de abril de 2019

Assinatura:_____

Agradecimentos

Durante a realização deste trabalho, produzido no âmbito desta tese, contei com o apoio de inúmeras pessoas que direta ou indiretamente contribuíram de uma forma positiva para a elaboração e finalização deste trabalho com êxito.

Este projeto embora tenha sido de caráter individual, que resultou de um enorme esforço, coragem e dedicação, assim reconheço um sincero e profundo agradecimento a todos os que me apoiaram e escutaram durante esta etapa da minha vida.

Quero manifestar o meu agradecimento, de uma forma especial aos meus colegas de trabalho quer aqueles que trabalharam comigo no laboratório, quer aqueles que trabalhavam noutros laboratórios, pelo companheirismo e apoio que tornou a realização deste trabalho mais leve.

Aos meus pais que sempre me apoiaram e incentivaram sempre o meu desenvolvimento intelectual sem criar barreiras e limites na minha educação.

Ao meu avô que embora não esteja presente fisicamente foi o grande motivo pela qual eu não desisti desta etapa e lutei para a terminar.

À minha família que me apoiou incondicionalmente, mostrando o seu amor, carinho e compreensão durante o período da realização deste projeto.

À Professora Doutora Maria Alice Carvalho pela orientação científica desta tese, pelo tempo disponibilizado e pelos ensinamentos que contribuíram para a minha formação cientifica e académica.

À Dra. Vânia Azevedo e Dra. Elisa Pinto, pela disponibilidade na aquisição de espetros de RMN e na realização das análises elementares.

À Universidade do Minho e ao Centro de Química pelas condições proporcionadas.

A todos os que contribuíram para o equilíbrio dos meus dias, os meus sinceros agradecimentos.

Resumo

O diaminomaleonitrilo (DAMN), reagente comercial, foi utilizado como precursor de estruturas quer lineares quer heterocíclicas. A reação do DAMN com o ortoformiato de etilo (TEOF) permitiu gerar o (*Z*)-*N*-(2-amino-1,2-dicianovinil)formimidato de etilo. Este composto, por reação com aminas primárias permitiu obter as (*Z*)-*N*-(2-amino-1,2-dicianovinil)formamidinas que ciclizam, em meio básico, para gerar os 5-amino-4-cianoformimidoilimidazoles.

A reação das (*Z*)-*N*-(2-amino-1,2-dicianovinil)formamidinas e dos 5-amino-4cianoformimidoilimidazoles com ortoformiato de etilo permitiu gerar as 6-cianopurinas. As 6-cianopurinas foram usadas como reagente de partida para gerar as 6imidatopurinas por reação com o ião metóxido e estas, por reação com amidrazonas geraram 6-carbohidrazonamidopurinas.

As 6-cianopurinas foram também usadas como reagente de partida para gerar novas 3,4-dihidropirimido[5,4-*d*]pirimidinas por reação com hidrazina e 3nitrobenzohidrazida. As 3,4-dihidropirimido[5,4-*d*]pirimidinas foram convertidos em pirimido[5,4-*d*]pirimidinas por aquecimento na presença de um nucleófilo.

Abstract

Diaminomaleonitrile (DAMN), a commercial reagent, was used as a precursor to generate both, linear and heterocyclic structures. Reaction of DAMN with triethylorthoformate (TEOF) afforded ethyl (Z)-N-(2-amino-1,2-dicyanovinyl) formimidate. This compound, on reaction with primary amines, afforded the (Z)-N-(2-amino-1,2-dicyanovinyl) formamidines which cyclize in basic medium to give the 5-amino-4-cyanoformimidoylimidazoles.

Reaction of the (*Z*)-*N*-(2-amino-1,2-dicyanovinyl)formamidines and the 5-amino-4cyanoformimidoylimidazoles with triethylorthoformate allowed to generate 6cyanopurines.

The 6-cyanopurines were used as the starting material to generate the 6-imidatopurines by reaction with the methoxide ion. The 6-imidatopurines were reacted with Amidrazones to generate 6-carbohydrazonamidopurines.

6-Cyanopurines were also used as starting material to generate novel 3,4dihydropyrimido[5,4-*d*]pyrimidines by reaction with hydrazine and 3nitrobenzohydrazide. The 3,4-dihydropyrimido[5,4-*d*]pyrimidines were converted to pyrimido[5,4-*d*]pyrimidines by heating in the presence of a nucleophile.

Índice

Agradecimentosi	v
Resumo	v
Abstractv	′i
Abreviaturas	x
I - Introdução	1
1.1 A leishmaniose	2
1.2 Ciclo de vida	3
1.3 Tratamento	5
1.4 Novas moléculas em estudo	9
II- Resultados e Discussão13	3
2.1 Síntese de reagentes de partida14	4
2.1.1 Síntese de 6-cianopurinas14	4
2.1.2 Mecanismos de reação para obtenção dos reagentes de partida 1	7
2.1.3 Síntese de 6-imidatopurinas2	1
2.1.4 Mecanismo de reação23	3
2.2 Síntese de amidrazonas e 3-nitrobenzohidrazida24	4
2.2.1 Reação da hidrazina com aldeídos24	4
2.2.2 Reação da hidrazina com 3-nitrobenzoato de etilo	7
2.3 Caracterização física, analítica e espetroscópica das amidrazonas 49 e da 3-	
nitrobenzohidrazida 52a28	8
2.3.1 Dados físicos e analíticos das amidrazonas e da 3-nitrobenzohidrazida 28	8
2.3.2 Espetroscopia de IV (Nujol/cm ⁻¹) das amidrazonas 49 e da 3-	
nitrobenzohidrazida 52a	0
2.3.3 Espetroscopia de ¹ H RMN (400MHz, DMSO- d_6,δ (ppm)) das amidrazonas 49	
e da 3-nitrobenzohidrazida 52a3	1
2.3.4 Espetroscopia de 13 C RMN (100MHz, DMSO- d_6,δ (ppm)) das amidrazonas 49)
e da hidrazida 52a	3
2.4 Síntese de 6-carbohidrazinoamidopurinas 53	5
2.4.1 Reação das imidatopurinas 46 com amidrazonas 49	6

2.4.2 Mecanismo da reação 38
2.5 Caracterização física, analítica e espetroscópica das 6-
carbohidrazonamidapurinas 53 39
2.5.1 Dados físicos e analíticos para as 6-carbohidrazonamidopurinas
2.5.2 Espetroscopia de IV (Nujol/cm ⁻¹) das 6-carbohidrazonamidopurinas 53 40
2.5.3 Caracterização espetroscópica de 1 H RMN (400MHz, DMSO- d_6), δ (ppm) das
6-carbohidrazonamidopurinas 53 41
2.5.4 Caracterização espetroscópica de 13 C RMN (100MHz, DMSO- d_6), δ (ppm) das
6-carbohidrazonamidapurinas 53 43
2.6 Síntese das 3,4-dihidropirimido[5,4-d]pirimidinas
2.6.1 Reação das 6-cianopurinas com a hidrazina e 3-nitrobenzohidrazida 45
2.6.2 Mecanismo de reação 48
2.7 Caracterização física, analítica e espetroscópica das 3,4-dihidropirimido[5,4-
<i>d</i>]pirimidinas 56
2.7.1 Dados físicos e analíticos para as 3,4-dihidropirimido[5,4-d]pirimidinas 56 49
2.7.2 Espetroscopia de IV (Nujol/cm ⁻¹) das 3,4-dihidropirimido[5,4- <i>d</i>]pirimidinas
56 50
2.7.3 Caracterização espetroscópica de 1 H RMN (400MHz, DMSO- d_6, δ (ppm)) das
3,4-dihidropirimido[5,4-d]pirimidinas 5651
2.7.4 Caracterização espetroscópica de RMN de 13 C (100MHz, DMSO- d_6, δ (ppm)
das 3,4-dihidropirimido[5,4-d]pirimidinas 5653
2.8 Síntese de pirimido[5,4- <i>d</i>]pirimidinas
2.8.1 Conversão das 3,4-dihidropirimido[5,4-d]pirimidinas em pirimido[5,4-
<i>d</i>]pirimidinas58
2.8.2 Mecanismo de reação63
2.9 Caracterização física, analítica e espetroscópica das pirimido[5,4-d]pirimidinas
57 64
2.9.1 Dados físicos e analíticos para as pirimido[5,4- <i>d</i>]pirimidinas 57
2.9.2 Espetroscopia de IV (Nujol/cm ⁻¹) das pirimido[5,4-d]pirimidinas 5765
2.9.2 Caracterização espetroscópica de 1 H RMN (400MHz, DMSO- d_6, δ (ppm)) das
pirimido[5,4-d]pirimidinas 5766

2.9.4 Caracterização espetroscópica de 13 C RMN (100MHZ, DMSO- d_6 , δ (ppm)) das
pirimido[5,4- <i>d</i>]pirimidinas 5768
2.10 Reação de pirimido[4,5- <i>d</i>]pirimidinas com aldeídos
2.11 Caracterização física, analítica e espetroscópica das pirimido[5,4-d]pirimidin-4-il
hidrazona 68 71
2.11.1 Dados físicos e analíticos das pirimido[5,4-d]pirimidin-4-il hidrazona 68 71
2.11.2 Espetroscopia de IV (Nujol/cm ⁻¹) das pirimido[5,4- <i>d</i>]pirimidin-4-il hidrazona
68
2.11.3 Caracterização de espetroscópica de ¹ H RMN (400MHz, DMSO- d_6 , δ (ppm))
das pirimido[5,4- <i>d</i>]pirimidin-4-il hidrazona 6873
III – Conclusão
IV- Procedimentos Experimentais
4.1 Técnicas gerais
4.1.1 Síntese do Imidato 80
4.1.2 Síntese das amidinas 82
4.1.3 Síntese do 5-amino-1-(<i>p</i> -toluil)-1 <i>H</i> -imidazole-4-carbimidoilcianeto
4.1.4 Síntese de 6-cianopurinas
4.1.6 Síntese de 6-imidatopurinas
4.1.8 Síntese da 3-nitrobenzohidrazida 89
3.1.9 Síntese das 6-carbohidrazonamidopurinas
4.2 Síntese das 3,4-dihidropirimido[5,4- <i>d</i>]pirimidinas
4.3 Síntese de pirimido[5,4- <i>d</i>]pirimidinas96
4.4 Síntese de pirimido[5,4- <i>d</i>]pirimidin-4-il hidrazonas
Bibliografia

Abreviaturas

δ	deslocamento químico		
¹ H RMN	Ressonância Magnética Nuclear de Protão		
¹³ C RMN	Ressonância magnética nuclear de carbono-13		
cat.	Catálise		
d	dupleto		
dd	duplo dupleto		
ddd	duplo dupleto de dupletos		
DAMN	diaminomaleonitrilo		
DBU	1,8-diazabiciclo[5.4.0]undec-7-eno		
DCM	diclometano		
DMSO	sulfóxido de dimetilo		
DMSO-d ₆	sulfóxido de metilo deuterado		
equiv.	equivalentes		
f	fraco		
h	horas		
НМВС	Correlação espetroscópica heteronuclear a longa distância, bidimensional,		
	em RMN		
HMQC	Correlação espetroscópica heteronuclear, bidimensional, em RMN		
Hz	hertz		
i	intenso		
IV	Infravermelho		
J	constante de acoplamento		
I	largo		
LC	Leishmaniose cutânea		
LCD	Leishmaniose cutânea difusa		
LV	Leishmaniose visceral		
m	médio		
т	meta		
Me	grupo metilo		
	-		

MeO	grupo metóxilo
min.	minutos
MS	espetrometria de massa
m/z	razão massa/carga
0	orto
р	para
ppm	parte por milhão
Pf	ponto de fusão
S	singleto
Sb ⁱⁱⁱ	antimónio III
Sb ^v	antimonial pentavalente
SI	índice de seletividade
sl	singleto largo
t	tripleto
t.a.	temperatura ambiente
TEOF	ortoformiato de etilo
TFA	ácido trifluoroacético
THF	tetraidrofurano
TLC	cromatografia em camada fina
-	

I - Introdução

1.1 A leishmaniose

A leishmaniose é uma doença infeciosa considerada zoonótica, dissiminada por todo mundo, desde a Ásia até a América, atingindo o homem e os animais [1]. Afeta 88 países, dos quais 72 são países em desenvolvimento e 13 são países subdesenvolvidos [2]. A incidência anual estimada da leishmaniose é de 1 a 1,5 milhões de casos de leishmaniose cutânea e cerca de 500 mil casos de leishmaniose visceral. A prevalência é de 12 milhões de pessoas infetadas e de 350 milhões de pessoas em risco de infeção. No entanto, com o crescimento contínuo do número de habitantes no mundo, torna-se difícil fornecer estimativas reais sobre o número de pessoas realmente infetadas [2]. Dados mais recentes da Organização Mundial de Saúde indicam a ocorrência de 700 mil a 1 milhão de novos casos de pessoas infetadas e cerca de 26 mil a 65 mil mortes anuais devido á leishmaniose [3].

A leishmaniose é uma doença provocada pela *Leishmania spp.*, um protozoário parasita que consegue sobreviver em ambientes hostis, desde o intestino do inseto vetor, ao macrófago do mamífero hospedeiro [4]. Estes protozoários transmitem-se por meio de vetores flebotomíneos e levando a um amplo espetro de manifestações clínicas [5]. Esta doença detém uma grande abrangência geográfica, tendo em conta os valores de taxa de mortalidade, o que a levou a ser considerada uma ameaça à saúde pública em cerca de 88 países [6].

Esta doença manifesta-se de três formas clínicas, a leishmaniose visceral (LV), a leishmaniose cutânea difusa (LCD), e a leishmaniose cutânea (LC) [2]. Apenas duas espécies de *Leishmania spp.* conseguem manter o seu ciclo de vida no ser humano usando-o como hospedeiro, estas espécies são a *Leishmania donovani*, responsável pela leishmaniose visceral (LV), que é sempre fatal quando não tratada atempadamente, e a *Leishmania tropica*, responsável por causar a leishmaniose cutânea (LC). A infeção com *Leishmania* é por vezes assintomática, mas os parasitas em estado latente têm a capacidade de se reativar, em condições imunossuprimidas, o que resulta numa multiplicação descontrolada dos mesmos, manifestando-se clinicamente como leishmaniose visceral [7-10].

2

1.2 Ciclo de vida

Os parasitas *Leishmania spp.* são protozoários unicelulares que se apresentam com duas morfologias diferentes. O ciclo de vida da *Leishmania spp.* envolve uma alternância da sua forma no hospedeiro mamífero e no hospedeiro inseto (figura **1**).

No mamífero o desenvolvimento do parasita é relativamente simples. No caso do inseto, a mosca da areia, o desenvolvimento do parasita é mais complexo e até hoje ainda existem dúvidas por parte da comunidade cientifica relativamente ao seu desenvolvimento no hospedeiro inseto [11].

Fig. 1 – Ciclo de vida da leishmaniose. Adapt [8]

No trato gastrointestinal do inseto vetor, o parasita surge extracelularmente como um promastigota capaz de se mover através de um flagelo. Já no que diz respeito ao sistema fagolisossomal dos fagócitos mononucleares do hospedeiro vertebrado, o parasita surge intracelularmente na forma de um amastigota de forma oval não flagelado [8].

As moscas da areia do género *Phlebotomus* ou *Leutzomia* são vetores comprovados da leishmaniose. Os amastigotos, após serem ingeridos pelo hospedeiro vetor entram na corrente sanguínea do hospedeiro, migram para o intestino deste e transformam-se em promastigota.

Após um período de dias a semanas, como resultado da replicação – bipartição – e subsequente migração para o foregut do inseto, os promastigotas obstroem-lhe parcialmente o trato digestivo. O inseto vetor infetado, aquando de uma nova recolha de alimento, deposita os promastigotas na corrente sanguínea do hospedeiro vertebrado, como por exemplo os caninos, os marsupiais e roedores. Uma vez dentro da corrente sanguínea do hospedeiro vertebrado, os promastigotas são fagocitados pelas células fagocíticas mononucleares deste, onde são transformados em amastigotos e aí iniciam a replicação através de fagolisossomas modificados – designados como vacúolos arasitoferos – eventualmente, as células do hospedeiro lisam e ocorre a libertação de parasitas livres que se espalham por células saudáveis e tecidos causando lesões e destruição destes. Os amastigotos presentes na corrente sanguínea de um ser humano infetado são ingeridos através da picada de um inseto vetor, e o ciclo de vida repete-se [8].

1.3 Tratamento

Atualmente existem perto de 25 compostos e formulações que apresentam efeito antileishmanial, mas apenas alguns são classificados como fármacos contra a leishmaniose em humanos. Contudo, devido à existência de várias espécies causadoras da doença e das várias manifestações clínicas, o tratamento da Leishmaniose é ainda um processo complicado e com algumas limitações [8-9].

Durante as últimas cinco décadas, os antimoniais pentavalentes, têm sido usados para o tratamento das várias formas de manifestação da leishmaniose, e ainda nos dias de hoje são usados como primeira linha de tratamento contra este parasita [10].

Os primeiros antimoniais usados contra a Leishmaniose foram Estibogluconato de Sódio 2, comercialmente conhecido como Pentatostan, e o Antimoniato de meglumina 1, conhecido como Glucantime. Estes foram considerados e ainda são a primeira linha de tratamento contra leishmaniose, apresentando um espetro de ação contra todas as formas conhecidas de leishmaniose [11-12].

Fig. 2 – Estruturas dos antimoniais usados na primeira linha de tratamento

Surgiu mais tarde um novo antimonial, o antimonial pentavalente (Sb^v), considerado uma pró-droga do fármaco antimónio trivalente (Sbⁱⁱⁱ) **3**, e que parece ser capaz de matar o parasita, de acordo com a literatura [13-14]. Contudo, estudos realizados mostraram que estes fármacos apresentam elevada toxicidade causando vários efeitos secundários em vários órgãos do ser humano, além de que o parasita desenvolveu resistência a este tipo de fármacos [15-16].

Fig. 3 – Estrutura do Sbⁱⁱⁱ 3

Dado o aumento da resistência e a elevada taxa de toxicidade, por parte destes últimos, foi necessário o desenvolvimento de novos fármacos e tratamentos alternativos que apresentassem menos efeitos secundários para o ser humano [17]. A Anfotericina B **4**, surgiu como um fármaco alternativo aos antimoniais apresentando eficácia elevada contra a leishmaniose, porém mostrou também elevada toxicidade [18].

Fig. 4 – Estrutura da Anfotericina B 4

A Miltefosina **5**, uma alquilfosfocolina, desenvolvida originalmente para o tratamento do cancro, mostrou também ter efeito anti-leishmanial. Foi usada contra a leishmaniose visceral, mas como os fármacos anteriores também apresentava sérios efeitos secundários [19].

5

Fig. 5 – Estrutura da Miltefosina 5

A Paromomicina **6**, é um antibiótico aminoglicosídeo com atividade antibacteriana e atividade contra a leishmaniose visceral e a leishmaniose cutânea. O parasita mostrou pouca resistência ao fármaco contudo ainda não há dados quanto aos efeitos secundários que este provoca no organismo humano [20-21].

Fig. 6 – Estrutura da Paromomicina 6

A Sitamaquina **7**, uma 8-aminoquinolina, foi desenvolvido exclusivamente para o tratamento da leishmaniose visceral. Crê-se que este fármaco afeta o crescimento do parasita e os efeitos secundários e a taxa de toxicidade estão em estudo [22-23].

Fig. 7 – Estrutura da Sitamaquina 7

A Pentamidina **8**, também usada como segunda linha de tratamento, tem a sua maior utilidade contra a leishmaniose visceral. Este fármaco é usado quando os antimoniais pentavalentes, primeira linha de tratamento, falham devido a resistência por parte do parasita. Embora seja um fármaco eficaz apresenta uma elevada taxa de toxicidade causando hipoglicemia, nefrotoxicidade e hipotensão, entre outros efeitos secundários [24].

Fig. 8 – Estrutura da Pentamidina 8

1.4 Novas moléculas em estudo

O fraco conhecimento da doença e a falta de políticas eficazes bem como a elevada toxicidade dos fármacos utilizados contra a leishmaniose são os principais obstáculos no combate à doença. Assim, a procura de novos compostos para a erradicação da leishmaniose continua a ser uma necessidade.

Na literatura têm vindo a ser reportadas estruturas heterocíclicas como novos compostos com potencial para o combate a parasitas, em particular a leishmaniose. Algumas dessas estruturas têm origem em produtos naturais outras são de origem sintética.

Alguns dos compostos que apresentaram propriedades antiparasitárias foram as quinonas, as quinolinas e os terpenóides [25].

As quinonas dividem-se em três grupos devido aos diferentes sistemas aromáticos, benzoquinonas **9**, naftoquinonas **10** e antraquinonas **11** [26].

Fig. 9 – Estruturas da benzoquinona 9, naftoquinonas 10 e antraquinonas 11

Dos derivados de quinonas, as naftoquinonas **10** e as antraquinonas **11**, foram os que apresentaram maior atividade antiparasitária [26]. Os derivados das naftoquinonas **10** que mostraram ter maior atividade antiparasitária, foram os compostos **12-15** devido a estes terem a capacidade de se ligarem à topoisomerase I do parasita, inibindo a sua atividade catalítica [27].

Entre os derivados de antraquinonas que apresentaram atividade contra a leishmaniose temos como exemplo os compostos **16 e 17.** A presença da função aldeído e o grupo hidroxilo mostraram ser fundamentais para a atividade antiparasitária destes compostos [28-29].

Fig.11 – Derivados de antraquinonas 16 e 17.

Alguns derivados de quinolina **20-22**, também mostraram ter atividade contra a leishmaniose. O composto 2-*n*-propilquinolina **20** tem a capacidade de quando administrado individualmente suprimir 99% dos parasitas do fígado do hospedeiro. Os outros derivados **21-22** mostraram também ser bastantes eficazes provocando a supressão do parasita [30-31].

Fig.12 – Estruturas dos derivados de quinolinas 18-20

O Espintanol **21**, mostrou ter atividade antiparasitária contra 12 espécies de leishmaniose e o Kudtriol **22**, outro derivado dos terpenóides, também mostrou ser bastante ativo. Estudos SAR efetuados, mostraram que a presença do grupo hidroxilo era essencial para a sua atividade anti-leishmanial [32-33].

21 22 Fig.13 – Estruturas do Espitanol 21 e Kudtriol 22

Os sais de 1,2,3-triazoles **23**, compostos de origem sintética, têm vindo a ser estudados como estruturas privilegiadas em química medicinal [5] e também eles mostraram atividade contra a leishmaniose, embora se desconheça o mecanismo de ação [36].

Fig. 14 – Estrutura do sal de 1,2,3-triazole 23

Dos vários derivados sintetizados, os compostos **24-26** mostraram valores de SI₅₀ 82-200μM. Estes compostos mostraram ser mais eficazes, ter menos efeitos secundários e uma toxicidade baixa, do que os fármacos já existentes para o tratamento da leishmaniose [5].

Fig.15 – Estruturas dos compostos com atividade anti-leishmanial 24-26

Os flavonoides **27-28**, também mostraram ter potencial contra a leishmaniose. Estes compostos mostraram ter uma capacidade de interromper a atividade do parasita no macrófago, do que fármacos já existentes no combate á leishmaniose [8].

Fig.16 – Estrutura dos flavonoides 27 e 28

Apesar dos avanços relativamente aos fármacos encontrados e testados contra a leishmaniose, esta continua a ser uma epidemia que afeta com maior incidência os países em desenvolvimento [5] e por isso é necessário que a comunidade científica continue ativamente a busca de novos fármacos.

Nesta dissertação descreve-se a síntese de novos compostos heterocíclicos para serem avaliados contra a leishmaniose.

II- Resultados e Discussão

2.1 Síntese de reagentes de partida

2.1.1 Síntese de 6-cianopurinas

As 6-cianopurinas **34** são reagentes necessários para a produção dos compostos de interesse biológico objeto desta dissertação e como não se encontram disponíveis comercialmente, será necessária a sua síntese. As 6-cianopurinas **34** foram preparados seguindo procedimentos já descritos na literatura [39-41], a partir das amidinas **32** ou do imidazole **33** (esquema **1**).

Para sintetizar as 6-cianopurinas **34** é necessário começar por preparar as amidinas **32** e o imidazole **33**, a partir do imidato **31**, que se descreve a seguir. O composto **31** foi sintetizado seguindo o método descrito por D.W. Woodward [42]. A síntese deste resulta da reação do DAMN **29** com TEOF **30** (1 equiv.) em dioxano (150 mL). A reação ocorreu sob aquecimento e tendo acoplado um sistema de destilação fracionada (esquema **2**).

Após a obtenção do produto **31**, e ter-se verificado a sua pureza por análise do espetro de ¹H RMN, realizou-se a síntese das amidinas **32a-b** e do imidazole **33a**.

Relativamente à síntese das amidinas **32a-b**, estas foram obtidas seguindo o procedimento descrito na literatura [41].

Fez-se então reagir o imidato **31** com a amina (1,05 equiv.) correspondente, em etanol, usando como catalisador o cloreto de anilíneo (PhNH₃Cl). As reações ocorreram numa

atmosfera de $N_2(g)$, à temperatura ambiente (esquema **3**) durante 18 horas. Os compostos **32a-b** foram obtidos com bons rendimentos e a sua pureza foi verificada por análise dos espetros de ¹H RMN.

Esquema 3

Relativamente à síntese do imidazole **33a**, este foi obtido diretamente do imidato **31**, numa reação "one pot". Fez-se reagir o imidato **31** em etanol, com a amina correspondente (1,05 equiv.) utilizando cloreto de anilíneo (PhNH₃Cl) como catalisador (esquema **4**). A reação ocorreu sob atmosfera de N₂(g) à temperatura ambiente, e quando por TLC se verificou a ausência de reagente limitante **31** adicionou-se DBU (cat.) à mistura reacional que levou à formação do imidazole **33a**. Este composto **33a** foi obtido com bom rendimento e a sua pureza foi confirmada por análise do espetro de ¹H RMN.

Obtidos os compostos **32a-b** e **33a**, estes foram usados para a síntese das 6-cianopurinas **34**. Estas últimas foram obtidas por dois métodos diferentes (esquema **5**), a partir das amidinas **32a-b** (Método A), ou a partir do imidazole **33a** (Método B).

Esquema 5

A partir das amidinas **32a-b** a reação foi efetuada na ausência de solvente usando apenas um excesso de TEOF (4 equiv.). As amidinas **32a-b**, suspensas em TEOF, foram submetidas a refluxo, até o TLC da mistura reacional indicar a ausência do reagente **32ab**. Após arrefecer a mistura reacional a -20°C, o sólido em suspensão foi filtrado e lavado com etanol e umas gotas de éter etílico. O composto **34a** foi isolado puro diretamente da mistura reacional, contudo o composto **34b** foi isolado como um sólido negro. O composto **34b** foi purificado por dissolução em acetonitrilo, seguido de filtração em sílica. O produto **34c** foi obtido a partir do imidazole **33a**, em acetonitrilo (CH₃CN), com um excesso de TEOF **30** (4 equiv.) usando catálise ácida (H₂SO₄). Após a adição do ácido, verificou-se a precipitação de um sólido do meio reacional e a reação mostrou estar terminada por TLC. O sólido em suspensão foi filtrado, lavado com etanol e éter etílico e identificado como 6-cianopurina **34c** após análise do espetro de ¹H RMN.

2.1.2 Mecanismos de reação para obtenção dos reagentes de partida

O imidato **31**, o nosso reagente inicial, é obtido por reação do DAMN **29** com o TEOF **30** em dioxano. O carbono ativado do TEOF **30** sofre um ataque nucleofílico realizado pelo par de eletrões do nitrogénio da amina do DAMN **29**. Este ataque nucleofílico provoca a eliminação do etanol, levando à formação do intermediário **35**. O imidato **31** é formado após a eliminação da segunda molécula de etanol (esquema **6**).

Esquema 6

Na presença de catálise ácida (PhNH₃Cl), o imidato **31** fica protonado, o que facilita o ataque nucleofílico da amina primária ao carbono eletrofílico do composto **31** formando o intermediário **36**. Com a eliminação da molécula de etanol, a amidina **32** é formada. Ao adicionar o DBU (catálise básica) é possível a remoção do protão mais acídico do grupo da amina secundária, levando á formação do sal **37**. De seguida, o nitrogénio realiza um ataque nucleofílico no carbono eletropositivo do grupo nitrilo e isto provoca a ciclização intramolecular formando o composto **38** que após sofrer tautomerização gera o composto desejado, o imidazole **33** (esquema **7**).

Por fim para gerar as 6-cianopurinas **34**, existem duas vias de síntese possíveis, uma a partir das amidinas **32** e outra a partir do imidazole **33**. Quando as 6-cianopurinas **34** são formadas diretamente a partir das amidinas **32**, a amina primária do composto **32**, realiza um ataque nucleofílico ao carbono do TEOF **30**, o que leva à eliminação de uma molécula de etanol gerando o intermediário **39**. Com a eliminação da segunda molécula de etanol forma-se uma estrutura, também intermediária **40**. A segunda amina da função amidina ataca o carbono do grupo nitrilo formando o intermediário **41**. O nitrogénio da imina ataca nucleofilicamente a função imidato, provocando a ciclização intramolecular, originando a estrutura **42** que por eliminação de uma molécula de etanol forma a estrutura **43** (esquema **8**).

Também é possível gerar as 6-cianopurinas **34** a partir do imidazole **33**. A amina primária do imidazole **33** realiza um ataque nucleofílico ao carbono eletropositivo do TEOF **30**, formando uma estrutura intermediária **43**, isto verifica-se na presença de TEOF **30**. Esta estrutura intermediária **43**, por eliminação de uma molécula de etanol evolui para o composto **44**. O nitrogénio da função imina do composto **44**, ataca o carbono eletropositivo do imidato e forma a estrutura **45**. Este composto **45**, por eliminação de um protão e de uma molécula de etanol gera a estrutura da 6-cianopurina **34** (esquema **9**).

Esquema 9

2.1.3 Síntese de 6-imidatopurinas

As 6-imidatopurinas **46**, estruturas altamente versáteis, já haviam sido sintetizadas e a sua reatividade estudada pelo nosso grupo de investigação. Estes compostos **46** são bastante utilizados como reagentes de partida para gerar novos compostos heterocíclicos [43-44].

A síntese de novos derivados de 6-imidatopurinas **46a-c**, foi efetuada reproduzindo os procedimentos experimentais anteriormente utilizados pelo nosso grupo (esquema **10**) [43].

Esquema 10

Primeiramente fez-se reagir a 6-cianopurina **34a** com metanol (MeOH), na presença de DBU, à temperatura de 19°C. A reação foi monitorizada e ao fim de três dias o TLC mostrou ausência de reagente de partida **34**. Assim sendo a reação foi considerada terminada, o sólido foi filtrado e lavado com metanol e éter etílico. O composto isolado foi identificado, após análise do espetro de ¹H RMN como sendo apenas reagente de

partida **34a**. Embora se tenha considerado a reação terminada após análise do TLC, como quer o reagente de partida quer o produto apresentam manchas na mesma posição e incolores, a interpretação do resultado foi errada, por isso repetiu-se a reação, variando o volume de solvente, e a quantidade de catalisador adicionado, mas foram obtidas misturas de 6-imidatopurina **46a** com reagente **34a** em diferentes proporções, (87:13), (43:57) e (10:90) (esquema **10**). A reação foi então efetuada à temperatura de 25°C e aumentou-se o tempo de reação de 3 para 10 dias. Ao fim desse tempo, isolouse um sólido que, após análise do espetro de ¹H RMN permitiu confirmar a presença de apenas 6-imidatopurina **46a**, obtida com bom rendimento (esquema **10**). Com base no resultado obtido na síntese da 6-imidatopurina **46a**, realizou-se a síntese das 6-imidatopurinas **46b-c**, em condições similares (esquema **10**). Após 8 e 6 dias de reação respetivamente, os produtos isolados foram identificados como 6-imidatopurinas **46b-c** após análise do sepetro de ¹H RMN.

2.1.4 Mecanismo de reação

O metanol na presença de DBU é desprotonado e gera o ião metóxido. Este por sua vez, na presença de uma 6-cianopurina **34**, ataca o grupo nitrilo para gerar a 6-imidatopurina **46** (esquema **11**).

Esquema 11

2.2 Síntese de amidrazonas e 3-nitrobenzohidrazida

2.2.1 Reação da hidrazina com aldeídos

As amidrazonas de estrutura **49** são compostos que serão usados na síntese de produtos finais e que não se encontram disponíveis comercialmente, sendo necessária a sua síntese. Para se obterem os compostos desejados fizeram-se reagir os aldeídos **48a-c** e **48e** com hidrazina (NH₂NH₂) (1,1 equiv.) usando etanol como solvente, à temperatura ambiente (esquema **12**).

Esquema 12

As reações foram monitorizadas por TLC, quando se verificou a ausência do reagente de partida, consideram-se terminadas. Os sólidos foram filtrados e lavados com etanol (EtOH) e éter etílico, e por análise dos espetros de IV, ¹H RMN e ¹³C RMN, os compostos isolados foram identificados como amidrazonas **49a-c** e **49e**, obtidos com excelentes rendimentos (esquema **12**).

Fez-se também reagir o aldeído **48d** com hidrazina (1,1 equiv.), em etanol com catálise ácida (H₂SO₄) (esquema **13**).

Esquema 13

Seguiu-se a reação por TLC até se considerar terminada. Filtrou-se o sólido que havia em suspensão e lavou-se com água e umas gotas de éter etílico. Após análise do espetro de ¹H RMN do sólido isolado foi possível identificar uma mistura de **49d** e **50d** numa proporção (47:53) (esquema 13). Este resultado mostrou que a interpretação feita do TLC estava incorreta. Verificou-se que as manchas de reagente e produto, embora diferentes, apareciam sobrepostas. Sendo assim, repetiu-se a reação usando como solvente o metanol e ausência de catálise ácida. Monitorizou-se a reação por TLC e após 15 minutos, considerou-se terminada. Isolou-se um sólido, que após analisado o espetro de ¹H RMN foi possível identificá-lo como sendo o composto **50d**, isolado com um rendimento de 18% (esquema 13). Tendo em conta o resultado obtido, decidiu-se repetir de novo a reação, mas aumentando os equivalentes de hidrazina (3 equiv.). Após 5 dias deu-se a reação por terminada. O sólido em suspensão foi filtrado e lavado com etanol e éter etílico e por análise dos dados espetroscópicos de IV, ¹H RMN e ¹³C RMN, identificou-se o composto como 49d, obtido com bom rendimento (esquema 13). Também se fez reagir, o aldeído 48f com a hidrazina (1,1 equiv.) em etanol (esquema 14).

A reação foi seguida por TLC e após 5 dias, analisando por TLC a reação constatou-se a ausência da mancha do reagente de partida **48f**. O sólido em suspensão foi filtrado e lavado com etanol e éter etílico. Por análise do espetro de ¹H RMN foi possível identificar uma mistura de amidrazona **49f** e dímero **50f** numa proporção de 77,5:22,5. Com base neste e nos resultados obtidos anteriormente, a reação foi repetida, aumentando-se a quantidade de nucleófilo (hidrazina) para 3 equivalentes. Após 2 horas de reação, esta

foi considerada terminada, por análise do TLC, que foi levado a câmara de iodo para ser mais fácil a visualização no caso de haver manchas sobrepostas. O sólido foi filtrado, lavado com etanol e éter etílico. Analisados os dados espetroscópicos de IV, ¹H RMN e ¹³C RMN do sólido obtido, este foi identificado como o composto **49f** (esquema **14**). Por último, fez-se também reagir o aldeído **48g** com a hidrazina (1,1 equiv.) em etanol, à temperatura ambiente (esquema **15**).

Esquema 15

Numa primeira reação, após 45 horas, considerou-se esta terminada por análise do TLC, que mais uma vez induziu em erro a interpretação da reação devido á sobreposição das manchas o que se verificou após análise do espetro de ¹H RMN que identificou-se o sólido isolado como uma mistura de **49g** e **50g** numa proporção de 86:14 (esquema **15**). Como anteriormente, já haviam sido obtidos resultados similares, decidiu-se aumentar a quantidade de hidrazina (nucleófilo) para 3 equivalentes. Após a adição da hidrazina ao aldeído houve a precipitação imediata de um sólido e por TLC existia apenas um único composto. O sólido precipitado foi filtrado, lavado com etanol e éter etílico e por análise dos dados espetroscópicos de IV, ¹H RMN e ¹³C RMN foi identificado como **49g** (esquema **15**).

2.2.2 Reação da hidrazina com 3-nitrobenzoato de etilo

Para a síntese da 3-nitrobenzohidrazida **52a** teve-se como reagente inicial o éster **51a** correspondente. A reação da hidrazina monohidratada com o éster **51a** foi efetuada na presença de catálise ácida (H₂SO₄), em etanol (esquema **16**).

A mistura reacional foi colocada a 25°C, sob uma agitação eficiente, e a reação foi monitorizada por TLC. Quando se verificou a ausência de reagente **51a** considerou-se a reação terminada. O sólido em suspensão foi filtrado e lavado com água destilada. O composto isolado, obtido com bom rendimento, foi identificado como 3-nitrobenzohidrazida **52a** após análise dos dados espetroscópicos de IV, ¹H RMN e ¹³C RMN.

2.3 Caracterização física, analítica e espetroscópica das amidrazonas 49 e da 3nitrobenzohidrazida 52a

2.3.1 Dados físicos e analíticos das amidrazonas e da 3-nitrobenzohidrazida

Os dados analíticos apoiam a fórmula empírica dos compostos **49** e **52a**, embora não tenha sido possível obter análises elementares corretas para os compostos **49b**, **49d-e** e **49g**. Os dados de espetrometria de massa permitiram confirmar as fórmulas moleculares dos compostos.

					49	52a
Compost o	R	η (%)	p. f. (°C)	Fórmula Molecular; Mr	C; H; N (%) Valores obtidos (Valores calculados)	m/z
49a	ОН	93, 4	187- 188	C ₇ H ₈ N ₂ O 136,15	61,75; 5,92; 20,58 (61,65; 6,00; 20,24)	136,96 [M+1] ⁺ (74,09%)
49b	ОН	95	167- 168	C7H8N2O2 152,15	a) (51,94; 5,20; 17,06)	152,96 [M+1] ⁺ (72,51%)
49c	OH	94	105- 106	C ₈ H ₁₀ N ₂ O ₂ 166,18	57,82; 6,07; 16,86 (57,96; 6,16; 16,56)	166,96 [M+1]⁺ (95,37%)
49d	CI	65	155- 156	C ₇ H ₇ ClN ₂ 154,60	a) (55,85; 3,74; 11,29)	156,99 [M+2] ⁺ (100%)
49e	OMe	60, 4	181- 182	C ₉ H ₁₂ N ₂ O ₂ 180,20	a) (57,48; 6,18; 9,23)	181,02 [M+1] ⁺ (79,35%)
49f	OMe MeO OMe	71	115- 116	C ₁₀ H ₁₄ N ₂ O ₃ 210,23	57,13; 6,71; 13,33 (57,20; 6,68; 13,36)	233,04 [M+23] ⁺
49g	OH MeO, OMe	89	189- 190	C ₉ H ₁₂ N ₂ O ₃ 196,20	a) (49,91; 5,78; 7,71)	b)
52a	NO ₂	99	145- 146	C7H7N3O3 181,15	46,41; 3,90; 23,20 (46,00; 4,06; 23,66)	182,02 [M+1] ⁺ (2,48%) 180,04 [M-1] ⁻ (100%)

da hidrazida **52a**

Tabela 1 - Dados físicos e analíticos das amidrazonas 49 e

a) Os valores experimentais de análise elementar ainda não se encontram disponíveis à data da escrita deste trabalho

b) Não foi possível obter os valores de massa do composto 49g

2.3.2 Espetroscopia de IV (Nujol/cm⁻¹) das amidrazonas 49 e da 3-nitrobenzohidrazida 52a

As amidrazonas **49** apresentam nos espetros de IV bandas de absorção que variam entre uma intensidade forte e média, com valores compreendidos entre 3048 a 3478 cm⁻¹ que podem ser atribuídos às vibrações de alongamento das ligações N-H e C-H. A região compreendida entre os 1510 e 1694 cm⁻¹ é caracterizada por um grupo de bandas de intensidade variável, que resulta das vibrações de estiramento C=C e C=N e também das vibrações de deformação angular das ligações N-H (tabela **2**).

No caso da hidrazida **52a** o espetro de IV apresenta bandas de absorção forte e média, com valores compreendidos entre 3071 e 3275 cm⁻¹ que são sinais que podem ser atribuídos às vibrações de alongamento das ligações N-H e C-H. A região compreendida entre os 1534 e 1671 cm⁻¹ é caracterizada por um grupo de bandas de intensidade mais variável, que resulta das vibrações de estiramento C=C e C=O (Tabela **2**).

Tabela 2 - Caracterização espetroscópica de IV (Nujol/cm⁻¹) das

amidrazonas 55 e da hidrazida 58a (Nujol/cm⁻¹)

H^{R}	+	H₂N _N NO
49		H

			49 52a
Composto	R	3500-3000	1700-1500
49a	OH	3474 (i); 3299 (i); 3236 (m); 3165 (m)	1677 (i); 1630 (i); 1606 (m); 1583 (i); 1514 (f)
49b	ОН	3328 (i); 3282 (i); 3137 (i)	1610 (m); 1588 (m); 1530 (f)
49c	OH OMe	3478 (i); 3324 (m)	1692 (f); 1631 (i); 1589 (i); 1511(f)
49d	CI	3048 (m)	1660 (f); 1624 (i); 1591 (i); 1568 (m); 1533 (f); 1515 (f)
49e	OMe	3315 (i);	1659 (f); 1622 (m); 1599 (i); 1580 (i); 1510 (f)
49f	OMe MeO MeO	3357 (m); 3277 (f); 3216 (m); 3069 (m)	1694 (f); 1639 (m); 1607 (i); 1583 (i); 1515 (i)
49g	OH MeO, OMe	3353 (i); 3476 (i); 3061 (m); 3018 (m)	1689 (f); 1623 (i); 1601 (i); 1514 (i)
52a	NO ₂	3275 (i); 3205 (i); 3098 (m); 3071 (m)	1671 (m); 1630 (m); 1576 (f); 1534 (i)

2.3.3 Espetroscopia de ¹H RMN (400MHz, DMSO- d_6 , δ (ppm)) das amidrazonas 49 e da 3-nitrobenzohidrazida 52a

Pela análise dos espetros de ¹H RMN das amidrazonas **49** foi possível identificar um singleto correspondente ao protão imínico, C_a-H para valores compreendidos δ 7,52-7,91 ppm (tabela **3**). O valor do C_a-H da amidrazona **49f** aparece com um desvio químico mais alto δ 7,91 ppm em comparação com os restantes compostos **49**. O grupo NH₂ surge como um singleto, muitas vezes largo, com uma integração de 2H a valores de δ 6,31-6,87 ppm. Relativamente aos protões aromáticos estes surgem com desvios químicos compreendidos δ 6,65-7,47 ppm.

Quanto ao espetro de¹H RMN da hidrazida **52a** é possível observar um singleto largo a um desvio químico baixo que integra para 2H, que corresponde aos protões do grupo NH₂ (δ 4,60 ppm). Foi possível observar também um singleto com um desvio químico mais alto, δ 10,14 ppm, que integra para 1H, e que foi atribuído ao NH (tabela **3**).

Tabela 3 - Caracterização espetroscópica de ¹H RMN (400MHz,

DMSO- d_6 , δ (ppm)) das amidrazonas **49** e da hidrazida **52a**

R H a N ^{_NH₂}	+	H ₂ N _N a O
49		52a

Composto	R	NH ₂	C _a -H	R
49a		6,35 (sl, 2H)	7,60 (sl, 1H)	7,28 (d, 2H, <i>J</i> 8.4Hz, H <i>m</i>) 6,71 (d, 2H, <i>J</i> 8.4Hz, Ho) 9,47 (s, 1H, OH)
49b	OH <i>p</i> <i>p</i> <i>m</i> ' <i>o</i> '	6,31 (s, 2H)	7,52 (s, 1H)	6,65 (d, 1H, J 8Hz, Hm) 6,68 (t, 1H, J 1.6Hz, Ho) 6,94 (d, 1H, J 1.6Hz, Ho') 8,90 (sl, 2H, OH)
49c	OH m o i o'	6,39 (sl, 2H)	7,60 (s, 1H)	3,75 (s, 3H, OMe) 6,71 (d, 1H, J 8.4Hz, Hm) 6,80 (dd, 1H, J 8.4, 2Hz, Ho) 7,09 (d, 1H, J 2Hz, Ho')
49d		6,87 (sl, 2H)	7,65 (s, 1H)	7,35 (d, 2H, <i>J</i> 8.4Hz, Hm) 7,47 (d, 2H, <i>J</i> 8.4Hz, Ho)
49e	OMe m o i o	6,50 (sl, 2H)	7,62 (s, 1H)	3,73 (s, 6H, OMe) 6,89 (d, 1H, J 8.4Hz, Hm) 6,92 (dd, 1H, J 8.4, 0.8Hz, Ho) 7,12 (d, 1H, J 0.8Hz, Ho')
49f	OMe	6,50 (s, 2H)	7,91 (s, 1H)	3,67 (s, 3H, OMe) 3,77 (s, 6H, OMe) 6,64 (s, 1H, Hm) 7,17 (s, 1H, Ho')

49g		6,42 (s, 2H)	7,58 (s, 1H)	3,73 (s, 6H, OMe)
				6,73 (s, 2H, Ho/Ho′)
	I I I			10,18 (sl, 1H, OH)
52a	p NO ₂	4,60 (sl, 2H)		7,75 (t, 1H, J 8Hz, Hm)
	0 0'			8,24 (ddd, 1H, J 7.8, 1.6, 1.2Hz, Hp)
				8,35 (ddd, 1H, J 8.2, 2.4, 1.2Hz, Ho)
				8,62 (d, 1H, <i>J</i> 2Hz, Ho′)
				10,14 (sl, 1H)

2.3.4 Espetroscopia de ¹³C RMN (100MHz, DMSO- d_6 , δ (ppm)) das amidrazonas 49 e da hidrazida 52a

Os dados espetroscópicos de ¹³C RMN dos compostos **49** e da hidrazida **52a** encontramse na tabela **4**. A atribuição dos sinais foi feita a partir da análise conjunta dos espetros de ¹³C RMN, e também dos espetros bidimensionais de HMQC e HMBC.

Os espetros de HMQC das amidrazonas **49** mostraram o acoplamento direto entre o protão C_a-H e C_a e entre os C_{sp2}-H e os correspondentes carbonos aromáticos C_{sp2}. Pela análise dos espetros de HMBC foi possível observar o acoplamento entre o protão da função imina C_a-H e o C_i da unidade fenólica, também foi possível observar o acoplamento com os carbonos Co. O carbono imínico C_a surge a valores entre δ 134,35-139,78 ppm, o C_a do composto **49f** surge a um campo um pouco mais baixo δ 134,35 ppm em comparação com os outros compostos (tabela **4**). Relativamente à hidrazida **52a** no espetro de HMBC foi possível observar o acoplamento do hidrogénio presente em Co com o carbono C_a e o carbono C_i. O C_a da hidrazida **52a** aparece a um valor de δ 163,54 ppm mais alto, relativamente ao C_a das amidrazonas **49** (tabela **4**).

Tabela 4 - Caracterização espetroscópica de ¹³C RMN (100MHz, DMSO-

 d_{6} , δ (ppm)) das amidrazonas **49** e da hidrazida **52a**

 $\begin{array}{c} R \\ H \stackrel{}{\xrightarrow{}} N \\ H \stackrel{}{\xrightarrow{}} N \end{array}$

Composto	R	Ca-H	R
49a		139,40	115,33 (Cm); 126,64 (Co); 157,18 (Cp); 127,45 (C _i)
49b	OH m o i o'	139,78	111,83 (Co'); 115,42 (Co); 117,68 (Cm); 145,37 (Cm'); 145,53 (Cp); 127,99 (C _i)
49c	OH m o i o' o'	139,41	55,35 (OMe); 107,97 (Co'); 115,26 (Cm); 119,09 (Co); 146,58 (Cp); 147,79 (Cm'); 127,97 (C _i)
49d		136,60	126,62 (Co); 128,49 (Cm); 131,48 (Cp); 135,41 (C _i)
49e	OMe m OMe o m' o'	138,81	55,23 (OMe; Cp); 55,48 (MeO, Cm'); 107,35 (Co'); 111,55 (Co); 118,75 (Cm); 148,64 (Cp); 148,91 (Cm'); 129,36 (C _i)
49f	Meo Meo	134,35	55,75 (Cm'); 55,78 (OMe Co/Cp); 56,47 (OMe Co/Cp); 98,34 (Cm'); 107,53 (Co'); 143,12 (Co); 149,52 (Cp); 150,83 (Cm); 116,16 (C _i)

49g	MeO DH m' OMe	139,67	55,92 (OMe); 102,82 (Co/Co'); 135,62 (Cp); 148,13 (Cm/Cm'); 126,93 (C _i)
52a	m o i n o'	163,54	121,77 (Co'); 125,68 (Co); 130,15 (Cm); 133,23 (Cp); 162,29 (Cm'); 147,78 (C _i)

2.4 Síntese de 6-carbohidrazinoamidopurinas 53

A reatividade das 6-imidatopurinas **46** com nucleófilos de nitrogénio tem vindo a ser estudada no nosso grupo de investigação a fim de gerar os compostos com estrutura **53** (esquema **17**). Resultados obtidos anteriormente mostraram que as 6-imidatopurinas **46** reagem eficientemente com esses nucleófilos na presença de catálise ácida à temperatura ambiente. Numa primeira abordagem na síntese destes compostos **53**, foi usado como solvente o acetonitrilo (CH₃CN) e também uma mistura de solventes, especificamente diclorometano (CH₂Cl₂) e metanol (CH₃OH) (esquema **17**) [44].

Esquema 17

Mais tarde, novos compostos **53** foram sintetizados por reação das 6-imidatopurinas **46** com nucleófilos de nitrogénio na presença de catálise ácida usando-se como solvente o DMSO à temperatura ambiente (esquema **18**) [45].

Esquema 18

2.4.1 Reação das imidatopurinas 46 com amidrazonas 49

Com base em resultados descritos anteriormente na literatura, [44-45] fez-se reagir as 6-imidatopurinas **46** com as amidrazonas **49** de acordo com o esquema **19**.

Assim, começou-se por reagir a 6-imidatopurina **46b** com 1,5 equivalentes de amidrazona **49a e 49c** e a 6-imidatopurina **46c** com a amidrazona **49b** em DMSO com catálise ácida (H₂SO₄) à temperatura ambiente (esquema **19**, Método A). Seguiram-se as reações por TLC e após 25 minutos a 1 dia de reação, o TLC mostrou ausência de reagente de partida **46**. Ás misturas reacionais foi adicionada água, induzindo a precipitação de sólido. Os sólidos foram filtrados, lavados com água e umas gotas de éter etílico. Por análise dos dados espetroscópicos de IV, ¹H RMN e ¹³C RMN, foi possível a identificação dos compostos como 6-carbohidrazonamidapurina **53c-d** e **g**. Os compostos **53c-d** foram obtidos com rendimentos baixos devido à solubilidade destes no meio reacional, contudo **53g** foi isolado com um bom rendimento devido à sua insolubilidade no meio reacional.

Fez-se também reagir a 6-imidatopurina **46c** com a amidrazona **49a** nas condições acima descritas. Por análise do espetro de ¹H RMN do sólido isolado, identificou-se uma mistura de **49a** com **53f** numa proporção de 21:79. A presença de **49a** no sólido isolado deve-se à insolubilidade deste reagente no solvente usado para o isolamento do

produto. Numa tentativa de purificação do produto, o sólido foi sujeito a um processo de recristalização, contudo foi isolado de novo uma mistura dos dois compostos.

Efetuou-se também a reação da 6-imidatopurina 46c com a amidrazona 49c. Esta reação foi realizada três vezes, e em todas as tentativas foram isolados sólidos cuja análise por ¹H RMN mostrou tratar-se misturas de produto **53e** com a amidrazona **49c** e uma impureza desconhecida, em diferentes proporções (esquema 19). Também nestes casos se tentou purificar o produto por recristalização, contudo foram obtidas novamente misturas. Considerando os resultados obtidos nestas últimas reações e a solubilidade das amidrazonas 49a-b, decidiu-se efetuar a reação da 6-imidatopurina 46a com as amidrazonas 49a-b, segundo o procedimento também já descrito anteriormente na literatura [44]. Sendo assim, fez-se reagir 46a com as amidrazonas 49a-b em excesso (1,05 equiv.), usando como solvente o acetonitrilo (CH₃CN) e como catalisador o cloreto de anilíinio (PhNH₃Cl) (esquema 19, Método B). As reações foram seguidas por TLC, e quando se verificou a ausência de reagente 49a considerou-se a reação terminada. Os sólidos foram filtrados diretamente do meio reacional, lavados com CH₃CN e, por fim, com umas gotas de éter etílico. Após a análise dos espetros de IV, ¹H RMN e ¹³C RMN os sólidos isolados foram identificados como 6-carbohidrazonamidas 53a-b, com bons rendimentos devido ao produto ser pouco solúvel no meio reacional (esquema 19). Como pelo Método A não foi possível obter um produto puro das reações da 6imidatopurina 46c com as amidrazonas 49a e 49c, estas reações foram realizadas também seguindo as condições reacionais do Método B. Seguiu-se as reações por TLC e após 2-3 dias de reação verificou-se a ausência de reagente de partida 46. Os sólidos

foram isolados diretamente do meio reacional e lavados com CH₃CN e umas gotas de éter etílico. Quando analisados os espetros de IV, ¹H RMN e ¹³C foi possível identificar os sólidos como 6-carbohidrazonamidopurinas **53e-f**. Os produtos foram obtidos com rendimentos moderados, uma vez que estes são um pouco solúveis no meio reacional (esquema **19**).

2.4.2 Mecanismo da reação

As 6-carbohidrazonamidapurinas **53**, são formadas a partir da reação das 6imidatopurinas **46** com amidrazonas **49**. As 6-imidatopurinas **46** na presença de catálise ácida, podem sofrer protonação na função imidato, ficando esta ativada para o ataque de um nucleofílico **49**. O nitrogénio terminal da amidrazona **49**, ataca o carbono eletropositivo para gerar um intermediário **55**, após eliminação de metanol. Este último em solução evolui para o composto final, a 6-carbohidrazonamidopurina **53** (esquema **20**).

Esquema 20

2.5 Caracterização física, analítica e espetroscópica das 6-carbohidrazonamidapurinas 53

2.5.1 Dados físicos e analíticos para as 6-carbohidrazonamidopurinas

Os dados de espetrometria de massa permitiram confirmar as fórmulas moleculares dos compostos **53**.

 Tabela 5 - Dados físicos e analíticos das 6-carbohidrazonamidapurinas 53

 H_2N N H-R1

Composto	R	R ¹	η	P.f. (°C)	Fórmula	C; H; N; S (%)	m/z
			(%)		molecular;	Valores obtidos	
					Mr	(Valores	
						calculados)	
53a	ОН	OH	80	226-227	C ₂₀ H ₁₆ N ₆ O ₃ 389,37	a) (58,61; 3,88; 25,18)	390,16 [M+1] ⁺ (100%)
53b		OH	73	247-248	C ₂₀ H ₁₆ N ₆ O ₂ 373,37	a) (61,12; 4,05; 26,26)	374,15 [M+1] ⁺ (100%)
53c	OH	OH	29	245-246	C ₂₀ H ₁₆ N ₆ O ₂ 373,37	a) (61,12; 4,05; 26,26)	374,16 [M+1] ⁺ (100%)
53d		OH	15	154-155	C ₂₁ H ₁₈ N ₆ O ₃ 403,39	a) (59,55; 4,25; 24,31)	404,17 [M+1] ⁺ (100%)
53e	CH ₃	OH	59	220-221	C ₂₁ H ₁₈ N ₆ O ₂ 401,42	a) (62,83; 4,77; 24,42)	402,21 [M+1] ⁺ (100%)
53f	Ý	OH	43	249-250	C ₂₁ H ₁₈ N ₆ O 371,40	a) (64,68; 4,61; 26,40)	372,18 [M+1] ⁺ (100%)
53g		OH	89	190-191	C ₂₂ H ₂₀ N ₆ O ₂ 387,39	a) (62,01; 4,42; 25,31)	388,18 [M+1]⁺ (100%)

a) Os valores experimentais de análise elementar ainda não se encontram disponíveis à data da escrita deste trabalho

2.5.2 Espetroscopia de IV (Nujol/cm⁻¹) das 6-carbohidrazonamidopurinas 53

Os compostos **53** apresentam nos espetros de IV bandas de absorção com intensidades variáveis com valores compreendidos entre 3089 a 3475 cm⁻¹ que são sinais que podem ser atribuídos às vibrações de estiramento dos sinais N-H que se apresentam a valores mais altos e C-H que se apresentam com valores mais baixos. A região compreendida entre os 1514 e 1694 cm⁻¹ é caracterizada por um grupo de bandas de intensidade variável, que resulta das vibrações de estiramento C=C e C=N e também das vibrações de deformação angular das ligações N-H (tabela **6**).

Tabela 6 - Caracterização espetroscópica de IV (Nujol/cm⁻¹) das 6carbohidrazonamidopurinas **53**

N-

Composto	R	R ¹	3500-3000	1700-1500
53a	ОН	OH OH	3443 (i); 3328 (m); 3265 (m)	1682 (i); 1584 (m); 1542 (m); 1509 (i)
53b		OH	3441 (i); 3326 (m); 3095 (f)	1672 (i); 1592 (i); 1508 (f)
53c	ОН	OH	3468 (i); 3339 (m)	1684 (m); 1625 (i); 1600 (f); 1575 (i); 1514(i)
53d		OH OMe	3446 (i); 3286 (m); 3089 (f)	1630 (m); 1583 (i); 1514 (i)
53e	CH ₃	OH OMe	3452 (m); 3337 (i)	1613 (i); 1577 (f); 1565 (i); 1519 (i)
53f		OH	3475 (i); 3321 (m); 3094 (f)	1622 (i); 1588 (f); 1564 (i); 1514 (i)
53g		ОН	3553 (i); 3489 (m)	1607 (i); 1591 (i); 1564 (i); 1518 (i)

2.5.3 Caracterização espetroscópica de ¹H RMN (400MHz, DMSO- d_6), δ (ppm) das 6-carbohidrazonamidopurinas 53

Nos espetros de ¹H RMN é possível identificar dois singletos que correspondem aos protões C₂-H e C₈-H, com desvios químicos compreendidos δ 9,01-9,23 ppm e 8,93-9,30 ppm, respetivamente. Foi possível identificar também um singleto correspondente ao C₁₀-H com um valor de desvio químico compreendido δ 8,36-8,65 ppm. A função amina aparece no espetro como um singleto largo a desvios químicos compreendidos δ 7,14-7,26 ppm. Este sinal não aparece nos espetros dos compostos **53a-b e 53f**, cujos espetros foram realizados numa mistura de DMSO e TFA (tabela **7**).

Tabela 7 - Caracterização espetroscópica de ¹H RMN das 6-carbohidrazonamidapurinas **53** (400MHz, DMSO- d_6), δ (ppm)

 $H_{\mathbf{8}} \xrightarrow{\mathbf{R}} H_{\mathbf{2}N} \xrightarrow{\mathbf{N}} H_{\mathbf{2}} \xrightarrow{\mathbf{R}} H_{\mathbf{2}N} \xrightarrow{\mathbf{N}} H_{\mathbf{10}}$

Composto	R	R ¹	C2-H	C ₈ -H	С10-Н	R	R ¹ / NH ₂
53a	<i>т_</i> , <i>р</i> , <i>т</i> , ОН		9,12 (s,1H)	9,13 (s,1H)	8,42 (s,1H)	6,93 (ddd, 1H, J 0.8, 2, 8Hz, Hp) 7,32 (dd, 1H, J 2, 8Hz, Ho) 7,36 (t, 1H, J 2.4Hz, Ho') 7,44 (t, 1H, J 8Hz, Hm) 10,04 (sl, 1H, OH)	6,83 (d, 1H, J 8Hz, Hm") 7,22 (dd, 1H, J 2, 8Hz, Ho") 7,40 (d, 1H, J 2Hz, Ho"") 9,62 (sl, 1H, OH)
53b	0 0		9,23 (s,1H)	9,30 (s,1H)	8,65 (s,1H)	6,96 (ddd, 1H, J 0.8, 2, 8.4Hz, Hp) 7,31 (ta, 1H, J 2HZ, Ho) 7,36 (dd, 1H, J 2, 8.4Hz, Ho') 7,44 (t, 1H, J 8.4Hz, Hm) 10,19 (s, 1H, OH)	6,90 (d, 2H, J 8.8Hz, Hm") 7,87 (d, 2H, J 8.8Hz, Ho") 10,37 (sl, 1H, OH)
53c			9,01 (s,1H)	8,96 (s,1H)	8,43 (s,1H)	6,98 (d, 2H, J 8.8Hz, Hm) 7,64 (d, 2H, J 8.8Hz, Ho) 9,92 (sl, 1H, OH)	6,84 (d, 2H, J 8.8Hz, Hm") 7,19 (sl, 2H, NH ₂) 7,78 (d, 2H, J 8.8Hz, Ho")

53d	OH m	OH m"OMe	9,01 (s,1H)	8,93 (s,1H)	8,42 (s,1H)	6,98 (d, 2H, J 8.8Hz, Hm) 7 64 (d, 2H, J 8.8Hz, Ha)	6,84 (d, 1H, J 8Hz, Hm") 7 24 (dd 1H, J 2 8Hz, Ho")
		o" o"''				9,87 (sl, 1H, OH)	7,26 (sl, 2H, NH ₂)
							7,62 (d, 1H, <i>J</i> 3.6Hz, Ho ^{'''})
53e		OH P ¹ OMo	9,04 (s,1H)	9,03 (s,1H)	8,42 (s,1H)	2,40 (s, 3H, CH₃)	3,86 (s, 3H, OMe)
						7,45 (d, 2H, J 8.4Hz, Hm)	6,84 (d, 1H, J 8Hz, Hm")
						7,78 (d, 2H, J 8.4Hz, Ho)	7,26 (dd, 3H, <i>J</i> 1.6, 8Hz, Ho"+NH ₂)
	CH						7,63 (d, 1H, <i>J</i> 1.6Hz, Ho ^{'''})
	m						9,47 (sl, 1H, OH)
53f	0	OH p1	9,04 (s,1H)	9,03 (s,1H)	8,45 (s,1H)	2,39 (s, 3H, CH₃)	6,85 (d, 2H, J 8.4Hz, H <i>m''</i>)
		m"				7,43 (d, 2H, J 8.4Hz, H <i>m</i>)	7,78 (d, 2H, <i>J</i> 8.4Hz, Ho''')
						7,76 (d, 2H, <i>J</i> 8.4Hz, H <i>o</i>)	9,97 (sl, 1H, OH)
53g	_	OH P ¹ OH	9,04 (s,1H)	9,03 (s,1H)	8,36 (s,1H)	2,40 (s, 3H, CH₃)	6,80 (d, 1H, J 8.4Hz, Hm'')
						7,44 (d, 2H, J 8.4Hz, Hm)	7,14 (sl, 2H, NH ₂)
						7,79 (d, 2H, <i>J</i> 8.4Hz, H <i>o</i>)	7,19 (dd, 1H, <i>J</i> 2, 8Hz, Ho")
							7,38 (d, 1H, <i>J</i> 2Hz, Ho‴)
							9,50 (sl, 1H, OH)

2.5.4 Caracterização espetroscópica de ¹³C RMN (100MHz, DMSO- d_6), δ (ppm) das 6carbohidrazonamidapurinas 53

Os espetros de HMQC dos compostos **53** mostram um acoplamento direto entre os protões C₂-H e C₈-H com os carbonos correspondestes C₂ e C₈, estes carbonos aparecem com desvios químicos compreendidos δ 151,72-152,22 ppm e 146,34-148,50 ppm, respetivamente. Através do espetro de HMBC foi possível a atribuição dos sinais de C₄, C₅ e C₆ que se apresentam com desvios químicos compreendidos δ 152,46-153,00 ppm, 131,09-131,94 ppm e 142,11-148,93, respetivamente. Os carbonos C₉ e C₁₀ aparecem a desvios químicos mais altos com valores correspondidos δ 154,35-154,93 ppm e 155,59-156,43 ppm (tabela **8**).

Fig.17 – Correlações em HMBC das 6-carbohidrazonamidapurinas 53

Tabela8-Caracterizaçãoespetroscópicade 13 CRMNdas6-carbohidrazonamidapurinas53c-ee53g(100MHz, DMSO-d_6), δ (ppm)) edas53a-be53f (100MHz, DMSO-d_6-TFA), δ (ppm))

Composto	R	R ¹	C ₂ /C ₈	C ₉ /C ₁₀	C-núcleo	R	R ¹
F 20		ОН	151.00	154.44	121 62 (C_)	110.96 (Co')	114 72 (Co''')
234	m of o	<i>m</i> " <i>p</i> ¹ <i>o</i> " <i>p</i> " <i>o</i> "	147,26	156,43	131,63 (C5) 148,93 (C6) a) 152,65 (C4)	110,88 (CO) 114,15 (Co) 115,48 (Cp) 130,57 (Cm) 134,95 (Ci) 158,33(Cm')	114,73 (C0 ⁻) 115,59 (Cm'') 121,81 (Co'') 125,90 (Ci') 145,66 (Cm''') 148,93 (Cp') ^{a)}
53b			152,22 148,50	154,35 156,36	131,94 (C5) 142,11 (C6) 153,00 (C4)	111,00 (Co') 114,27 (Co) 115,82 (Cp) 130,68 (Cm) 134,69 (Ci) 158,46(Cm')	115,96 (Cm'') 124,29 (Ci') 130,96 (Co'') 161,21 (Cp')

53c	OH m		151,72 146,60	154,88 155,59	131,09 (C ₅) 148,49 (C ₆) 152,59 (C ₄)	115,59 (Cm) 125,48 (Ci) 125,70 (Co) 157,50 (Cp)	115,23 (Cm'') 126,38 (Ci') 129,89 (Co'') 159,63 (Cp')
53d		OH m" o" i o" o"	151,79 146,69	154,98 155,86	131,15 (C5) 148,57 (C6) 152,66 (C4)	116,01 (Cm) 125,53 (Ci) 125,79 (Co) 157,56 (Cp)	55,78 (OMe) 110,42 (Co''') 115,34 (Cm'') 123,12 (Co'') 126,89 (Ci') 148,03 (Cm''') 149,23 (Cp')
53e		OH m ⁿ o ⁿ i'	151,87 146,40	154,93 155,88	131,35 (C ₅) 148,50 (C ₆) 152,51 (C ₄)	20,73 (CH ₃) 123,73 (Co) 130,09 (Cm) 131,75 (Ci) 138,00 (Cp)	55,77 (OMe) 110,43 (Co''') 115,33 (Cm'') 123,16 (Co'') 126,87 (Ci') 148,02 (Cm''') 149,24 (Cp')
53f	m o		151,76 146,34	154,89 155,72	131,32 (C ₅) 148,62 (C ₆) 152,46 (C ₄)	20,70 (CH ₃) 123,65 (Co) 130,04 (Cm) 131,80 (Ci) 137,93 (Cp)	115,60 (Cm'') 126,40 (Ci') 129,95 (Co'') 159,69 (Cp')
53g		OH m" o" i" O"	151,87 146,39	154,71 156,18	131,32 (C5) 148,59 (C6) 152,51 (C4)	20,73 (CH ₃) 123,80 (Co) 130,17 (Cm) 131,74 (Ci) 138,00 (Cp)	114,48 (Co''') 115,56 (Cm'') 121,28 (Co'') 126,83 (Ci') 145,55 (Cm''') 148,26 (Cp')

a) Os carbonos C ₆ e C	o' do composto 53	a aparecem sobrepostos	a δ 148,93 ppm
-----------------------------------	-------------------	------------------------	-----------------------

2.6 Síntese das 3,4-dihidropirimido[5,4-d]pirimidinas

Durantes estes últimos anos, o nosso grupo de investigação desenvolveu métodos de síntese que permitem gerar as 3,4-dihidropirimido[5,4-*d*]pirimidinas **56** por reação de 6-cianopurinas **34** com nucleófilos de nitrogénio [44, 46-48]. O método de síntese desenvolvido é bastante abrangente, pois permite gerar uma grande variedade de compostos **56** com diferentes substituintes e também alguns compostos **57**. Não obstante, as reações devem ser controladas com cuidado, dado que podem existir reações competitivas gerando produtos como **53** (esquema **21**).

2.6.1 Reação das 6-cianopurinas com a hidrazina e 3-nitrobenzohidrazida

Tendo em atenção os resultados apresentados na literatura fez-se reagir as 6cianopurinas **34a-c** com dois nucleófilos de azoto, a hidrazina e a 3-nitrobenzohidrazida **52a** (esquema **22**).

As reações das 6-cianopurinas **34a** e **34c** com a hidrazina ocorreram em etanol com um excesso de hidrazina (2.5 equiv.) à temperatura de 25°C (esquema **22**). As reações foram

seguidas por TLC e após se verificar ausência do reagente de partida **34**, deram-se por terminadas. Os sólidos isolados foram identificados, por análise dos seus espetros de IV, ¹H RMN e ¹³C RMN como **56a** e **56c**.

Os compostos **56d-f**, foram obtidos por reação das 6-cianopurinas **34a-c** com a 3nitrobenzohidrazida **52a** (1,5 equiv.) usando como solvente o DMSO, e catálise básica (DBU), à temperatura de 25°C (esquema **22**). As reações foram monitorizadas por TLC, e quando foi verificada a ausência de reagente de partida, considerou-se as reações terminadas. Após adição de água à mistura reacional precipitaram sólidos que foram isolados e identificados como **56d-f** após analisados os seus espetros de IV, ¹H RMN e ¹³C RMN. Estes produtos foram obtidos com rendimentos baixos, com exceção do composto **56f**.

No caso da reação da 6-cianopurina **34b** com hidrazina, verificou-se que a síntese desta ocorria de forma limpa apenas na presença de catálise básica (esquema **23**).

Esquema 23

Inicialmente fez-se reagir a 6-cianopurina **34b** com a hidrazina (2,5 equiv.) usando como solvente o etanol. Monitorizou-se a reação por TLC e ao fim de 5 horas considerou-se a reação terminada. O sólido isolado foi identificado como uma mistura de **56b** com um subproduto **58**, numa proporção de (75:25), por análise do espetro de ¹H RMN. Repetiu-se de novo a reação aumentando o tempo. Os sólidos isolados das reações foram

obtidos como misturas de **56b** com o subproduto **58**, em diferentes proporções (81:19) e (89:11) (esquema **23**).

A reação foi repetida, mas usou-se catálise de DBU (esquema **23**). Quando o DBU foi adicionado à mistura reacional, observou-se a solubilização do reagente seguido da precipitação de um novo sólido. O TLC efetuado da mistura reacional mostrou ausência do reagente de partida **34b**, e o sólido em suspensão foi filtrado e lavado com etanol e umas gotas de éter etílico. O composto isolado foi identificado como **56b** após análise do seu espetro de IV, ¹H RMN e ¹³C RMN.

2.6.2 Mecanismo de reação

O mecanismo para a formação das 3,4-dihidropirimido[5,4-*d*]pirimidinas **56** a partir das 6-cianopurinas **34**, envolve um ataque nucleofílico do nucleófilo ao carbono C₈ do anel de purina, com a abertura deste para gerar **59**. O novo anel de pirimidina é formado por ataque do azoto do nucleófilo ao grupo nitrilo dando origem ao composto **56** (esquema **24**).

2.7 Caracterização física, analítica e espetroscópica das 3,4-dihidropirimido[5,4*d*]pirimidinas 56

2.7.1 Dados físicos e analíticos para as 3,4-dihidropirimido[5,4-d]pirimidinas 56

Os dados obtidos por espetrometria de massa apoiam a fórmula molecular dos compostos **56**.

Fabela 9 - Dados físicos e analíticos da	s 3,4-dihidropirimido[5,4-d]pirimidinas 56
---	--

N N HN_R1 56

Composto	R	R ¹	η	P. f. (°C)	Fórmula	C; H; N; S; (%)	m/z
			(%)		molecular;	Valores obtidos	
					Mr	(Valores calculados)	
56a	ОН		91	243-244	C ₁₂ H ₁₁ N ₇ O	a)	270,12 [M+1] ⁺
					269,26	(53,53; 4,12; 36,41)	(100%)
56b	ОН		84	245-246	C ₁₂ H ₁₁ N ₇ O	a)	270,12 [M+1] ⁺
					269,26	(53,53; 4,12; 36,41)	(51,82%)
		н					
56c	CH ₃		95	238-239	C ₁₃ H ₁₃ N ₇	a)	268,14 [M+1] ⁺
					267,29	(58,42; 4,90; 36,68)	(100%)
56d	OH		36	305-306	C ₁₉ H ₁₄ N ₈ O ₄	a)	417,15 [M-1] ⁻
					418,37	(54,55; 3,37; 26,78)	(100%)
56e	ОН		49	309-310	C ₁₉ H ₁₄ N ₈ O ₄	a)	419,17 [M+1] ⁺
		NO ₂			(418,37)	(54,55; 3,37; 26,78)	(72,73%)
56f	CH ₃	1	98	311-312	C ₂₀ H ₁₆ N ₈ O ₃	a)	415,18 [M-1] ⁻
					416,39	(57,69; 3,87; 26,91)	(100%)

a) Os valores experimentais de análise elementar ainda não se encontram disponíveis à data da escrita deste trabalho

2.7.2 Espetroscopia de IV (Nujol/cm⁻¹) das 3,4-dihidropirimido[5,4-d]pirimidinas 56

As 3,4-dihidropirimido[5,4-*d*]pirimidinas **56** apresentam nos espetros de IV bandas de absorção de intensidade forte e média, com valores compreendidos entre 3065 a 3499 cm⁻¹ que podem ser atribuídos às vibrações de estiramento das ligações N-H e C-H. A região compreendida entre os 1514 e 1688 cm⁻¹ é caracterizada por um grupo de bandas de intensidade variável, que resulta das vibrações de estiramento C=C e C=N e também das vibrações de deformação angular das ligações do N-H (tabela **10**).

Tabela 10 - Caracterização espetroscópica de IV (Nujol/cm⁻¹) das 3,4-dihidropirimido[5,4-d]pirimidinas 56

Composto	R	R ¹	3500-3000	1700-1500
56a	ОН		3361(i); 3322(i); 3293 (i);	1646(i); 1611(i); 1602(i); 1582(i); 1526(m)
56b	OH	н	3372(m); 3312(m); 3265(m); 3188(m); 3065(m)	1631(i); 1611(i); 1582(i); 1562(i); 1514(m)
56c	CH ₃		3350(m); 3261(m);	1640(m); 1603(i); 1556(m); 1530(i);
56d	OH		3362(i); 3176(m); 3093 (m)	1657(i); 1607(m); 1576(i); 1538(m)
56e	OH	NO ₂	3499(i); 3422(i); 3368(i); 3147(m)	1688(i); 1657(i); 1610(i); 1577(i); 1554(i); 1524(i)
56f	CH ₃		3107(m); 3342(i); 3361(i)	1669(i); 1613(m); 1586(f); 1549(m); 1524(i)

2.7.3 Caracterização espetroscópica de ¹H RMN (400MHz, DMSO-d₆, δ (ppm)) das 3,4-dihidropirimido[5,4-d]pirimidinas 56

Por análise dos espetros de ¹H RMN dos compostos **56**, foi possível atribuir a C₂-H o singleto que aparecia com valores de desvio químico entre δ 8,14-8,68 ppm, foi também possível atribuir ao C₆-H que se apresenta como um singleto, valores de desvio químico de δ 8,43-8,73 ppm. As atribuições dos sinais a cada um dos protões presentes nas moléculas foram confirmadas após análise dos espetros de HMBC e HMQC. Na maioria dos espetros é possível observar também um singleto bem definido, que foi atribuído ao 8-NH que aparece com desvios químicos δ 9,41-9,54 ppm e no caso das estruturas com a função hidrazida aparece com desvios químicos superiores δ 10,04-10,15 ppm (tabela **11**).

Composto	R	R ¹	C2-H	C6-H	R	8-NH/4-NH/R ¹
56a			8,16 (s,1H)	8,53 (s,1H)	6,49 (ddd, 1H, J 0.8, 2.4, 8Hz, Hp)	5,77 (s, 2H, NH ₂)
	POU				7,10 (t, 1H, J 8Hz, Hm)	8,36 (s, 1H, 4-NH)
					7,26 (ddd, 1H, J 0.8, 2, 8Hz, Ho)	9,43 (s, 1H, 8-NH)
					7,48 (ta, 1H, J 2.4, 2Hz, Ho')	
56b	OH P	н	8,14 (s,1H)	8,43 (s,1H)	6,72 (d, 2H, <i>J</i> 8.8Hz, H <i>o</i>)	5,76 (s, 2H, NH ₂)
	m	••			7,59 (d, 2H, J 8.8Hz, Hm)	8,30 (s, 1H, 4-NH);
	i					9,41 (s, 1H, 8-NH);
56c	CH ₃		8,17 (s,1H)	8,50 (s,1H)	2,27 (s, 3H, CH₃)	5,77 (s, 2H, NH ₂)
	m				7,14 (d, 2H, J 8Hz, Hm);	8,34 (s, 1H, 4-NH)
	i				7,76 (d, 2H, <i>J</i> 8,4Hz, Ho);	9,54 (s, 1H, 8-NH)

56d	m o i	m" p' NO2 o" m"''	8,68 (s,1H)	8,73 (s,1H)	8,56 (ddd, 1H, J 0.8, 2.4, 8Hz, Hp) 7,16 (t, 1H, J 8Hz, Hm) 7,34 (dd, 1H, J 2, 8Hz, Ho) 7,49 (ta, 1H, J 2Hz, Ho')	7,69 (t, 1H, J 8Hz, Hm'') 8,28 (ddd, 1H, J 1.2, 2.4, 8Hz, Hp') 8,54 (dt, 1H, J 1.2, 7.6Hz, Ho'') 8,92 (dd, 1H, J 1.6, 2.4 Hz, Ho''') 9,51 (sl, 2H, 4-NH+OH) 10,14 (s, 1H, 8-NH)
56e			8,63 (s,1H)	8,65 (s,1H)	6,79 (d, 2H, <i>J</i> 8.8Hz, H <i>m</i>) 7,66 (d, 2H, <i>J</i> 8.8Hz, H <i>o</i>)	7,70 (t, 1H, J 8Hz, Hm") 8,29 (dt, 1H, J 1.2, 8Hz, Hp") 8,54 (d, 1H, J 7.6Hz, Ho") 8,91 (ta, 1H, J 2Hz, Ho"") 10,04 (sl, 2H, 4-NH+OH) 10,15 (s, 1H, 8-NH)
56f	P o i		8,64 (s,1H)	8,67(s,1H)	2,31 (s, 3H, CH₃) 7,20 (d, 2H, J 8.4Hz, Hm) 7,81 (d, 2H, J 8Hz, Ho)	7,68 (t, 1H, J 8Hz, Hm'') 8,26 (ddd, 1H, J 0.8, 2.4, 8Hz, Hp') 8,40 (s, 1H, 4-NH) 8,54 (d, 1H, 7.6Hz, Ho'') 8,91 (ta, 1H, J 2Hz, Ho''') 10,04 (s, 1H, 8-NH)

2.7.4 Caracterização espetroscópica de RMN de ¹³C (100MHz, DMSO-d₆, δ (ppm) das 3,4-dihidropirimido[5,4-d]pirimidinas 56

A partir dos espetros de ¹³C RMN dos compostos **56** foi possível recolher o desvio químico a que apareciam todos os carbonos presentes em cada um dos compostos. A análise conjunta dos espetros de HMQC e HMBC permitiu fazer a atribuição dos sinais aos carbonos. O espetro de HMQC mostrou uma correlação direta entre o C₂-H e o C₆-H, aparecendo C₂ com desvios químicos δ 147,79-148,28 ppm e C₆ δ 154,80-155,98 ppm. No HMBC foi possível observar o acoplamento entre o C₆-H com os carbonos C₈ e C_{4a}, com desvios químicos δ 156,35-156,62

ppm e δ 133,42-139,11 ppm respetivamente (Figura 18).

Verificou-se também o acoplamento entre C₂-H e os carbonos C₄ e C_{8a}. com desvios químicos δ 152,33-156,17ppm e δ 125,19-127,80ppm. Em alguns casos foi possível observar o acoplamento entre o 8-NH e os carbonos C₈ e C_{8a}. Nos espetros com a função hidrazida foi verificado um pico com desvio químico por volta de δ 167 ppm correspondente ao carbono C=O.

Fig.18 – Correlações em HMBC das 3,4-dihidropirimido[5,4-d]pirimidinas 53

Compost	R	R ¹	C ₂	C ₆	C ₈ /C ₄	C _{4a} /C _{8a}	R	R ¹ /C ₉ /C _i ′
ο								
56a			148,24	154,80	156,54 156,08	138,16 125,49	108,34 (Co') 110,79 (Cp) 112,14 (Co) 129,18 (Cm) 139,58 (C _i) 157,48 (Cm')	
56b		Н	147,93	154,98	156,60 156,17	137,81 125,19	114,91 (Cm) 123,41 (Co) 129,19 (C _i) 153,95 (Cp)	
56c			148,28	154,90	a) 156,62	a)	20,53 (CH ₃) 121,45 (Co) 128,96 (Cm) 132,75 (C-CH ₃) 136,06 (C _i)	
56d			148,00	155,98	156,54 152,47	139,11 127,63	109,30 (Co') 111,61 (Cp) 113,04 (Co) 129,12 (Cm) 157,49 (Cm') 134,35 (C _i)	122,89 (Co ^{'''}) 124,31 (Cp [']) 129,23 (Cm ^{''}) 134,68 (Co ^{''}) 139,66 (Cm ^{'''}) 147,41 (C _i ') 167, 68 (C ₉)
56e	OH m o		147,79	152,28	156,52 152,46	133,42 127,62	115,07 (Cm) 124,26 (Co) 154,57 (Cp)	122,92 (Co''') 124,35 (Cp') 129,15 (Cm'')

	<i>m</i> ", NO ₂ <i>o</i> ", <i>o</i> "" 9 0					129,47 (C _i)	134,70 (Co'') 139,65 (Cm''') 147,43 (Cr') 167,80 (Co)
56f	-	147,88	155,51	156,35 152,33	127,30 134,30 b)	20,33 (CH ₃) 121,88 (Co) 128,80 (Cm) 133,27 (Cp) 135,47 (C _i)	122,53 (Co'') 123,87 (Cp') 128,80 (Cm'') c) 134,30 (Co'') 139,90 (Cm''') 147,32 (C _{i'}) 161,80 (C ₉)

a) Não foi possível estabelecer correlação

b) Carbonos sobreposto de C_{4a}/Co''

c) Carbonos sobrepostos de Cm/Cm"

2.8 Síntese de pirimido[5,4-d]pirimidinas

Na literatura têm vindo a ser descritos vários métodos de síntese de pirimido[5,4*d*]pirimidina **57**. A síntese das pirimido[5,4-*d*]pirimidinas **57** substituídas foi realizada a partir do derivados 2,4,6,8-tetracloro **60**. Por reação de composto **60** com o amino açúcar **61**, na presença de base (Et₃N) em butanol foram obtidos os compostos de estrutura **62-63**. Posteriormente o composto gerado **62** e o seu isómero **63** foram tratados com uma solução aquosa de amoníaco em EtOH em que apenas a estrutura **63** era reativa dando origem ao composto **64**, que por hidrogenação com Pd/C originou a pirmido[5,4-*d*]pirimidina **57** (esquema **25**) [48].

Curtin et al [49] também reportou a síntese da pirimido[5,4-*d*]pirimidina 57 a partir de
60 usando procedimentos ligeiramente diferentes do anteriormente descrito (esquema
26). Após reação do composto 60 com aminas secundárias e aromáticas e obtenção dos

compostos **65** os autores obtiveram os compostos **57** usando três métodos diferentes (Método A, B, C).

Este grupo de investigação obteve o composto **57** a partir da hidrogenação do composto **65** com Pd/H₂/KOH (Método A). O Método B permitiu a obtenção destes mesmos compostos **57** por reação do composto **65** em THF com um excesso de amina, sob refluxo. Por último, o método utilizado por *Curtin et al* para gerar o composto **57**, consistiu na reação do composto **65** com o alcóxido de sódio, sob refluxo, utilizando o respetivo álcool como solvente (esquema **26**, Método C) [49].

Ao longo dos anos, o nosso grupo de investigação também desenvolveu métodos de síntese para a obtenção destes compostos **57** a partir de derivados de purina [41, 44-45]. *Carvalho et al* sintetizou os compostos **57**, por reação de 6-cianopurinas **34** com aminas [44].

Desta reação, quando se usou uma amina primária, obteve-se compostos puros de estrutura **56** ou misturas de compostos **56** e **57** (esquema **27**).

Esquema 27

Nos estudos mais recentes, efetuados pelo nosso grupo de investigação, foi reportado um método de síntese de pirimido[5,4-*d*]pirimidinas **57** a partir das 6-

carbohidrazonamidopurinas **53** [45]. A conversão das 6-carbohidrazonamidopurinas **53** em pirimido[5,4-*d*]pirimidinas **57** ocorreu em etanol ou numa mistura de solventes de etanol e DMF na presença de piperidina (esquema **28**).

2.8.1 Conversão das 3,4-dihidropirimido[5,4-*d*]pirimidinas em pirimido[5,4*d*]pirimidinas

Neste capitulo será apresentada e discutida a síntese das pirimido[5,4-*d*]pirimidinas **57**, a partir dos precursores **56**, tendo por base o rearranjo de Dimroth (esquemas **29-31**).

Para obter a pirimido[5,4-*d*]pirimidina **57c** a partir de **56c** foi usado etanol na presença de piperidina (6 equiv.) á temperatura de 80°C (esquema **29**). Inicialmente a reação foi mantida a esta temperatura durante 16 horas e ao fim desse tempo considerou-se a reação terminada. A mistura reacional foi concentrada no evaporador rotativo e por adição de ácido acético (2,5 equiv.) e etanol verificou-se a precipitação de um sólido na mistura reacional. Após análise do espetro de ¹H RMN, identificou-se o sólido isolado como reagente de partida **56c**. Posto este resultado decidiu-se aumentar a quantidade de nucleófilo para 10 equivalentes e também o tempo de reação de 16 horas para 32

horas. Fez-se então reagir o composto **56c** sob as condições modificadas (esquema **29**). Desta reação, por análise do espetro de ¹H RMN do sólido isolado foi possível identificar uma mistura de **56c** e **57c** numa proporção de 71:29. Dado este resultado, foi possível perceber que o tempo de reação era o fator que influenciava a formação do composto **57c.** Assim, fez-se reagir de novo a 3,4-dihidropirimido[5,4-*d*]pirimidina **56c** seguindo as mesmas condições aumentando apenas o tempo de reação (esquema **29**). Completadas 49 horas de reação a 80°C, esta considerou-se terminada. O sólido foi isolado usando o procedimento anteriormente descrito e, após análise do espetro de IV, ¹H RMN e ¹³C RMN foi possível identificar o produto desta reação como pirimido[5,4-*d*]pirimidina **57c** obtido com um baixo rendimento.

Atendendo aos resultados obtidos na síntese anterior, fez-se reagir as 3,4dihidropirimido[5,4-*d*]pirimidinas **56d-f** com piperidina (6 equiv.). Estas foram colocadas em etanol, a 80°C, na presença de um excelente nucleófilo, a piperidina (6 equiv.). Ao fim de 16 horas deram-se as reações por terminadas. Os sólidos foram isolados seguindo o procedimento acima descrito. Por análise do espetro de IV, ¹H RMN e ¹³C RMN foi possível identificar o produto da reação de **56d** como pirimido[5,4-*d*]pirimidina **57d**, com bom rendimento.

Relativamente à reação de **56f**, após análise do espetro de ¹H RMN, verificou-se que apenas se tinha isolado o reagente **56f** (esquema **30**).

Considerando o resultado obtido na reação da 3,4-dihidropirimido[5,4-*d*]pirimidina **56f**, repetiu-se a reação usando um solvente onde o reagente **56f** fosse mais solúvel. Posto

isto, fez-se reagir as 3,4-dihidropirimido[5,4-*d*]pirimidinas **56e-f** nas condições acima descritas, usando como solvente o DMSO (esquema **30**). Após 16 horas de reação a 80°C, considerou-se as reações terminadas. As misturas reacionais foram concentradas no evaporador rotativo e, após repetir este processo duas vezes, adicionou-se ácido acético (2,5 equiv.) e água. Das misturas reacionais precipitaram sólidos que foram filtrados e lavados com água e umas gotas de éter etílico. Após análise do espetro de IV, ¹H RMN e ¹³C RMN foi possível identificar os compostos isolados como pirimido[5,4-*d*]pirimidinas **57e-f**, com excelentes rendimentos.
Fizeram-se também reagir as 3,4-dihidropirimido[5,4-d]pirimidinas **56a-b** seguindo as condições reacionais acima descritas (esquema **31**).

Relativamente à reação da 3,4-dihidropirimido[5,4-*d*]pirimidina **56a** primeiramente esta foi colocada em etanol, com excesso de piperidina (10 equiv.), à temperatura de 80°C (esquema **31**). Perfazendo 16 horas de reação a 80°C considerou-se a reação terminada e isolou-se o sólido seguindo o procedimento anteriormente descrito. Após análise do espetro de ¹H RMN foi possível identificar o composto isolado como uma mistura de **56a** e **57a** numa proporção de 78:22. Analisados os resultados obtidos nesta primeira reação, decidiu-se repetir a mesma usando as mesmas condições reacionais aumentando apenas o tempo de reação de 16 para 32 horas (esquema **31**). Posto isto, após as 32 horas de reação, esta foi considerada como terminada. O sólido foi isolado e por análise do espetro de ¹H RMN, o composto mostrou ser de novo uma mistura de **56a** e **57a**, mas agora numa proporção de 59:41. Com isto, e considerando a insolubilidade do reagente **56a** em etanol, repetiu-se de novo a reação usando como solvente o DMSO. Sendo assim, fez-se reagir **56a** com piperidina em excesso (6 equiv.) em DMSO a 80°C (esquema **31**). Ao fim de 14 horas de reação, deu-se a mesma por

terminada. Um sólido foi isolado que, por análise do espetro de ¹H RMN, mostrou ser uma mistura complexa com vestígios de reagente **56a.** Tendo em conta este resultado, considerou-se que o tempo de reação foi demasiado, o que levou à formação da mistura complexa identificada por espetroscopia de ¹H RMN. Posto isto, repetiu-se a reação de **56a** em DMSO e diminui-se o tempo de reação para 40 minutos (esquema **31**). Foi isolado um sólido, que após análise do espetro de ¹H RMN identificou-se apenas como reagente **56a.** Quanto à 3,4-dihidropirimido[5,4-*d*]pirimidina **56b**, esta fez-se reagir com a piperidina em excesso (10 equiv.), usando como solvente o etanol à temperatura de 80°C. Considerou-se a reação terminada após 16 horas. O sólido isolado foi identificado por análise de espetroscopia de ¹H RMN como **56b** (esquema **31**).

2.8.2 Mecanismo de reação

As pirimido[5,4-*d*]pirimidinas **57** são obtidas por reação das 3,4-dihidropirimido[5,4*d*]pirimidinas **56** em etanol na presença de piperidina que funciona como nucleófilo. O mecanismo proposto para a obtenção destes compostos, envolve um ataque nucleofílico por parte do nucleófilo ao carbono C₂ do anel de pirimidina, ocorrendo a abertura do anel formando o intermediário **66**. Após rotação e por ataque nucleofílico ao carbono da função amidina, o nucleófilo é eliminado formando o intermediário **56** este último sofre tautomerização o que leva à formação da pirimido[5,4-*d*]pirimidina **57** (esquema **32**).

Esquema 32

2.9 Caracterização física, analítica e espetroscópica das pirimido[5,4-d]pirimidinas 57 2.9.1 Dados físicos e analíticos para as pirimido[5,4-d]pirimidinas 57

Os dados obtidos por espetrometria de massa apoiam a fórmula molecular dos compostos **57**.

 Tabela 13 - Dados físicos e analíticos das pirimido[5,4-d]pirimidinas 57

							57
Composto	R	R ¹	η (%)	P. f.(°C)	Fórmula molecular; Mr	C; H; N; S (%) Valores obtidos (Valores calculados)	m/z
57c	CH ₃	н	44	235-236	C ₁₃ H ₁₃ N ₇ 267,29	a) (58,42; 4,90; 36,68)	268,11[M+1] ⁺ (100%)
57d	OH		61	280-281	C ₁₉ H ₁₄ N ₈ O ₄ 418,37	a) (54,55; 3,37, 26,78)	419,14 [M+1] ⁺ (100%)
57e	OH		84	279-280	C ₁₉ H ₁₄ N ₈ O ₄ 418,37	a) (54,55; 3,37, 26,78)	441,17 [M+23] ⁺ (100%) 417,19 [M-1] ⁻ (100%)
57f	CH ₃		95	276-277	C ₂₀ H ₁₆ N ₈ O ₃ 416,39	a) (57,69; 3,87; 26,91)	417,21 [M+1]⁺ (8,19%)

a) Os valores experimentais de análise elementar ainda não se encontram disponíveis à data da escrita deste trabalho

2.9.2 Espetroscopia de IV (Nujol/cm⁻¹) das pirimido[5,4-d]pirimidinas 57

As pirimido[5,4-*d*]pirimidinas **57** apresentam nos espetros de IV bandas de absorção que variam entre uma intensidade forte e média. As bandas entre 3028 a 3360 cm⁻¹ podem ser atribuídos às vibrações de estiramento das ligações dos sinais N-H e C-H. A região compreendida entre os 1509 e 1690 cm⁻¹ é caracterizada por um grupo de bandas de intensidade variável, que resulta das vibrações de estiramento C=C e C=N também das vibrações de deformação angular das ligações N-H (tabela **14**).

Tabela 14 - Caracterização espetroscópica de IV (Nujol/cm⁻¹) das pirimido[5,4*d*]pirimidinas **57**

Composto	R	R ¹	3500-3000	1700-1500
57c	CH ₃	Н	3343 (i); 3303 (i); 3250 (f); 3164 (m)	1618 (i); 1595 (i); 1565 (f); 1537(m); 1509 (f)
57d	ОН		3360 (i); 3289 (i); 3122 (m); 3095 (m)	1690 (f); 1641 (i); 1602 (m); 1582 (f); 1568 (f); 1530 (i)
57e	OH	NO ₂	3565 (i)	1681 (m); 1649 (i); 1617 (f); 1572 (m); 1537 (i); 1509 (m)
57f	CH ₃		3354(m); 3300 (f); 3212(f); 3028 (m)	1686 (m); 1679 (m); 1631 (f); 1606 (i); 1591 (m); 1571 (i); 1534 (i); 1510 (f)

2.9.2 Caracterização espetroscópica de ¹H RMN (400MHz, DMSO- d_6 , δ (ppm)) das pirimido[5,4-d]pirimidinas 57

O espetro de ¹H RMN das pirimido[5,4-*d*]pirimidinas **57**, mostra a presença de dois singletos atribuídos ao 4-NH e ao 8-NH com desvios químicos compreendidos entre δ 9,53-9,65 ppm e δ 9,77-9,80 ppm respetivamente. Existem também dois singletos que aparecem com desvios químicos mais baixos que foram atribuídos ao C₆-H com desvios químicos entre os δ 8,48-8,56ppm e ao C₂-H com valores entre δ 8,32-8,52 ppm (tabela **15**).

Tabela 15 - Caracterização espetroscópica de ¹H RMN das pirimido[5,4-*d*]pirimidinas **57** (400MHz, DMSO-*d*₆), δ (ppm).

Composto	R	R ¹	C2-H	C₀-H	R	8-NH/4-NH/R ¹
57c	CH ₃ P		8,49 (s,1H)	8,52 (s,1H)	2,82 (s, 3H, CH₃)	4,82 (s, 2H, NH ₂ / R ¹)
		н			7,17 (d, 2H, J 8.4Hz, Hm)	9,65 (s, 1H, 4-NH)
	i				7,85 (d, 2H, <i>J</i> 8.4Hz, Ho)	9,77 (s, 1H, 8-NH)
57d	m POH		8,41 (s,1H)	8,56 (s,1H)	6,52 (dd, 1H, <i>J</i> 2.4, 8Hz, H <i>p</i>)	7,70 (t, 1H, J 8Hz, Hm'')
	0 0'				7,15 (t, 1H, J 8Hz, Hm)	8,24 (dd, 1H <i>, J</i> 1.6, 8Hz, H <i>p'</i>)
					7,34 (d, 1H, J 2.4Hz, Ho)	8,39 (d, 1H <i>, J</i> 8Hz, H <i>o''</i>)
					7,59 (t, 1H, J 2.4Hz, Ho')	8,77 (s, 1H, Ho‴)
						9,58 (sl, 1H, 4-NH)
57e	OH Pl		8,52 (s,1H)	8,55 (s,1H)	6,78 (d, 2H, J 8.8Hz, Hm)	7,82 (t, 1H, J 8Hz, Hm'')
					7,73 (d, 2H, <i>J</i> 8.8Hz, H <i>o</i>)	8,38 (m, 1H, Hp′)
	i				10,26 (sl, 1H, OH)	8,40 (t, 1H, H <i>o''</i>)
		, p' NO-				8,77(ta, 1H, J 2Hz, Ho''')
						9,53 (sl, 1H, 4-NH)
						9,80 (s, 1H, 8-NH)
57f	CH ₃	<u>`0</u>	8,32 (s,1H)	8,48 (s,1H)	2,82 (s, 3H, CH₃)	7,64 (t, 1H, J 8Hz, Hm'')
					7,17 (d, 2H, J 8.4Hz, Hm)	8,15 (ddd, 1H, J 1.2, 2.8, 8Hz, Hp')
	i				7,86 (d, 2H, <i>J</i> 8.4Hz, Ho)	8,39 (dt, 1H, J 1.2, 8.8Hz, Ho'')
						8,77 (dd, 1H, <i>J</i> 1.6, 2.4Hz, Ho''')

2.9.4 Caracterização espetroscópica de ¹³C RMN (100MHZ, DMSO- d_6 , δ (ppm)) das pirimido[5,4-d]pirimidinas 57

Os espetros de HMQC das pirimido[5,4-*d*]pirimidinas **57**, mostram uma correlação direta entre os protões C₂-H e C₂ e C₆-H e C₆ surge a desvio químico compreendido entre δ 153,08-154,25 ppm e o valor do desvio químico de C₂ surge a desvio químico compreendido entre δ 154,61-155,72 ppm. No espetro de HMBC, o protão C₆-H mostra correlação com C_{4a} e C₈, o C₂-H mostra correlação com o C₄ e C_{8a} (figura **19**). Os espetros também mostram uma interação entre o C₈-NH com C₈ e C_{8a}, que permite a identificação destes carbonos. Os carbonos C₄ e C₈ aparecem entre δ 154,07-156,19 ppm e δ 151,09-157-20 ppm respetivamente. Os C_{4a} e C_{8a} aparecem entre δ 130,86-131,37 ppm. Além disso o HMBC permite a identificação do C₉ com desvios entre δ 161,64-163,24 ppm (tabela **16**).

Fig. 19 – Correlações em HMBC das pirimido[5,4-d]pirimidinas 57

Tabela 16 – Caracterização espetroscópica de ¹³C RMN das pirimido[5,4*d*]pirimidinas **57** (100MHz, DMSO-*d*₆), δ (ppm)

Composto	R	R ¹	C ₂ /C ₆	C ₈ /C ₄	C _{8a} /C _{4a}	R	R ¹ /C ₉
57c		Η	154,76 153,63	156,19 157,20	130,87 131,37	20,53 (CH ₃) 121,37 (Co) 128,94 (Cm) 132,74 (Cp) 136,02 (C _i)	
57d a)	m o i	<i>D'</i>	155,46 153,36	155,96 153,22	131,24 132,03	108,17 (Co') 110,72 (Cp) 112,00 (Co) 129,21 (Cm) 139,66 (Ci) 157,52 (Cm')	121,49 (Co''') 123,76 (Cp') 129,44 (Cm'') 133,29 (Co'') 139,15 (Cm''') 147,59 (C _i ') 162,32 (C ₉)
57e a)		o" 900	154,61 154,25	156,27 154,07	131,89 131,11	114,99 (Cm) 123,53 (Co) 129,93 (C _i)	122,05 (Co''') 125,76 (Co'') 130,21 (Cm'') 133,73 (Cp') 135,50 (Cm''') 147,81 (C _l ') 163,24 (C ₉)
57f a)			155,72 153,08	155,85 151,09	132,39 130,86	20,53 (CH ₃) 121,03 (Co) 128,96 (Cm) 132,54 (Cp) 136,31 (C _i)	121,19 (Co''') 122,70 (Cp') 129,06 (Cm'') 133,05 (Co'') 141,05 (Cm''') 147,51 (Ci') 161,64 (C ₉)

a) Espetros realizados em DMSO com piperidina no meio

2.10 Reação de pirimido[4,5-d]pirimidinas com aldeídos

Os compostos **68** foram obtidos por reação da pirimido[5,4-*d*]pirimidina **57c** com três aldeídos, diferentes. Assim fez-se reagir o composto **57c** com cada um dos aldeídos, em DMSO, usando catálise ácida (H₂SO₄) à temperatura de 25°C (esquema **33**). Após adição de ácido à suspensão inicial, formou-se uma solução de cor alaranjada, em todas as reações. Monitorizou-se as reações por TLC e quando se verificou a ausência do reagente **57c** deram-se estas por terminadas. Quando terminadas, adicionou-se água ás misturas reacionais, das quais precipitaram sólidos. Os compostos foram filtrados e lavados com água e éter etílico no final. Os compostos obtidos foram identificados como **68a-c** e isolados com bons rendimentos.

Esquema 33

2.11 Caracterização física, analítica e espetroscópica das pirimido[5,4-*d*]pirimidin-4-il hidrazona 68

2.11.1 Dados físicos e analíticos das pirimido[5,4-d]pirimidin-4-il hidrazona 68

Os dados obtidos por espetrometria de massa apoiam a fórmula molecular dos compostos.

Tabela 17 - Dados físicos e analíticos das 4-hidrazinopirimido[5,4-d]pirimidinas**68**

Composto	R	R ¹	η (%)	P. f. (°C)	Fórmula molecular Mr	C; H; N; S (%) Valores obtidos (Valores calculados)	m/z
68a	CH ₃	OH	84,2	271- 272	C ₂₀ H ₁₇ N ₇ O 371,15	a) (64,68; 4,61; 26,40)	372,19 [M+1] ⁺ (100%)
68b	$\left \right\rangle$	OH	94	245- 246	C ₂₀ H ₁₇ N ₇ O ₂ 387,14	a) (62,01; 4,42; 25,31)	388,19 [M+1] ⁺ (85,14%)
68c		OH	98	251- 252	C ₂₁ H ₁₉ N ₇ O ₂ 401,16	a) (62,83; 4,77; 24,42)	402,16 [M+1] ⁺ (100%)

a) Os valores experimentais de análise elementar ainda não se encontram disponíveis à data da escrita deste trabalho

2.11.2 Espetroscopia de IV (Nujol/cm⁻¹) das pirimido[5,4-*d*]pirimidin-4-il hidrazona 68

Os compostos **68** apresentam nos espetros de IV bandas de absorção com uma intensidade forte, com valores compreendidos entre 3157 a 3353 cm⁻¹, sinais que podem ser atribuídos às vibrações de estiramento das ligações N-H. A região compreendida entre os 1511 e 1651 cm⁻¹ é caracterizada por um grupo de bandas de intensidade variável, que resulta das vibrações de estiramento C=C e C=N e também das vibrações de deformação angular das ligações N-H (tabela **18**).

Tabela 18 - Caracterização espetroscópica de IV (Nujol/cm⁻¹) das pirimido[5,4-*d*]pirimidin-4-il hidrazona 68

_R¹

Composto	R	R ¹	3500-3000	1700-1500			
68a	CH ₃	OH	3353(i)	1651(i); 1600(i); 1567(m); 1536(m)			
68b	¢	OH OH	3157(i)	1651(i); 1599(i); 1564(i); 1528(i);			
68c	•	OH OMe	3283(i)	1653(m); 1590(i); 1564(i); 1538(i); 1538(i); 1511(i)			

2.11.3 Caracterização de espetroscópica de ¹H RMN (400MHz, DMSO- d_6 , δ (ppm)) das pirimido[5,4-d]pirimidin-4-il hidrazona 68

Os espetros de ¹H RMN dos compostos **68**, mostram a presença de dois singletos que são correspondentes aos protões C₂-H e C₆H com desvios químicos de δ 8,53-8,57 ppm e δ 8,55-8,60 ppm respetivamente. Existe também um singleto que aparece com desvio químico mais alto que corresponde ao C₉-H com valores compreendidos δ 8,62-8,67 ppm. Foi também possível observar um singleto largo com um desvio químico δ 10,01-10,31 ppm que foi atribuído ao protão do 8-NH (tabela **19**).

Tabela 19 - Caracterização espetroscópica de ¹H RMN das pirimido[5,4-*d*]pirimidin-4-il hidrazona **68** (400MHz, DMSO- d_6 , δ (ppm))

Composto	R	R ¹	C ₂ / C ₆ -H	R	8-NH/4-NH/R ¹ /C ₉ -H
68a		OH p'	8,58	2,29 (s, 3H, CH₃)	6,84 (d, 2H, J 8.8Hz, Hm')
		m'r	(s,1H)	7,18 (d, 2H, J	7,63 (d, 2H, J 8.8Hz, Ho')
			8,57	8.4Hz, H <i>m</i>)	8,62 (s, 1H, C9-H)
		.1	(s,1H)	7,84 (d, 2H, J	10,01 (s, 1H, 8-NH)
				8.4Hz, Ho)	
68b		OH n ¹ row	8,53 (s,	2,29 (s, 3H, CH₃)	6,83 (d, 1H, J 8Hz, Hm')
		m' M'OH	1H)	7,20 (d, 2H, J	7,07 (dd, 1H, J 2, 8.4Hz, Ho')
		0'	8,55	8.4Hz, H <i>m</i>)	7,36 (d, 1H, <i>J</i> 2Hz, Ho'')
		ľ	(s, 1H)	7,82 (d, 2H, J	8,65 (s, 1H, C9-H)
				8.8Hz, Ho)	10,31 (s, 1H, 8-NH)
68c		OH D'I "P'I	8,57 (s,	2,30 (s, 3H, CH₃)	3,87 (s, 3H, OMe)
		m ^{'P} m ["] OMe	1H)	7,21 (d, 2H, J	6,88 (d, 1H, J 8Hz, Hm')
		0' 0"	8,67	8.4Hz, H <i>m</i>)	7,24 (dd, 1H, <i>J</i> 1.2, 8Hz, Ho')
			(s, 1H)	7,79 (d, 2H, J	7,49 (d, 1H, J 1.2Hz, Ho'')
				8.4Hz, Ho)	8,60 (s, 1H, C ₉ -H)
					10,31 (s, 1H, 8-NH)

2.11.4 Caracterização de espetroscópica de ¹³C RMN (100MHz, DMSO- d_6 , δ (ppm)) das pirimido[5,4-d]pirimidin-4-il hidrazona 68

Os espetros de HMQC dos compostos **68**, mostram uma correlação direta entre os protões C₂-H e C₂ e C₆-H e C₆, que se apresentam com um valor do desvio químico do C₆ surge a um desvio químico compreendido entre δ 154,17-154,45 ppm e o valor do desvio químico de C₂ surge a um desvio químico compreendido δ 150,92-152,92 ppm. No espetro de HMBC, o protão C₆-H mostra correlação com C₄ e C₈, o C₂-H mostra correlação com o C₄ e C₈ (figura **20**).

Os espetros de HMBC dos compostos **68** também mostram uma interação entre o $C_{o''}$ com C_9 o que permite a identificação deste carbono a desvio químico que varia entre δ 150,51-152,73 ppm. Os carbonos C_4 e C_8 aparecem entre δ 153,44-153,57 ppm e δ 156,23-156,81 ppm respetivamente. Os C_{4a} e C_{8a} aparecem entre δ 128,99-131,61 ppm para os carbono C_{8a} e desvios químicos de δ 125,12-125,33 ppm para o C_{4a} . (tabela **20**).

Fig.20 – Correlações de HMBC pirimido[5,4-d]pirimidin-4-il hidrazona 68

Tabela 20 - Caracterização espetroscópica de ¹³C RMN pirimido[5,4-d]pirimidin-

4-il hidrazona 68 (100MHz, DMSO- d_6 , δ (ppm))

							00
Composto	R	R ¹	C ₂ /C ₆	C8/C4	C _{8a} /C _{4a}	R	R ¹
68a		OH	152,87	156,23	128,99	20,53 (CH₃)	115,80 (C <i>m'</i>)
			154,17	153,44	125,23	121,78 (C <i>o</i>)	129,32 (Co')
						128,97 (C <i>m</i>)	131,72 (Ci′)
						133,20 (Cp)	150,51 (C ₉)
						135,76 (Ci)	159,79 (C <i>p'</i>)
68b		OH n'l revi	150,92	156,54	131,61	20,58 (CH₃)	113,66 (C <i>o''</i>)
	CH ₃	m' m'OH	154,45	153,57	125,33	122,06 (C <i>o</i>)	115,64 (C <i>m'</i>)
	m	0'				129,01 (C <i>m</i>)	121,45 (Co')
		ľ				133,54 (Cp)	131,95 (Ci')
						135,54 (Ci)	145,80 (C <i>m''</i>)
							148,81 (Cp')
							152,15 (C ₉)
68c		OH P ['] m″ou	151,30	156,81	131,01	20,56 (CH₃)	55,76 (OMe)
		m'r m'OMe	154,42	153,48	125,12	122,15 (Co)	110,04 (Co'')
		0'1 0"				129,00 (C <i>m</i>)	115,56 (C <i>m′</i>)
						133,67 (Cp)	123,31 (Co')
						135,43 (Ci)	132,16 (Ci′)
							148,13 (Cm'')
							150,00 (C <i>p'</i>)
							152,73 (C ₉)

III – Conclusão

O principal objetivo deste trabalho, foi a síntese de novos derivados de 6carbohidrazonamidopurinas **53** e pirimido[5,4-*d*]pirimidinas **57**.

Começou-se por sintetizar os reagentes de partida, as 6-cianopurinas **34** que foram obtidas por reação das amidinas **32** com TEOF na ausência de solvente, segundo métodos já descritos na literatura. Estes compostos foram obtidos com bons rendimentos.

Após obtenção das 6-cianopurinas **34** realizou-se a síntese das 6-imidatopurinas **46** seguindo métodos de síntese também descritos anteriormente na literatura. Na síntese destes compostos houve dificuldades em seguir a reação. Nas primeiras tentativas de reação obteve-se ou apenas reagente de partida ou mistura de reagente com produto. Posto este resultado, aumentou-se o tempo de reação e realizou-se a síntese a temperatura controlada o que permitiu obter o produto desejado, a 6-imidatopurina **46**.

As amidrazonas, foram também usadas como reagentes de partida. Uma vez que não se encontram disponíveis comercialmente, foi também necessária a sua síntese. Nas primeiras tentativas de síntese foram obtidas misturas do composto desejado e de dímero. A obtenção do monómero desejado foi conseguida após aumentar a quantidade de hidrazina no meio reacional.

Obtidos todos os reagentes de partida, procedeu-se á síntese de 6carbohidrazonamidopurinas **53**. Estas foram obtidas pela reação de diferentes 6imidatopurinas **46** com derivados de amidrazonas usando condições de reação anteriormente descritos na literatura. Em algumas reações o uso de DMSO como solvente e catálise ácida, levou à obtenção do produto desejado puro, contudo noutras reações foram obtidas misturas. Nestes casos decidiu-se realizar a síntese usando o CH₃CN como solvente e cloreto de anilíneo como catalisador. Nas novas condições, os tempos de reação aumentaram consideravelmente, contudo foi possível a obtenção de alguns derivados puros.

77

A síntese de novos derivados de pirimido[5,4-*d*]pirimidinas **57** foi outro objetivo deste trabalho.

Estes compostos são obtidos por reação das 3,4-dihidropirimido[5,4-*d*]pirimidinas **56** em etanol utilizando como nucleófilo a piperidina (10/6 equiv.). Procedeu-se à síntese dos derivados **57** nas condições descritas, sendo possível a obtenção de alguns compostos puros com bons rendimentos. A síntese de alguns dos derivados **57** não foi possível utilizando as condições anteriores, sendo assim, realizou-se a síntese utilizando como solvente o DMSO e 6 equivalentes de piperidina. Nestas condições foi possível obter os restantes derivados dos compostos **57** puros com bons rendimentos. Relativamente ao derivados **57a-b** nas condições reacionais anteriormente descritas não foi possível obter estes compostos puros, apenas se obteve misturas ou mesmo reagente de partida **56a-b**.

Obtidos os compostos 57, fez-se reagir o derivado 57c com diferentes aldeídos 48 em DMSO na presença de catálise ácida. Os compostos 68a-c foram obtidos com bons rendimentos.

Futuramente espera-se melhorar as condições reacionais descritas anteriormente de forma ser possível a obtenção dos restantes derivados puros e otimização dos rendimentos.

IV- Procedimentos Experimentais

4.1 Técnicas gerais

Os espetros de RMN foram registados através de um espectrómetro Bunker Avance III (1H; 400MHz, 13C; 100MHz), incluindo os espetros de correlação 1H, 13C (HMQC, HMBC) sendo usado o DMSO deuterado para solubilizar as amostras. Os espetros de IV foram registados pelo FT-IR Bomem MB 104 utilizando o Nujol e células de NaCl. As análises elementares foram realizadas por o instrumento LECO CHNS-932. Os espectros de massa foram registados num aparelho Kratus Concept, usando a técnica FAB (Fast Atom Bombardment) com matriz de álcool 3-nitrobenzílico. Todas as reações elaboradas foram monitorizadas por TLC, placas de sílica gel 60 F254 (Merck) sendo usadas também placas de vidro da mesma marca. Os pontos de fusão foram determinados com um aparelho de ponto de fusão da Stuart, mas a máquina não possui uma calibração correta.

4.1.1 Síntese do Imidato

Num balão com 250 mL de capacidade foi adicionado o DAMN **29** (10,22 g; 94,54 mmol). Suspendeu-se o sólido em 150 mL de dioxano, e a esta suspensão acastanhada adicionou-se 1 equiv. de TEOF **30** (15,73 mL; 94,54 mmol). Ao balão foi acoplado um sistema de destilação fracionada previamente. A reação ocorreu sob agitação eficiente à temperatura de 123°C.

Ao fim de 40 minutos considerou-se a reação terminada após a recolha de 80 mL de destilado.

Desligou-se o sistema de aquecimento e deixou-se arrefecer o balão até à temperatura ambiente.

Após arrefecimento a solução acastanhada foi filtrada sob um funil de placa porosa, com uma camada fina de sílica e Kieselguhr (0,5 cm). Obteve-se uma solução amarelada, colocou-se no gelo e adicionou-se 60mL de n-hexano. Precipitou um sólido cristalino de cor bege.

O sólido precipitado foi filtrado sob vácuo e lavado com uma mistura de 2:1 de nhexano/ éter etílico.

Depois de seco o sólido foi recolhido e identificado como imidato **31** (13,50 g; 82,31 mmol; 87%) após análise do espetro de ¹H RMN.

4.1.2 Síntese das amidinas

Procedimento Geral: Para um balão com 50 mL de capacidade adicionou-se o imidato 33, um sólido de cor bege cristalino, adicionou-se etanol e a respetiva amina (1,05 equiv.) sob uma agitação eficiente. Levou-se ao ultrassons entre 5 a 10 minutos. Após ultrassons adicionou-se à suspensão amarela-alaranjada uma quantidade catalítica de cloreto de anilíneo (PhNH₃Cl), e atmosfera inerte de N₂. Aproximadamente ao fim 18 horas a reação encontrava-se terminada. Filtrou-se o sólido em suspensão sob vácuo e lavou-se com etanol (8-10 mL) e éter etílico (5 mL) bem frios. Recolheu-se um sólido de cor verde claro. Depois de seco o sólido foi identificado como amidina 32 após análise do espetro de ¹H RMN.

(Z)-N'-((Z)-2-amino-1,2-dicianovinil)-N-(3-hidroxifenil)formimidamida 32a

O composto **34a** (3,54 g; 15,59 mmol) foi obtido como um sólido tipo pó de cor verde claro, a partir do imidato **33** (4,00 g; 24,45 mmol) com a amina (1,05 equiv.; 2,85 g; 25,67 mmol), em etanol (18 mL) com PhNH₃Cl com um rendimento de 64%.

(Z)-N'-((Z)-2-amino-1,2-dicianovinil)-N-(4-hidroxifenil)formimidamida 32b

O composto **34b** (4,00 g; 24,40 mmol) foi obtido como um sólido tipo pó de cor amarelo-claro, a partir do imidato **33** (4,00 g; 24,40 mmol) com a amina (1,05 equiv.; 2,80 g; 25,62 mmol), em etanol (18 mL) com PhNH₃Cl com um rendimento de 65%.

4.1.3 Síntese do 5-amino-1-(p-toluil)-1H-imidazole-4-carbimidoilcianeto

Num balão de fundo redondo com 100 mL de capacidade adicionou-se o imidato **31** (3,17 g; 19,30 mmol), e etanol (25 mL). De seguida adicionou-se a amina correspondente (1,05 equiv.; 2,17 g; 20,26 mmol) e levou-se ao ultrassons durante 5 minutos. Após ultrassons colocou-se o balão com a mistura reacional sob uma agitação eficiente. Sob agitação adicionou-se como catalisador PhNH₃Cl. Fechou-se o balão com uma rolha e removeu-se o oxigénio com a introdução de N₂ gasoso. A reação foi deixada sob agitação até ao dia seguinte. No dia seguinte o TLC mostrou ausência de reagente **33**. Adicionou-se DBU (cat.) e mais etanol (5 mL). Deixou-se a reagir até se verificar a ausência de amidina por TLC. O sólido em suspensão foi filtrado e lavado com etanol (8 mL) e éter etílico (8 mL) bem frios. Recolheu-se um sólido de cor branca. Depois de seco o sólido foi identificado como imidazole **33a** (3,40 g; 15,07 mmol; 78%) por análise do espetro de ¹H RMN.

4.1.4 Síntese de 6-cianopurinas

Método A: Para um balão com 25 mL de capacidade foi adicionado a amidina **32** juntouse o TEOF **37** (4 equiv.) e colocou-se a suspensão sob refluxo. Passados 10 minutos a mistura reacional entrou em ebulição e a reação encontrava-se terminada. O balão continha uma solução de cor escura. Desligou-se o refluxo, deixou-se o balão arrefecer por minutos à temperatura ambiente sendo depois colocado a -20°C até ao dia seguinte. O sólido precipitado da solução filtrou-se, lavou-se com etanol (2 mL) e éter etílico (2 mL). O sólido obtido foi identificado como 6-cianopurina **36** após análise do espetro de ¹H RMN.

9-(3-hidroxifenil)-9H-purina-6-carbonitrilo 34a

Método A: O composto **34a** (0,70 g; 2,97 mmol) foi obtido como um sólido de cor bege-acinzentado, a partir da (Z)-N'-((Z)-2-amino-1,2-dicianovinil)-N-(3-hidroxifenil)formimidamida**32a**(0,86 g; 3,80 mmol) em TEOF**30**(4 equiv.; 2,52 mL; 15,20 mmol), após 40 minutos de reação, com 78% de rendimento.

9-(4-hidroxifenil)-9H-purina-6-carbonitrilo 34b

Método A: O composto **34b** (1,12 g; 4,93 mmol) foi obtido como um sólido de cor preto, a partir da (*Z*)-*N*'-((*Z*)-2-amino-1,2-dicianovinil)-*N*-(4-hidroxifenil)formimidamida **32b** (0,76 g; 3,21 mmol) em TEOF **30** (4 equiv.; 3,28 mL; 19,73 mmol), após 30 minutos de reação, com 65% de rendimento.

4.1.5 Síntese 9-(*p*-toluil)-9*H*-purina-6-carbonitrilo 34c

Para um balão com 100mL de capacidade foi adicionado o imidazole **33a** (3,78 g; 15,00 mmol) juntou-se TEOF **30** (4 equiv.; 9,97 mL; 60,00 mmol), CH₃CN (60 mL) e por fim catálise de H₂SO₄. Levou-se o balão ao ultrassons durante 5-15 minutos. Após ultrassons colocou-se o balão com a mistura reacional sob uma agitação eficiente à temperatura ambiente (16°C). Passados 5 minutos um sólido de cor branca precipitou da mistura reacional. Realizou-se TLC 15 minutos após retirar a reação dos ultrassons e verificou-se que tinha terminado. Filtrou-se e lavou-se o sólido precipitado com éter etílico (20 mL) bem frio. O sólido obtido foi identificado como 6-cianopurina **34c** (2,98 g; 12,66 mmol; 84%) após análise do espetro de ¹H RMN.

4.1.6 Síntese de 6-imidatopurinas

Procedimento geral: Para um balão de fundo redondo de 25 mL de capacidade adicionou-se a 6-cianopurina **34**, metanol (1,5-8 mL) e colocou-se sob agitação eficiente a uma temperatura compreendida entre os 19°C e os 27°C. Sob agitação, adicionou-se DBU (cat.). A reação foi monitorizada por TLC até se verificar a inexistência de reagente de partida **34**. Após 1 a 10 dias de reação esta encontrava-se terminada. Após arrefecimento em gelo, o sólido em suspensão foi filtrado e lavado com uma mistura de 4:1 de etanol e éter etílico. Depois de seco, o sólido recolhido foi identificado como 6-imidatopurina **46** após análise do espetro de ¹H RMN.

Metil 9-(3-hidroxifenil)-9H-purina-6-carbimidato 46a

O composto **46a** (0,75 g; 2,78 mmol) foi obtido por reação da 6cianopurina **34a** (1,70 g; 7,20 mmol) em metanol (5 mL) com DBU, após 10 dias de reação, com rendimento de 60%

Metil 9-(4-hidroxifenil)-9H-purina-6-carbimidato 46b

O composto **46b** (1,21 g; 4,45 mmol) foi obtido por reação da 6cianopurina **34b** (1,40 g; 5,87 mmol) em metanol (1,5 mL) com DBU, após 8 dias de reação com rendimento de 75%

Metil 9-(p-toluil)-9H-purina-6-carbimidato 46c

O composto **46c** (0,53 g; 2,00 mmol) foi obtido por reação da 6cianopurina **34c** (0,56 g; 2,38 mmol) em metanol (8 mL) com DBU, após 6 dias de reação, com rendimento de 84,2%

4.1.7 Síntese de amidrazonas

Procedimento Geral: A uma solução/suspensão de aldeído em etanol, foram adicionados lentamente entre 1,1 a 3 equivalentes de hidrazina monohidratada, sob agitação magnética e à temperatura ambiente (19-27°C). Imediatamente após a adição da hidrazina ocorreu a precipitação de um sólido. À mistura foi adicionado mais etanol e esta permaneceu sob agitação magnética até estar terminada por TLC (5 minutos a 20 dias). O balão foi arrefecido em banho de gelo. Os sólidos foram filtrados sob vácuo e lavados com etanol e éter etílico frios. Depois de secos os sólidos foram recolhidos e identificados como amidrazonas **49a-g**, após análise dos espetros de IV, ¹H RMN, ¹³C RMN e análise elementar.

(Z)-4-(hidrazonametil)fenol 49a

O composto **49a** (0,211 g; 1,56 mmol) foi obtido por reação do aldeído 4-hidroxibenzaldeído **48a** (0,21 g; 1,66 mmol) com hidrazina monohidratada (1,1 equiv.; 0,09 mL) em etanol (1,2 mL), após 30 minutos de reação, com rendimento de 93,4%

(Z)-4-hidrazonametil)benzeno-1,2-diol 49b

O composto **49b** (0,25 g; 1,64 mmol) foi obtido por reação do aldeído 3,4-hidroxibenzaldeído **48b** (0,25 g; 1,72 mmol) com hidrazina monohidratada (1,1 equiv.; 0,09 mL) em etanol (2 mL), após 19 horas de reação, com rendimento de 95%

(Z)-4-(hidrazonametil)-2-metoxifenol 49c

O composto **49c** (0,25 g; 1,49 mmol) foi obtido por reação do aldeído 3metoxi-4-hidroxibenzaldeído **48c** (0,24 g; 1,55 mmol) com hidrazina monohidratada (1,1 equiv.; 0,08 mL) em etanol (3 mL) após 3 horas de reação, com rendimento de 96.2%

(Z)-(4-clorobenzildieno)hidrazina 49d

O composto **49d** (0,38 g; 2,43 mmol) foi obtido por reação do aldeído 4-clorobenzaldeído **48d** (0,53 g; 3,76 mmol) com hidrazina monohidratada (3 equiv.; 0,56 mL) em etanol (1 mL) após 5 dias de reação, com rendimento de 65%

(Z)-(3,4-dimetoxibenzildieno)hidrazina 49e

O composto **49e** (0,13 g; 0,74 mmol) foi obtido por reação do aldeído 3,4-dimetoxibenzaldeído **48e** (0,20 g; 1,23 mmol) com hidrazina monohidratada (1,1 equiv.; 0,07 mL) em etanol (1 mL), após 1h30minutos de reação, com rendimento de 60,4%

(Z)-(2,4,5-trimetoxibenzildieno)hidrazina 49f

O composto **49f** (0,25 g; 1,20 mmol) foi obtido por reação do aldeído 2,4,5-trimetoxibenzaldeído **48f** (0,34 g; 1,71 mmol) com hidrazina monohidratada (3 equiv.; 0,26 mL) em etanol (8 mL), após 2 horas de reação, com rendimento de 71%

(Z)-4-(hidrazonametil)--2,6-dimetoxifenol 49g

O composto **49g** (0,13 g; 0,64 mmol) foi obtido por reação do aldeído 4-hidroxi-3,5-dimetoxibenzaldeído **48g** (0,13 g; 0,72 mmol) com hidrazina monohidratada (3 equiv.; 0,11 mL) em etanol (6 mL), após 5 minutos de reação, com rendimento de 89%

4.1.8 Síntese da 3-nitrobenzohidrazida

A uma suspensão de 3-nitro-benzoato de etilo **51a** (0,80 g; 4,11 mmol) em etanol (1 mL), foi adicionada catálise ácida (H₂SO₄) sob agitação magnética eficiente. Por fim foram adicionados lentamente 5 equivalentes de hidrazina monohidratada (1,23 mL). Colocouse o balão com a mistura reacional sob uma agitação eficiente à temperatura ambiente (20-27°C). Após alguns minutos sob agitação, um sólido de cor branca precipitou do meio reacional. Após 4 dias de reação o TLC mostrou ausência do reagente de partida. Filtrou-se e lavou-se o sólido em suspensão com água e éter etílico (1 mL) frio. Recolheuse um sólido de cor branca. Depois de seco o sólido foi identificado como 3nitrobenzohidrazida **52a** (0,74 g; 4,07 mmol; 99%) após análise dos espetros de ¹H RMN, ¹³C RMN, IV e análise elementar.

3.1.9 Síntese das 6-carbohidrazonamidopurinas

Procedimento Geral

Método A: Para um balão com 25 mL de capacidade foi adicionado a 6-imidatopurina **46**, CH₃CN (10 mL) e 1,05 equivalentes de amidrazona. A mistura foi colocada sob agitação magnética e à temperatura ambiente e por fim adicionou-se catálise ácida de PhNH₃Cl. A reação permaneceu sob agitação magnética até estar terminada (3 a 14 dias). Terminada a reação, o sólido em suspensão foi filtrado e lavado com acetonitrilo (2 mL) e éter etílico (3 mL) frios. Depois de seco o sólido foi recolhido e identificado como 6-carbohidrazonamidopurina **53**, após análise dos espetros de IV, ¹H RMN, ¹³C RMN.

Método B: Para um balão com 25mL de capacidade foi adicionado a 6-imidatopurina **46**, DMSO (1 mL) e 1.5 equivalentes de amidrazona. A reação foi colocada sob agitação magnética, à temperatura ambiente, e, com bastante cuidado foi adicionado catálise de ácido sulfúrico (H₂SO₄). A reação permaneceu sob agitação magnética eficiente, à temperatura ambiente, até estar terminada (evidência por TLC). Foi então adicionada água à solução tendo precipitado um sólido. O sólido foi filtrado e lavado com H₂O e

89

umas gotas de éter etílico. Depois de seco o sólido foi recolhido e identificado como 6carbohidrazonamidopurina **53**, após análise dos espetros de IV, ¹H RMN, ¹³C RMN.

(6*E*,*N*'*E*)- *N*'-(4-hidroxi-3-metoxibenzildieno)-9-(4-hidroxifenil)-*9H*-purine-6carboximidamida 53d

Método B: A purina **53d** (0,05 g; 0,11 mmol) foi obtida como um sólido amarelo, a partir da 9-(4-hidroxifenil)-*9H*-purine-6carboximidoate **46b** (0,20 g; 0,73 mmol) com (*Z*)-(3,4dimetoxibenzildieno)hidrazina **49e** (1,5 equiv.; 0,18 g; 1,10 mmol), em DMSO (1 mL) com H₂SO₄ (cat.), após 6 horas de reação, com rendimento de 15%.

(6*E*,*N*′*E*)- *N*′-(4-hidroxibenzildieno)-9-(4-hidroxifenil)-*9H*-purine-6-carboximidamida 53c

Método B: A purina **53c** (0,07 g; 0,21 mmol) foi obtido como um sólido laranja, a partir da 9-(4-hidroxifenil)-*9H*-purine-6carboximidoate **46b** (0,19 g; 0,70 mmol) com (*Z*)-4-(hidrazonametil)fenol **49a** (0,14 g; 1,06 mmol; 1,5 equiv.) em DMSO (1 mL) com H₂SO₄ (cat.), após 6 horas de reação, com rendimento de 29%

(6*E*,*N*′*E*)- *N*′-(4-hidroxibenzildieno)-9-(3-hidroxifenil)-*9H*-purine-6-carboximidamida 53b

Método A: A purina **53b** (0,12 g; 0,31 mmol) foi obtido como um sólido laranja, a partir da 9-(3-hidroxifenil)-*9H*-purine-6carboximidoate **46a** (0,11 g; 0,43 mmol) com (*Z*)-4-(hidrazonametil)fenol **49a** (1,05 equiv.; 0,06 g; 0,45 mmol) em CH₃CN (10 mL) com PhNH₃Cl (cat.), após 13 dias de reação, com rendimento de 73%

(6*E*,*N*′*E*)-

N'-(3,4-dihidroxibenzildieno)-9-(3-hidroxifenil)-9H-purine-6-

carboximidamida 53a

Método A: A purina **53a** (0,12 g; 0,31 mmol) foi obtido como um sólido amarelo, a partir da 9-(3-hidroxifenil)-*9H*-purine-6carboximidoate **46a** (0,10 g; 0,38 mmol) com (*Z*)-4hidrazonametil)benzeno-1,2-diol **49b** (1,05 equiv.; 0,06 g; 0,40 mmol) em CH₃CN (10 mL) com PhNH₃Cl (cat.), após 14 dias de reação, com rendimento de 81%.

N'-(4-hidroxi-3-metoxibenzildieno)-9-(p-toluil)-9H-purine-6-

carboximidamida 53e

(6E,N'E)-

Método A: A purina **53e** (0,14 g; 0,35 mmol) foi obtido como um sólido amarelo torrado, a partir da 9-(3-toluilfenil)-*9H*purine-6-carboximidoate **46c** (0,16 g; 0,60 mmol) com (*Z*)-(3,4-dimetoxibenzildieno)hidrazina **49e** (1,05 equiv.; 0,10 g; 0,63 mmol) em CH₃CN (10 mL), com PhNH₃Cl (cat.), após 3 dias de reação, com rendimento de 56%.

(6E,N'E)- N'-(3,4-dihidroxibenzildieno)-9-(p-toluil)-9H-purine-6-carboximidamida

53g

Método B: A purina **53g** (0,28g; 0,72mmol) foi obtido como um sólido amarela, a partir da 9-(4-toluilfenil)-*9H*-purine-6carboximidoate **46c** (0,22g; 0,80mmol) com (*Z*)-4hidrazonametil)benzeno-1,2-diol **49b** (1,5 equiv.; 0,18 g; 1,21 mmol) em DMSO (1 mL) com H_2SO_4 (cat.), após 1 dia de reação, com rendimento de 89%.

(6E,N'E)- N'-(4-hidroxibenzildieno)-9-(p-toluil)-9H-purine-6-carboximidamida 53f

Método A: A purina 53f (0,10 g; 0,26 mmol) foi obtido como um sólido amarelo, a partir da 9-(3-toluilfenil)-*9H*-purine-6carboximidoate **46c** (0,17 g; 0,62 mmol) com (*Z*)-4-(hidrazonametil)fenol **49a** (1,05 equiv.; 0,09 g; 0,65 mmol) em CH₃CN (10 mL) com PhNH₃Cl (cat.), após 2 dias de reação, com rendimento de 43%.

4.2 Síntese das 3,4-dihidropirimido[5,4-*d*]pirimidinas Procedimento Geral:

Método A: À 6-cianopurina **34,** colocada sob agitação magnética em etanol, foi adicionada hidrazina (2,5 equiv.). Após adicionar a hidrazina verificou-se a precipitação de um sólido. A reação continuou a 25°C, sob uma agitação eficiente durante 1h-1h30, até estar terminada (evidência por TLC). Filtrou-se o sólido em suspensão e lavou-se com etanol. Obteve-se um sólido de cor bege, que se identificou como após análise dos espetros de IV, ¹H RMN, ¹³C RMN.

Método B: O procedimento é semelhante ao método A, apenas foi adicionada quantidade catalítica de DBU à reação.

Método C: À 6-cianopurina **36** e a 3-nitrobenzohidrazida **52** (1,5 equiv.) foram colocadas num balão ao qual se adicionou, em seguida, DMSO e catálise de DBU. A reação ocorreu a 25°C e foi monitorizada por TLC. Após terminada a reação, adicionou-se água destilada (3-5mL) à mistura reacional. Precipitou um sólido que se filtrou e lavou com água. O sólido obtido foi identificado como **62** após análise dos espetros de IV, RMN de ¹H e ¹³C.

3-((7-amino-8-imino-7,8-dihidropirimido[5,4-d]pirimidin-4-il)amino)fenol 56a

Método A: O composto **56a** (0,79 g; 2,93 mmol) foi obtido como um sólido de cor bege a partir da 6-Cianopurina **34a** (0,77 g; 3,22 mmol), hidrazina monohidratada (2,5 equiv.; 0,40 mL; 8,06 mmol), em etanol (13 mL), após 2h40minutos de reação, com rendimento de 91%.

4-((7-amino-8-imino-7,8-dihidropyrimido[5,4-d]pirimidin-4-il)amino)fenol 56b

Método B: O composto 56b (0,11 g; 0,40 mmol) foi obtido como um sólido de cor bege a partir da 6-cianopurina **34b** (0,14 g; 0,60 mmol), a hidrazina monohidratada (2,5 equiv.; 0,07 mL; 1,50 mmol), em etanol (3 mL) com DBU (cat.), após 45 minutos, com rendimento de 84%.

4-imino-N⁸-(p-toluil)pirimido[5,4-d]pirimidina-3,8(4H)-diamina 56c

Método A: O composto 56c (1,60 g; 5,97 mmol) foi obtido como um sólido de cor bege a partir da 6-cianopurina 34c (1,47 g; 6,27 mmol), a hidrazina monohidratada (2,5 equiv.; 0,78 mL; 15,69 mmol) em etanol (25 mL), após 3 horas de reação, com rendimento de 95%.

N-(8-((4-hidroxifenil)amino)-4-iminopirimido[5,4-d]pirimidin-3(4H)-il)-3-

nitrobenzamida 56e

Método C: O composto 56e (0,15 g; 0,35 mmol) foi obtido como um sólido amarelo a partir da 6-cianopurina 34b (0,17 g; 0,72 mmol), a 3-nitrobenzohidrazida 52a (1,5 equiv.; 0,19 g; 1,08 mmol) em DMSO (0,5 mL) com DBU (cat.), após 20 horas de reação, com rendimento de 49%.

N-(8-((3-hidroxifenil)amino)-4-iminopirimido[5,4-d]pirimidin-3(4H)-il)-3-

nitrobenzamida 56d

Método C: O composto 56d (0,07 g; 0,17 mmol) foi obtido como um sólido verde a partir da 6-cianopurina 34a (0,11g; 0,46mmol), a 3-nitrobenzohidrazida 52a (1,5 equiv.; 0,12 g; 0,69 mmol) em DMSO (1 mL) com DBU (cat.), após 4horas de reação, com rendimento de 36%.

N-(4-imino-8-(p-toluillamino)pirimido[5,4-d]pirimidin-3(4H)-il)-3-nitrobenzamida

56f

Método C: O composto 56f (0,57 g; 1,36 mmol) foi obtido como um sólido amarelo a partir da 6-cianopurina 34c (0,32 g; 1,37 mmol), a 3-nitrobenzohidrazida 52a (1,5 equiv.; 0,37 g; 2,06 mmol) em DMSO (3 mL) com DBU (cat.), após 1h10 minutos de reação, com rendimento de 98%.

4.3 Síntese de pirimido[5,4-d]pirimidinas

Procedimento Geral

Método A: A 3,4-dihidropirimido[5,4-*d*]pirimidina **56** foi dissolvida em etanol, juntou-se piperidina (6-10 equiv.) e a reação foi colocada sob agitação magnética eficiente a 80°C. A reação foi seguida por IV. Terminada a reação, o solvente e a piperidina foram eliminados por evaporação e ao resíduo resultante foi adicionado ácido acético (2,5 equiv.) e etanol. O sólido em suspensão foi filtrado sob vácuo e lavado com etanol (1mL) e éter etílico (1,5mL).

O sólido isolado foi identificado como pirimido[5,4-*d*]pirimidina **57** após análise dos espetros de IV, de ¹H RMN e ¹³C RMN.

Método B: A 3,4-dihidropirimido[5,4-d]pirimidina 56 foi dissolvida em DMSO, juntou-se piperidina (6 equiv.) e a reação foi colocada sob agitação magnética eficiente a 80°C. A reação foi seguida por IV. Terminada a reação, a piperidina foi eliminada por evaporação e ao resíduo adicionou-se ácido acético (2,5 equiv.) e água destilada (5 mL).
O sólido em suspensão foi filtrado sob vácuo e lavado com água destilada e éter etílico.
O sólido isolado foi identificado como pirimido[5,4-d]pirimidina 57 após análise dos

8-hidrazinil-N-(p-toluil)pirimido[5,4-d]pirimidin-4-amina 57c

espetros de IV, de ¹H RMN e ¹³C RMN.

Método A: O composto **57c** (0,20 g; 0,76 mmol) foi obtido como um sólido de cor bege por reação da 3,4-dihidropirimido[5,4-*d*]pirimidina **56c** (0,40 g; 1,50 mmol) com piperidina (10 equiv.; 1,50 mL; 14,20 mmol) em etanol (5 mL), após 34 horas de reação, com um rendimento de 44%.

3-nitro-N'-(8-(p-toluilamino)pirimido[5,4-d]pirimidin-4-il)benzohidrazida 57f

Método B: O composto 63**f** (0,11 g; 0,27 mmol) foi obtido como um sólido de cor laranja por reação da dihidropirimidopirimidina **56f** (0,12 g; 0,28 mmol) com piperidina (6 equiv.; 0,17 mL; 1,70 mmol), em DMSO (1mL), após 17h30 minutos de reação, com um rendimento de 95%.
N'-(8-((4-hidroxifenil)amino)pirimido[5,4-d]pirimidin-4-il)-3-nitrobenzohidrazida

57e

Método B: O composto **57e** (0,07 g; 0,19 mmol) foi obtido como um sólido de cor laranja por reação da 3,4-dihidropirimido[5,4-*d*]pirimidina **56e** (0,09 g; 0,22 mmol) com piperidina (6 equiv.; 0,13 mL; 1,35 mmol), em DMSO (1 mL), após 17h30minutos de reação, com um rendimento de 84%.

N'-(8-((3-hidroxifenil)amino)pirimido[5,4-d]pirimidin-4-il)-3-nitrobenzohidrazida

57d

Método A: O composto **57d** (0,04 g; 0,09 mmol) foi obtido como um sólido de cor laranja por reação da 3,4-dihidropirimido[5,4-*d*]pirimidina **56d** (0,06 g; 0,15 mmol), com piperidina (6 equiv.; 0,09 mL; 0,88 mmol), em etanol (8 mL), após 16 horas de reação, com um rendimento de 61%.

4.4 Síntese de pirimido[5,4-d]pirimidin-4-il hidrazonas

Procedimento geral:

Num balão de fundo redondo com 25 mL de capacidade adicionou-se a pirimido[5,4*d*]pirimidina **57c**. Adicionou-se o aldeído (1,05 equiv.) e suspendeu-se ambos os sólidos em DMSO (1mL). Levou-se ao ultrassons de forma a transformar numa mistura homogénea. Colocou-se sob agitação eficiente a 25°C e adicionou-se catalise ácida (H₂SO₄). Após adição do ácido a mistura reacional ficou em solução, uma solução de cor laranja. A reação foi seguida por TLC e quando se observou a ausência de reagente de partida, considerou-se a reação terminada. Adicionou-se água destilada (5-8 mL) e da solução precipitou um sólido.

Filtrou-se e lavou-se o sólido precipitado com água destilada (30mL). Obteve-se um sólido de cor laranja, identificado como 4-hidrazinopirimido[5,4-*d*]pirimidinas **68** por análise dos espetros de IV, de ¹H RMN e ¹³C RMN.

(E)-4-((2-(8-(p-toluilamino)pirimido[5,4-d]pirimidin-4-il)hidrazona)metil)fenol 68a

O composto **68a** (0,15 g; 0,40 mmol) foi obtido com um sólido laranja por reação da pirimido[5,4-*d*]pirimidina **57c** (0,13 g; 0,47 mmol) com 4-hidroxibenzaldeído **48a** (1,05 equiv.; 0,06 g; 0,50 mmol), em DMSO (1 mL), após 1h18minutos de reação, com rendimento de 84%.

(E)-4-((2-(8-(p-toluilamino)pirimido[5,4-d]pirimidin-4-il)hidrazona)metil)benzeno-

1,2-diol 68b

O composto **68b** (0,15 g; 0,38 mmol) foi obtido com um sólido laranja por reação da pirimido[5,4-*d*]pirimidina **57c** (0,11 g; 0,41 mmol) com 3,4-hidroxibenzaldeído **48b** (1,05 equiv.; 0,06 g; 0,43 mmol), em DMSO (1 mL), após 30 minutos de reação, com rendimento de 94%.

(*E*)-2-metoxi-4-((2-(8-(*p*-toluilamino)pirimido[5,4-*d*]pirimidin-4il)hidrazono)metil)fenol 68c

O composto **68c** (0,15 g; 0,38 mmol) foi obtido com um sólido laranja por reação da pirimido[5,4-*d*]pirimidina **57c** (0,10 g; 0,40 mmol) com 3- metoxi-4-hidroxibenzaldeído **48c** (1,05 equiv.; 0,06 g; 0,41 mmol),, em DMSO (1 mL), após 20 minutos de reação, com rendimento de 98%.

Bibliografia

[1] P. Desjeux, El Servier, 27, (2004), 305-318;

[2] M. B. Bhuwan; S. K. Rakesh; A. Srivastava; V.J. Tripathi; K. T. Vinod; *Mini-Reviews in Medicinal Chemestry.*, 9, (2009), 107-123;

[3] WHO, World Health Organization **2019** (<u>https://www.who.int/news-room/fact-sheets/detail/leishmaniasis</u>) (acesso em 24-04-2019);

[4] D. G. Alvarenga, P. M. F. Escalda, A. S. V. Costa, M. T. F. D. Monreal, Revista da Sociedade Brasileira de Medicina Tropical, 2, (2010), 194-197;

[5] M. M. Álvaro, G. B. Rafael, M. E. Rubén, M. Clotilde, S. G. Ramón, A. Belén, M. S. Manuel, Royal Society of Chemistry, 7, (2017), 15715;

[6] M. B. Bhuwan; S. K. Rakesh; A. Srivastava; V.J. Tripathi; K. T. Vinod; *Mini-Reviews in Medicinal Chemistry*, 9, (2009), 107-123;

[7] C. Andrea, B. Maria Laura, Journal of Medicinal Chemistry, 52, (2009), 7339-7359;

[8] S. Nisha, B. M. Bhuwan, B. Surabhi, S. K. Rakesh, T. K. Vinod, *Bioorganic & Medicinal Chemistry*, 2013;

[9] M. M. Bastos, N. Boechat, A. T. P. C. Gomes, M. G. P. M. S. Neves, J. A. S. Cavalheiro, Revista Virtual de Química, 4, (2012);

[10] F. Frézard, C. Demicheli, R. R. Ribeiro, *Molecules*, 14, (2009), 2317;

[11] S. Espuelas, D. Plano, P. Nguewa, M. Font, J. A. Palop, J. M. Irache, C. Sanmartin, *Curr. Med. Chemistry*, 19, (2012), 4259;

[12] N. Lee, S. Bertholet, A. Debrabant, J. Muller, R. Duncan, H. L. Nakhasi, Cell Death Differ, 9 (2002), 53;

[13] G. Sudhandiran, C. J. Shaha, Biol. Chemistry, 278, (2003), 2512;

[14] K. C. Carter, S. Hutchison, F. L. Henriquez, D. Légaré, M. Ouellette, C. W. Roberts, A.B. Mullen, *Antimicrob. Agents Chemother*, 50 (2006), 88;

[15] R. K. Singh, H. P. Pandey, S. Sundar, Ind. J. Med. Res., 123, (2006),331;

[16] S. L. Croft, G. H. Coombs, Trends Parasitol., 19, (2003), 502;

[17] C. Paris, P. M. Loiseau, C. Bories, J. Breard, Antimicrob. Agents Chemother, 48 (2004), 852;

[18] T. P. Dorlo, A. D. Huitema, J. H. Beijnen, P. J. de Vries, Antimicrob. Agents Chemother, 56, (2012), 3864;

[19] S. Sundar, J. Chakravarty, Expert. Opin. Investig. Drugs, 17, (2008), 787;

[20] S. Sundar, N. Agrawal, R. Arora, D. Agarwal, M. Rai, J. Chakravarty, *Clin. Infect. Dis.*,49, (2009), 914;

[21] P. M. Loiseau, S. Cojean, J. Schrével, Parasite, 18, (2011), 115;

[22] C. Lopez-Martin, J. M. Perez-Victoria, L. Carvalho, S. Castanys, F. Gamarro, *Antimicrob. Agents Chemother*, 52, (2008), 4030;

[23] M. Bassilin, G. H. Coombs, M. P. Barrett, Mol. Biochem. Parasitol., 109, (2000), 37;

[24] B. B. Mishra, N. Kishore, R. K. Singh, V. K. Tiwari, *Scope of Alkaloids in Antileishmanial Drug Discovery and Development. In Handbook of Natural Products*, 2013, 1263–1299;

[25] B. B. Mishra, V. K. Tiwari, Eur. J. Med. Chemistry, 46, (2011), 4769;

[26] M. J. Chan-Bacab, L. M. Pena-Rodriguez, Nat. Prod. Rep., 18, (2001), 674;

[27] V. Mahiou, F. Roblot, R. Hocquemiller, A. J. Cave, Nat. Prod., 59, (1996), 694;

[28] G. Bringmann, S. Rüdenauer, A. Irmer, T. Bruhn, R. Brun, T. Heimberger, T. Stuhmer,R. Bargou, M. Chatterjee, *Phytochemistry*, 69, (2008), 250;

[29] A. A. Sittie, E. Lemmich, C. E. Olsen, L. Hvidd, A. Kharazmi, F. K. Nkrumah, S. B. Christensen, *Planta Med.*, 65, (1999), 259;

[30] A. Fournet, R. Hocquemiller, F. Roblot, A. Cave, P. Richomme, J. J. Bruneton, *Nat. Prod.*, 56 (1993), 1547;

[31] A. Fournet, J. C. Gantier, A. Gautheret, L. Leysalles, M. H. Munos, J. Mayrargue, H. Moskowitz, A. Cave, R. Hocquemiller, *J. Antimicrob. Chemother.*, 33, (1994), 537;

[32] C. Lavaud, G. Massiot, C. Vasquez, C. Moretti, M. Sauvain, L. Balderrama,

101

Phytochemistry, 40, (1995), 317;

[32] R. Hocquemiller, D. Cortes, G. J. Arango, S. H. Myint, A. Cavé, A. Angelo, V. Muñoz,A. J. Fournet, *Nat. Prod.*, 54 (1991), 445;

[34] S. do Socorro S Rosa Mdo, R. R. Mendonça-Filho, H. R. Bizzo, I. de Almeida Rodrigues, R. M. Soares, T. Souto-Padrón, C. S. Alviano, A. H. Lopes, *Antimicrob. Agents Chemother.*,47, (2003), 1895;

[35] M. A. Vannier-Santos, P. F. O. Pimenta, W. J. Souza, *Submicrosc. Cytol. Pathol.*, 20, (1988), 583;

[36] R. Adam, P. B. Ramos, S. L. Molina, B. Abarca, R. Ballesteros, M. E. G. Resende, M.A. Dea-Ayuela, G. Alzuet-Pina, *Bioorg. Med. Chemistry*, 22, (2014), 4018-4027;

[37] B. Abarca, A. Asensio, R. Ballesteros, J. Bosch, G. Jones, F. Mojarrad, M. R. Metni, C.
M. Richardson, G. Jones, P. C. Yates, G. Hajós, G. Timari, *Tetrahedron*, 39, (1993), 4307-4314;

[39] B. L. Booth, R. G. Pritchard, J. Heterocyclic Chem. 34 (1997) 739-743;

[40] Al-Azmi, A. A. Elassar, B. L. Booth, Tetrahedron. 59 (2003) 2749-2763;

[41] A. H. Bacelar, M. A. Carvalho, M. F. Proença, *Eur. J. Med. Chem.* 45 (2010) 3234-3239;

[42] D. W. Woodward, U. S. Patent (1950) 2534331;

[43] M. Carvalho, T. Esteves, M. F. Proença, Org. Biomol. Chemestry, 2, (2004), 1019;

[44] M. J. Alves, M. A. Carvalho, S. Esperança, T. Esteves, M. F. Proença, *European Journal Organic Chemestry*, (2007), 1324;

[45] A. Rocha, Ana H. Bacelar, J. Fernandes, M. F. Proença, M. Alice Carvalho *Synlett* **2014**, *25*, 343-348;

[46] A. Al-Azmi, B. L. Booth, R. A. Carpenter, M. A. Carvalho, E. Marrelec, Robin G. Pritchard, M. F. Proença, *Journal Chem. Soc.* Perkin Trans, 1 (2001), 2532;

[47] A. Ribeiro, M. A. Carvalho, M. F. Proença, *European Journal of Organic Chemestry*, (2009), 4867;

[48] Y. S. Sanghvi, S. B. Larson, S. S. Matsumoto, D. F. Nord, L. D. Smee, R. C. Willis, T. L. Avery, R. K. Robins, G. R. Revankar, *J. Med. Chem.* 32 (1989), 629-637;

[49] N. J. Curtin, H. C. Barlow, K. J. Bowman, A. H. Calvert, R. Davison, B. T. Golding, B. Huang, P. J. Loughlin, D. R. Newell, P. G. Smith, R. J. Griffin, *J. Med. Chem.* 47 (2004), 4905-4922;