
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Nuno André Lopes Leite

A Secure IoT Communication System
for Smart Contracts

February 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Nuno André Lopes Leite

A Secure IoT Communication System
for Smart Contracts

Dissertation report
Integrated Master’s in Informatics Engineering

Supervised by
Professor Doutor Alexandre Júlio Teixeira Santos
Professor Doutor Nuno Vasco Moreira Lopes

February 2021

i

copyright and conditions

of use by third parties

This is an academic work that can be used by third parties if internationally accepted rules
and good practice with regard to copyright and related rights are respected. Thus, the
present work can be used under the terms of the license indicated below. In case the user
needs permission to be able to make use of the work in conditions not foreseen in the
indicated licensing, he should contact the author through the RepositóriUM of the University
of Minho.

Atribuição-NãoComercial

CC BY-NC

https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/

A C K N O W L E D G E M E N T S

To my parents, Carlos Leite and Ana Leite, for their unconditional love and support
throughout my journey, ultimately leading me where I got today. To my brother, also Carlos
Leite, for his precious advices, which directly impacted my academic path, placing me,
today, in the area I love to work. Last but not least, to my fiancée and soon to be wife, Diana
Tavares, for her love and extreme patience in the countless weekends of watching me typing
away in a keyboard.

In addition, I would also like to deeply thank my supervisor, Professor Alexandre Santos
for his direct and concise advices and supervision, providing valuable insights for the
improvement of the work done in the dissertation and my co-supervisor and company
supervisor Professor Nuno Lopes, for the opportunity to work in such an exciting project,
which became my masters thesis.

I would also like to extend my grattitude to my colleagues at the Digital Transformation
CoLab for the brainstorming sessions and the lessons learned from them.

Finally, a big thank you to my friends for providing me with the always necessary
confidence, support and invaluable friendship that lifted my spirits.

ii

iii

statement of integrity

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

A B S T R A C T

The need to ensure the confidentiality and integrity of data generated in industrial systems
and applications has been increasingly highlighted over the years, due to the clear and
urgent requirements of not disclosing sensible proprietary information and ensuring that
data is kept immutable since it is generated until it is permanently stored.

It is from these two main ideas that this dissertation is created, framed in a project that is
being developed at the Digital Transformation CoLab with Bilanciai and Cachapuz. These are the
industrial partners and key stakeholders of this project, having identified the requirements
for the weight measurement process that occurs in the weighing stations that are placed in
their customers. This dissertation essentially consists on the definition of a secure Internet of
Things (IoT) communication system between the devices that operate on the weighing stations
of the customers and on top of that, develop a smart contract application using blockchain
technology capable of: i) automating the process of verifying the correct application of
weighing guidelines; and ii) registering and storing ”receipts” of weighings that take place
in the customers’ weighing stations.

In this dissertation, a revision of the state of the art is made with the goal to perceive
the most secure and current technologies capable of providing the required functionalities,
which are the fuel for the identification of the problems and challenges that such a project
might face, ultimately leading to the design of a solution that can both: i) mitigate the
aforementioned problems and challenges; and ii) comply with the goals defined for the
dissertation. Additionally, in this document, the development of such a solution is also
explored by providing clear insights into the decisions that were made and the reasoning
behind them and by implementing components that are able to provide registration and rich
querying of weighing tickets (receipts), weighing ticket building and secure communication
as well as the enforcing of a blockchain network structure that fosters data confidentiality.

Ultimately, results are shown, collected from a proof of concept, which essentially provide
evidence on the functional correctness of the system that was built, i.e., its ability to grant
the retainment of weighing ticket characteristics and the capabilities of the communication
system, which demonstrates to be able to securely build and transmit weighing tickets, with
fault tolerance.

The outcomes of this project can be integrated into existing systems of the industrial
partners to increase efficiency, security and business innovation.

Keywords— blockchain, smart contracts, iot, security, compliance

iv

R E S U M O

A necessidade de assegurar a confidencialidade e a integridade dos dados gerados em
sistemas e aplicações industriais tem sido cada vez mais destacada ao longo dos últimos
anos, devido a claros e urgentes requisitos de não divulgar informação proprietária e de
garantir que essa informação permanece imutável desde o momento em que é gerada até ao
ponto em que é guardada permanentemente.

É a partir destas duas ideias principais que esta dissertação é criada, enquadrada num
projeto que está a ser desenvolvido no Digital Transformation CoLab com a Bilanciai e a
Cachapuz. Estes são os parceiros industriais e stakeholders do projeto, tendo identificado os
requisitos para o processo contı́nuo de medição de pesagens que ocorre nas estações de
pesagem dos seus clientes. Esta dissertação consiste, essencialmente, na definição de uma
comunicação segura em IoT entre os dispositivos que operam nas estações de pesagem
dos clientes e, complementarmente, desenvolver uma aplicação baseada em smart contracts
utilizando tecnologia Blockchain com o intuito de: i) Automatizar o processo de verificação da
aplicação correta de diretrizes de pesagem; e, ii) Registar e armazenar ”recibos” de pesagem
que são efetuadas nas estações de pesagem dos clientes.

Nesta dissertação, a revisão do estado da arte é feita com o objetivo de entender as
tecnologias mais atuais e seguras capazes de providenciar as funcionalidades adjacentes
aos requisitos, o que se torna na base para a identificação dos problemas e desafios que um
projeto desta natureza pode enfrentar, resultando, em última instância, no desenho de uma
solução que consiga: i) Mitigar os problemas e desafios anteriormente mencionados; E, ii)
Cumprir com os objetivos definidos para esta dissertação. Adicionalmente, neste documento,
o desenvolvimento da solução é explorado, ao fornecer informações claras sobre as decisões
que foram tomadas e o raciocı́nio por trás das mesmas e ao implementar componentes
capazes de fornecer o registo e consulta avançada de recibos de pesagem, construção e
transmissão segura dos mesmos, como também a capacidade de estruturar e assegurar uma
organização da rede blockchain que promove a confidencialidade de dados.

Finalmente, resultados são ilustrados, extraı́dos de uma prova de conceito, fornecendo
provas da correcção funcional do sistema construı́do, isto é, a sua capacidade para garantir a
manutenção das caracterı́sticas dos recibos de pesagem e, além disso demonstra a capacidade
do sistema de comunicação em transmitir, de forma segura, os recibos de pesagem, com
tolerância a falhas.

v

vi

Os resultados obtidos neste projeto têm a possibilidade de ser integrados em sistemas
existentes dos parceiros industriais com o objetivo de aumentar a eficiência, segurança e
inovação nos seus modelos de negócio.

Palavras chave— blockchain, contratos inteligentes, iot, segurança, compliance

C O N T E N T S

1 introduction 1

1.1 Contextualization 1

1.2 Motivation 2

1.3 Goals 2

1.4 Document Structure 3

2 state of the art 4

2.1 Internet of Things 4

2.1.1 Challenges 5

2.1.2 Secure Communication Protocols 6

2.2 Blockchain & Smart Contracts 9

2.2.1 Blockchain Fundamentals 10

2.2.2 Smart Contracts 16

2.3 Blockchain & IoT integration 20

2.3.1 Use Cases 21

2.4 Summary 22

3 problem , challenges and proposed solution 24

3.1 Proposed Approach - Solution 25

3.1.1 Communication System 26

3.1.2 Cloud System Architecture 27

3.1.3 Technological Choice 30

3.2 Summary 33

4 development 34

4.1 Decisions 35

4.1.1 Software Components 35

4.1.2 Blockchain Network Structure 37

4.1.3 Smart Contract Requirements 38

4.1.4 Blockchain Complexity Abstraction 40

4.1.5 Authentication & Authorization 41

4.2 Implementation 42

4.2.1 Authentication & Authorization 43

4.2.2 Smart Contract 49

4.2.3 Data Models 52

4.2.4 Cloud System APIs 58

4.2.5 Smart Box Communicator 79

vii

contents viii

4.2.6 Load Cell Communicator 90

4.3 Summary 92

5 proof of concept 95

5.1 Experiment Setup 96

5.1.1 Experiment Architecture 97

5.1.2 Dataset Preparation and Metrics 99

5.1.3 Experiment Execution 105

5.2 Results 116

5.2.1 Weighing Ticket Building and Registration 116

5.2.2 Fault Tolerant Communication 118

5.2.3 Secure Communication 120

5.2.4 Querying and Applicational Logic Validation 123

5.3 Discussion 129

5.4 Summary 133

6 conclusion 135

6.1 Summary 135

6.2 Future work 138

a querying results 144

a.1 Count per weighbridge 144

a.2 Scale status per weighbridge 145

a.3 Weight distribution per weighbridge 147

L I S T O F F I G U R E S

Figure 1 The components of a Blockchain network 12

Figure 2 Visual representation of the ledger 12

Figure 3 Components of a block in the blockchain 12

Figure 4 Example of utilization of a merkle tree 14

Figure 5 Proposed communication system 26

Figure 6 Proposed system architecture 28

Figure 7 Structure of the permissioned blockchain network 38

Figure 8 Composition of a weighing ticket 39

Figure 9 Relations between the APIs different modules 61

Figure 10 Smart box communicator architecture and intra-module communica-
tion 80

Figure 11 Illustration of the ticket submission algorithm with fault-tolerance 86

Figure 12 Illustration of the ”infinite” mode of execution of the smart box
communicator 88

Figure 13 Algorithm running in the load cell communicators 91

Figure 14 Architecture of the proof of concept 98

Figure 15 Weight distribution over intervals for each weighbridge 105

Figure 16 Hierarchy of the public key certificates 106

Figure 17 Status information of the cloud system 108

Figure 18 Identifiers of the stations, X and Y 109

Figure 19 Load cells from station X active 114

Figure 20 Load cells from station Y active 115

Figure 21 Logs indicating weighing ticket transmission and registration at Sta-
tion X 117

Figure 22 Logs indicating weighing ticket transmission and registration at Sta-
tion Y 117

Figure 23 Logs indicating weighing ticket reception and registration at the
Weighing Tickets API 117

Figure 24 Logs indicating the reception of weight requests in the load cells117

Figure 25 Logs showing station X in fault-tolerance mode 118

Figure 26 Logs showing station Y in fault-tolerance mode 118

Figure 27 Resuming normal execution in station X with pending tickets sub-
mission 119

ix

list of figures x

Figure 28 Resuming normal execution in station Y with pending tickets sub-
mission 119

Figure 29 Evolution of pending tickets in station X 119

Figure 30 Evolution of pending tickets in station Y 120

Figure 31 Excerpt of communication in the loopback network of station X’s
pi1 120

Figure 32 Excerpt of communication in the loopback network of station Y’s
pi2 121

Figure 33 Sample packet captured in Station X’s pi1 loopback network 121

Figure 34 Sample packet captured in Station Y’s pi2 loopback network 122

Figure 35 Excerpt of communication in the wireless network 192.168.1.0/24122

Figure 36 Sample packet captured in wireless network 192.168.1.0/24 123

Figure 37 Total of weighing tickets associated with station X 124

Figure 38 Total of weighing tickets associated with station Y 124

Figure 39 Total of weighing tickets associated with station X and its weighbridge
P191021852 125

Figure 40 Total weighing tickets with status OK associated with station X and
weighbridge P191021852 125

Figure 41 Total weighing tickets with a total weight until 50 Kilograms (KG)
(exclusive) associated with station X and weighbridge P191021852126

Figure 42 Total weighing tickets with a total weight between 50 KG (inclusive)
and 1000 KG (exclusive) associated with station X and weighbridge
P191021852 127

Figure 43 Total weighing tickets with a total weight from 1000 KG (inclusive)
associated with station X and weighbridge P191021852 127

Figure 44 Result obtained when consulting customer Y’s weighing tickets from
an user belonging to customer X 128

Figure 45 Result obtained when consulting customer X’s weighing tickets from
an user belonging to customer Y 128

Figure 46 Total of weighing tickets associated with station X and its weighbridge
P220120900 144

Figure 47 Total of weighing tickets associated with station Y and its weighbridge
P141140200 145

Figure 48 Total of weighing tickets associated with station Y and its weighbridge
P300200111 145

Figure 49 Total weighing tickets with status OK associated with station X and
weighbridge P220120900 146

list of figures xi

Figure 50 Total weighing tickets with status OK associated with station Y and
weighbridge P141140200 146

Figure 51 Total weighing tickets with status OK associated with station Y and
weighbridge P300200111 147

Figure 52 Total weighing tickets with a total weight until 50 KG (exclusive)
associated with station X and weighbridge P220120900 147

Figure 53 Total weighing tickets with a total weight between 50 KG (inclusive)
and 1000 KG (exclusive) associated with station X and weighbridge
P220120900 148

Figure 54 Total weighing tickets with a total weight from 1000 KG (inclusive)
ssociated with station X and weighbridge P220120900 148

Figure 55 Total weighing tickets with a total weight until 50 KG (exclusive)
associated with station Y and weighbridge P141140200 149

Figure 56 Total weighing tickets with a total weight between 50 KG (inclusive)
and 1000 KG (exclusive) associated with station Y and weighbridge
P141140200 149

Figure 57 Total weighing tickets with a total weight from 1000 KG (inclusive)
associated with station Y and weighbridge P141140200 150

Figure 58 Total weighing tickets with a total weight until 50 KG (exclusive)
associated with station Y and weighbridge P300200111 150

Figure 59 Total weighing tickets with a total weight between 50 KG (inclusive)
and 1000 KG (exclusive) associated with station Y and weighbridge
P300200111 151

Figure 60 Total weighing tickets with a total weight from 1000 KG (inclusive)
associated with station Y and weighbridge P300200111 151

L I S T O F TA B L E S

Table 1 Comparison between diferent communication protocols 7

Table 2 Comparison between types of blockchain 11

Table 3 Description of the customer’s Object-Document Mapping (ODM) prop-
erties 55

Table 4 Description of the station’s ODM properties 56

Table 5 Description of the user’s ODM properties 57

Table 6 Module structure for the implementation of the APIs. 60

Table 7 Definition of the notation for the API responses 62

Table 8 Configurable parameters of the Weighing Tickets API 64

Table 9 Overview of the functionality exposed by the Weighing Tickets API 67

Table 10 Parameter description for the tickets route 68

Table 11 Configurable parameters of the Authentication & Management API 70

Table 12 Overview of the functionality exposed by the Authentication & Man-
agement API 73

Table 13 Parameter description for the customers route 75

Table 14 Parameter description for the users route 76

Table 15 Parameter description for the stations route 77

Table 16 Parameter description for the blacklisted tokens route 78

Table 17 Parameter description for the authorization route 78

Table 18 Configurable parameters of the smart box communicator 82

Table 19 Common configuration parameters of the smart boxes from station X
and Y 110

Table 20 Configuration of the station section of station X’s smart box commu-
nicator 111

Table 21 Configuration of the station section of station Y’s smart box commu-
nicator 112

xii

L I S T O F A L G O R I T H M S

1 Construction of stations’ authentication messages 44

2 Verification of stations’ authentication messages 45

3 Creating the authorization tokens . 47

4 Validating an access or refresh token . 48

5 Refreshing an access token . 48

6 Ticket’s float to integer conversion prior ledger insertion 65

7 Ticket’s integer to float and hex to string conversion on ledger query 66

8 Ensuring network structure on station registration 72

9 Simplified algorithm to build a weighing ticket 84

10 Setup algorithm prior submitting a weighing ticket 85

11 Algorithm to ensure the existence of a valid access token 89

12 Algorithm to perform the station’s authentication process 90

13 Algorithm of the handleWeight function . 92

14 Export process of the data to the correct files . 103

xiii

A C R O N Y M S

A

API Application Programming Interface.

ARM Advanced RISC Machine.

C

CA Certificate Authority.

CAS Certificate Authorities.

CLI Command Line Interface.

COAP Constrained Application Protocol.

CPU Central Processing Unit.

D

DI Department of Informatics.

DTLS Datagram Transport Layer Security.

DTX Digital Transformation CoLab.

E

EVM Ethereum Virtual Machine.

H

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

I

IETF Internet Engineering Task Force.

IOT Internet of Things.

xiv

Acronyms xv

IP Internet Protocol.

J

JSON Javascript Object Notation.

JWT JSON Web Tokens.

K

KG Kilograms.

M

M2M Machine-to-Machine.

MB Megabytes.

MIEI Integrated Masters in Informatics Engineering.

MQTT Message Queuing Telemetry Transport.

MSP Membership Service Provider.

O

ODM Object-Document Mapping.

P

PBFT Practical Byzantine Fault Tolerance.

PL Programming Language.

POS Proof of Stake.

POW Proof of Work.

R

RAM Random Access Memory.

REST Representational State Transfer.

S

SSH Secure Socket Shell.

Acronyms xvi

T

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TTL Time To Live.

U

UDP User Datagram Protocol.

UM University of Minho.

URL Uniform Resource Locator.

1

I N T R O D U C T I O N

This dissertation describes the investigation and development performed in the context of
the Integrated Masters in Informatics Engineering (MIEI) at the Department of Informatics (DI)
from University of Minho (UM) and a project developed by the Digital Transformation CoLab
(DTx) along with Bilanciai and Cachapuz.

The aim of this chapter is to provide an initial context and understanding on what
the project is and how it fits in the landscape of the companies’ business, to declare the
motivations behind the rise of such a project, its primary goals and, finally, to detail how
this dissertation is structured in order to provide the best possible understanding on the
work done in it.

1.1 contextualization

Bilanciai and Cachapuz’s main business is based on the supply of weighing solutions. Specifi-
cally, in the context of this dissertation, their industrial weighing solution is explored. In
this solution, their clients are essentially companies with weighing stations that measure the
weight of some loads, most of it are trucks. Each of these weighing stations may possess up
to 4 weighbridges, which are the physical devices where the trucks stop to be measured.
Each of these weighbridges may hold up to 8 load cells. A load cell is the device that actually
measures the weight that is put upon it and, through the sum of the combined weights of
all load cells, passing them through a proprietary compensation algorithm that increases the
precision of the measure, the total weight of the load is obtained.

It is this use case that the project associated with this dissertation studies, by working on
two main domains:

• The Physical domain by redesigning the company’s load cells and upgrading them in
terms of sensors and electronics;

• The Cyber/Digital domains by building a blockchain-based cloud platform to secure
and analyze data sent from the stations and the load cells, as well as the definition of a
secure IoT communication system.

1

1.2. Motivation 2

This dissertation focuses on the Cyber/Digital domains, specifically, in a security point of
view, by implementing systems, mechanisms and processes that allow that the weighings
performed by the station’s meet the requirements of periodic compliance processes that are
put in place by standardization organizations, such as WELMEC [1].

1.2 motivation

The main motivation behind the development of this dissertation is, as said before, associated
with the security of the information that is produced at the weighing stations, namely, the
weighing tickets. A weighing ticket can be defined as a sort of receipt that a certain weighing
took place at that exact time, with the weight that was measured, in the weighing bridge
that measured it.

For the companies it is essential that they can ensure that those tickets remain immutable,
i.e., that no external force has the ability to change certain properties of it. This is essential
due to the aforementioned compliance processes, in which standardization companies
verify the correct application of weighings (with well maintained and well functioning
weighbridges) and, additionally, it serves as a connecting piece of information to other
weighings when, for example, the weight of a truck has to be controlled along a certain
route, in which that truck will be wheighed multiple times.

Essentially, the motivaton for this project arises from the lack of mechanisms and processes
to control the emission and validity of those weighing tickets, which are a center-piece to
the solution that they provide and in which this dissertation focuses.

1.3 goals

Recognizing the context in which this industrial solution is placed and the motivation for the
development of a system capable of guaranteeing the immutability of the weighing tickets,
the main goals of the dissertation can be described.

In overview, the goals of this dissertation lie in three areas:

• Research. To conduct research in the solutions and technologies that can best accomo-
date the solution to the aforementioned problem;

• Development. To implement a solution capable of handling the problem in focus;

• Evaluation. To obtain functional results capable of demonstrating that the solution is,
in fact, capable of dealing with the problem in focus.

Acknowledging the importance of these three previously mentioned areas, some specific
goals are set to better contextualize and evaluate the dissertation and the solution built in it:

1.4. Document Structure 3

1. Research blockchain & smart contract solutions that best suit this information im-
mutability use case;

2. Develop a smart contract application able to immutably store weighing tickets and
provide query mechanisms;

3. Develop a support platform that exposes Application Programming Interface (API)s for
communication with the smart contract application and, additionaly, ensure its correct
usage;

4. Establish a protocol definition for a secure communication between: i) the weighing
stations and the cloud platform; And ii) the devices that operate on the weighing
stations;

5. Provide a proof of concept demonstrating the usability of the platform and the com-
munication system’s proper functioning.

1.4 document structure

Finally, to end this chapter, the structure of this document is presented and described in
order to provide an insight on how the research & development process was conducted.

In addition to this introductory chapter, this dissertation is composed by five more
chapters, structured as follows:

Chapter 2: State of the art explores the literature review covering a range of topics that
are essential to understand and acquire knowledge in the necessary areas to develop the
project, such as Blockchain, IoT and Blockchain & IoT Integration.

Chapter 3: Problem, challenges and proposed solution addresses the problems and
challenges that this dissertation presents and proposes an architecture of a technological
solution that is able to overcome said problems.

Chapter 4: Development addresses the decisions that were made as well as the specifics
on how the solution was designed and built, focusing in a later instance on the outcomes of
the developed solution.

Chapter 5: Proof of Concept explains how the solution that was built addresses the
required problems by experimentation, i.e., an experiment scenario is created to provide the
necessary assurance that the solution is able to fulfill all the proposed goals.

Chapter 6: Conclusions draws the main conclusions about the work done thus far,
presenting some considerations on the prospect for future work to be done in each of the
components.

2

S TAT E O F T H E A RT

In this chapter, the state of the art for the concepts and technologies approached in this
dissertation is discussed. Several publications and solutions are analyzed in order to provide
some clarification on the current technological landscape in each area. From the analysis of
the goals of this dissertation, three main topics emerge as essential to serve as basis for the
proposed solution: i) Section 2.1: IoT; ii) Section 2.2: Blockchain & Smart contracts ; And iii)
Section 2.3: Integration of IoT and blockchain solutions .

2.1 internet of things

IoT is one of the trending and growing topics of this millenium, due to the ever growing
necessity of connecting things in order to improve information gathering as well as processes
automation and it can be defined as an Internet-enabled architecture that facilitates the
interconnection of devices with multiple technologies, fostered by Machine-to-Machine (M2M)
communication protocols which ultimately result in better control of the goods and services
that are exchanged or manipulated by industrial or comercial applications [2, 3].

The inherent capacity of IoT technology to digitize the physical world, i.e., communicating
and generating the digital information that represents the physical state of things make it
one of the clear enablers of Industry 4.0 [4].

Through this enormous capacity, the technology has the potential to be used in a huge
number of applications such as:

• Industry - Predictive and prescriptive maintenance fostered by data collected from
sensors in operating machines;

• Agriculture - Prescriptive actions on fields fostered by data collected from sensors in
plantations;

• Healthcare - Remote patient monitoring; Faster item location in hospitals; Connected
contact lenses;

• Transportation - Fleet management; Optimal Route; Public Transit Management.

4

2.1. Internet of Things 5

Regardless of the application, IoT’s structure is usually three-layered, composed by the
Physical, Network and Application Layer [5]. The physical layer refers to the component of
the structure responsible for device identification and discovery as the backbone for direct
or indirect communication over the Internet between the devices. The network layer refers
to the channels and interfaces responsible for the point-to-point transmission of information
from an emitter to a receiver, aided by communication protocols designed for the effect, as
explored in section 2.1.2. The application layer can be seen as the layer that makes sense
of the data that is being collected by the devices, since it is responsible for its storage and
service provisioning from the data.

Considering the purpose of this dissertation, it is more than obvious that IoT’s application
in this context refers to the industry, a sector that usually has some specific conditions and
design goals for it [6, 7]:

• Energy awareness - The IoT devices should withstand long periods of operation with
no need to recharge. The time frame depends on context but it may be up to years;

• Low latency - Fast and efficient data transmission and processing is necessary, for
real-time operations;

• High throughput - Be aware of the maximum information that can be sent on the
network at a given time;

• Scalable - Make it easy to increase devices in the network and application, improving
and widening data collection;

• Controlable resources - Establish clear rules for the communication direction and
communication partners, i.e., who communicates with whom;

• Secure - Ensure that the data transmission is safe, abiding to standardized properties
of information security.

In the remainder of this section, the challenges that are presented when trying to comply
with the aforementioned design goals are discussed as well as secure communication
protocols that are capable of solving some of them.

2.1.1 Challenges

The very nature of IoT as a concept that fosters data exchange and is fostered by M2M
communications, also makes it a challenging one to implement since those two concepts
immediately raise many challenges [2, 4, 5, 7]:

2.1. Internet of Things 6

• Scalability - The number of active IoT devices will continue to increase and current
architectures may not be capable of withstanding or be prepared to deal with that
change. New management protocols that can scale well are needed;

• Heterogeneity - Many devices from different manufacturers, using different protocols
and different stacks make it difficult for seamless communication between them. More
standardization efforts should be put in place;

• Energy efficiency - Devices have to be built so that they can last a long time energy-
wise, which in turn usually constrains the device to really low resources;

• Mobility management - Mobile IoT devices can harm network protocols and mecha-
nisms put in place to handle communications, since many of them are not suited for
mobile IoT communication, due to severe energy and resource constraints;

• Security and Privacy - Probably the biggest challenge that IoT faces, the need to
establish and implement secure protocols and mechanisms to provide a secure M2M
communication, keeping in mind that most of the devices cannot run heavy protocols
due to their restraints in terms of resources.

Section 2.1.2 dives deeper into existent communication protocols that are currently being
used to mitigate some of the problems discussed, especially security, privacy and trust.

2.1.2 Secure Communication Protocols

A secure communication protocol is nothing more than a set of rules that define the way
multiple devices can communicate in a safe way. A communication can be considered secure
when, at the very least, it respects the following properties [8, 9]:

• Confidentiality - Property that states that data can only be seen by an authorized
entity, i.e., an entity should posess an identity that allows it to see the data being
communicated;

• Authenticity - An entity that communicates with another has to always be certain that
the entity it is communicating is who it says it is;

• Integrity - Information cannot be manipulated during its lifecycle, i.e., data sent by an
emitter has to be exactly the same data received by a receiver.

Over the last years, new protocols specifically designed to be scalable and light enough to
be used in contrained environments have been developed. Some of them rely on already
implemented infrastructure and protocols such as Ethernet or Wi-fi and others rely on new
infrastructure protocols like 6LoWPAN [10]. Protocols that are in use nowadays rely on

2.1. Internet of Things 7

communication patterns of type publish-subscribe, response-request or both. Table 1 shows
a comparison between some of the most currently used communication protocols in terms
of their relevant communication atributes [3, 10]. The Hypertext Transfer Protocol (HTTP) [11],
Constrained Application Protocol (CoAP) [12] and Message Queuing Telemetry Transport (MQTT)
[13].

Attribute / Protocol CoAP MQTT HTTP

Transport protocol UDP TCP TCP

Communication type asynchronous asynchronous synchronous

Communication pattern
publish-subscribe &

request-response
publish-subscribe request-response

Communication paradigm polling event-driven long polling

Security DTLS TLS TLS

Table 1: Comparison between diferent communication protocols

HTTP

Certainly, one of the most successful communication protocols in the application layer, due
to its use in the World Wide Web. The protocol implements synchronous communication
based on a one-to-one request-response model, i.e., a client requests data/services to a server,
and the server responds with the data/services requested. The message content in HTTP
communication is encoded in ASCII text. Despite all its prays, including the fact that it is
RESTful which is a good feature when working with data, HTTP has a significant downside
when used in contrained environments, the header size is around multiple KB, which is
overwhelming for constrained devices, taking significant time and significant amount of
energy to process [11].

CoAP

CoAP is also an application layer protocol, built specifically to be excellent in establishing
communication in constrained environments with an IPv6-based infrastructure. CoAP
can communicate both in a request-response model or in a publish-subscribe model. This
protocol uses a short fixed size header, which joined with the utilization of the User Datagram
Protocol (UDP) make it a very lightweight protocol in terms of message size [12].

MQTT

MQTT has a similar purpose to CoAP, it is targeted to be excellent in handling communi-
cation in constrained environments, but it has two significant differences:

2.1. Internet of Things 8

• While MQTT uses a one-to-many communication type, CoAP uses a one-to-one
communication type;

• While MQTT uses the Transmission Control Protocol (TCP) in the transport layer, CoAP
uses UDP.

Aside from those two differences, both have low data overhead, which is essential when
targeting contrained environments for the protocol’s utilization.

From the standpoint of these protocols alone, secure communication is not guaranteed,
since each one of them communicates clearly without applying mechanisms to ensure
confidentiality and integrity of the data. In order to secure the transmission of the data
using one of these protocols, there are really only two choices:

1. Implement a proprietary security protocol for the communication that extends the
aformentioned application-layer protocols;

2. Use standard security protocols coupled with an application layer protocol.

While the first choice may offer more flexibility in the implementation and how the
protocol itself works it has essentially two significant downsides:

• It is a complex task to implement a proprietary secure communication protocol, that
works in distributed environments;

• The proprietary implementation may introduce severe security bugs which are harder
to found since the protocol is proprietary and thus, not community-validated.

On the other hand, using a standard secure protocol removes the complexity of implemen-
tation of it, although it still has to be integrated in the communicating software and, since
they are open-source, they are constantly being validated and corrected in order to prevent
severe security bugs.

The most clear example of a secure, validated and standard secure communication protocol
is without a doubt Transport Layer Security (TLS) [14], which is the underlying transport
protocol used in Hypertext Transfer Protocol Secure (HTTPS). It allows for the validation of only
one of the entities or the validation of both and ensures that after the entities ”handshake”
the communication between them is secured. This security protocol is comprised by two
stages: i) the handshake stage; And ii) the application data exchange stage. In the first stage
client and server exchange the supported versions of the protocol as well as the session key
that is going to be used in the second stage. Additionally, in this stage, the server certificate
is validated and, if required, the client certificate is also validated. After this first stage,
both entities can securely communicate the necessary application data, resting assured that

2.2. Blockchain & Smart Contracts 9

confidentiality and integrity of the data will be assured by using the session key previously
established [14].

Although TLS is an extremely secure protocol, and that is also why it is widely used,
statement that can be validated from the fact that it is the underlying secure communication
protocol of HTTP, which is, probably, the most widely used application protocol, it is a
computationally expensive protocol to use. Apart from all the cryptographic techniques that
need to be applied, TLS uses TCP as the basis for its transport protocol which, due to the
application of various control mechanisms to ensure transmission, is a heavy protocol in
terms of header size and the rate of message exchange, thus making it a risky choice for use
in restrained environments.

In order to counter some of these problems, the Internet Engineering Task Force (IETF) stan-
dardized the Datagram Transport Layer Security (DTLS) [15], which is a secure communication
protocol in all things similar to TLS, except for the fact that it uses UDP as the basis for the
transport protocol, thus making it less heavy, both in header size as well as in the rate of
message exchanges which, ultimately saves computation energy and time.

Summarizing, the application protocols described in Table 1 guarantee uniformity and
consistency on how the data is transmitted from one side to the other but, to ensure that
the data that is transmitted is secured, a specific secure communication protocol has to be
used so that the joint use of the application-layer and transport-layer protocols guarantee
uniformity, consistency, efficiency and security.

2.2 blockchain & smart contracts

With the introduction of Bitcoin in 2008, as proposed in [16], along came a more important
concept, that of a distributed ledger that records every transaction ever made in the system
where it is applied in an immutable manner, the Blockchain. With the years passing from its
introduction, researchers and the industry started to realize the immense potential of the
technology since it could be applied not only in electronic cash systems, as well as in many
other situations where data immutability and traceability is of the utmost importance like,
for example:

• Law - To provide transparency and data integrity on law related services;

• Media and Entertainment - To combat digital piracy by tracking content’s lifecycle;

• Supply Chain - To provide data transparency, integrity and traceability to the currently
confusing supply chains.

The functioning of the blockchain itself is completely reliable on cryptographic functional-
ity such as public key cryptography, to provide ways for users to digitally sign and transact

2.2. Blockchain & Smart Contracts 10

in the system, and cryptographic hash functions that are used in many ways as it will be
seen in 2.2.1. Before providing a more technical insight to what the blockchain really is and
the operations it performs, it is important to keep in mind some of its core concepts [17] :

• Pseudo-anonimity - The accounts used to transact with the blockchain should, in most
cases, anonimize the user that holds the account;

• Traceability - The data in the blockchain is traceable because it is never overwritten, it
is just added to the chain;

• Distributability - The blockchain should be used in a distributed manner, to increase
attack resiliency.

2.2.1 Blockchain Fundamentals

The purpose of this section is to provide insight on the blockchain’s architecture, i.e.,
the components and processes that make it work and current alternatives to some of its
components that are currently being researched and proposed. The structure of blockchain
technology is commonly represented as a chain of blocks, in which a block holds multiple
transactions.

The aforementioned structure is used in any type of blockchain. A blockchain can be of
type:

• Public - Every entity can participate and each user is always anonimized;

• Private - Usually belonging to a single organization for a more permissionable control
over the chain;

• Consortium - A set of nodes, maybe belonging to different organizations, can use the
chain.

In Table 2 a comparison is made between the three types of blockchain, by using attributes
deemed essential for the application of this type of technology. From the table, some
important information can be retrieved.

• In terms of consensus, the public blockchain needs all miners’ approval, while the
private and consortium blockchains need a determined set of nodes (Centralized to
one in the first case);

• The way the consensus is processed in each type leads to evident high efficiency values
in the private and consortium blockchains, since they are very fast at verifying blocks,
and low efficiency for public blockchains (long block generation and validation times);

2.2. Blockchain & Smart Contracts 11

• Tampering is nearly impossible in the public blockchain due to its high distributability,
since an attacker would have to, in theory, subvert half of the network to tamper with
the blockchain;

• The private and consortium blockchains’ tampering proof is directly related to the size
of the network that the companies implement as well as to the access control measures
taken by them to prevent unwanted access.

Property
Blockchain Type

Public Private Consortium

Consensus all miners centralized pre-determined nodes

Efficiency low high high

Read permission public restricted restricted

Write permission public restricted restricted

Tampering nearly impossible possible (admin access) hard

Distributed yes no partially

Table 2: Comparison between types of blockchain

Despite the relevant differences between the existent types of blockchain, the underlying
architecture of the technology is more or less the same, as shown in Figure 1 [18]:

• Ledger - The chain of blocks, which hold the records ever registered in the blockchain;

• Consensus - The algorithm by which the network abides in order to publish and
validate new blocks to the blockchain;

• Nodes - The participating nodes of the blockchain. They must have, at the very least,
read permission to be considered a node. Holds a copy of the blockchain and validates
blocks that are going to be registered;

• Miners - Special kind of nodes that are responsible for introducing a new block to the
blockchain, in accordance with the consensus algorithm, that has to then be validated.

2.2. Blockchain & Smart Contracts 12

Figure 1: The components of a Blockchain network

Ledger

The ledger can be conceptually seen as a list of linked blocks, as we can see in Figure 2 for
example.

Figure 2: Visual representation of the ledger

Each block has its set of properties, that when combined in chain, make the data in the
network immutable. The structure of a block is as follows in Figure 3 [19].

Figure 3: Components of a block in the blockchain

2.2. Blockchain & Smart Contracts 13

• Block Header - Comprised of metadata of the block:

– Previous Block Hash - The cryptographic hash of the previous block’s header in
the chain (strong linkage between blocks);

– Mining Data - Data needed for the mining process. The nonce which is a value
used to introduce randomness to the block’s data, the timestamp and the difficulty
of mining the block;

– Merkle Tree Root - A data structure that summarizes the transactions that exist
in a block.

• Block Data - The list of transactions of this block.

The fact that each and every block, except the first (genesis block) holds the hash of the
previous block, is what renders the blockchain invalid if any block is altered after its creation,
since if block N is changed, then its hash will be certainly different, and block N+1 will no
longer hold a valid hash. Summarizing, after a block has been published, it can never be
removed or altered.

Due to the fact that the hash in each block’s header is the hash of the header of the
previous block, might make one think that the transactions are not being accounted for,
since if the transactions aren’t part of a block header, then changes to them will not affect
the hash of the block header. And it is here where the Merkle Tree structure comes in.

The merkle tree is also known as a binary hash tree and the main ideia behind this tree
authentication method is to recursively hash pairs of nodes (transactions) in order to produce
a single root node that authenticates multiple hashes of nodes with a single hash [19, 20, 21].

Figure 4 shows an example of utilization of a merkle tree to authenticate 4 transactions,
and as we can see this authentication method uses a kind of divide-and-conquer method by
recursively hashing nodes in pairs until only one node is left, the root node. In the end
of this process, the root node authenticates any of the transactions, and any change to a
transaction will invalidate the merkle tree root calculated, which is why the existence of this
field in the block header is essential. This technique also offers an interesting feature, since
to prove that a transaction belongs to a block we only need log2(N) hashes, where N is the
total number of transactions, in order to build the path where that transaction is included.

2.2. Blockchain & Smart Contracts 14

Figure 4: Example of utilization of a merkle tree

Consensus

When one truly thinks about the composition of the blockchain network, it can be
imediately denoted that it is a network comprised by untrustworthy nodes, since most of
them do not ”know each other” and do not have any obligation to comply with the network,
therefore it is critical to find some way for the network to reach a consensus on what to do
in a distributed environment. This problem was raised and studied in [22] as the Byzantine
Generals Problem which essentialy states, in summary, that a group of Byzantine generals hold
a portion of the army each and some generals prefer to attack and the others prefer to retreat,
but if some of them attack and the others retreat, the attack fails, so they have to reach a
consensus on what to do [17]. As the blockchain network is a distributed environment, it
also needs a consensus algorithm so that the ledger in all of the nodes is always the same
and correct.

The choice of the consensus algorithm is an important one, since a weak consensus
algorithm can hand huge advantages for adversaries to subvert the network and alter the
ledger at their will. There are many propositions and implemented algorithms currently as
seen in [17]. A consensus algorithm can usually be classified in two types:

• Open - All miner nodes are selectable by the consensus algorithm;

• Permissioned - The pool of available miner nodes is already less due to permissioned
access.

It is safe to say that the most known open consensus algorithms are the Proof of Work
(PoW) used by Bitcoin and Ethereum and the Proof of Stake (PoS) which will, possibly, start
being used by Ethereum in the start of 2020 [23]. Practical Byzantine Fault Tolerance (PBFT)
is probably the most popular permissioned consensus algorithm due to its utilization in
Hyperledger Fabric [24].

2.2. Blockchain & Smart Contracts 15

The PoW consensus algorithm relies on the concept that the choice of the node that will
mine the block cannot be random since it introduces vulnerabilities, instead the chosen node
should prove he is not likely to attack the network by performing a lot of work. Generally, in
order to publish a new block, each node of the network has to calculate different hash values
of the block header by creating new nonces until the result hash respects the rule set by the
consensus algorithm, e.g. the integer value of the hash (hexadecimal string) must be lesser
or equal to a certain value. When a node successfully calculates a result, it must broadcast
the block (with the used nonce) to all other nodes so they can confirm that the calculated
hash is correct and, after that, add the block to the blockchain. If, by chance, two miners
mine the blocks at the same time and create two branches of the ledger, the resolution of
this conflict is made by keeping the longest branch, which will have all the blocks the other
branch has, plus at least one.

The PoS consensus algorithm is a more efficient alternative to PoW, energy and time
wise, since this algorithm relies on the concept that the miners have to prove ownership of
a certain amount of cryptocurrency, and it is believed that the more currency one has the
less likely he will want to attack the network. As the choice is solely based in the amount
of coin, it obviously tends to be unfair and so beyond the stake held by the user, it is also
usually added another type of ”randomness” so that the same user is not chosen everytime.
It is obvious that this consensus algorithm is more prone to attacks unless it had already a
solid base of users, in which case it is really solid and that is why most known blockchains
do not start with a PoS type of algorithm. For example, Ethereum started with a PoW type
of algorithm and will now change to PoS since it already has a good user base [17].

The PBFT consensus algorithm states the concept that a new block is mined in a round.
In a round, a node is selected according to pre-defined rules (permissions) and this node
will be responsible for ordering the transaction. The process is divided in three stages: i)
pre-prepared ; ii) prepared ; And iii) commit. The node can only pass a stage if it receives over
2/3 of the votes from the nodes in the network, which means that if an attacker can control
or subvert 1/3 of the nodes in the network it can compromise the process, although it is a
nearly impossible task [25].

Nodes

A blockchain network is tipically distributed, which means that multiple nodes belong
to it. Having that said, the nodes have to be uniquely identified and, usually, in most
blockchain implementations a node has two components:

• Key Pair - The cryptographic public and private keys unique to this user;

• Address - A component that identifies and at the same time pseudo-anonimizes the
node in the network, derived from the public key.

2.2. Blockchain & Smart Contracts 16

Whenever a transaction is sent to this node or for this node, it is sent to his address and
whenever this node wants to send a transaction to another node he sends it to the node’s
address , signed digitally with his private key.

Miners

Miners in a blockchain network, besides having all the properties a regular node has,
are also eligible for mining/publishing blocks, if they specifically state it so. They exist so
that blocks may be published to the network according to the consensus algorithm, but it
is obvious that a miner will have to spend huge amounts of computational resources to
solve the problems posed by the consensus algorithm which translates to spending real
money in hardware and energy. From this point of view, it is clear that there has to be some
kind of incentive for miners to actually try to publish a block, and so in every blockchain
implementation, a node that tries to publish a transaction has to pay a really small fee for
the miner to mine his transaction.

2.2.2 Smart Contracts

The term Smart Contract was originally first proposed by Nick Szabo in the 1990s in [26] as a
digital twin of the already known term of a contract between two entities, which enforces a
set of rules and conditions for the utilization or transfer of a given asset. With blockchain
technology, this concept can evolve to a point where the state it holds to fullfill the contract
can be stated as immutable which is an essential attribute of a contract, once it is signed and
verified it can never be changed unless both parties agree to it.

In its essence, smart contracts can be defined as a collection of functions and state deployed
on the blockchain network using signed transactions. Smart contracts usually oblige to three
properties:

• Availability - They execute on all nodes of the blockchain and its state has to be the
same everywhere;

• Deterministic - Multiple executions of the same functionality has to yield exactly the
same result;

• Internal operation - They cannot fetch data from external web services, they can only
function in the blockchain network.

While there are many implementations of smart contracts over a blockchain network
nowadays, the most famous ones can be divided into two categories: i) public blockchains,
in which Ethereum stands out; And ii) private/consortium blockchains or enterprise-grade
blockchains, in which three stand out, Hyperledger Fabric, Corda and Quorum. Besides the type

2.2. Blockchain & Smart Contracts 17

of chain there are also significant differences in the way they operate, as will be described
next.

Ethereum

Smart contracts in Ethereum are written using the Solidity or Vyper Programming Language
(PL), both developed specifically for this purpose [27]. Solidity is an object oriented, high-
level PL and Vyper is a contract oriented and security focused PL. The language code written
in any of the PLs has to be afterwards compiled to low-level machine instructions called
opcodes that can be executed by the Ethereum Virtual Machine (EVM). The purpose of the
EVM is to create an abstraction between the code that will execute and the machine that will
execute it, fostering program portability [28].

The way Ethereum works is pretty much straightforward if one knows how a typical
blockchain works, since Ethereum works the same way, the only difference is that the
asset being tracked by the ledger’s state can be anything, whether it be cryptocurrency
or information. By tracking and registering every change made in the state of the ledger,
Ethereum can grant data immutability and traceability.

Hyperledger Fabric

In Hyperledger Fabric, the approach taken consists of two separate terms, defined in [29]:

• Smart contract - Defines the transaction logic that controlls the objects’ lifecycle;

• Chaincode - The packaged transaction logic in code that is deployed to the blockchain
network.

The following paragraph defines the relation between a smart contract and the chaincode,
as said in [29]: ”A smart contract is defined within a chaincode. Multiple smart contracts can be
defined within the same chaincode. When a chaincode is deployed, all smart contracts within it are
made available to applications.”

Smart contract implementation in Hyperledger Fabric can be done using the Java runtime
or the Node.js runtime, which means that Java, Javascript, Typescript or other PL that uses
one of those runtimes can be used to develop a Hyperledger Fabric smart contract.

As it can be seen, the differences between Hyperledger Fabric and Ethereum start right away
in smart contract programming, since in the first case they can be programmed with already
existent and known languages and in the second case, we have a PL built specifically for
that purpose. Those differences then continue to the actual way how both networks function,
which seems reasonable since it is known that one is public and used by anyone and the
other one is private and should only be used by the authorized entities. Hyperledger Fabric
has an extremely modular architecture, which allows entities to replace certain components

2.2. Blockchain & Smart Contracts 18

if they already have one built, but more on this later. Generally speaking, Hyperledger fabric’s
architecture is comprised by the following essential components:

• Certificate Authorities (CAs), responsible for assigning key pairs to authorized peers,
so that they issue transactions to the network;

• Membership Service Provider (MSP), responsible for knowing the permissioned iden-
tities. For an easy understanding, we can relate CAs to MSPs. While a Certificate
Authority (CA) issues certificates for the permissioned identities, the MSP keeps the list
of authorized identities;

• Channel. A channel can be also viewed as an actual singular network, since every
information that is put in this channel can only be viewed in this channel and not by
others;

• Organization. An entity that takes part of a business flow. An organization can
correspond to an actual real entity or to a set of entities, it depends on the trust zones
established by the business partners;

• Peer. An actual node that belongs to an organization;

• Ordering service. A special set of nodes that have the role of guaranteeing transaction
uniqueness and validity. It can be seen as the service responsible for achieving
consensus on the state of the ledger.

From the component definition above, it is clear that Hyperledger Fabric’s architecture
is really flexible and it can adapt to a whole plethora of use cases. Furthermore, if each
organization wishes to provide a CA wich they already have they can do so, there is no
need to use one provided by Hyperledger. In this architecture, smart contracts are executed
in every peer and the state of the ledger is kept unique and valid across all organizations in
a channel.

Corda

Corda [30] is the most recent framework to come out and the support for its development
came mostly from the financial sector, which can clearly be noted due to its structure.
Corda does not keep track of ledger across all the blockchain as Ethereum neither across an
entire channel as Hyperledger Fabric, instead it implements the concept of direct transaction
communication, i.e., when a transaction is issued, the information relevant to it is only kept
safe and known by the entities that participated in it. As an example, lets think about three
entities: A, B and C. Then two transactions are issued:

• A issues transaction with information X to C;

2.2. Blockchain & Smart Contracts 19

• B issues transaction with information Y to C.

After the transactions are issued, A will hold and know X, B will hold and know Y and,
finally C will hold and know X and Y. Of course this could bring problems since many times
an entity will have to know if a given organization can issue a certain transaction despite not
having all information on all the transactions that the organization has ever issued. Corda’s
concept of a Notary fixes that problem as it will be explained next. Corda’s architecture can
generally be defined by four components:

• State. Refers to the actual state object, i.e., the state of the ledger. The view of the
ledger may and should be different for each node;

• Flow. A set of protocols that define the way an entity directly communicates transaction
information to another entity;

• Node. An actual node in the network;

• Notary. A special node, responsible for guaranteeing transaction validity and unique-
ness.

It is clear that the architecture of Corda is specially tailored for environments where
you may have multiple entities, but there is a need of maintaining secrecy between them.
An example would be a financial use case, in which a bank could transact with many
organizations whilst keeping private the information traded with each one.

Quorum

Quorum is an Ethereum-based solution that combines the innovation brought by Ethereum
with special requirements that exist to cater enterprise needs [31]. The two most decisive
requirements that Quorum fulfills that Ethereum doesn’t, which makes it suitable for
enterprise solutions are: i) Private transactions; And ii) permissioned access to the blockchain
network. Quorum is essentially built over Ethereum, which means that a Quorum node
is, in many ways, really similar to an Ethereum node, a decision made on purpose so that
Quorum nodes could be compatible with future release versions of Ethereum. So, in order to
fulfill those requirements Quorum introduces another entity, the Privacy Manager, comprised
by the Transaction Manager and the Enclave [32].

The transaction manager is responsible for handling private transaction data, i.e., to control
who can access a certain piece of data. The Enclave is used for cryptographic functionality,
namely transaction authenticity, participant authentication and historical data preservation.

In order to use these functionalities as part of the transactions performed by the nodes in
a network, Quorum introduces an attribute that can be attached to Ethereum transactions
called privateFor, which allows the indication of a list of participants which are allowed to
see the contents of that transaction. In the global ledger, Quorum substitutes the actual data

2.3. Blockchain & IoT integration 20

by its hash, which means that it can still grant the data’s integrity while not allowing other
nodes that have not participated in a transaction to see its contents. The contents can only be
seen by parties that are authorized to it, whether it be the node that issued the transaction
or the ones that were stated in the privateFor attribute.

Quorum’s main selling point can be stated as the ability to provide the simplicity and im-
mense tooling of working in the Ethereum ecosystem while enriching it with enhancements
that are able to meet enterprise needs.

To summarize, a smart contract provides functionality and state that entities can use,
resting assured that the set of rules of the contract are being applied. Every time the state of
the smart contract changes (data insertion or modification for example) new transactions
are registered in the blockchain. It is a vital point to not confuse transaction immutability
in the blockchain with the data/state the smart contract holds, because this data can be
altered if appropriate functions are made available by the smart contract, but the fact that
that alteration was executed can never be changed.

2.3 blockchain & iot integration

Since its conception, IoT has had definitive limitations on some areas, especially when it
comes to data reliability or processing. It is known that these IoT devices are ideal for
digitizing the physical world, due to the fact that they’re oriented to data transmissions even
in hard to reach/see locations, for e.g. inside weighbridges. These inherent characteristics,
despite making these devices ideal for sensing and capturing data, turn them into resource-
restricted and power-restricted devices, that cannot process and analyze data to extract
relevant information from it. That way, in the following years since it first appeared,
disruptive technologies have been used to overcome its limitations, like for example using
cloud computing as a technology that allows data storing and processing using big data
techniques [33].

With the appearance of blockchain technology in [16], new ways of securely sharing
and storing the information sensed by IoT devices have been studied, and the integration
of these two technologies is being viewed as possibly a major step forward in mitigating
security & privacy challenges in IoT applications. While the improvements of the integration
of blockchain technology into IoT applications are mostly related with data security &
privacy, the end result can also benefit application efficiency and scalability. Some of these
improvements can be immediately stood out as described below [33, 34]:

• Decentralization. By applying blockchain technology to an IoT application, we are
inherently decentralizing data, since blockchain applications are decentralized by
convention (one of the reasons blockchain guarantees immutability);

2.3. Blockchain & IoT integration 21

• Scalability. The more devices are part of the network, the better for the blockchain, it
makes it safer and, of course, additional devices provide more sensing and computer
power, permitting a scale-up of the application;

• Identity. Device identification is inherent, since we have to map an account with a
device;

• Security. The immutability of the data that is sensed can be granted.

The numerous advantages that can be obtained also depend on the way the integration
is actually implemented, since not all implementations are suitable for all applications.
In [33] the authors provide an interesting view on a three-way division of the types of
implementations in terms of communication in the underlying IoT infrastructure:

• IoT-IoT. An approach where all the interactions between IoT devices are made only at
infrastructure levels, through discovery and routing protocols. Only the data is sent
for storage in the Blockchain;

• IoT-Blockchain. An approach where all interactions between devices and all data
sensed go through the blockchain, creating an immutable record of all interactions and
all data;

• Hybrid. An approach where part of the interactions and part of the data are stored in
the Blockchain. This implementation is best used when leveraging multiple technolo-
gies like cloud or edge computing with IoT and Blockchain.

The type of implementation used in the IoT infrastructure depends on the characteristics of
the application/platform being built. For example, one might disconsider an IoT-Blockchain
approach if the application produces huge loads of traffic, which would mean recording
a lot of interactions and a lot of data. For those cases possibly, the IoT-IoT or the Hybrid
approach is usually a better solution. It all comes down to the use case that is being solved.

2.3.1 Use Cases

In [34], the authors explore solutions that leverage an IoT infrastructure with Blockchain
technology to increase transparency in supply chain management. The role of IoT in the
supply chain management is clear, to sense and deliver to the digital world the data that is
meaningful to treat at that given stage. On this specific case, IoT can be used in three stages
of the supply chain: i) warehouse; ii) production; And iii) transportation. In warehouses,
sensing devices can be used to manage inventory, basically keeping track of what has already
abandoned the warehouse or what is still there. In production, sensing devices can be used
in many ways, one of the most important being, to gather intelligence data on the production

2.4. Summary 22

process to analyze if it is efficient, if the machines being used are in good conditions (e.g.
predictive and prescriptive maintenance), among other parameters. In transportation, the
use case for IoT is clear, to always know where a given product is at (real-time shipment
tracking). Despite the clear improvements IoT can provide to warehouse, production and
transportation operations, it can also cause harm if not properly controlled, due to the fact
that security & privacy concerns are known and growing for this type of technology. The
risk of an attacker accessing or corrupting the data that companies in the supply chain
process gather is high, which can compromise the entities working with that data. Some of
the most prominent concerns relate to access control and trust in those IoT environments.
Blockchain technology can be introduced at this stage to provide trust in the data that is
being generated by the devices, due to its inherent decentralized and linked nature which
provides data immutability. Due to the probably high data flow in these types of processes,
sometimes, solutions are implemented that use the concept of a sidechain , which is usually
a private chain, in which data can be stored using smart contracts for example, and then add
references to the main chain and, if that reference is a strong enough link to the data stored
in the sidechain, the immutability property is applied as well. So, it is clear that Blockchain
technology can provide supply chain processes with the trust and immutability it needs for
the implementation of devices and applications that generally improve the management
part of the supply chain.

Although supply chain management is one of the best known and most studied use cases
for IoT and Blockchain integration, there are a lot more use cases like, for example, the
application of Blockchain technology into smart manufacturing.

In [35], the authors present a solution for a platform that can adapt to different circum-
stances, including smart manufacturing, which is one of the most thoroughly researched
areas nowadays, the need for better and more efficient manufacturing processes. They
present enhancements to current cloud-only platforms by introducing decentralization and
peer-to-peer networking concepts. The cloud bridge would still exist, but transactions
and data would be kept, in a decentralized manner, in smart contracts, which could grant
immutability to the data sensed in manufacturing processes.

2.4 summary

This chapter covered some essential and background topics of the subjects related to the
problem that was proposed. From IoT, to blockchain, smart contracts and those technologies’
integration, a wide range of concepts, as well as open research challenges and most used
current implementations were mentioned and studied.

The chapter begun by exploring IoT technology, including: i) the problems and challenges
that are currently being faced; ii) the applications and huge use-cases of it; iii) the specific

2.4. Summary 23

parameters and conditions of IoT in the industry; And, finally iv) the communication
protocols that can be used in these kind of environments, with a big focus in the ones that
provide secure and reliable transmission of the data.

Afterwards, blockchain technology was thoroughly described, explaining essentially its
origins, its applications, the properties it upholds when correctly used in a system and,
of course, how the technology itself works within. Additionally, comparisons were made
between different types of blockchain systems in order to provide some background for
when the choice of platform has to be made.

The chapter ended with a small topic on possible use cases of the integration between
both technologies, as well as typical ways of integrating them, ranging from a complete
interconnection between them to a complete separation of concerns of both technologies.

The set of concepts and technologies studied will serve as the foundation for the next
section, where a solution is actually proposed that uses part of the technologies previously
mentioned.

3

P R O B L E M , C H A L L E N G E S A N D P R O P O S E D S O L U T I O N

This section opens with a discussion on the problems and challenges that are inherent in a
solution to the problem in study. After this discussion, a solution is proposed by illustrating
a system architecture, explaining its components and how that architecture can successfully
solve the problem in study.

To solve the main goals regarding this problem, it is clear that the solution will, at the
very least, comprise IoT and blockchain technologies, which by itself raises some concerns
as studied in Chapter 2: State of the Art. Despite the evident need to implement IoT
mechanisms, one must be aware of the problems and the challenges that the implementation
itself faces, such as security & privacy and power concerns, which in this case, are the main
possible sources of issues. Security & privacy concerns have been immensely discussed
both in this dissertation, as well as in literature, due to the fact that the definition and
implementation of secure communication in constrained devices poses itself as a difficult
task due to two main factors:

• Low resources. Generic IoT devices are made to possess sensing capabilities only, so
their resources are very limited, which hardens the task of applying techniques like
digital signatures or message encryption;

• Power consumption. Even if cryptographic techniques are applied, it is more than
likely that they will consume a lot of the device’s power, shortening its lifespan.

In IoT environments, it is a common practice to have a more powerful device that can
harvest and aggregate all the data from the sensors and send it to analysis and storing
location. In that device, the application of current and standard techniques and protocols
is pretty much straightforward, but the communication of the sensing devices to that
aggregator still has to be taken care of.

The main challenge advent from the protocol definition that must be explicit is, in fact, to
coordinate a secure and fault-tolerant communication between constrained devices to the
aggregator.

Besides the IoT component of the project, it is also pretty clear that blockchain technology
and smart contracts will also play an important role in the solution to the presented

24

3.1. Proposed Approach - Solution 25

problem, by allowing to implement a compliance process, in which metrological data sent
by the stations have to comply with specified and standard rules and thresholds. Using
current smart contract platforms facilitates the process of providing a solution, since they
already have implemented tools and mechanisms to ease the process of making available an
application in the format of a smart contract, but despite that big advantage, there are also
some shortcomings. The utilization of a public network for an enterprise solution presents
two main disadvantages:

1. Payed transactions. The fact that for each transaction a small sum has to be payed
to miners to ensure that they are rewarded for mining the transaction and reaching
consensus presents itself as an obstacle in corporate environments due to the possibly
high throughput of transactions which would oblige the company to have their own
miners to keep gaining coin to spend in the network;

2. Performance. The current mechanisms to reach consensus in public networks such as
Ethereum make it a poor choice performance-wise, i.e., the throughput of transactions
that it can withstand is really low (e.g. In Ethereum the limit is 15 transactions
per second) which makes these networks not suitable, although new algorithms
and protocols for reaching consensus and increasing the system’s performance are
continuously being addressed such as the PoS algorithm.

In another point of view, private or consortium blockchain networks, despite complying
with most requirements such as privacy, access permissions and performance present a
different set of obstacles, mainly related to implementation and maintenace since they
comprise a lot more configuration and network maintenance (e.g. maintaining access
permissions for organization) than their public counterparts.

3.1 proposed approach - solution

The solution proposed here is a two folded approach since we have two different contexts of
implementation:

• In the physical context (weighing stations), a protocol definition for secure communica-
tion between the devices operating in the stations and the cloud must be established;

• In the digital context, a cloud platform capable of receiving the data from the stations,
and apply a compliance process using blockchain technology must be implemented.

3.1. Proposed Approach - Solution 26

3.1.1 Communication System

The protocol definition for secure communication between devices, at this point, is being
addressed as a two-part communication:

1. From the load cells to the aggregator (Smart Box);

2. From the aggregator to the cloud system.

Figure 5 illustrates this two-part communication, where we can see an example of a
weighing station, which holds two weighbridges and each weighbridge holds 8 load cells,
designated by LCi where i goes from 1 to 8.

Figure 5: Proposed communication system

This separation of concerns between two possibly different communication environments,
mainly in respect to the devices’ communication capabilities, enables the establishment of a
complete protocol definition that can rely on one or more different communication protocols,
which can prove to be more advantageous, since a specific protocol can be used for a specific
environment.

Despite the fact that some clear advantages can be seen in the communication diagram
in figure 5, there is one clear security issue to denote in the Smart Box, which is the fact
that it is subject to a man in the middle attack [36], since it is the bridge between the data
generated in the load cells and their destination, the cloud system. It is not an easy security
issue to explore due to the actual composition of the weighbridges in the stations, since the

3.1. Proposed Approach - Solution 27

Smart Box’s internals are actually pretty isolated but still, this will obviously require some
knowledge from the part of the cloud system as to what Smart Boxes are active and able to
communicate with it.

In regards to the cloud system, it is clear that the application being built needs to
be established over smart contracts, and that in some way, it has to expose APIs that
allow a simple communication with the data and the operations over it. Of course that,
when defining APIs, the protection of them also have to be taken into account, thus an
authentication & authorization system should be built to ensure that the data API is used
with the right permissions. Besides the evident use case of authentication & authorization,
when a certain client communicates with the API to register data, it is more than normal
that some extra information will have to be extracted to enable and simplify communication
with the blockchain network.

Taking these factors into account, the next section proposes and explains a system archi-
tecture that can comply with the defined requirements for the problem.

3.1.2 Cloud System Architecture

Figure 6 illustrates the proposed system architecture for the cloud platform part of the
problem being solved. It must be kept in mind that the full solution will ultimately comprise
a protocol definition in the physical context.

3.1. Proposed Approach - Solution 28

Figure 6: Proposed system architecture

In generic terms, the proposed architecture is comprised by the following components:

• Blockchain network. The blockchain network used to store the ledger associated with
the operations performed over the smart contracts;

• Smart contracts. The digital contracts that define the behaviour of the entities relating
to the consulting or manipulation of the weighing tickets;

• WeighingTickets API. An API that exposes a way of interacting with the resource
being handled by the smart contract, the weighing tickets;

• Authentication & Management API. An API that exposes a way of creating, consult-
ing and manipulating entities allowed in the system, as well as a way of requesting
access to the most routes of either this API or the WeighingTickets API;

• Entity Database . A database responsible for storing entity records, including authen-
tication information and the organization that it belongs to.

The technologies used in each of these components will be approached in section 3.1.3,
but some more information can be already provided as part of the solution.

Blockchain network

3.1. Proposed Approach - Solution 29

The network will be comprised by organizations that are dependent and have interest
in complying with data immutability and privacy in respect to the weighing tickets that
are emitted by customers. Essentially, for now, this just states that it will be a multi-node
network, which makes sense, since a single-node network cannot be considered a blockchain
network per se. The actual organization of the network will be thoroughly studied and
explained in section 4.1.

Smart contracts
The smart contract must clearly define the way that an entity can interact with a Weighing

Ticket resource, i.e., defining the available methods that allow the execution of an operation
against the ledger, whether it be consulting, creating or manipulating. Furthermore, it
should have the ability of associating each sender with their weighing tickets.

WeighingTickets API
An API that exposes resource-related routes to communicate with the smart contract. This

API exists to facilitate and abstract the communication with the smart contracts hosted in the
blockchain network. This middle layer simplifies the logic and future proofs the application,
since if applications are going to be built over this data in the future, it is much more easier
to build them over a clearly defined API, than a smart contract, which has inherent concepts
related to blockchain technology that may not be clear to everyone. To put it simply, this
API has 5 main modules/components:

• Routes. Maps requests over the web to actual operations over resources, residing in
the controllers;

• Controllers. Methods that implement route functionality, i.e., there should be a one to
one unique association between routes and controllers;

• Services. Granular methods responsible for communicating with the smart contracts;

• Abstractors. Module that implements methods capable of abstracting certain blockchain
concepts to easy-on-the-eye data, to release the user of that burden;

• Authorization control. Module that implements route authorization mechanisms,
used by the Routes module.

Authentication & Management API
An API that also exposes resource-related routes to communicate with the entity database,

as well as providing ways of requesting authorization to access the EntityManagement and
WeighingTickets APIs. In a simple form, this API is comprised by 4 main modules/compo-
nents:

3.1. Proposed Approach - Solution 30

• Routes. Maps requests over the web to actual operations over resources, residing in
the controllers;

• Controllers. Method that implement route functionality, including entity management
and access control. There has to be a one to one assocation between routes and
controllers;

• Services. Granular methods responsible for communicating with the entity database;

• Access control. Granular method responsible for operations that have to do with
authentication and authorization, such as generating authorization tokens or validating
them.

Entity Database
This component represents a database that will simply hold entity information, including

its authentication attributes for later comparison, its location, blockchain attributes when
needed, cloud node being used, among others.

This definition is capable of handling the compliance process, while also providing
methods and functionalities to be used by other possible modules to be integrated into
this platform such as data analysis. This capability makes this initial architecture a good
starting point for a solid platform in terms of integrating all the services being used by
the companies of the group, since it already implements an authentication & authorization
service, as well as metrological data storing and easy access to it.

3.1.3 Technological Choice

This section serves the purpose of clearly defining the technologies that will be used
for the implementation of each component in the system architecture, as well as for the
secure protocol definition used for communication, defined in 3.1.2. This way, five major
technological decisions have to be made:

1. Blockchain platform. The platform to use for the implementation of the blockchain
network and the smart contracts;

2. WeighingTickets API. The framework to use for the implementation of the Weigh-
ingTickets API;

3. Authentication & Management API. The framework to use for the implementation of
the Authentication & Management API;

4. Entity Database. The database technology to use for storing entity information;

3.1. Proposed Approach - Solution 31

5. Protocol Definition. The protocol definition for the secure IoT communication.

For each component, the technology that was chosen is presented as well as the explanation
to why that was the case.

Blockchain platform
The first step in deciding which platform to use had to obviously be whether it should

be public or private and, taking into account, the enterprise-focused context of this use
case it is clear that the platform to be used should provide both performance and privacy.
To fulfill these requirements, a private or consortium blockchain platform has to be used,
which means that the choice was now reduced to either Hyperledger Fabric [29], Corda [30] or
Quorum [31].

In terms of the inherent features between the three aforementioned platforms, there is
actually no big difference since all of them can provide: 1) performance; 2) privacy; 3)
permissioned access; 4) scalability. Due to this fact, the choice relied mostly on the simplicity
and the support that each platform could provide. In this particular topic Quorum shines,
since it is mostly an enterprise-upgraded Ethereum, which means that all the immense tooling
around the Ethereum ecosystem is also available for use in Quorum, simplifying most of
the implementation from this part. Additionally, the process of establishing permissions
and private transactions in Quorum is simpler, since it makes a clear separation on the
components that govern permission in the network and the components that govern the
data stored in the network’s ledger itself, making the latter basically a problem to be solved
just as it would with Ethereum.

WeighingTickets API
The development of a web API can be done in multiple frameworks, ranging from using

Java with Springboot [37], Python with Flask [38], NodeJS [39], among others. The choice
made for this component eyed mostly the maturity of the framework itself as well as the
maturity of the integration tools with the Ethereum/Quorum ecosystem. NodeJS was chosen,
since the biggest support for integration between Quorum and other languages/frame-
works was definitely with NodeJS and Python, but while searching for support in either,
using NodeJS with Quorum appears to be in fact the most common use-case. In fact,
Quorum provides an extension for an essential library that is used to communicate with
Ethereum/Quorum networks in a NodeJS application, that makes the integration and
utilization of those additional features really simple.

Authentication & Management API
As in the previous API there are a lot of technologies to choose from, and even taking

into account the purpose of this component, which is providing ways of manipulating
entity resources as well as authentication and authorization mechanisms, all the previously
mentioned frameworks can solve these problems in many ways. With that said, NodeJS was

3.1. Proposed Approach - Solution 32

chosen to promote consistency in code, since both APIs use the same language, as well as to
exclude learning curves between APIs that could appear when using different frameworks
for each component, which could harm the development of the solution.

Entity Database
Choosing the database technology to use has to do, mainly, with the type of data that

is going to be stored and its characteristics, added of course with the performance of each
technology, if applicable. In this use case and, for this database, the primary purpose is to
be able to store entity objects from which we can later retrieve some information such as
authentication or organization details. To do this, a relational or non-relational approach
can be followed, i.e., a relational database technology can be considered that, in summary,
stores information in tables and relates different tables by primary and foreign keys or
a non-relational database technology can be considered which essentially stores objects
in collections mostly, providing a schema-less way of interacting with the database. An
example of a relational database technology is PostgreSQL and an example of a no-SQL
(non-relational) database technology is MongoDB. Taking into account the simple nature
of the data that is to be stored and the amazing integration that MongoDB has with the
previously chosen framework (NodeJS), MongoDB was chosen as the technology to use to
store entity-related data. Additionally, MongoDB also provides a rich query system that also
enables us to easily query nested objects stored in its collections, which is essential and is
something that is one of the best features of relational SQL databases.

Protocol Definition
As seen in section 3.1, the protocol definition for this use-case has to contemplate two

distinct moments of communication: i) From the load cells in each weighbridge to the Smart
Box; And ii) from the Smart Box to the cloud system. Taking into account the RESTful nature
of the APIs that are going to be built, it is clear that the communication from the Smart
Box to the cloud system would significantly benefit from a communication protocol that is
RESTful by nature, since it would clearly simplify the establishment of the communication
routes. Additionally, taking into account that the Smart Box is a device that does not fit
into the constrained devices category, i.e., it is a more capable computation device that also
possesses capabilities to display information on a display, the primary challenges of IoT
communication like energy-awareness and low security due to constrained resources do
not clearly apply here and, following that line of thought, HTTP can be perfectly applied
in this communication since it is a more than mature protocol, that provides a RESTful
communication and, beyond that, can be made secure simply by using it over TLS.

As for the communication between the load cells and the Smart Box, the scenario is
clearly different since the load cells’ electronics are really low-power, possessing only sensing
and minimal computation capabilities. With that in mind, it is obvious that here a more
lightweight protocol such as CoAP or MQTT would significantly improve the efficiency and

3.2. Summary 33

throughput of the communication of data from the load cells to the Smart Box. Additionally,
according to the data provided by the companies, no more than 300 weighings are performed
by day in each station, which means that performance won’t be an issue, since either one of
the protocols can perfectly deal with that kind of data throughput. With that in mind, the
choice between the two protocols boils down to their own architecture and how they can
simplify the communication system in terms of its understanding and implementation and
in that area, CoAP is better suited for this use case due to the fact that it also has a RESTful
architeture, which means that the communication of data from bottom (load cells) to top
(cloud system) could all be done by RESTful interfaces, rendering the communication simple,
understandable and transparent. Additionally, CoAP can use DTLS as the underlying
transport-layer protocol to render the communication secure.

3.2 summary

This chapter covered the problems and challenges that might rise to be solved in the
implementation of the proposed solution and the essential definitions of the solution to
the problem presented in this dissertation, ranging from a high-level description of the
architecture of the solution to be built to the actual technological choice in each of the
components that comprise the solution.

Firstly, the main problems that can appear in the utilization of blockchain, IoT and its
integration were presented, ranging from the properties of possible blockchain solutions to
the characteristics of typical IoT environments.

Afterwards, the chapter explored the conceptual definition of a communication system
taking into account the real world scenario of the problem presented in this dissertation.
Immediately following that, the cloud system architecture, was explored, explaining each of
its components and how they individually contribute so that together they can comply with
the defined goals.

Finally, the technological choice for each of the components of the proposed solution,
including the communication system and the cloud system was investigated, providing
the options that were considered, the choice that was made and the reasoning behind that
choice.

4

D E V E L O P M E N T

In this chapter, the goal is to thoroughly explain how the solution was designed and
developed, starting with the main decisions that had to be done in each component of the
solution as defined in Chapter 3, and ending with the specifics on how each component
was implemented and how they abide by standard software development and security
principles. The chapter ends with a summary of the development of this solution including:
i) the software components that resulted from it; ii) what can be done with those software
components when compared with the initial goals; And iii) explore and discuss some
novelties or particularities that were considered and thought of in the development of those
components.

As was seen before, the development of this solution can be divided into two main parts:

1. the cloud system, which includes the development of: i) the weighing tickets API; And
ii) the authentication & management API;

2. the communication system, which includes the development of components able to
communicate from the load cells to the smart box and from the smart box to the cloud
system, in a secure manner.

The remainder of this chapter explores in Section 4.1, the decisions that were made
in order to correctly develop the solution, exploring a wide range of topics such as the
structure of the blockchain network, the authentication & authorization algorithms and the
attempt to provide transparency and consistency when writing/reading data to/from the
blockchain. In Section 4.2, the actual development of the components is discussed, exploring
the existent heterogeineity of technologies and how each one suits best that particular use
case, due to how the code structure can be implemented in such a way that standard software
development and security principles are respected. Aside from that, the implementation also
dives deeper in how some fault tolerance or configuration mechanisms are implemented and
provide a safer, cleaner way of customizing each component. Finally, in this implementation
section, the data models and its necessary attributes are also discussed in order to provide a
complete understanding on the overall scope and purpose of the solution. Last but not least,
Section 4.3 summarizes the work done in the implementation stage, while also referring the

34

4.1. Decisions 35

main challenges that the implementation raised. The section ends with a discussion on why
the outcomes of the development are capable of complying with the proposed goals.

4.1 decisions

The development of a software solution has an inherent need of clearly deciding some
particularities of it, both in conceptual and technical points of view. In this case, some
conceptual decisions have to be solved first as they establish the basis of the solution and
such decisions may be, for example, how the permissioned blockchain network is going
to be structured in terms of the entities that take part in it. In a more technical point of
view, there are some aspects of the solution that should be established prior starting the
development stage, preventing the need to constantly change and refactor some components
in order for them to work well with the others. Such technical decisions can be, for example:
i) clearly defining the interface of the smart contract and what it will be able to do and what
it delegates to the APIs; ii) clearly defining the authentication algorithm for both users and
weighing stations; And iii) establish how the APIs will foster transparence and usability by
abstracting complex blockchain-related particularities.

The remainder of this section approaches each critical decision that was made and explains
the reasoning behind it. Essentially, the decisions that were made can be categorized into
five main topics:

• The software components that need to be developed to comply with the proposed
solution in Chapter 3;

• Structure of the blockchain network and how it is enforced;

• Smart contract requirements;

• How to increase transparency, usability and efficiency due to complexity brought by
blockchain particularities (e.g. hexadecimal stored strings, no floating-point numbers
can be stored, etc.);

• How to implement authentication & authorization with the APIs.

4.1.1 Software Components

In order to fulfill all the requirements raised by the proposed solution and the pre-defined
objectives, there are a lot of software components to be built, and those components are
essentially categorized in three areas:

• Communication system, in which software to securely communicate between the
devices at the weighing stations and the cloud system have to be built;

4.1. Decisions 36

• Cloud system, in which software to allow entity management, weighing tickets man-
agement and authentication in the APIs have to be built;

• Blockchain, where a smart contract has to be developed that manages the weighing
tickets.

Communication System

The communication system defined in Chapter 3’s figure 5 show us that there are two
flows of communication: i) From the load cells to the smart box; And ii) from the smart box
to the cloud system. In order to comply with both flows of communication, two software
components must be developed, one for the load cells, that should be able to read the weight
that it measured and securely transmit it to the smart box and another component for the
smart box, that should be able to manage and coordinate the weighings received by the load
cells and securely transmit a weighing ticket when the weighing is complete. Additionally,
the implementation of these two components must comprise fault tolerance mechanisms as
to guarantee that a weighing ticket is, at some point, delivered to the cloud system.

Cloud System

In order to implement the architecture defined in Subsection 3.1.2’s figure 6, excluding the
blockchain part which has its own specifics, the development should consider three main
components:

• The weighing tickets API, which allows the management of weighing tickets and
communicates directly with the blockchain network;

• The authentication & management API, which allows the management of entities that
belong to the platform and, furthermore, provides the necessary mechanisms for users
and stations to be able to authenticate themselves and, posteriorly, to authorize when
calling an operation against any of the APIs;

• The database models that represent the entities that take part in the system, i.e., the
database design.

Blockchain

For the blockchain part of the solution to work, a smart contract has to be developed,
which is the software component that will actually control the management of weighing
tickets and store them immutably, in the network.

4.1. Decisions 37

4.1.2 Blockchain Network Structure

In order to establish the structure of the permissioned blockchain network, one has to clearly
understand the entities that take part in this flow of information and what their roles are.
Essentially, what can be retrieved from the information given by the companies is that:

• A Customer is an entity defined as a customer of any company of the Bilanciai group,
which can hold multiple users and multiple stations;

• An User is defined as an entity that belongs to a customer and has access to that
customer’s data, especially, to query and manage its weighing tickets;

• A Station is defined as an entity that is owned by a customer and that registers the
weighing tickets that are produced in it.

With the entities defined, it is clear that there is one main privacy rule that should be
taken into consideration: A customer can only see its data.

Essentially, the structure of the permissioned blockchain network should be as figure
7 shows, each customer is its own organization inside the network, and each station is a
node in the network, holding its own smart contract, agreed upon with the customer’s
administrator and the network administrator. A user simply points to the administrator
node of that customer.

With the structuring of the network as shown in figure 7, two essential aspects can be
granted:

• A customer’s data can only be seen by the customer itself;

• All customers ”work together” to grant the immutability and traceability of all the
tickets in the system.

The two aforementioned points are always true, since Quorum will make sure, through its
privacy manager, that only the nodes that belong to that organization can see the data, the
other organizations will only see a hash of the message, which exposes no information, and
since a hash is unique to a message, the integrity of the message can still be granted.

4.1. Decisions 38

Figure 7: Structure of the permissioned blockchain network

In section Section 4.2 this topic is further explored, specifically on how the structure of the
network and the properties it should uphold are enforced.

4.1.3 Smart Contract Requirements

Prior to the development of the smart contract and, taking into account that the technological
choice for this process has already been made in Subsection 3.1.3, the requirements that it
must comply must be clearly defined, including the definition of the state the smart contract
will hold as well as the methods that can query or manipulate that state.

By observing the definition of the problem to be solved in this dissertation, it is implied
that the state or resource that has to be stored immutably in the blockchain is a weighing
ticket, which can be defined as a kind of receipt that a certain weighing took place with
the exact attributes or parameters that are included in that receipt. Figure 8 shows the
composition of a weighing ticket, explicitally providing the name of each parameter in the
smart contract as well as its type.

4.1. Decisions 39

Figure 8: Composition of a weighing ticket

The weighing ticket parameters defined in figure 8 are explained as follows:

• ticketID A unique weighing ticket identifier, which is a string structured as cus-
tomerID stationID timestamp, i.e., comprising the customer’s system identifier, the
station’s identifier and the timestamp the ticket was issued;

• terminalSerialNumber The unique serial number of the terminal (smart box) that
issued the ticket;

• terminalrestartValue Records the power state of the terminal (smart box);

• timestamp The UNIX timestamp at which the weighing was performed;

• scaleSerialNumber The unique serial number of the weighbridge that performed the
weighing;

• scaleStatus The status of the weighbridge at the time the weighing was performed;

• scaleGross The gross weight value of the weighing;

• scaleNet The net weight value of the weighing;

• cellsInfo An array of objects, in which each object holds the information of a load cell,
with up to a maximum of 8 objects. The information that each object comprises is as
follows:

– cellSerialNumber The unique serial number of the load cell;

– cellWeight The amount of weight measured by this load cell.

4.1. Decisions 40

With the parameters that are going to comprise the weighing ticket defined, which is the
state that the blockchain network holds, now the methods that can manipulate or query that
state also have to be defined.

Deciding the methods that the smart contract should expose requires an overview of what
is the lifecycle of the weighing tickets. Essentially, the registration of new weighing tickets
must be allowed in order to add a new ticket to the state of the network and, in addition
to that, the query of those tickets also has to be permited in order to facilitate compliance
processes that are periodically carried out. Diving deeper into the query system that the
smart contract will implement and, taking into account that these tickets will be queried
through the tickets API, it is clear that the continuous addition of new tickets to the network
will result in increasingly larger responses from the network to the API. In order to tackle
this issue, the smart contract will also provide some methods that allow immediate filtering,
i.e., only returning tickets from the blockchain’s state that match a certain criteria.

Finally, in this system it often happens that a certain ticket’s need for storing expires,
which essentially means that the aforementioned compliance processes, after a certain period
of time, will no longer have the need to validate them. In this particular case, the network
administrator may want to have the ability to free some state in the network and so, in order,
to provide that possibility, the smart contract will also provide a removal operation which,
of course, has to be protected so that it can only be accessible by a node with administrator
permissions.

The weighing ticket’s structure as well as the operations it has to provide in order to
comply with its requirements, comprise all the necessary decisions that have to be clarified
prior starting the implementation stage.

4.1.4 Blockchain Complexity Abstraction

The utilization of a smart contract and blockchain technology as an immutable storage that
serves as the backbone for the system in study, has a side-effect in the way how the tickets’
information is later represented. This is due to two main situations:

1. Solidity doesn’t support the storage of floating point numbers, commonly known as
floats, yet [40];

2. The libraries used in the API to interact with the smart contracts commonly extract
string values as-is, which makes the outcome a hexadecimal string instead of a human-
readable one.

Due to these two situations and to the fact that the structure of the weighing ticket defined
in Subsection 4.1.3 holds both string and floating point properties, a decision on how to
actually store the floats and represent strings in a human-readable format has to be made.

4.1. Decisions 41

Taking this into account, the following approach can be used:

• For floating point numbers, they can be converted prior to their registration in their
integer format and then converted back to float when queried. This can be done by
configuring a conversion factor that is multiplied with a float with a fixed number
of decimal places, turning them into integers and then, dividing the integer by the
conversion factor to get the float back when the weighing ticket is queried;

• For strings, taking into account that this is a issue that is in the roadmap to be solved
by the Ethereum community, the mechanism that handles this situation should first
verify if the string is a hexadecimal string and, if it is convert it, otherwise do nothing.

The two aforementioned mechanisms, hidden in the weighing tickets API, are sufficient to
abstract the complexity of what would be a situation in which the receiver had to deal with
the conversion of the necessary properties.

As a final point, it is also worth noting that the development of the weighing tickets API
is also an effort in terms of trying to remove some complexity in using a blockchain-based
system, since it handles all operations needed to send transactions into the network and
exposes the operations in a clean and simple Representational State Transfer (REST) API.

4.1.5 Authentication & Authorization

To finalize this section, a last, but an important decision has to be made, how the authentica-
tion of the entities that participate in the system will be conducted and how the requests
made by those entities will be validated and authorized or not.

In terms of authentication, which is a process that requires an entity to proove to another
entity its identity, this system needs to have the ability to authenticate both users and stations.
Users need to authenticate themselves so that they can query for tickets and manage their
customer profile and stations need to authenticate so that they can register the tickets that
they emit.

While the authentication of users can be done with typical method such as a username-
password mechanism, the process to authenticate a station has to be different, since it
does not make sense to hardcode a two-word combination in the code that executes in the
stations’ terminal. With that said, in order to provide a dynamic and secure form of prooving
the stations’ identity, their authentication will be conducted using an algorithm based on
public-key cryptography, which will be detailed in Subsection 4.2.1.

Assuming a user or station can authenticate themselves to the system, the authorization
process also has to be thought of, i.e., the process that allows an entity to continuously
issue requests and be authorized to do so. The first obvious but poor way of doing this is
to authenticate in each and every request that is performed. This method is not adequate

4.2. Implementation 42

because, despite the fact the communication will be protected by HTTPS, it is a security bad
practice to constantly provide an entity’s secret key. So, in order to counter this issue, the
authorization process should be performed by providing a short, renewable proof of identity.
This proof of identity could be used while it is still valid and then renewed by authenticating
again when it is not valid. The validity of this proof of identity has to be though of in
terms of security, since the longer the proof of identity is valid, the more it is prone to be
caught but, on the other hand if it is too short the entity’s username and secret will also be
used multiple times. To address this issue, a technique that has been widely used in the
last few years can be put in place called JSON Web Tokens (JWT) [41]. In Subsection 4.2.1
the authentication and authorization process is thoroughly described, specifically how the
authentication and authorization processes combine to proove the identity of users and
stations.

4.2 implementation

In this section, the actual implementation of the necessary components is thoroughly
explained, by specifically:

• Describing mechanisms and algorithms that are essential to the correct functioning of
the system and the security of it, such as the algorithm used for authenticating and
authorizing stations;

• Defining the structure of the software components and how they abide by standard
good practices in software development such as modularity and separation of concerns;

• Defining how the software components can be dinamically configured, a necessary
feature in such a heterogeneous system;

• Describing how each software component exposes, as a clear interface, the methods it
implements.

The remainder of this section is divided in multiple sections, in which each of them
describes the implementation process for one of the software components, algorithms or
data structures designed and developed. More specifically, this whole section is divided as
follows:

1. Subsection 4.2.1: Authentication & Authorization describes and explains the reasoning
behind the authentication and authorization mechanisms and algorithms;

2. Subsection 4.2.2: Smart Contract defines the specific data structures that comprise the
smart contract as well as the methods that manipulate those data structures;

4.2. Implementation 43

3. Subsection 4.2.3: Data Models defines and describes the data models that serve as
basis for the management of the entities that take part in this system;

4. Subsection 4.2.4: Cloud System APIs defines the code structure used for the APIs as
well as how each one of them was implemented;

5. Subsection 4.2.5: Smart Box Communicator describes how the communicator program
that operates in the smart box works, including its interactions with the load cells and
the cloud system;

6. Subsection 4.2.6: Load Cell Communicator describes how the communicator program
that operates in the load cells works, including its interaction with the smart box.

4.2.1 Authentication & Authorization

Taking into account the characteristics of this process, as defined in Subsection 4.1.5, it can
be concluded that two entities take part in the authentication and authorization process,
users and stations. Additionally, as stated before, at least the authentication process should
be somehow different for each entity, since a user can insert its username and password at
access time but, including a secret key hardcoded in the program that runs in the station’s
smart box is not a secure solution and thus another authentication mechanism has to be
used, such as an algorithm based on public key cryptography as it was mentioned before.

The authentication process for users does not need further definition, since it is basically a
typical username-password authentication mechanism, in which every user has to have an
username and a password stored in the system’s database and each time the authentication
process is initiated, if the username and password that are given match the information
in the database, the user is granted access to the system, only requiring to complete
the authorization process each time the user makes a request. On the other hand, the
authentication process performed by stations needs to be thoroughly described as it is not
a standard nor typical mechanism for authentication. In its essence, the security of the
station’s authentication process is based on the properties provided by typical operations
provided by public key cryptography schemes, namely message encryption and digital
signatures. By using a public key cryptography scheme, it can be ensured that:

• If a message is encrypted with the public key of an entity, then that encrypted message
can only be decrypted by the corresponding private key;

• If a message is digitally signed with an entity’s private key, then it can always be
verified if a certain message comes from that entity by verifying the signature with the
corresponding public key.

4.2. Implementation 44

With this knowledge as basis, the stations’ authentication algorithm has to uphold two
essential properties:

• The identifying information of the entity that is given in the authentication process
has to be present in the system, i.e., the station’s unique identifier has to be known by
the system in order to authenticate said entity;

• The identifying information of the entity that is given in the authentication process
has to correspond exactly to the entity that sends the authentication request, i.e., it has
to be verifiable that the given unique station identifier in fact belongs to the entity that
requests authentication.

So, in order to comply with the aforementioned security properties, an algorithm where
two entities take part was developed. Essentially, a station’s smart box has to perform one
part of the algorithm to request authentication and the Authentication & Management API
verifies that request by applying the second part of the algorithm. Algorithm 1 defines the
algorithm the smart box implements in order to request for authorization tokens to the
Authentication & Management API.

Algorithm 1: Construction of stations’ authentication messages
Input: numberBytes, apiPublicKey and stationPrivateKey
Output: {identifier; message; signature}

1 rawID ← getStationIdenti f ier();
2 identifier← encrypt(rawID, apiPublicKey) ;
3 randomBytes← getRandomBytes(numberBytes) ;
4 message← encrypt(randomBytes, apiPublicKey) ;
5 signature← sign(message, stationPrivateKey) ;
6 return {”identifier”: identifier, ”message”: message, ”signature”: signature} ;

As it can be inferred from the algorithm, it has essentially 6 critical steps:

1. Collect the station’s system identifier from the configuration files;

2. Encrypt that identifier with the public key of the Authentication & Management API;

3. Generate numberBytes random bytes to be encrypted, as to provide some randomness
to the authentication process;

4. Encrypt the random bytes generated with the public key of the Authentication &
Management API and encode them in base64;

5. Sign the encrypted random bytes with the private key of the station and convert them
into base 64;

4.2. Implementation 45

6. Return a JSON object containing the encrypted identifier referred to as identifier, the
base64 encrypted message, referred to as message and the base 64 signature, referred to
as signature.

This algorithm is, of course, one part of the station’s authentication process, specifically
the part where the smart box that resides in the station builds the appropriate message to
request authentication.

Algorithm 2 describes the algorithm that completes the second part of the station’s
authentication process, which is the verification part.

Algorithm 2: Verification of stations’ authentication messages
Input: {identifier; message; signature}, apiPrivateKey
Output: {valid; decryptedIdentifier}

1 stationID← decrypt(identi f ier, apiPrivateKey) ;
2 stationPublicKey← getStationPublicKey(stationID) ;
3 valid← veri f y(message, signature, stationPublicKey) ;
4 return {”valid”: valid, ”decryptedIdentifier”: stationID} ;

From the previous algorithm, it can be clearly seen that it has four critical steps:

1. Decrypt the received encrypted identifier with the Authentication & Management
API’s private key;

2. Collect the public key associated with the previous decrypted identifier;

3. Verify that the received signature is valid in comparison with the received message, by
applying the station’s public key;

4. Return a JSON object containing the validity of the operation, i.e., a simple True or False
boolean, referred to as valid and the station’s identifier, referred to as decryptedIdentifier.

This second algorithm completes the whole process of authenticating stations and verifying
that they in fact belong to the system and are authorized to communicate with the APIs.
Obviously, such an algorithm has to be clearly thought of in terms of how secure it is.
As a first notice, this authentication process assumes that the provided keys are correctly
generated and are protected by public key infrastructure mechanisms, this meaning that the
public key must be certified by a trusted certification authority.

As a validation exercise, one can try to think like the mind of an attacker and try to ”break”
this authentication process. For example:

4.2. Implementation 46

• The attacker might insert a random identifier, with a message and signature still valid
since he can use the API’s public key and, of course, his private key. This would not
work since the verification process directly associates an identifier with the public
key of that station and, if the provided identifier is not recognized, the authentication
process fails;

• The attacker might get a hold of an actual station’s identifier, but he would not possess
the private key that is associated with the station that is recognized by that identifier
and so, in the verification of the signature, the public key of that station would not
match with the attacker’s private key, used to sign the message, resulting in a failure
of the authentication process.

So, as a conclusion to the security of the station’s authentication process, in order to break
it, the attacker would either have to somehow get a hold of a station’s private key and its
identifier, which are considered private data, or he would have to gain access to the system’s
database and insert a station with an identifier known to him and his public key. In the latter
case, the fact is, due to the way how the weighing ticket’s API and the blockchain network
is strucured he would not be able to do much, since he would only be able to manipulate
that fake station’s contract and data. The attacker wouldn’t even be able to see data from
different station’s of the customer it is associated.

The two previous mechanisms refer to the authentication process of an entity, but as was
stated before, this authentication process should not be performed an immense number of
times since it invariably requires the transport of secret credentials that belong to the entities.
So, in order to continuously provide authorization to authenticated entities, a mechanism
called JWT was used, which essentially allows the Authentication & Management API to,
upon authentication, provide authorization tokens which contain the necessary information
for the entity to use the APIs without providing secret credentials.

As a reinforcement measure, this authorization mechanism did, not only provide what is
called as an access token, but also a refresh token. The access token is, as its name suggest, the
token used by entities so that they can be authorized to perform each request. The refresh
token is a token with a longer Time To Live (TTL) than the access token, which essentially,
allows the renewal of the entities access token without having to perform the authentication
process again.

Evidently, a mechanism, such as this one which allows continuous authorization to an
entity, must be well secured to basically ensure two things: i) The authorization process is
protected against stolen tokens; And ii) the tokens that are created must be issued by the
Authentication & Management API.

The whole of the authorization process is essentially comprised by three algorithms:

• Creating the tokens to return to the entity, if the authentication process was successful;

4.2. Implementation 47

• Verifying that a received token is valid;

• Creating a new access token, on a refresh request.

Algorithm 3 demonstrates the pseudo-code for the algorithm that actually creates and
returns the authorization tokens, upon successful authentication. The first two lines of the
algorithm just collect the options for the digital signature of each token, typically holding,
at least, the algorithm to use and the TTL for that token. Currently, by default access tokens
have a TTL of 15 minutes and refresh tokens have a TTL of 1 day. Both these values are
configurable by the deployer of the Authentication & Management API. The third line of
the algorithm creates the actual object that will be signed, holding the payload, i.e., the
relevant information to hold about the authenticated entity so that it can later use the APIs,
such as its ID which is relevant to identify when performing a request. In the creation of
this payload, the algorithm shows a field called userID, that field can have that property or
stationID, depending on the type of entity that has previously authenticated. The remaining
of the algorithm simply calls the function given by the JWT library [42] used two times,
one for the access token and another for the refresh token. This function creates the token
structure and signs it with the Authentication & Management API’s private key with the
given options, returning a base-64 encoded token.

Algorithm 3: Creating the authorization tokens
Input: userID OR stationID, customerID, apiPrivateKey
Output: {accessToken; refreshToken }

1 accessTokenOptions← getAccessOptions() ;
2 re f reshTokenOptions← getRe f reshOptions() ;
3 tokenPayload← {”userID” : userID, ”customerID” : customerID} ;
4 accessToken← jwtSign(tokenPayload, apiPrivateKey, accessTokenOptions) ;
5 refreshToken← jwtSign(tokenPayload, apiPrivateKey, re f reshTokenOptions) ;
6 return {”accessToken”: accessToken, ”refreshToken”: refreshToken} ;

After the creation of the tokens, the entity that requested them must be allowed to use
them by, fundamentally:

• Providing a way of verifying its acess token which comes embedded in the request
header;

• Providing a way of refreshing its access token, by supplying its refresh token.

Algorithm 4 overviews the process of validating a token, whether that token is an access
token or a refresh token. Quite simply, this algorithm simply calls the verification function
of the JWT library [42] with the provided arguments and, then, if an error occurs then it
returns an object stating that the token is not valid and the error that occurred, otherwise it
returns an object stating the token is valid as well as the payload it holds.

4.2. Implementation 48

Algorithm 4: Validating an access or refresh token
Input: token, apiPublicKey, tokenOptions
Output: {valid; payload}

1 error, payload← jwtVeri f y(token, apiPublicKey, tokenOptions) ;
2 if error NOT NULL then
3 return {”valid”: False, ”payload”: error.message} ;
4 else
5 return {”valid”: True, ”payload”: payload } ;
6 end

Algorithm 5 declares the pseudo-code for the algorithm that is executed when a request to
refresh a token is made. In the first two lines, the algorithm collects the options that are used
for access tokens and refresh tokens. In the third line, it verifies the refresh token received,
using Algorithm 4. Finally, if the property valid is True, then a new access token is created
by calling the token signing function from the JWT library [42] and then it is returned. If
the property valid is not True, then the algorithm returns an unauthorized response to the
entity, providing the refresh token that was verified, as well as the error that occurred, which
is present in payload.

Algorithm 5: Refreshing an access token
Input: refreshToken, apiPrivateKey, apiPublicKey
Output: {newAccessToken}

1 accessTokenOptions← getAccessOptions() ;
2 re f reshTokenOptions← getRe f reshOptions() ;
3 valid, payload← veri f yJWT(re f reshToken, apiPublicKey, re f reshTokenOptions) ;
4 if valid then
5 newAccessToken← jwtSign(payload, apiPrivateKey, accessTokenOptions) ;
6 return {”token”: newAccessToken} ;
7 else
8 provideUnauthorizedResponse(re f reshToken, payload) ;
9 end

The description of the previous algorithms wrap up the explanation on the development
of the authentication & authorization process, since all algorithms and processes that take
part in it were explained. To summarize, a user authenticates with a username and password
mechanism while a station authenticates with a public-key cryptography algorithm created
for this effect. If the authentication is successful, they are provided with an access token,
which they can use to authorize the requests made to the APIs, and a refresh token, which
they can use to renew their expired access token. Both the tokens have a TTL and so, when

4.2. Implementation 49

the access token’s TTL expires, it must be renewed and, when the refresh token’s TTL expires,
the authentication process must be conducted again.

4.2.2 Smart Contract

In this section, the actual implementation of the smart contract is discussed, specifically, the
data structures it manipulates in order to correctly hold the state of the application, as well
as the methods that can manipulate it, including the reasoning for its implementation and
the inputs and outputs of that method.

The first important point to describe is, without a doubt, the data structures that are
present in the smart contract, due to the fact that those data structures comprise the state of
the ledger, evolving over time and that are kept immutably. There are three essential data
structures defined in the contract:

• The Ticket which holds all the properties of a weighing ticket as defined in Figure 8.
It is also worth remembering that the smart contract does not work with floating point
numbers and thus, all floats are represented as integers in it. This structure is essential
for the registration of a new ticket as well as the query of existing tickets, because it
allows storing tickets in a well-defined and always equal format;

• The clientTickets which is a mapping of string to an array of Tickets, where each
string is a client’s identifier. This structure allows a direct association between a client
and the tickets that the client has emitted;

• The idsPerClient which is a mapping of string to an array of strings. The key is the
client’s identifier and the value is the array of ticket identifiers emitted by that client
for a simpler access. This structure allows a direct association between a client and the
ticket identifiers of the tickets the client has emitted, essential to provide a simple and
low-processing way of obtaining all those identifiers.

To complement the definition of these 3 data structures, several methods were concep-
tualized and implemented. The development of these methods followed the requirements
defined in Subsection 4.1.3. The actual definition of them is described as follows:

• registerTicket. A method that, as the name suggests, registers a new ticket in the
ledger, based on a received set of parameters. The parameters received by this method
are:

– clientID. A string representing the identifier of the client that possesses the station
that emitted this ticket;

– ticketID. A string representing a unique ticket identifier, given by the Weighing
Tickets API;

4.2. Implementation 50

– terminalSerialNumber. A string representing the smart box’s serial number;

– terminalRestartValue. A string representing the power state of the smart box
that emitted the ticket;

– timestamp. A long value representing the UNIX timestamp at which the ticket
was emitted;

– scaleSerialNumber. A string representing the serial number of the weighbridge
where the weighing took place;

– scaleStatus. A string representing the status of the scale at the time the weighing
was taken;

– scaleGross. A long value representing the gross weight value measured at the
weighbridge;

– scaleNet. A long value representing the net weight value measured at the
weighbridge;

– cellsArray. An array of 8 positions, where each position holds an object with two
properties: i) cellSerialNumber. A string representing the serial number of that
load cell; And ii) cellWeight. A long value representing the weight measured by
that load cell.

This method returns no value, it only receives these parameters, builds a Ticket
structure, associates that Ticket with the identifier of the client and also the ticket’s
identifier with the identifier of the client, saving all the data that was built in the ledger.

• getTicketIDS. A method that, given a client identifier, extracts all the ticket identifiers
related to that client. The parameter provided to this method is:

– clientID. A string representing the identifier of the client that the requester wishes
to extract the ticket identifiers from.

This method returns an array of strings, where each string is a ticket identifier. Es-
sentially, it just returns the value of the idsPerClient mapping where the key is the
client’s identifier.

• getTicket. A method that collects a specific ticket from the ledger. The parameters it
receives are:

– clientID. A string representing the identifier of the client that should hold the
ticket the requester is looking for;

– ticketID. A string representing the identifier of the ticket the requester is looking
for.

This method either returns a Ticket if both the identifier of the client and the ticket
match or nothing otherwise.

4.2. Implementation 51

• getTickets. A method that, given a client identifier, collects all the tickets associated
with that client. The parameter this method receives is:

– clientID. A string representing the identifier of the client from which the requester
wishes to look for the tickets.

This method returns an array of Tickets, which are associated with the given client.

• getTicketsByString. A method that filters a given client’s tickets, based on an also
given criteria, which has to be an equality for a string. The parameters it receives are:

– clientID. A string representing the identifier of the client from which the requester
wishes to filter tickets;

– variable. A string representing the name of the variable to filter the tickets by. This
value can be one of terminalSerialNumber, terminalRestartValue, scaleSerialNumber
or scaleStatus;

– value. A string representing the value of the variable by which the tickets should
be filtered.

This method returns an array of Tickets, that match the given string equality criteria.

• getTicketsByInteger. A method that filters a given client’s tickets, based on an also
given criteria, which has to be a comparison of integers. The parameters it receives are:

– clientID. A string representing the identifier of the client from which the requester
wishes to filter tickets;

– variable. A string representing the name of the variable to filter the tickets by.
This value can be one of weight or timestamp;

– mode. A string representing the mode in which the comparison has to be made.
Only accepts either above to search for tickets with a total weight equal or above
the given weight, or below to search for tickets with a total weight below the given
weight;

– integer. A long value representing the value to compare the tickets’ weight to.

This method returns an array of Tickets that match the given integer comparison
criteria.

• getTicketsByInterval. A method that filters a given client’s tickets, based on a given
criteria, which has to be an interval comparison of integers, i.e., finding integers
between two numbers. The parameters it receives are:

– clientID. A string representing the identifier of the client from which the requester
wishes to filter tickets;

4.2. Implementation 52

– variable. A string representing the name of the variable to filter the tickets. This
value can be one of weight or timestamp;

– lowerLimit. A long value representing the lower limit in the interval search
(inclusive);

– upperLimit. A long value representing the upper limit in the interval search
(exclusive).

This method returns an array of Tickets that match the given integer interval search
criteria.

• deleteTicket. A method that deletes a ticket from the ledger. This method is only
available to the network administrator. The parameters this method receives are:

– clientID. A string representing the identifier of the client where the requester
wishes to look for the ticket to delete;

– ticketID. A string representing the identifier of the ticket that should be deleted.

This method returns no value. It simply removes the Ticket that maches the criteria
from the ledger.

The previously described data structures and methods comprise all the necessary logic
in the smart contract. While the implementation of those data structures is pretty straight-
forward since they only provide the basis for easily registering and querying tickets, the
implementation of the different methods has some reasoning behind, especially the ones
that implement filters. In total, the smart contract implements four filtering methods: i) by
the ticket’s identifier; ii) By a string value of a variable present in tickets; iii) By an integer
value of a variable present in tickets; And iv) By an interval of integers of a variable present
in tickets. The implementation of these four filters has one main goal, to provide a way
of diminishing the traffic between the blockchain network and the weighing tickets API.
This is a good measure considering that, this way, the extraction of tickets does not have
to be complete, i.e., it does not have to extract all the tickets from a client in every request.
In summary, at least this way, one filter can directly be applied in the smart contract to
diminish the data volume that is returned from the network to the API and then, in the API,
the remaining filters can be applied.

4.2.3 Data Models

With the definition of the smart contract in the previous section, the basis for the well
functioning of the blockchain network is established and, in that note, the focus needs
to turn to the implementation of the APIs that support and abstract the smart contract

4.2. Implementation 53

application. The development of the APIs has to begin, obviously, by the foundations of
what is going to be the system which, naturally, relies in the data models that support it.

So, this section aims to describe the fundamental data models that support the system
of APIs. The data models that are going to exist have to, somehow, mimic the entities that
are going to take part in the process the system intends to facilitate. Accordingly, prior to
describing the implementation of the data models, it is a best practice to describe the process
so that the entities that take part in it can be clearly highlighted.

Essentially, the process and entities can be described as follows:

• Customers buy load cells and weighing bridges from Bilanciai and Cachapuz, to operate
in their stations;

• Those stations emit the weighing tickets that are the primary object of this dissertation;

• With the weighing tickets stored in the ledger, customers’ have to be able to query
those tickets via, for example, users that are associated with that customer.

With this description of the process, there are three entities that clearly standout; i)
Customer which is the main entity in the system, that possesses stations and has users
associated with it; ii) Station which is the entity that performs weighings and sends tickets.
It is always associated with a customer; And iii) User which is an entity associated with a
customer that has specific details, such as authentication credentials.

Taking into account that, as said in Subsection 3.1.3, the Weighing Tickets API and the
Authentication & Management API are developed using NodeJS [39] and that the chosen
technology for the database is MongoDB [43], the implementation of the data models will
follow a ODM approach. An ODM is basically an abstraction that allows one to work with
typical objects of the programming language, in this case of Javascript objects, while resting
assured the changes made on that object are translated to the actual document stored in the
database, which clearly facilitates and makes the development and maintenance process
clear.

The definition of the ODM objects was done using a Schema object provided by mongoose
[44], a library that provides an interface for working with MongoDB in Javascript. These
Schema objects are essentially Javascript objects with special attributes that directly link the
object’s properties to the document in the database. This way, for example, when the object
is saved, the associated document is also saved in the database.

Bearing this in mind and knowing, as said before, that three entities take part in the
system, three ODMs were implemented, one for the customer, another for the station and
finally one for the user.

Each and every one of these ODMs essentially holds three types of properties that define
them:

4.2. Implementation 54

• Descriptive. Properties that define the entity’s real world characteristics;

• Blockchain. Properties that define the entity as a participant in the blockchain network;

• System. Properties that define the entity as a participant in the system being built and
that optimize the management processes of the APIs.

Customer ODM

Table 3 illustrates and describes all the properties that define a customer in the context
of this dissertation. Although most of the properties that are showed in the table are
pretty much self-explanatory, there are three of them that require a bit more of insight, the
blockchain-related properties.

These properties are what allow the association of what is a customer in the cloud system
and what is a customer in the blockchain network. customerAdminAddress holds a unique
network address that directly associates to that customer, which allows the association
of weighing tickets to this specific entity. customerAdminNode identifies the node that
is associated with the customer, i.e., which is configured with the customer’s credentials.
customerAdminTesseraPublicKey holds the public key of the privacy manager (Tessera) of
this customer’s node, which allows the establishment of private transactions to this node in
the APIs.

The three aforementioned properties are what allows the APIs, after successful authentica-
tion, to perform requests to the smart contract in behalf of the customer.

4.2. Implementation 55

Name Description Data Type Required

name The name of the customer String
location The location of the customer String x

description
An additional description

of the customer
String x

D
es

cr
ip

ti
ve

companyID
A company identifier in the

panorama of the Bilanciai group
String

customerAdmin-
Address

The customer’s administrator
address in the blockchain network

String

customerAdmin-
Node

The identification of the
customer’s administrator node

String

B
lo

ck
ch

ai
n

customerAdmin-
TesseraPublicKey

The public key of the customer
administrator node’s privacy manager

String

active
flag indicating if the customer is

blocked or not in the system
Boolean

deleted
A flag indicating if the customer

is ”deleted” from the system.
Boolean

createdAt
A timestamp indicating at which

UNIX time the customer was created.
LongSy

st
em

updatedAt
The UNIX time of the last

update on the information.
Long

Table 3: Description of the customer’s ODM properties

Station ODM

Table 4 describes all the properties that define a station in the context of this dissertation.
As said before, most of the properties are self-explanatory and, by now, the node, address
and tesseraPublicKey properties are also understood since they share the same purpose as
they did in the customer’s ODM, but this time for the stations. Despite this fact, this ODM
introduces a new blockchain-related property, the contractAddress. This property holds a
unique identifier pointing to the smart contract of this station, which holds all the state (of
weighing tickets) related to it.

Additionally, there is also a new system-related property, customer, which essentially
permits the direct association of a station and the customer it belongs to.

4.2. Implementation 56

Name Description Data Type Required

name The name of the station String
latitude The latitude of the station String x

longitude The longitude of the station String x

D
es

cr
ip

ti
ve

description
An additional description

about the station
String x

contractAddress The address of the station’s contract String
address The station’s unique blockchain address String

node The identification of the station’s node String

B
lo

ck
ch

ai
n

tesseraPublicKey
The public key of the

station’s node’s privacy manager
String

customer
The database identifier of the

station’s customer
String

active
A flag indicating if the station is

blocked or not in the system
Boolean

deleted
A flag indicating if the station
is ”deleted” from the system.

Boolean

createdAt
A timestamp indicating at which

UNIX time the station was created.
Long

Sy
st

em

updatedAt
The UNIX time of the last

update on the information.
Long

Table 4: Description of the station’s ODM properties

User ODM

Table 5 describes the properties that identify an user in the context of this dissertation. The
user’s ODM is, in fact, the most dynamic ODM of the three listed because some properties
only exist if some condition is met and other properties can be considered as belonging to
two types.

As a first note, the blockchain-related properties of this ODM only exist if the role of
the user is that of admin. If a user is a customer, then he uses the customer’s blockchain
properties and does not have ones of his own. On the other hand, if an user is an admin,
the API enforces the existence of these properties for the administrator user to be able to
connect to the blockchain network.

In a second note, although the email and password are listed as descriptive properties,
which in fact they are, since they allow the user to uniquely identify itself, they can be also
considered system-related properties, since these are the properties that allow the verification
of the validity of an authentication process.

Finally, the system-related properties of an user contain three properties that are different
from what has been shown so far:

4.2. Implementation 57

• role. The role of this user in the cloud system. The user can be an administrator and,
thus, not linked to any customer or a customer’s user.

• first pass. A boolean flag that indicates if it is the first password of this user. Since
passwords are assigned by another user on registration, the newly created user cannot
use the APIs until its password is changed.

• password changed. A boolean flag that indicates if the user has changed its password
since the last authentication process it performed. This allows the APIs to revoke the
user’s old tokens, forcing the user to authenticate again, enhancing security.

Name Description Data Type Required

email
The email that uniquely

identifies the user
String

D
es

cr
ip

ti
ve

password
The hash of the user’s

secret password
String

address
The administrator user’s unique

blockchain address
String x

node
The identification of the

administrator user’s node
String x

B
lo

ck
ch

ai
n

tesseraPublicKey
The public key of the administrator

user’s node’s privacy manager
String x

customer
The database identifier of the

user’s customer
String

role
The role of the user in the system.

admin or customer
String

first pass
A flag indicating if the user’s

password is still the first
Boolean

password changed
A flag indicating if the user
has changed its password
since last authentication

Boolean

active
A flag indicating if the user is
blocked or not in the system

Boolean

deleted
A flag indicating if the user

is ”deleted” from the system.
Boolean

createdAt
A timestamp indicating at which
UNIX time the user was created.

Long

Sy
st

em

updatedAt
The UNIX time of the last

update on the information.
Long

Table 5: Description of the user’s ODM properties

4.2. Implementation 58

The three ODMs defined and described in Table 3, Table 4 and Table 5 were carefully
implemented this way, since they are the fundamental basis of the well functioning of the
cloud system. The way the ODMs are built, in a simple and concise manner, immensely
facilitates integration with blockchain technology and the handling of entities in the cloud
system.

4.2.4 Cloud System APIs

With the conclusion of the definition and implementation of the data models in the previous
section, the basis is set for the development of the cloud system’s support APIs, which
handle everything from ticket querying and manipulation, to entity management and the
authentication & authorization of said entities.

Although the weighing tickets API and the authentication & management API serve
completely different purposes, their implementation, i.e., the code structure and the support
mechanisms for the logic of each API are built with the same principles and objectives, which
is why it is more advantageous to describe how the APIs are structured and designed, prior
specifically describing their implementation and how they allow, through their interface, the
correct application of the logic.

The development of the APIs took three essential principles into account:

1. Separation of concerns. To make sure that each part of the API is independent and de-
signed such that, for example, the logic does not depend on the actual implementation
of the data layer or vice-versa;

2. High flexibility and configurability. Ensure that the program is highly dynamic, i.e.,
where necessary, the behavior can be altered by simply introducing a new configuration
set of parameters;

3. Consistency. The API design has to be consistent. Equivalent routes for different
entities must perform the same functionality for a different entity.

Recognizing these principles as the basis for the implementation of the APIs, the first one
to address is in fact, the separation of concerns, which can be granted immediately when
designing the strategy for the implementation of the APIs. As said before, both of them will
be implemented with roughly the same code structure, but with a different logic of course
and, in order to comply with the first principle, the code structure of the APIs is overviewed
in Table 6. As can be seen in this table, there are six main so-called modules in each of the
APIs, where each one of them has its self-contained and independent purpose.

• Routes is the module that exposes the paths that can be called by external applications
in a clear interface. Additionally, it is in this module, through the use of middleware

4.2. Implementation 59

functions, that the verification of valid authorization of the requesting external applica-
tion occurs, as well as the validation of that specific request’s particularities, such as
required parameters;

• Controllers is the module that implements the logic of each of the paths exposed by
routes. There is an exact one-to-one mapping between Routes and Controllers, i.e.,
for every path defined in Routes there is only one method called by it in Controllers
and, for every method in Controllers, there is always one and only path that calls it,
defined in Routes;

• Services is the module that exposes methods to work over the data models. This
module is implemented so that the Controllers can completely abstract the utilization
of the underlying data models, without having to worry about its structure, since the
Services will take care of that part for them. There is a one-to-one mapping between a
Service and a Model, i.e., each Model is abstracted by a Service and a Service only
abstracts a Model. Additionally, a single Controller may use multiple Services;

• Models is the module responsible for implementing the ODMs for each of the data
models;

• Helpers is the module that provides numerous resources or utilitaries for the proper
functioning of the API. Namely, it provides routing and fields validation, logging
capabilities to the API, error handling at API level, utilitaries to connect the API to the
database and to other applications, etc.;

• Config is a ”providing” module, i.e., its single purpose is to allow a dynamic con-
figuration of the application. It has the capability to use a default configuration that
certainly works but, it can also read a completely new configuration object from the
environment. The information provided by this module is used all around the API,
with exception to the Models module. The semantics of the configuration object will
be discussed in the appropriate section for each of the APIs.

4.2. Implementation 60

Module Purpose Used By

Routes
Identification of the available operations

over the API’s resources
External use

Controllers
Implementation of the operations

defined by routes
Routes

Services
Providing simpler and concise methods to

access and manipulate data models
Controllers and Helpers

Models
Define and link API data objects

to database documents
Services

Helpers
To provide route validation,

logging, error handling
and additional API management operations

Routes, Controllers and Services

Config
To allow a dynamic and flexible

configuration for the API
Routes, Controllers,

Services and Helpers

Table 6: Module structure for the implementation of the APIs.

While having thoroughly described each of the common modules that both of the APIs
in the cloud system implement, it can also help to understand the relations between these
modules by seeing a bigger picture of the communication between them.

Figure 9 illustrates how the different common modules of the APIs ”talk to each other”,
where the pointing arrow means ”uses”. As it can be seen in this figure, the separation
of concerns for the modules is always present. It is a fact that both Config and Helpers
are widely used, which is expected, since they provide the necessary application-wide
configurations and utilitaries & validation, respectively. Nonetheless, removing Config and
Helpers from the equation, since they have such an application-wide context, it can be
clearly seen that: i) Routes can only communicate with Controllers; ii) Controllers can
only communicate with Services and receive requests from Routes; iii) Services can only
communicate with Models and receive requests from Controllers; And iv) Models only
receive requests from Services.

4.2. Implementation 61

Figure 9: Relations between the APIs different modules

Essentially, the way how the APIs are implemented permits the assertion that each module
is independent and is completely abstracted in terms of the data and logic layers, since:
i) Routes never knows how data is accessed and it never needs to; ii) Controllers only
knows that, by calling the Services module, it will get the necessary functionality over the
data models; And iii) Services simply has to implement ways of handling the specific data
models and provide an easy, structured way of accessing that functionality.

Finally, from Figure 9, it can also be seen that despite the fact that Routes and Controllers
only ”use” the Helpers module, the Services and Helpers module both use each other.
This is mainly due to the fact that Services need to be able to raise application-specific
errors when necessary, which is handled by the Helpers module and, on the other hand, the
Helpers module needs to use the Services to validate the authorization of entities.

In a final note, on an aspect that also involves both the APIs, it must be mentioned that
the data that is stored in the database for each of the entities that is related to blockchain
properties as well as unique entity identifiers (e.g. the station’s public key) is encrypted
at rest, i.e., they are not stored in plaintext in the database. Taking into account the APIs’
interaction with the database, i.e., the weighing tickets API only has read-only access and

4.2. Implementation 62

the authentication & management API has read-write access, the application of this data
encryption mechanism can be described as follows:

• Whenever the authentication & management API registers or updates blockchain-
related or entity-identifying data in the database, the data is encrypted and authenti-
cated prior insertion, i.e., the string inserted in the database holds both the encrypted
data as well as an authentication code to verify the data was not changed at rest;

• Whenever either of the APIs need to query blockchain-related or entity-identifying
data, they have to extract the string that is in the database, authenticate the encrypted
data with the authentication code and only then decrypt the data and return it to
whatever method needs to use it.

This mechanism was applied since it introduces some additional protection in entity proper-
ties that somehow define or identify them and, this way, only the APIs have the know-how
on how to actually decrypt and see the contents of that data.

The two next subsections dive deeper into each of the APIs to explain some particularities
of each one’s implementation, specifically, how each of them can be dinamically configured
and what functionality they expose through their routes. Additionally, due to the way how
some information is presented, especially in terms of the responses given by the paths, a
notation was used so that the information can be captured in a more simple and concise
manner.

The notation to be used in those two subsections is defined in Table 7.

Notation Description

K and Y
This means that an object is returned where the keys are K and Y,

which usually also give an insight into what that value is
[K] This means that the return value is an array of values of type K

–
This means that there is no return value in the message

(although an HTTP code is always returned)

Table 7: Definition of the notation for the API responses

Weighing Tickets API

The weighing tickets API is, as mentioned before, the application responsible for managing
the lifecycle of a weighing ticket, since its creation/registration to its querying. In order to be
able to dynamically adjust the application by simply issuing new configuration parameters,
instead of having to change them in the application code itself, the weighing tickets API
possesses a mechanism that reads certain configuration parameters from the environment
variables or assumes values by default. With the default parameters, the application is

4.2. Implementation 63

always ready to run, but it is highly insecure to do so, especially due to cryptographic key
pairs that should be generated pre-launch only instead of using the given ones.

The configuration of this application can be done in 6 different areas:

• Server. Settings and parameters that allow the user launching the application to
configure aspects about the server hosting the API such as the address or the HTTPS
keys;

• JWT. Settings related to the JWT mechanism, such as keys and the tokens’ TTL;

• Database. Settings that permit connection to the database as a read-only user;

• App. Generic application settings;

• Logging. Parameters that tune and customize the way how the logging mechanism
works in the API;

• Smart Contract. Generic information on the smart contract, required for when deploy-
ing contracts.

Table 8 describes each of the parameters available for each area, providing the parameter’s
actual name in the API, what it is and how it can be configured through environment
variables.

4.2. Implementation 64

Name Description Environment Variable

host
The address of the server that
hosts the weighing tickets API

HOST

port The port where the server listens PORT

serverPublicKey
The public key certificate of the

server for HTTPS use
IDENTITY PUBLIC KEY

serverPrivateKey
The private key of the
server for HTTPS use

IDENTITY PRIVATE KEYSe
rv

er

caCertificate The public key certificate of the CA CA CERTIFICATE

algorithm
The algorithm to use for

the JWT mechanism
JWT ALGORITHM

tokenTTL The time to live of the access tokens TOKEN TTL
refreshTokenTTL The time to live of the refresh tokens REFRESH TOKEN TTL

JW
T

authPublicKey The public key to use for jwt verification AUTH PUBLIC KEY

name The name of the database DB NAME

host
The host where the

database server is hosted
DB HOST

port
The port where the

database server listens
DB PORT

username
The username for the read-only

user of the database
DB USER

password
The password for the read-only

user of the database
DB PASSD

at
ab

as
e

authenticationSource
The authentication database

to use on connect
DB AUTH SOURCE

conversionFactor
The conversion factor of floats and integers

to/from the blockchain network
CONVERSION FACTOR

validGroupKeys The keys by which tickets can be grouped VALID GROUP KEYS
validDateFormats The available date formats for conversion VALID DATE FORMATS

A
pp

appPSK The pre-shared key for database encryption API PSK

accessLogFilename The filename to store API access logs ACCESS LOG FILENAME
accessLogPath The directory to store access logs files ACCESS LOG PATH

accessLogFormat The format to use when printing the logs ACCESS LOG FORMAT

apiLogFilename
The filename to store

application-specific logs
API LOG FILENAMELo

gg
in

g

apiLogPath The directory to store API logs API LOG PATH

name
The name of the
smart contract

CONTRACT NAME

abiPath
The directory where the smart

contract’s interface is stored
ABI PATH

Sm
ar

t
C

on
tr

ac
t

abiFilename
The name of the file that holds

the interface of the smart contract
ABI FILENAME

Table 8: Configurable parameters of the Weighing Tickets API

4.2. Implementation 65

Prior talking about the REST interface that is exposed by this application, there is another
subject that differs deeply between this API and the authentication & management API,
which is the need to abstract certain data types when entering / leaving the blockchain
network. As it was previously discussed in Subsection 4.1.4, until now, no efficient solution
has been implemented in Solidity smart contracts and the EVM that allow the storing and
manipulation of floats, which is why they have to be converted into an integer format prior
being registrated in the ledger and then converted back into their float format when being
queryied from the ledger. Additionally, there has to be a string abstraction mechanism also,
although this particular problem is almost solved by the Ethereum community and so, soon,
this won’t be a problem anymore but, for now, it still is. Therefore, two simple algorithms
are implemented to handle data abstraction, one to be run prior inserting data into the
ledger and one to be run after querying data from the ledger.

Algorithm 6 illustrates the algorithm used to abstract a weighing ticket prior its registration
in the ledger. While observing the algorithm, it can clearly be seen that it is a simple one: i)
Extracts the conversion factor assigned in the app configurations; And ii) for each known
float variable of the weighing ticket, convert it to an int.

Algorithm 6: Ticket’s float to integer conversion prior ledger insertion
Input: JSONTicket, config
Output: ledgerTicket

1 conversionFactor ← con f ig.app.conversionFactor ;
2 ledgerTicket← JSONTicket ;
3 foreach var ∈ Q ∈ ledgerTicket do
4 ledgerTicket.var ←

int(round(ledgerTicket.var ∗ conversionFactor)/conversionFactor) ;
5 end
6 return ledgerTicket;

Algorithm 7 illustrates the algorithm used to reconvert a weighing ticket back to Javascript
Object Notation (JSON) format, after it has been collected from the ledger. This one is also a
simple algorithm: i) Extract the conversion factor from the app configurations; ii) For each
known float variable of the weighing ticket, convert it from int to its original float value;
And, finally iii) for each string variable, if its format is that of an hex string, convert it to a
regular (e.g. utf8) string, else do nothing.

4.2. Implementation 66

Algorithm 7: Ticket’s integer to float and hex to string conversion on ledger query
Input: ledgerTicket, config
Output: JSONticket

1 conversionFactor ← con f ig.app.conversionFactor ;
2 JSONTicket← ledgerTicket ;
3 foreach var ∈ Q ∈ JSONTicket do
4 JSONTicket.var ← JSONTicket/conversionFactor ;
5 end
6 foreach stringVar ∈ JSONTicket do
7 if isHexString(JSONTicket.stringVar) then
8 JSONTicket.stringVar ← hexToRegularString(JSONTicket.stringVar) ;
9 end

10 end
11 return JSONTicket

With the description of the tickets’ abstraction process that runs on the API, there now
remains only some definitions to be made about this application, namely about its interface,
i.e., which paths it exposes to manage the tickets resource, what are each paths’ inputs and
outputs and, of course, the paths’ functionality, which are all the necessary attributes to
completely understand the implementation of each path.

Table 9 shows and describes all the paths that are implemented by specifying its method,
how it can be accessed, what type of parameters it receives and what response body, if any,
is given. The responses for each path are given in the notation defined in Table 7. In addition
to the information present in Table 9, it is also worth noting that all the paths defined for
this API are permissioned, i.e., only an entity that possesses a valid access token is allowed
to successfully call one of the paths. Additionally, each path is only executed in the context
of a customer (whether the authenticated entity is an user or a station) and so, a customer is
not able, in any case, to query tickets from other customers.

The implemented mechanism of smart contract per station ensures that even at the
blockchain network level, a customer cannot access data from another customer. In fact, not
even stations from the same customer can do so, only the customer administrator node can
see all its customer data.

4.2. Implementation 67

Weighing Tickets API Overview

-
-

Method Path Description
Parameters

Response
Query Path Body

POST /tickets
Register a new ticket

in the ledger
x x

ticketID and
transactionHash

GET /tickets
Query all the tickets

from customer
x x [Ticket]

GET /tickets/:ticket id
Query for a

specific ticket
x x TicketTi

ck
et

s

DELETE /tickets/:ticket id
Delete a ticket

from the system
x x –

Table 9: Overview of the functionality exposed by the Weighing Tickets API

In order to better describe each of the paths, specifically the parameters that they receive
as input, Table 10 was built. This table shows, for each of the paths defined in Table 9,
the parameters that that path receives as input including the name, the data type of the
parameter and if it is required or not. It must also be kept in mind that the type of parameter
can be looked up in Table 9 by simply looking up the specific method and checking which
type of parameter it receives (query, Uniform Resource Locator (URL) path or body). As a
way of providing some more insight into each of the possible requests, some additional
information is presented as follows:

• POST /tickets. This path can only be called by an authenticated station. The parameters
it receives are exactly the ones that can be found in the weighing ticket composition,
with the same meaning and the same data type;

• GET /tickets. This path can only be called by an authenticated customer. It may
receive a variable number of parameters from 0 to the maximum number since it
basically implements filters over the tickets. Although many of these parameters
are self-explainable since they are also associated with the parameter that resides
in the weighing ticket composition, there are some of them which deserve further
explanation:

– count is a boolean. If true, then the API will return, alongside the array of
weighing tickets, a count of how many tickets were returned;

– stations is a coumpound string, i.e., a string that can hold multiple comma-
separated values. Each value is a station identifier;

– group by holds the string that states by which variable the tickets shall be grouped.
If it is not present, an array of weighing tickets is returned. If it is present, an
object is returned, where the keys are the distinct values of the variable stated in
group by;

4.2. Implementation 68

– date type is a string that allows the customization of how dates are returned in
the tickets, either in integer format (UNIX timestamp) or full date formats.

• GET /tickets/:ticket id. This path can only be called by an authenticated administrator or
customer. It only needs the ticket id parameter written in the URL path;

• DELETE /tickets/:ticket id. This path can only be called by an authenticated administra-
tor. It only needs the ticket id parameter written in the URL path.

Weighing Tickets API Parameter Description

-
-

Method Path
Parameters

Name Data Type Required

POST /tickets

scaleSerialNumber
timestamp

terminalSerialNumber
terminalRestartValue

scaleStatus
scaleGross
scaleNet

cells

string
long

string
string
string
float
float
array

x

GET /tickets

count
customer
stations

from date
until date

from weight
until weight

scale serial number
terminal serial number

scale status
terminal restart value

group by
date type

boolean
string
string

long OR date
long OR date

float
float

string
string
string
string
string
string

x
x
x
x
x
x
x
x
x
x
x
x
x

GET /tickets/:ticket id ticket id string

Ti
ck

et
s

DELETE /tickets/:ticket id ticket id string

Table 10: Parameter description for the tickets route

The weighing tickets API overview and parameter description concludes the description
and explanation of the implementation process of this API since the relevant points to
understand its implementation have been covered: i) Its code structure; ii) The API’s specific
configuration mechanism; iii) The way how it abstracts some complexity in handling data

4.2. Implementation 69

introduced by the blockchain platform; And finally, iv) Its interface, i.e., which paths it
exposes for utilization, as well as the inputs those paths receive and the responses they give.

Authentication & Management API

The Authentication & Management API is the application responsible for managing the
entities that participate in this system, as well as providing means of authentication and
authorization so that those entities can, in fact, use the APIs.

Similarly to the weighing tickets API, this application can also be dynamically configured
through environment variables. These configurations are mostly separated in five different
areas:

• Server. Settings and parameters that allow the user launching the application to
configure aspects about the server hosting the API such as the address or the HTTPS
keys;

• JWT. Settings related to the JWT mechanism, such as the keys for access tokens, refresh
tokens and their TTL;

• Database. Settings that permit connection to the database as a read-write user;

• App. Generic application settings;

• Logging. Parameters that tune and customize the way how the logging mechanism
works in the API.

Table 11 describes each of the possible configurations for each area, providing the pa-
rameter’s name in the API, its purpose and how it can be configured through environment
variables.

4.2. Implementation 70

Name Description Environment Variable

host
The address of the server

that hosts the
authentication & management API

HOST

port The port where the server listens PORT

serverPublicKey
The public key of the
server for HTTPS use

IDENTITY PUBLIC KEY

serverPrivateKey
The private key of the
server for HTTPS use

IDENTITY PRIVATE KEY

Se
rv

er

caCertificate The public key certificate of the CA CA CERTIFICATE

algorithm
The algorithm to use for

the JWT mechanism
JWT ALGORITHM

tokenTTL The time to live of the access tokens TOKEN TTL
refreshTokenTTL The time to live of the refresh tokens REFRESH TOKEN TTL

authPublicKey
The public key to use

for access token verification
AUTH PUBLIC KEY

authPrivateKey
The private key to use

for access token signature
AUTH PRIVATE KEY

authPublicKeyRefresh
The public key to use

for refresh token verification
AUTH PUBLIC KEY REFRESH

JW
T

authPrivateKeyRefresh
The private key to use

for refresh token signature
AUTH PRIVATE KEY

name The name of the database DB NAME

host
The host where the

database server is hosted
DB HOST

port
The port where the

database server listens
DB PORT

username
The username for the
user of the database

DB USER

password
The password for the
user of the database

DB PASS

D
at

ab
as

e

authenticationSource
The authentication database

to use on connect
DB AUTH SOURCE

A
pp appPSK

The pre-shared key for
database encryption

API PSK

accessLogFilename
The filename to store

API access logs
ACCESS LOG FILENAME

accessLogPath
The directory to store

access logs files
ACCESS LOG PATH

accessLogFormat
The format to use when

printing the logs
ACCESS LOG FORMAT

apiLogFilename
The filename to store

application-specific logs
API LOG FILENAME

Lo
gg

in
g

apiLogPath The directory to store API logs API LOG PATH

Table 11: Configurable parameters of the Authentication & Management API

4.2. Implementation 71

Besides the configuration mechanism that the application possesses, there also two other
significant aspects of the implementation process that are worth describing and explaining,
namely:

• How this API enforces the network structure defined in Subsection 4.1.2;

• The interface exposed by this API which provides all desired functionality.

The process of enforcing the necessary blockchain network structure is deeply tied with
the registration of new stations and the ability to establish private transactions. As was
already mentioned this system implements a smart contract per station mechanism, which
essentially means that each station establishes a contract between its associated customer’s
administrator and the network administrator.

Algorithm 8 illustrates the process of deploying a contract for a station that is being
registered, inherently enforcing the network structure that is required. To further explain
this process, the algorithm goes through the following steps:

1. Receives as input the identifier of the customer to whom this station belongs, which is
known to be correct since the access token has already been verified and it receives
as a route parameter the public key of the privacy manager (Tessera) of the station’s
node;

2. Queries for the public key of the privacy manager belonging to the network adminis-
trator;

3. Queries for the public key of the privacy manager belonging to the administrator of
the customer that is associated with the station being registered;

4. Builds a list with the public keys of the privacy managers that are allowed to interact
with the contract being deployed. The public key belonging to the privacy manager of
the network administrator is not included, since this will be the key used for deploying
the contract;

5. An instance of the smart contract is deployed by the network administrator, where
only the customer’s privacy manager, the station’s privacy manager and the network
administrator’s privacy manager can see the data held by that instance of the smart
contract;

6. After the contract is deployed the contract address is returned, so that that station and
the users associated with that customer can later communicate with it.

4.2. Implementation 72

Algorithm 8: Ensuring network structure on station registration
Input: customerID, stationTesseraPublicKey
Output: contractAddress

1 networkAdminTesseraPublicKey← getAdminTesseraPublicKey() ;
2 customerAdminTesseraPublicKey← getCustomerTesseraPublicKey(customerID) ;
3 privateFor ← [customerAdminTesseraPublicKey, stationTesseraPublicKey] ;
4 contractAddress← deployContract(networkAdminTesseraPublicKey, privateFor) ;
5 return contractAddress

By applying this process each time a station registers, the confidentiality of the data is
always maintained, since a station can only see its data and a customer can only see the data
belonging to its stations.

With this type of mechanism, data privacy and confidentiality is ensured both at API level,
since a station can only link or associate with its customer and a customer can only associate
with its stations and users, and at the network level, since after contract deployment only
the pre-determined public keys are able to access or call that contract. Furthermore, contract
deployment is an operation with an immutable post-state, i.e., there is no possibility of
adding additional keys to communicate with the contract later.

To finalize the description of the implementation process of the authentication & manage-
ment API, its interface must be described and explained, as well as the parameters that each
possible path receives and what permissions are established in order to comply with the
necessary security requirements.

Table 12 presents an overview of the authentication & management API by showing the
possible paths per resource that are able to manipulate or query them. The notation used in
the Response column is the same notation presented before in Table 7. The resources this
application handles are:

• Customers. An abstract entity that defines a customer and the users and stations that
can act in its behalf;

• Users. Entities associated with customers or to administration that actually use the
API;

• Stations. Entities associated with customers that use the weighing tickets API for
ticket registration;

• Blacklisted Tokens. A management resource, implemented so that the possibility of
revoking an access token or refresh token before its expiration date exists;

• Authorization. A set of processes to authenticate and authorize users and stations.

4.2. Implementation 73

A
ut

he
nt

ic
at

io
n

&
M

an
ag

em
en

t
A

PI
O

ve
rv

ie
w

-
-

M
et

ho
d

Pa
th

D
es

cr
ip

ti
on

Pa
ra

m
et

er
s

R
es

po
ns

e
Q

ue
ry

Pa
th

Bo
dy

PO
ST

/c
us

to
m

er
s

R
eg

is
te

r
a

ne
w

cu
st

om
er

x
x

cu
st

om
er

ID
G

ET
/c

us
to

m
er

s
Q

ue
ry

si
m

pl
e

in
fo

rm
at

io
n

fo
r

al
lc

us
to

m
er

s
x

x
x

[C
us

to
m

er
]

G
ET

/c
us

to
m

er
s/

:c
us

to
m

er
id

Q
ue

ry
si

m
pl

e
in

fo
rm

at
io

n
on

a
sp

ec
ifi

c
cu

st
om

er
x

x
C

us
to

m
er

PU
T

/c
us

to
m

er
s/

:c
us

to
m

er
id

U
pd

at
e

in
fo

rm
at

io
n

on
a

cu
st

om
er

x
–

Customers

D
EL

ET
E

/c
us

to
m

er
s/

:c
us

to
m

er
id

D
el

et
e

a
cu

st
om

er
fr

om
th

e
sy

st
em

x
x

–

PO
ST

/u
se

rs
R

eg
is

te
r

a
ne

w
us

er
x

x
us

er
ID

G
ET

/u
se

rs
Q

ue
ri

es
in

fo
rm

at
io

n
on

al
lu

se
rs

x
x

x
[U

se
r]

G
ET

/u
se

rs
/:u

se
r

id
Q

ue
ry

in
fo

rm
at

io
n

on
a

sp
ec

ifi
c

us
er

x
x

U
se

r
PU

T
/u

se
rs

/:u
se

r
id

U
pd

at
e

in
fo

rm
at

io
n

on
a

sp
ec

ifi
c

us
er

x
–

Users

D
EL

ET
E

/u
se

rs
/:u

se
r

id
D

el
et

e
a

us
er

fr
om

th
e

sy
st

em
x

x
–

PO
ST

/s
ta

tio
ns

R
eg

is
te

r
a

ne
w

st
at

io
n

x
x

St
at

io
n

G
ET

/s
ta

tio
ns

Q
ue

ry
si

m
pl

e
in

fo
rm

at
io

n
fo

r
al

ls
ta

ti
on

s
x

x
x

[S
ta

tio
n]

G
ET

/s
ta

tio
ns

/:s
ta

tio
n

id
Q

ue
ry

si
m

pl
e

in
fo

rm
at

io
n

fo
r

a
sp

ec
ifi

c
st

at
io

n
x

x
St

at
io

n
PU

T
/s

ta
tio

ns
/:s

ta
tio

n
id

U
pd

at
e

in
fo

rm
at

io
n

on
a

sp
ec

ifi
c

st
at

io
n

x
–

Stations

D
EL

ET
E

/s
ta

tio
ns

/:s
ta

tio
n

id
D

el
et

e
a

st
at

io
n

fr
om

th
e

sy
st

em
x

x
–

PO
ST

/b
la

ck
lis

te
d

to
ke

ns
A

dd
a

ne
w

to
ke

n
to

th
e

bl
ac

kl
is

t
x

to
ke

nI
D

G
ET

/b
la

ck
lis

te
d

to
ke

ns
Q

ue
ry

al
lb

la
ck

lis
te

d
to

ke
ns

x
x

x
[T

ok
en

]
G

ET
/b

la
ck

lis
te

d
to

ke
ns

/:t
ok

en
id

Q
ue

ry
fo

r
a

sp
ec

ifi
c

bl
ac

kl
is

te
d

to
ke

n
x

x
To

ke
n

D
EL

ET
E

/b
la

ck
lis

te
d

to
ke

ns
D

el
et

e
al

lb
la

ck
lis

te
d

to
ke

ns
th

at
ha

ve
ex

pi
re

d
x

x
x

–

Blacklisted
Tokens

D
EL

ET
E

/b
la

ck
lis

te
d

to
ke

ns
/:t

ok
en

id
D

el
et

e
a

sp
ec

ifi
c

bl
ac

kl
is

te
d

to
ke

n
x

x
–

PO
ST

/a
ut

ho
ri

za
tio

n
A

ut
he

nt
ic

at
es

a
us

er
or

a
st

at
io

n
x

x
ac

ce
ss

To
ke

n
an

d
re

fr
es

hT
ok

en

Autho-
rization

PU
T

/a
ut

ho
ri

za
tio

n
R

ef
re

sh
es

an
ac

ce
ss

to
ke

n
x

x
ac

ce
ss

To
ke

n

Ta
bl

e
1

2
:

O
ve

rv
ie

w
of

th
e

fu
nc

ti
on

al
it

y
ex

po
se

d
by

th
e

A
ut

he
nt

ic
at

io
n

&
M

an
ag

em
en

t
A

PI

4.2. Implementation 74

Table 12 allowed an overview of the resources the application handles, as well as the paths
that can be called per each resource and what type of parameters are used in those paths,
finalizing with the response that each path provides when called successfully.

In order to provide a better sense and to better explain how this API is built, the following
couple of pages explore each resource individually, clarifying the actual parameters they
receive, their data type and if they are required or not. As the type of parameter (query,
URL path, body) for each path is already detailed in Table 12, the tables explaining each
resource will not contain the type of the parameter, except when that path has more than
one type of parameter (e.g. receives URL path and body parameters). In this latter case,
the type of the parameter is indicated in the Required column after the checkmark or the
parameter not required notation.

With this in mind, the detailed information for each resource can be given in the following
manner:

• Table 13 describes each path available to handle the Customers resource.

– POST /customers. Can only be called by a system administrator. All of its
parameters are already defined in Table 3;

– GET /customers. Can only be called by a system administrator. Needs no parame-
ters;

– GET /customers/:customer id. Can only be called by a system administrator or a user
associated with the customer identified by customer id. Requires the customer id
parameter in the URL;

– PUT /customers/:customer id. Can only be called by a system administrator or a
user associated with the customer identified by customer id, depending on the
attributes to update. Requires customer id in the URL. Can receive multiple body
parameters to update, all already defined in Table 3;

– DELETE /customers/:customer id. Can only be called by a system administrator.
Requires the customer id in the URL.

4.2. Implementation 75

Authentication & Management API Parameter Description

-
-

Method Path
Parameters

Name Data Type Required

POST /customers

name
location

description
address

node
tesseraPublicKey

companyID
email

password

string
string
string
string
string
string
string
string
string

x
x

x

GET /customers x x x
GET /customers/:customer id customer id string

PUT /customers/:customer id

customer id
name

location
companyID
description

block

string
string
string
string
string

boolean

(URL)
x (BODY)
x (BODY)
x (BODY)
x (BODY)
x (BODY)

C
us

to
m

er
s

DELETE /customers/:customer id customer id string

Table 13: Parameter description for the customers route

• Table 14 describes each path available to handle the Users resource.

– POST /users. Can be called by any user. If the user has a role of administrator,
then it can only create an administrator. If the user has a role of customer, it can
only create users associated with that customer. The parameters it receives are the
ones defined in Table 5 except for adminLoginEmail and adminLoginPassword.
These parameters exist as an additional security measure, since for an administra-
tor user to register another administrator user, the access token is not enough, he
has to authenticate with its credentials;

– GET /users. Can be called by any user. If the user has role of customer, only
that customer’s users are presented. If the user has role of administrator, only
administrator users are presented. Does not require parameters;

– GET /users/:user id. Can be called by any user. Only successful if the calling user
has the same identifier as user id. Requires only user id as URL parameter;

– PUT /users/:user id. Can be called by any user. Serves essentially has a way to
udpate the user’s password, or to block another user. The blocking functionality
is only valid between users of the same customer or for system administrators;

4.2. Implementation 76

– DELETE /users/:user id. Can be called by any user. Administrator users can only
be deleted by one of the kind. Customer users can be deleted by administrator
users or by the other users associated with that customer. Requires only the
user id to delete as an URL parameter.

Authentication & Management API Parameter Description

-
-

Method Path
Parameters

Name Data Type Required

POST /users

email
password
address

node
tesseraPublicKey
adminLoginEmail

adminLoginPassword

string
string
string
string
string
string
string

x
x
x
x
x

GET /users x x x
GET /users/:user id user id string

PUT /users/:user id

user id
newPassword
oldPassword

block

string
string
string

boolean

(URL)
x (BODY)
x (BODY)
x (BODY)

U
se

rs

DELETE /users/:user id user id string

Table 14: Parameter description for the users route

• Table 15 describes each path available to handle the Stations resource.

– POST /stations. Can only be called by an user with a customer role. The parameters
required to call this path are already described in Table 4;

– GET /stations. Can only be called by an user with a customer role. No parameters
are required;

– GET /stations/:station id. Can only be called by an user with a customer role, whose
customer is the same customer as the station in the request. Requires station id
in the URL;

– PUT /stations/:station id. Can only be called by an user with a customer role,
whose customer is the same customer as the station in the request. Any of the
parameters that are required or optional have already been described in Table 4;

– DELETE /stations/:station id. Can only be called by an user with a customer role,
whose customer is the same customer as the station in the request. Requires
station id in the URL.

4.2. Implementation 77

Authentication & Management API Parameter Description

-
-

Method Path
Parameters

Name Data Type Required

POST /stations

name
latitude

longitude
description

address
node

tesseraPublicKey
publicKey

string
string
string
string
string
string
string
string

x
x
x

GET /stations x x x
GET /stations/:station id station id string

PUT /stations/:station id

station id
name

latitude
longitude

description
address

node
block

string
string
string
string
string
string
string

boolean

(URL)
x (BODY)
x (BODY)
x (BODY)
x (BODY)
x (BODY)
x (BODY)
x (BODY)

St
at

io
ns

DELETE /stations/:station id station id string

Table 15: Parameter description for the stations route

• Table 16 describes each path available to handle the Blacklisted Tokens resource.

– POST /blacklisted tokens. Can be called by any user. If the user has a customer
role, then the user identifier or station identifier in the token has to match with
the same customer. If the user has an administrator role, he can block any token.
Receives only the token to blacklist in the body of the request;

– GET /blacklisted tokens. Can only be called by an administrator user. It may receive
an user id query parameter, to filter the search by user;

– GET /blacklisted tokens/:token id. Can only be called by an administrator user.
Receives the token id as URL parameter;

– DELETE /blacklisted tokens. Can only be called by an administrator user. Clears
all tokens that have already expired and thus no longer need to be blacklisted.
Receives no parameters;

– DELETE /blacklisted tokens/:token id. Can only be called by an administrator user.
Receives token id as URL parameter.

4.2. Implementation 78

Authentication & Management API Parameter Description

-
-

Method Path
Parameters

Name Data Type Required

POST /blacklisted tokens token string
GET /blacklisted tokens user id string x
GET /blacklisted tokens/:token id token id string

DELETE /blacklisted tokens x x xTo
ke

ns

DELETE /blacklisted tokens/:token id token id string

Table 16: Parameter description for the blacklisted tokens route

• Table 17 describes each path available to handle the Authorization resource.

– POST /authorization. Can be called by anyone. If the authenticating entity is an user,
email and password are required as body parameters. If the authenticating entity
is a station identifier, message and signature are required as body parameters.
One of these two combinations must exist in the body of the request;

– PUT /authorization. Can be called by anyone. Has to receive the token as a body
parameter, which is the refresh token.

Authentication & Management API Parameter Description

-
-

Method Path
Parameters

Name Data Type Required

POST /authorization

email
password
identifier
message
signature

string
string
string
string
string

x
x
x
x
x

A
ut

ho
-

ri
za

ti
on

PUT /authorization token string

Table 17: Parameter description for the authorization route

As a final note to all the information presented before, it is also important to mention that
the entity blocking and removal process implements a kind of cascade mechanism, i.e., if
a customer is blocked or deleted, then any of its associated users and stations will also be
blocked / deleted, but if a user or station individually is blocked or deleted, then the other
entities associated with the customer will still be able to communicate.

This finalizes the process of describing how the authentication & management API is
implemented since its common architecture had already been covered, which is similar to the
weighing tickets API and, after that, in this subsection, the API’s configuration mechanism,
the way it enforces the network structure and, finally, the interface it exposes and what

4.2. Implementation 79

each of the paths in that interface do were also covered, providing a simple and thorough
overview of its functionalities.

4.2.5 Smart Box Communicator

The purpose of this section is to describe and explain how the smart box communicator is
built. This program can be described as the application that runs on the smart boxes, the
devices that operate on the customers’ stations. Each station has only one smart box and
this device controls all weighbridges present in that station.

Prior describing how the communicator is implemented it is, of course, necessary to define
what will be used to implement it. For the implementation of this communicator and, taking
into account that this is a device that does not fall into the restricted resources category,
since its hardware is comprised by a Cortex dual-core Central Processing Unit (CPU) at 1GHz
frequency and 512 Megabytes (MB) of Random Access Memory (RAM), the language chosen
was Golang [45]. This choice was made due to two reasons essentially:

• It is a high-performance programming language with excellent concurrency features;

• It has immense package support, including different communication modules that
facilitate working with DTLS or TLS for example.

In Subsection 3.1.3: Technological Choice, the communication protocol was defined as
being comprised by two different communication mechanisms: i) One that works between
the load cells and the smart box; And ii) one that works between the smart box and the
cloud system. Additionally, it was established that the first communication mechanism
would be implemented by using CoAP as the application-layer protocol and DTLS as the
transport-layer protocol and, the second communication mechanism would be implemented
with HTTPS, which is essentialy HTTP as the application-layer protocol and TLS as the
transport-layer protocol. Concluding this opening section, it is now clear that the smart box
communicator will have to be able to communicate either via CoAP with the load cells or
via HTTPS with the cloud system. Taking into account the language that is going to be used
for the implementation (Golang), it is important to be aware, prior the choice, if it offers
good capabilities in terms of dealing with these communication protocols. The utilization of
HTTPS in Golang is quite simple since it only requires to make use of the Golang’s standard
packages: net/http [46] and crypto/tls [47]. For the utilization of DTLS communication in
Golang there is also an excellent package that provides all necessary features, Pion-DTLS
[48].

Figure 10 illustrates the conceptual architecture of the smart box communicator, including
its distinct modules and how they communicate with each other. This architecture is
comprised by six modules, each with its single purpose:

4.2. Implementation 80

• Configurations Manager is the module responsible for handling and providing all
necessary configurations for the other modules;

• Ticket Builder is the main entrance point in the program and is responsible for
the ticket building process, i.e., orchestrating the other modules with the goal to
successfully submit the ticket from the specified weighbridge;

• Ticket Submitter is the module responsible for handling submission of weighing
tickets, including the application of the fault-tolerance mechanism;

• Authentication Manager is the module responsible for ensuring that the station has
valid authorization tokens for ticket submission;

• HTTPS Client as the name suggests is a client for an HTTPS connection, used for
communicating with both the weighing tickets and the authentication & management
APIs;

• CoAP + DTLS Client is responsible for establishing a DTLS client capable of commu-
nicating with the load cells.

Figure 10: Smart box communicator architecture and intra-module communication

The configurations manager is a simple module that reads a configuration file, which
has to be written in YAML and associates the configurations given in that file to a data

4.2. Implementation 81

structure that is used in the program. It is through this configuration file that essential
parameters to establish communication with the APIs and the load cells are provided, as
well as parameters that allow the tuning of the fault-tolerance mechanism. In this file, the
configurations are divided into six main sections:

• Smart Box. Section that holds parameters that tune where the communicator listens,
like its address and port, as well as parameters that provide the required keys to
communicate via TLS or DTLS;

• CA. Information on the root CA that is able to verify the APIs’ certificates;

• App. Contains parameters that allow the fine tuning of the application’s behaviour,
including its fault-tolerance mechanism;

• Auth API. Contains parameters that establish where the authentication & management
API is listening, as well as the public key certificate to use in the stations authentication
algorithm;

• Weighing Tickets API. Contains the required parameters for the communicator to
establish communication with the weighing tickets API;

• Station. Configurations related to the station, including its identifier, the composition
of the station, among others.

Table 18 overviews the available configurations for each aforementioned section. In each
of these sections most of the parameters are pretty much self-explainatory or at the very least
provide a good insight in what they are and what their purpose is, with one exception, the
weighbridges configuration from the Station section, since it is a more complex structure.
This parameter is, in fact, an object, which is structured as follows:

• The keys of the object are the identifiers from each of the weighbridges in that station;

• The values are an array of objects containing load cell information. These objects have
the following structure:

– id. The load cell’s serial number;

– address. The load cell’s address;

– port. The port where the load cell’s communicator listens.

Additionaly, as it can be seen in Table 18 in the App section, the parameters responsible
for tuning the fault-tolerance mechanism , such as the maximum pending submissions, or
the maximum retries prior failing, can all be fine-tuned in order to make the mechanism
more flexible or more rigid.

4.2. Implementation 82

Name Description

host
The address of the server that hosts

the smart box communicator
port The port where the communicator listens

certpath
The path to the public key

certificate for TLS and DTLS useSm
ar

t
B

ox

keypath
The path to the private key

for TLS and DTLS use

token path The path to store the authorization tokens
ticket info path The path to store information on submitted tickets
pending path The path to store tickets pending submission

failed path The path to store tickets that failed submission

max pending submissions
The maximum number of submissions

of pending tickets prior failing

resubmission interval
The number of seconds to wait
before attempting resubmission

max retries
The maximum number of retries when

a ticket fails submission

A
pp

pending interval
The number of seconds to wait before

attempting resubmission of pending tickets

host
The address of the server that houses

the authentication & management API
port The port where the server listens

A
ut

h
A

PI

pubkeypath
The path to the public key certificate

for station authentication

C
A certpath

The path to the public key
certificate of the CA

host
The address of the server

that houses the
weighing tickets API

Ti
ck

et
s

A
PI

port
The port where the API

server listens for requests
id The station’s database identifier

key The path to the private key for station authentication
keypub The path to the public key certificate for station authentication
terminal The terminal serial number of the stationSt

at
io

n

weighbridges An object detailing the composition of the station

Table 18: Configurable parameters of the smart box communicator

Having described the configuration mechanism present in the smart box communicator, the
goal is now to describe and explain how the communicator is built around that configuration

4.2. Implementation 83

mechanism in order to be able to securely extract weights measured in the load cells and
then, after building the respective ticket, emit it securely to the weighing tickets API.

The first step in deciding how the communicator is built is to think about how it is
actually going to be executed in the context of this solution. By now, it is already known
that weighing tickets are a kind of receipt of a weighing and so there are two properties to
ensure here: i) For one weighing there is only one receipt and one receipt only matches with
one weighing; And ii) the receipt must be taken when the total weight has stabilized to its
actual value.

Taking into account these two properties that must be upheld, the solution that immedi-
ately comes to mind is to implement some kind of a trigger mechanism in the communicator.
Essentially, when the operators or an automatic process detect that the weighing has stabi-
lized, the smart box communicator is triggered to collect the weighing from the load cells of
the respective weighbridge and then build and submit the ticket. Quite simply, each time
there is a ticket to submit in the station, the operator or an automatic process launches a
trigger to communicate, which is essentially the execution of the communicator program
with a flag that indicates the weighbridge that is ready to submit a ticket.

As was previously mentioned, the Ticket Builder module is the point of entrance in the
program, since prior submitting a weighing ticket, it must first be built accordingly.

Algorithm 9 defines a simplified version of the algorithm implemented to build tickets,
which can be characterized in the following steps:

1. The algorithm receives as input the identifier of the weighbridge that is ready to submit
a weighing ticket and the global configuration object;

2. A DTLS configuration object is built which essentially holds the public key certificate
of the smart box as well as the certificate of the CA for verification purposes;

3. The information on the load cells that belong to the received weighbridge is collected;

4. A DTLS client is instanciated with the previously created dtlsConfig;

5. For each of the load cells that belong to the weighbridge, request the coapDTLSClient
to query for the weighing of the load cell (A GET request to the path /weight);

6. Adds a new weight to the ticket by providing the identifier of the load cell and the
weight received;

7. Finally, it requests the TicketSubmitter to submit the new given ticket.

Aside from the previously described steps, there is also an important note to be made
when the algorithm iterates over the load cells, performing for each one a weight request
and an assignment of that weight to the ticket. This action is non-blocking, i.e., all requests
are executed concurrently.

4.2. Implementation 84

Algorithm 9: Simplified algorithm to build a weighing ticket
Input: weighbridgeID, config

1 dtlsCon f ig← buildDTLSCon f ig(con f ig) ;
2 loadCells← getWeighbridgeLoadCells(weighbridgeID, con f ig) ;
3 ticket← generateNewTicket(weighbridgeID, con f ig) ;
4 coapDTLSClient← newDTLSClient(dtlsCon f ig) ;
5 foreach loadCell ∈ loadCells do
6 weight← coapDTLSClient.getCellWeight(loadCell.host, loadCell.port) ;
7 ticket.addCellWeight(loadCell.id, weight) ;
8 end
9 TicketSubmitter.submit(ticket, con f ig) ;

Before describing and explaining how the Ticket Submitter module works, it is important
to completely define the fault-tolerance mechanism that is implemented in this communicator,
since this module will implement a part of that mechanism.

The fault-tolerance mechanism implemented in this communicator is composed by two
stages:

• RETRY, where the mechanism attempts to resubmit tickets that failed to be submitted
until a maximum amount of attempts has been reached;

• RECOVER, where the mechanism saves tickets that were not submitted until the
RETRY stage into a pending state. Additionally, the mechanism periodically attempts
resubmission of pending tickets up until a maximum number of attempts where,
finally, if not successful, the ticket is saved and marked as failed for later analysis.

The two aforementioned guidelines already provide a pretty good idea of how the fault-
tolerance mechanism works, but it will be explored in much more detail in the modules
where it is actually implemented, such as the Ticket Submitter.

The Ticket Submitter module’s purpose is to, of course, submit tickets that are already
built to the weighing tickets API. The first step in doing so is to setup all the necessary
credentials to be able to perform the request. Algorithm 10 shows the process of setup that
always happens prior submitting a ticket. The steps followed by this algorithm are:

• It receives as input the global configuration object;

• Build the TLS configuration object, which essentially holds the public key certificate of
the CA for server verification;

• Generate a new instance of an HTTPS client with the previously built TLS configura-
tion;

4.2. Implementation 85

• If the authorization tokens already exist, then simply extract the access token, other-
wise request the authentication manager to authenticate with the authentication &
management API and then extract the access token;

• Finally, return the HTTPS client and the access token, which are the necessary creden-
tials to perform the submission of the weighing ticket.

Algorithm 10: Setup algorithm prior submitting a weighing ticket
Input: config
Output: httpsClient, accessToken

1 tlsCon f ig← buildTLSCon f ig(con f ig) ;
2 httpsClient← newHTTPSClient(tlsCon f ig) ;
3 if ∃con f ig.Tokens then
4 accessToken← con f ig.Tokens.AccessToken ;
5 else
6 con f ig.Tokens← AuthenticationManager.authenticate(con f ig) ;
7 accessToken← con f ig.Tokens.AccessToken ;
8 end
9 return httpsClient, accessToken

After this setup algorithm is executed, the TicketSubmitter is ready to submit a new
ticket. Figure 11 shows a diagram that describes by illustration the algorithm followed on
each ticket submission, with fault-tolerance included.

The point of entrance of the algorithm is always an attempt of submitting a ticket which
will either return an error or a success message with the ticket information. If the response is
a success message then the algorithm simply registers the ticket information (ticket identifier
and transaction hash) in the configured path. In the eventuality of an error message, the
algorithm first checks if this was an authorization problem, i.e., the access token was expired
or invalid and, in this case, it simply calls a method to ensure a valid access token. This
method first attempts to refresh the token, returning on success but, if refreshing the token
also produces an authorization error, then the method simply authenticates again, receiving
new tokens. After the access token is ensured, ticket submission is attempted again with a
valid access token.

If the error message does not correspond to an authorization error and, instead, cor-
responds to any other error, the algorithm enters the RETRY stage of the fault-tolerance
mechanism. In this stage the first thing it does is to check if the number of attempts to submit
this ticket has already passed the configured threshold (max retries in the App section of
the configurations). Take into account that the actual number of attempts to check is always
the number of attempts already made plus the current attempt. If it has passed, then the
algorithm begins the RECOVER stage of the fault-tolerance mechanism by putting the ticket

4.2. Implementation 86

in a pending state, awaiting for later re-submission by the remaining operations of the
RECOVER stage. If the threshold has not been passed, then the fault-tolerance mechanism
waits for the configured number of seconds (resubmission interval in the App section in the
configurations) before attempting re-submission. After that interval has gone through, the
mechanism increments the number of submission attempts and finally, attempts to submit
the ticket again, following the exact same process.

Figure 11: Illustration of the ticket submission algorithm with fault-tolerance

The definition of the algorithm shown in Figure 11 raises an important question: What
happens to the tickets that are put in a pending state ?

The answer to this question is what remains of the RECOVER stage of the fault-tolerance
mechanism which is done in a different mode of execution of the smart box communicator.
Up until now, the only known mode of execution of the communicator is the finite execution,
which starts with the construction of a weighing ticket and ends either with the successful
submission of the ticket or with the ticket being put to the pending state but, in order to
provide some way of handling pending weighing tickets, the communicator also provides an
”infinite” mode of execution, which is a mode that should be always running and periodically
attempting to re-submit pending tickets. This mode of execution can be run by simply
spawning an instance of the communicator with the flag –submit pending. The spawned

4.2. Implementation 87

instance will allways be active and, periodically, checking for pending weighing tickets to
submit.

Figure 12 shows the diagram that describes the algorithm followed by this different mode
of execution of the communicator, which allows it to recover pending weighing tickets.

The point of entrance to this algorithm is to submit all pending weighing tickets. The
algorithm first checks if there is any pending ticket left to submit and, if there are none,
then the algorithm ”sleeps” for a configured number of seconds (pending interval in the
App section of the configurations) before checking again. If there are weighing tickets to
submit, then there is an attempt to submit the first on the list. If this attempt is successful
then the algorithm simply registers the ticket information (ticket identifier and transaction
hash) in the configured path and goes back to check if there are more pending weighing
tickets to submit. If the attempt is unsuccessful, the algorithm first checks if the received
error is an authorization error and, if so, it calls the method to ensure that a valid access
token is returned, which was already described in the ticket submission algorithm and,
after the access token is returned, an attempt to submit that ticket is performed again. If
the error returned from the submission is not an authorization error, then the algorithm
checks if the number of pending submissions for this ticket has already passed a certain
threshold (max pending submissions in the App section of the configurations). If the number
of attempts has not passed the threshold, then the number of attempts for this ticket is
incremented and the ticket is saved again in the pending state for later re-submission and
the algorithm goes back to check if there are more pending weighing tickets to submit. If the
number of attempts has passed the configured threshold, then the ticket is put in a failed
state and the algorithm returns to check if there are more pending weighing tickets to submit.
The failed state is essentially a state in which the ticket will no longer be automatically
submitted, since the number of attempts to submit it have already been too many. When a
ticket is put in a failed state, a UNIX timestamp is taken as to know when that ticket failed
for the last time, and it is associated with the ticket. This event is logged as an error so that
the ones maintaining the communicator or the APIs may check what went wrong with this
ticket’s submission.

4.2. Implementation 88

Figure 12: Illustration of the ”infinite” mode of execution of the smart box communicator

Finally, to wrap up the description of how the smart box communicator is implemented,
two of the main algorithms of the Authentication Manager have to be explained, thus pro-
viding the full overview on the functionalities and the inner workings of the communicator.

Algorithm 11 describes the algorithm that ensures that an access token is returned when
it is required, either by the algorithm in Figure 11 or in Figure 12. The steps followed by this
algorithm are quite straightforward:

• It receives the global configuration object as input;

• Then it builds the TLS configuration object and instantiates the HTTPS client by passing
it the just generated TLS configuration;

• After having the HTTPS client, the algorithm attempts to refresh its access token with
the authentication & management API;

• If the previous request is unauthorized that means the refresh token is no longer valid
and thus the program initiates a new authentication request and, then returns the
necessary tokens;

4.2. Implementation 89

• If all went well with the refresh request, then the algorithm simply returns the received
tokens in the response.

Algorithm 11: Algorithm to ensure the existence of a valid access token
Input: config
Output: accessToken, refreshToken

1 tlsCon f ig← buildTLSCon f ig(con f ig) ;
2 httpsClient← newHTTPSClient(tlsCon f ig) ;
3 response← re f reshToken(httpsClient, con f ig.Tokens.re f reshToken) ;
4 if response.Status ∈ Unauthorized then
5 con f ig.Tokens← authenticate(con f ig) ;
6 return config.Tokens.accessToken, config.Tokens.refreshToken

7 else
8 return response.accessToken, config.Tokens.refreshToken
9 end

Algorithm 12 describes the authentication algorithm that requests for new authorization
tokens to the authentication & management API. The logic of this algorithm can be described
in the following way:

• The algorithm receives as input the global configuration object;

• Then it builds the TLS configuration object and instantiates the HTTPS client by passing
it the just generated TLS config;

• After instantiating the HTTPS client, the algorithm collects both the public key of
the authentication & management API (apiPublicKey) and the station’s private key
(stationPrivateKey);

• With those two parameters, the algorithm builds the authentication message for the
station (Execution of Algorithm 1);

• Possessing the authentication message, the algorithm issues an authentication request
to the authentication & management API;

• If the request, for some reason, does not succeed, this error is logged as a fatal error
(which should be immediately checked);

• Otherwise the tokens are extracted from the response and returned accordingly.

The definition of these two last algorithms ends this subsection, where the implementation
of the smart box communicator was explored. Essentially all the aspects of the implementa-
tion were covered, with highlight to how the communicator is able to submit tickets via a

4.2. Implementation 90

Algorithm 12: Algorithm to perform the station’s authentication process
Input: config
Output: accessToken, refreshToken

1 tlsCon f ig← buildTLSCon f ig(con f ig) ;
2 httpsClient← newHTTPSClient(tlsCon f ig) ;
3 apiPublicKey getsreadFile(con f ig.Auth API.pubkeypath) ;
4 stationPrivateKey← readFile(con f ig.Station.key) ;
5 numberBytes← getMessageByteCount() ;
6 authMessage←

buildStationAuthenticationMessage(numberBytes, apiPublicKey, stationPrivateKey) ;
7 response← requestAuthentication(httpsClient, authMessage) ;
8 if response.Status ∈ Error then
9 logFatalError(response.Status, response.message) ;

10 else
11 return response.accessToken, response.refreshToken
12 end

trigger mechanism with fault-tolerance. This fault-tolerance mechanism is also, surely, one
of the highlights of this implementation since it adds the necessary robustness and flexibility
in operating this communicator. Finally, the main authentication and authorization handling
algorithms were discussed in order to clarify how this program can securely authenticate
and authorize each request it makes to both APIs.

4.2.6 Load Cell Communicator

With the definition of the implementation of the smart box communicator, the only point
left to discuss in the implementation of the proposed solution is the communicator that runs
in the load cells. As defined in Subsection 3.1.3: Technological Choice, this program only
communicates using CoAP and DTLS with the smart box.

Before defining how this load cell communicator is implemented, the tools that are used to
do it must be defined. Although the goal of the dissertation is to simply establish a definition
and sample implementation of a secure IoT communication, which can be further optimized
for a particular environment, the choice of implementation has to be careful in the sense
that the tools used have to be able to be optimized or ported for restrained devices, which
is the case of this load cell communicator. Nevertheless, after analysis the choice for the
implementation of this program was Golang again and in this case, the reasons behind this
decision are that: i) Golang has seen an incredible growth in the last couple years with the
goal to make it a multi-environment PL, i.e., a PL that can perform well both in restrained
and high-performance environments; And ii) as a follow-up to the first reason, this growth
has lead to multiple libraries appearing that attempt to take Golang to the IoT world, such

4.2. Implementation 91

as Gobot [49], EmbeddedGo [50] or TinyGO [51], especially the latter one which allows the
compilation of Golang programs to multiple microcontroller architectures. Additionally, the
familiarity with the PL also weighed in on the decision.

Having defined the PL to develop the program, the only remaining aspect that is left to
define prior the actual implementation stage is the library that is going to be used for CoAP
and DTLS communication which will be the same used in the smart box communicator,
PionDTLS [48].

In order to describe the process of implementation of the load cell communicator, its
necessary functionality has to be clearly defined first. By the knowledge acquired thus far in
this document, it is clear that the load cell communicator only has to: i) Listen for requests
made by a smart box communicator; And ii) respond with the weight it currently measures.
So, basically, in this communicator, a server continuously listens for requests to a certain
path and, each time it receives one, it handles the specific request.

Figure 13 illustrates the algorithm that runs in the load cell communicator and, as it can
be seen, it is a simpe algorithm that goes through the following steps:

• The point of entrance to the algorithm is the function that instantiates a DTLS server
and continuously listens for GET requests to the path /weight;

• When a request is received, it is routed to the handler function which will deal with
the response to that request;

• After routing the request to the handler, the communicator continues to listen for more
requests.

Figure 13: Algorithm running in the load cell communicators

While most of the steps in the algorithm seem pretty much straightforward, it is still
worth describing how the handleWeight function actually works.

4.3. Summary 92

Algorithm 13 describes the workings of the handleWeight function, which is comprised
by three simple steps:

1. Collect the weight currently measured by the load cell;

2. Convert that weight to bytes so that it can be sent across the network;

3. Respond to the request with the measured weight in bytes using the responseWriter.

Algorithm 13: Algorithm of the handleWeight function
Input: responseWriter

1 weight← measureWeight() ;
2 weightBytes← bytes(weight.toString()) ;
3 responseWriter.sendResponse(weightBytes) ;

The description of this algorithm completes the definition of the implementation process
of the load cell communicator which clearly was an algorithm thought to be the simplest
possible as to facilitate its probable optimization if, at a later stage, it is converted and
compiled targeting microcontrollers.

4.3 summary

In this chapter the implementation process of the proposed solution was described, going
through all the software components that are a direct result of it as well as the decisions that
support the chosen path of implementation.

The chapter started with a plethora of decisions that had to be made prior beggining the
actual implementation process such as the outcomes that had to be produced in order to
theoretically comply will all the proposed goals, the structure of the blockchain network that
best suited the use-case in study, as well as some more technical decisions such as how to
mask the complexity of using a blockchain-based cloud system or even how to be able to
implement a two-way authentication process with a unique authorization mechanism.

With the definition of all the required conceptual and technical decisions, the implementa-
tion process was then thoroughly explored. The description of this process was divided in
six parts, where each part described an individual implementation process that was essential
in order to provide the required functionality and component interoperability with the focus
on complying with all the proposed goals. The implementation section first described the
authentication & authorization process which, as said before, is a two-way authentication
system with a unique authorization mechanism, since the authentication part has different
algorithms for users and stations but the authorization mechanism is the same for both
of them. Afterwards the smart contract was thoroughly described by defining the data

4.3. Summary 93

structures that it implemented as well as the methods that manipulated it in order to possess
all the required functionality to manage the weighing tickets. Additionally, some different
mechanisms were also discussed such as the application of filters directly in the smart
contract to provide a way of diminishing the amount of weighing tickets in traffic from the
blockchain network to the weighing tickets API.

From this point on, the implementation section starts deeply exploring the way how the
cloud system is built and which components are part of it. Firstly, the data models that serve
as the basis for the APIs were explored by clearly defining how many data models existed,
to what entities they were related and how they were actually implemented, specifically
defining the parameters that described each data model in the context of the cloud system.
Following the definiton and description of the data models, the implementation of the
APIs was explored and presented, starting by defining their common code structure and
detailing how that structure abided by good software development principles with a clear
separation of concerns. Then, the particularities of the weighing tickets API were described,
including: i) how it implements a dynamic configuration mechanism and which type of
parameters it allows to configure; ii) how it, in some way, tries to abstract the complexity of
using smart contracts and blockchain technology; And, finally iii) how this API exposes its
methods that provide a complete set of functions to manage and query weighing tickets.
Having described the implementation of the weighing tickets API, there was one remaining
major component of the cloud system to be explored, the authentication & management
API. Accordingly, the implementation process of this API is then defined at a more deeper
level, since its structure and architecture were already defined in the introduction to the
description of the implementation of the cloud system APIs. In this part, the essential
aspects of the authentication & management API were described, namely: i) Its configuration
mechanism, which also allows a dynamic assignment of the configuration parameters via
environment variables; ii) how the functionality implemented by it enforces the required
network structure in the blockchain; And, finally iii) how it exposes its interface, providing
a way of executing all the functionalities it implements.

Finally, the implementation section ends with the description of how the smart box and
load cell communicators were built. In a first instance, the smart box’s communicator is
described, beggining with a choice of tools to implement it and then going through all the
algorithms that are implemented in it in order to fullfil the goal of being able to build and
submit weighing tickets to the API in a secure manner. In the definition of these algorithms,
a big highlight of the implementation was clearly the fault-tolerance mechanism which
ensures robustness and resiliency against flaws in the transmission of weighing tickets.
In a second and last instance, the load cell communicator was described, starting by the
definition of the tools used to implement it and the reason why those tools were chosen
and ending with the description of the simple algorithm that runs in that communicator,

4.3. Summary 94

which essentially listens for requests and transmits weighings measured at that load cell.
Ensuring that the implementation of this load cell communicator was as simple as it could
was also an objective in order to foster and facilitate code optimizations that may be put in
place at a latter stage of the project to enhance the communicator’s usability in restrained
environments.

This way, this chapter explored, defined and described all the components that comprise
the proposed solution and that can, theoretically, comply with all the proposed goals.

5

P R O O F O F C O N C E P T

With the definition and description of the implementation process concluded, there is now a
need to show how the solution that was built complies with the proposed goals and how
it does it, by assembling a proof of concept that ensures the solution is actually capable of
performing all the tasks it sets out to do.

In order to explain how the proof of concept was designed, set up and capable of providing
the results that show and make evidence of the compliance with the objectives, this chapter
is divided in four sections:

• Section 5.1: Experiment Setup describes the way how the proof of concept was designed
with the goal to demonstrate the solution is capable of complying with the pre-defined
objectives, as well as how it was actually set up for being carried out;

• Section 5.2: Results illustrates the results obtained with the execution of the proof of
concept;

• Section 5.3: Discussion explores the results illustrated in the previous section, by
comparing what was obtained to what should have been obtained, concluding on how
each particular result is compliant to what should have happened;

• Section 5.4: Summary essentially summarizes the points previously discussed, by
providing an overall conclusion to the execution of the proof of concept.

For the proof of concept to be considered successful, metrics have to be defined that
clarify if the solution was able to deal with that particular aspect and, with that in mind, the
essential aspects that have to be demonstrated are:

• That the communication both between the load cells and the smart box and between the
smart box and any of the APIs is secured, providing confidentiality of the information
that is transmitted;

• That the communicators in the station are capable of transmitting weighing tickets to
the API and, consequently, to the blockchain ledger, receiving the transaction hash, i.e.,
the unique proof that the transaction was in fact registered in the ledger;

95

5.1. Experiment Setup 96

• That the communicators in the station are fault-tolerant, i.e., downtime in one of the
APIs will not result in weighing tickets being lost;

• That the weighing tickets are correctly registered, i.e., the characteristics of a dataset of
weighing tickets prior registration is mantained after registration;

• That weighing tickets of a specific customer cannot be accessed by another customer
through the Weighing Tickets API.

Having defined the requirements to provide evidence that the solution can correspond
with the expectation in terms of the objectives that it has to comply, the next section describes
the setup of the experiment that was assembled in order to do that.

5.1 experiment setup

With the goal to demonstrate the correctness of the solution, an experiment has to be setup
that can execute the processes necessary to assess if the solution is able or not to comply
with each of the previously defined requirements.

In order to build an experiment that is appropriated for the use case in study it can, at
least, be perceived that it has to possess running instances of the components that are part
of the cloud system: i) Blockchain network; ii) Weighing Tickets API; iii) Authentication
& Management API; And iv) the entities database. Additionally, the experiment should
demonstrate the usability of the communicators, both of the load cell and the smart box, by
assuming the existence of, at least, two stations, in order to show the confidentiality of each
one’s data, and configuring the communicators as belonging to each of the stations.

To succeed in clearly describing the experience that was produced, this section is divided
in three essential steps:

1. The design of the architecture of the experiment, i.e., how many components and how
they will be executed in a way that attempts to best demonstrate the concept;

2. The definition, preparation and preprocessing of a dataset of weighings provided by
Bilanciai, to serve as the source data of weighing tickets to be transmitted by the smart
box communicators;

3. The execution of the experiment, where the configuration of each of the components
and the clear definition of the beggining and end of execution is given.

5.1. Experiment Setup 97

5.1.1 Experiment Architecture

In this section, the experiment architecture is shown and discussed, explaining why it was
built like so and how that architecure allows us to test all the requirements that were defined
in the beggining of this chapter.

Figure 14 illustrates the architecture of the proof of concept. In a first glance, it can
clearly be seen that this architecture has three major components: i) The cloud system;
ii) Customer X’s station; And iii) Customer Y’s station. Additionaly, two logos appear
constantly, one in most of the components, whether they belong to the cloud system or
the stations and the other appears in each of the stations. The first logo represents Docker
[52], a containerization system that allows to clearly define the dependencies and how an
application must be executed, so that its execution is always ensured. The second logo is
associated with Raspberry Pi [53], a small form-factor computer, which is present since each
of the two stations present in the architecture will have the communicators run in their own
Raspberry Pi computer. In summary, the cloud system will all be run in a laptop via Docker
orchestration, customer X’s station will be run in one Raspberry Pi, referred to from now on
by pi1 and customer Y’s station will be run in another Raspberry Pi, referred to from now on
by pi2.

Beyond the hardware aspects of this architecture, there are also some applicational aspects
that have to be explained. First, the blockchain network appears in this architecture with
5 nodes and their associated privacy managers. This is due to the fact that, with this
architecture, five entities will be created in the network:

1. The network’s administrator node (node 1 & privacy manager 1), an entity that already
exists on system boot-up;

2. Customer X’s administrator node (node 2 & privacy manager 2), created by the network
administrator in the Authentication & Management API;

3. Station X’s node (node 3 & privacy manager 3), created by customer X in the Authenti-
cation & Management API;

4. Customer Y’s administrator node (node 4 & privacy manager 4), created by the network
administrator in the Authentication & Management API;

5. Station Y’s node (node 5 & privacy manager 5), created by customer Y in the Authenti-
cation & Management API.

Second and last, the stations will be defined as possessing two weighbridges each, where
each of the weighbridges hold four load cells. The load cell communicators will run in
Docker containers, but the smart box communicator will run regularly as a process in the
correspondent Raspberry Pi, pi1 for Station X and pi2 for Station Y.

5.1. Experiment Setup 98

In this last point, two stations, one from each customer, were defined in order to be able
to demonstrate that the weighing tickets transmitted by one customer cannot be viewed by
another customer, since they transmit them to different smart contracts

Figure 14: Architecture of the proof of concept

Additionally, it is worth mentioning that, although, the weighbridges are defined as X1,
X2, Y1 and Y2, their actual serial numbers are different and these acronyms serve only as a
simplification for representation. The actual serial numbers mapping is the following:

• Weighbridge X1 has a serial number of P191021852;

• Weighbridge X2 has a serial number of P220120900;

• Weighbridge Y1 has a serial number of P141140200;

5.1. Experiment Setup 99

• Weighbridge Y2 has a serial number of P300200111.

Having the setup been clearly defined, including the devices where each of the components
will operate and why those components were chosen as so (e.g. blockchain network), the
next step is to prepare a dataset of weighing tickets to serve as the basis of this proof of
concept, since those are the tickets that are going to be emitted by the communicators to the
Weighing Tickets API and, lastly, to the ledger. This proof of concept was done by using
a real dataset of weighings, given by Bilanciai. Actual devices were not used for weight
reading due to unavailability of real load cell and smart box devices and, of course, due to
proprietary algorithms that are applied in the readings that could not have been included in
a work of this public nature.

5.1.2 Dataset Preparation and Metrics

The purpose of this section is actually two-folded:

1. To clearly describe how, from an initial dataset provided by the company, the data was
treated to serve as the base dataset for the proof of concept, i.e., the weighings that are
going to be sent by the stations;

2. To unmistakably define the characteristics of the dataset that is going to be used as
basis so that, after the execution of the proof of concept the weighing tickets transmitted
from the dataset are exactly as they sould be in the ledger.

The first step in describing the preparation process of the dataset is to clearly define the
starting point, i.e., the raw dataset that was delivered for this proof of concept.

This dataset comprises weighings emitted by one only test station from the companies,
which holds eight load cells. With that said, the dataset possesses twenty columns:

• terminalSerialNumber. The serial number of the smart box that transmitted this
weighing;

• scaleSerialNumber. The serial number of the weighbridge where the weighing was
measured;

• scaleGross. The gross value of the weight measured (Equal to the sum of the load
cells’ weight);

• scaleNet. The net value of the weight measured (Equal to the sum of the load cells’
weight);

• For each of the load cells, which are eight in total, there are two attributes:

– cellSerialNumber. The serial number of the load cell;

5.1. Experiment Setup 100

– cellWeight. The weight measured by the load cell.

From this description of the dataset some aspects can be immediately recognized: i) Since
there is no proprietary algorithm running in the measurement of weights, the total weight
will be considered to be the sum of the loadcells’ weight, both for scaleGross and scaleNet;
ii) there is no timestamp because that will be taken when these weighings are transmitted
by the smart box communicator; And iii) the dataset does not comprise two other attributes
that should exist in the weighing ticket, scaleStatus and terminalRestartValue, so they will
have to be manually added.

Having completely characterized the dataset, the next step that was performed was to
remove rows of data that had missing values, i.e., cells that had no value despite being
obligatory, so that only correct weighings are used for the transmision of weighing tickets.
After this step, it can be ensured that the dataset holds all the required properties, with
exception to scaleStatus and terminalRestartValue which will be later added.

The next decision to make is on the amount of samples to use for the transmission of
weighing tickets and, recalling the fact stated in Subsection 3.1.3, that a station transmits,
at maximum 300 weighings per station and, taking into account that this proof of concept
contemplates two stations, each with two weighbridges, the number of samples to be
transmitted will be 600 in total, 300 per station, 150 per weighbridge, which allows the
simulation of a ”day’s work”, albeit in a smaller transmission time frame. Since the dataset
received only has one single scaleSerialNumber value, because they were taken from one
weighbridge, that attribute was altered so that the final dataset could have 150 weighings per
weighbridge and, thus, the distribution of the weighings was done as follows (zero-indexed):

• Station X’s weighbridge 1 (serial number P191021852) is associated with weighings 0

until 149;

• Station X’s weighbridge 2 (serial number P220120900) is associated with weighings 150

until 299;

• Station Y’s weighbridge 1 (serial number P141140200) is associated with weighings 300

until 449;

• Station Y’s weighbridge 2 (serial number P300200111) is associated with weighings 450

until 599.

With the structure and amount of data defined, the process goes on by including the two
attributes that were missing and, although there was no clear definition for the possible
values of terminalRestartValue, scaleStatus will be considered to have two possible values:
i) OK; ii) FAULTY. For the terminalRestartValue attribute, all rows will be filled with a
CONNECTED value, which only serves the purpose of filling that attribute, it has no semantic
meaning. For the scaleStatus attribute and, taking into account that the verification of results

5.1. Experiment Setup 101

will also include using the filters provided by the Weighing Tickets API when querying
tickets, both different values will be used, although of course the FAULTY value in a much
smaller frequency.

As was already mentioned, each weighbridge in each station will be associated with 150

weighings and, taking that value into account, the distribution of the scaleStatus attribute
was done as follows:

• Station X’s weighbridge 1: 147 weighings with scaleStatus OK; 3 weighings with
scaleStatus FAULTY;

• Station X’s weighbridge 2: 148 weighings with scaleStatus OK; 2 weighings with
scaleStatus FAULTY;

• Station Y’s weighbridge 1: 150 weighings with scaleStatus OK; 0 weighings with
scaleStatus FAULTY;

• Station Y’s weighbridge 2: 146 weighings with scaleStatus OK; 4 weighings with
scaleStatus FAULTY.

The definition and insertion of these attributes into the dataset results in a correctly deifned
dataset, suited to be the basis of the proof of concept. In order to further treat the dataset,
the process on how that data will be read by the communicators to form the weighing ticket
has to be explained, since by the reasons already mentioned, the communicators will not
read weights from an actual device. With that in mind, the process of building a weighing
ticket is essentially a three-step process:

1. The smart box communicator reads the generic weighing ticket attributes, such as the
scaleSerialNumber, terminalSerialNumber, scaleStatus and terminalRestartValue
and then requests the weights of that weighing to the load cells associated with that
weighbridge;

2. Each of the load cells responds to the smart box communicator with its corresponding
weight;

3. The smart box communicator receives the weights of all load cells, calculates the
scaleNet and scaleGross attributes (sum of all load cell weights) and this terminates
the process of building the weighing ticket, which is now ready for submission.

By overviewing the aforementioned ticket building process, it can be stated that: i)
each weighbridge has to have access to the generic attributes for each weighing; ii) Each
load cell has to have access to its weight for each weighing. So, the ultimate goal in this
data preparation process is to create twenty JSON files, which will then be placed at the
appropriate location:

5.1. Experiment Setup 102

• One file per weighbridge, in a total of four files, containing an array of objects, in
which each object represents the generic attributes of a weighing. scaleSerialNumber
and terminalSerialNumber are not included in these objects, since those values are
already configured in the smart box communicator and so, there is no need to duplicate
information;

• One file per load cell, in a total of sixteen files, containing an array of floats, where
each float represents the weight measured by the load cell in that weighing.

Prior applying the transformation process that converts the dataset in possession to the
twenty aforementioned JSON files, there is one last item to take into account, which is the
serial number of the load cells. Since the original weighings were only measured in one
weighbridge, there are also only eight different load cell serial numbers. Additionally, for
this proof of concept only four of them are required. So, to tackle this issue, only four of the
original load cell serial numbers were used: 7450332.0, 7450333.0, 7450339.0 and 7450340.0.
These four load cell serial numbers were assigned to Customer X’s weighbridge 1. The
remaining assignment of load cell serial numbers per weighbridge was conducted as follows:

• Customer X’s weighbridge 2 was defined as having almost the same serial numbers,
but instead of starting by 745, they start by 755;

• Customer Y’s weighbridge 1 was defined as having almost the same serial numbers,
but instead of starting by 745 or 755, they start by 765;

• Customer Y’s weighbridge 2 was defined as having almost the same serial numbers,
but instead of starting by 745 or 755 or 765, they start by 775.

At this point, the data is split in four datasets, one per weighbridge and now, the main
goal is to export that data into JSON files with the already aforementioned format. This
exporting process followed, at a high level, Algorithm 14, with the final goal to export all
the data to the necessary files.

The process described in Algorithm 14 can be explained as follows:

• The first step is to initialize the array that will hold the generic attributes for each of
the weighings, one per index and initialize the object that will map a load cell serial
number to the weights measured by it in each weighing, one weight per index;

• After initializing the required variables, the algorithm iterates through each of the
rows existent in weighbridge data and for each one:

– For each of the load cells existent in that weighing, extract its weight and append
it to the array associated with that load cell serial number;

– Append the generic attributes required (scaleStatus, terminalRestartValue) to
the array of generic attributes for the weighbridge.

5.1. Experiment Setup 103

• Write the array of generic attributes collected to a file, whose name will have the format
weighbridge serial number.json, where weighbridge serial number is the value received
as input;

• For each of the load cells existent in this weighbridge, collect its weighings data
from loadcell data and write that array into a file, whose name will have the format
loadcell serial number.json, where loadcell serial number is the current value in the
loop.

Algorithm 14: Export process of the data to the correct files
Input: weighbridge data, weighbridge serial number,

weighbridge loadcell serial numbers

1 weighbridge generic attributes← [] ;
2 loadcell data← {} ;
3 foreach loadcell serial number ∈ weighbridge loadcell serial numbers do
4 loadcell data[loadcell serial number]← [] ;
5 end
6 foreach row ∈ weighbridge data do
7 foreach loadcell serial number ∈ weighbridge loadcell serial numbers do
8 cellWeight← row[”loadcells”][loadcell serial number][”cellWeight”] ;
9 loadcell data[loadcell serial number].append(cellWeight) ;

10 end
11 generic attributes← {”scaleStatus” : row[”scaleStatus”], ”terminalRestartValue” :

row[”terminalRestartValue”]} ;
12 weighbridge generic attributes.append(generic attributes) ;

13 end
14 writeToFile(weighbridge serial number, weighbridge generic attributes) ;
15 foreach loadcell serial number ∈ weighbridge loadcell serial numbers do
16 writeToFile(loadcell serial number, loadcell data[loadcell serial number]) ;
17 end

At the end of the execution of this algorithm, all files that are required, i.e. four associated
with the four existent weighbridges and sixteen associated with the sixteen existent load cells,
are created and ready for use, which concludes the process of preparing and transforming
the original dataset to serve as the basis for the proof of concept.

To conclude this section, what is left is to characterize this dataset, so that values obtained
after the execution of the proof of concept can be compared with these values and ensure
that all weighing tickets were correctly transmitted.

5.1. Experiment Setup 104

Throughout this section, some of the metrics were already established, such as the fact that
there have to be 600 weighings in total, 300 per each station and 150 per each weighbridge.
Additionally, the number of weighing tickets with scaleStatus OK and FAULTY were also
already defined for each weighbridge. In order to complete this characterization and to
provide clearer evidence that the weighing tickets are correctly transmitted and stored, the
dataset will also be characterized in terms of the weight distribution for each weighbridge.
As it was referred in subsubsection 4.2.4, the Weighing Tickets API has capabilities to filter
weighing tickets by single weight value comparison and by weight interval comparison
and, with that in mind, the last metric to be used for the characterization of the dataset
is the distribution of the weight in the weighings in each weighbridge below an X value
(exclusive), between an X value (inclusive) and a Y value (exclusive) and, finally, above an Y
value (inclusive). Since any values that are chosen will correctly define the distribution of
weighings, for this exercise, X value was chosen to be 50 KG and the Y value was chosen
to be 1000 KG. So, in summary, when the weighing tickets are all submitted, its weighing
distribution has to comply with the following properties, for each weighbridge:

• There are N weighings with a total weight until 50 KG;

• There are M weighings with a total weight from 50 KG until 1000 KG;

• There are K weighings with a total weight from 1000 KG.

With this last characterization aspect of the dataset clearly defined, what remains is to
actually calculate the values of N, M and K for each weighbridge for later comparison. The
algorithm followed for this calculation is really simple:

• First it calculates the total weight for all the weighings of each weighbridge;

• After that, an object is declared which holds the number of weighings that fit in the
interval of that key. The possible keys are until50, from50 until1000 and from1000,
which are self-explanatory in what they represent;

• Then, the array of total weights is iterated for each weighbridge and, if the value of
total weight is lesser than 50 KG (exclusive), until50 is incremented; If the value of
total weight is greater than or equal to 50 KG, but lesser than 1000 KG (exclusive),
from50 until1000 is incremented; And, finally, if none of the previous conditions
match, from1000 is incremented.

Figure 15 illustrates the results obtained, showing the values for each weighbridge, from
where we can conclude that:

• Customer X’s weighbridge 1 has 28 weighings until 50 KG; 7 weighings from 50 KG to
1000 KG; And 115 weighings from 1000 KG;

5.1. Experiment Setup 105

• Customer X’s weighbridge 2 has 50 weighings until 50 KG; 16 weighings from 50 KG
to 1000 KG; And 84 weighings from 1000 KG;

• Customer Y’s weighbridge 1 has 15 weighings until 50 KG; 1 weighings from 50 KG to
1000 KG; And 134 weighings from 1000 KG;

• Customer Y’s weighbridge 2 has 37 weighings until 50 KG; 8 weighings from 50 KG to
1000 KG; And 105 weighings from 1000 KG.

Figure 15: Weight distribution over intervals for each weighbridge

The description of the dataset’s weight distribution concludes this section and now the
chapter focuses on the description of the process that was conducted to execute the proof of
concept, in the next section.

5.1.3 Experiment Execution

With both the experiment architecture, and the definition of the dataset preparation process
as well as the metrics that should be observed to perceive if the proof of concept was
successful or not, what remains to explain in the setup of the experiment is the actual way
how it was conducted, i.e., how each of the components were configured, how they were
ran and what additional actions where put in place in order to obtain the necessary results
to evaluate the correctness of the solution.

The first step that had to be done was to be aware of the architecture of the devices
that will run each of the software components. While the APIs will run in a laptop with
a x64 CPU architecture and thus, no change has to be made to their compilation process,

5.1. Experiment Setup 106

both the smart box communicator and the load cell communicator, will run in devices with
an Advanced RISC Machine (ARM) CPU architecture and so, they have to be instructed to
be compiled for those environments. This essentially means that the Docker containers
running the load cell communicators will have an ARM based image and that the smart box
communicator executable will be built/compiled targeting the ARM CPU architecture.

After correctly targeting the compilation step for the devices that existed, the next step
is to extract the Internet Protocol (IP) addresses of each of the devices, to be able to copy
the required files for execution and, additionally, to be able to configure the smart box
communicator with the capability to discover the host where the APIs are running. So, by
simply running i f con f ig in each of the device’s terminals, their IP address of the wireless
interface could be extracted. The results obtained were:

• The host where the APIs and the blockchain network run has an IP address of
192.168.1.231;

• pi1, the raspberry device where station X runs, has an IP address of 192.168.1.203;

• pi2, the raspberry device where station Y runs, has an IP address of 192.168.1.202.

With the IP information extracted, the next and final step before being able to ”boot up” the
cloud system is to generate the required public key certificates for use in the communication
and, since this step is being executed, certificates for all the other devices are also going to
be generated.

Figure 16 illustrates the hierarchy of public key certificates implemented. Essentially, there
is one root CA, which digitally signs the public key certificates for each of the required
entites: i) The Weighing Tickets API; ii) the Authentication & Management API; iii) both the
smart box communicators; And iv) all the load cells from each of the stations.

Figure 16: Hierarchy of the public key certificates

The generation process of these certificates was conducted using the OpenSSL’s Command
Line Interface (CLI) [54]. The key pair generation algorithm used for every entity was an

5.1. Experiment Setup 107

Elliptic Curve algorithm, which essentially provides the same security with a much smaller
key size.

The certificate generation can be viewed as a two-step process, since the second step of
the process is repetitive for each of the entities. The first step of the process was conducted
in the following way:

1. Generate an elliptic curve cryptographic key pair for the root CA;

2. Create a self-signed certificate for the root CA.

After generating the required artifacts for the root CA, the next step was to generate
certificates for the remaining entities. For each of the entities, the steps followed in the
certificate generation process were:

1. Generate an elliptic curve cryptographic key pair for the entity;

2. Generate a certificate signing request with the information of the entity;

3. Sign the certificate signing request of the entity with the root CAs private key, produc-
ing the entity’s certificate.

With the conclusion of the certificates’ generation process, the cloud system was ready to
be ”booted up”.

Figure 17 shows information on the running cloud system after a status check request,
which demonstrates that all of the required components are running, namely:

• The Authentication & Management API (poc auth api 1);

• The Weighing Tickets API (poc weighingtickets api 1);

• The Entities Database (mongo database);

• The Blockchain Network with five nodes:

– Node 1 (poc node1 1) and its Privacy Manager (poc txmanager1 1);

– Node 2 (poc node2 1) and its Privacy Manager (poc txmanager2 1);

– Node 3 (poc node3 1) and its Privacy Manager (poc txmanager3 1);

– Node 4 (poc node4 1) and its Privacy Manager (poc txmanager4 1);

– Node 5 (poc node5 1) and its Privacy Manager (poc txmanager5 1).

5.1. Experiment Setup 108

Figure 17: Status information of the cloud system

With the cloud system running, the next step that had to be made is the registration of
the customers and their correspondent stations, so that the cloud system is aware of their
existence and allows the registration and subsequent query of weighing tickets. To be able
to perform the registration of customer X and Y, it has to be remembered that the user
that makes these requests has to be an administrator, which is already registered at cloud
system ”boot up”. So, three sequential steps were put in place to register the customers,
remembering that the IP address of the cloud system is the 192.168.1.231 and that the
Authentication & Management API listens in port 3001:

1. Perform a POST request to https://192.168.1.231:3001/authorization with the administra-
tor’s credentials in order to obtain access and refresh tokens;

2. Including the access token in the headers, perform a POST request to
https://192.168.1.231:3001/customers with customer X’s information, namely its name,
the email of its administrator and chosen password, the address of the blockchain
node for this customer, which is node 2, the url for accessing the node and the public
key of its privacy manager. These three last blockchain-related informations are all
provided on node creation;

3. Including the access token in the headers, perform a POST request to
https://192.168.1.231:3001/customers with customer Y’s information, namely its name,
the email of its administrator and chosen password, the address of the blockchain
node for this customer, which is node 4, the url for accessing the node and the public
key of its privacy manager. These three last blockchain-related informations are all
provided on node creation.

With both customers registered in the system, the goal now is to register their stations as to
make possible the communication from the stations’ smart boxes. As a side note, it is worth
mentioning that the first action of any user or customer in the system has to be to update
its password, which is included as an additional security measure due to the fact that the

5.1. Experiment Setup 109

password is chosen by the system administrator. After changing both customers’ passwords,
the execution of this experiment goes on to the registration of the stations and, assuming
that an access token for each customer already exists, since they are already authenticated,
the two following steps were:

1. Including the customer X’s administrator access token, perform a POST request
to https://192.168.1.231:3001/stations with the information on its station, namely the
station’s descriptive name, the station’s public key for authentication purposes, the
station’s blockchain node’s address, which is node 3, the url for accessing the node and
the public key of its privacy manager. These three last blockchain-related informations
are all provided on node creation;

2. Including the customer Y’s administrator access token, perform a POST request
to https://192.168.1.231:3001/stations with the information on its station, namely the
station’s descriptive name, the station’s public key for authentication purposes, the
station’s blockchain node’s address, which is node 5, the url for accessing the node and
the public key of its privacy manager. These three last blockchain-related informations
are all provided on node creation.

With these last two steps, the registration of entities in the cloud system is concluded and,
as Figure 18 shows, there are two stations known to the cloud system in the database, station
X and station Y, which have their unique system identifiers.

Figure 18: Identifiers of the stations, X and Y

After concluding the entity registration step, the process continued with the configuration
of the smart box communicator for each of the stations following the configuration syntax
defined in Table 18: SmartBox Configurations.

Table 19 describes the values assigned to each of the configurable attributes in both the
smart box of station X and Y. Obviously, the certificate files that identify the smart box
have different contents from station X and Y, but the path to that certificate is exactly the
same in both the smart boxes. Additionaly, the station configuration parameters are not
present in this table since they almost completely differ from one station to the other and so,
those parameters will be presented separately. Despite that, aside from the parameters that
identify the certificate and key files, as well as the hosts and ports where the components
listen, which are self-explanatory, there are some parameters worth further explaining such
as the ones that comprise the fault-tolerance mechanism.

5.1. Experiment Setup 110

As it can be seen in Table 19, the communicator attempts to submit weighing tickets at
most three times, with a 5 second interval between those submissions and, if it fails all
those submissions, the ticket is put into a pending state. Regarding the weighing tickets
that are in a pending state, the communicator attempts to resubmit them at most 5 times,
with a 10 second interval between submission and, if the submission fails those 5 times, the
weighing ticket is then put in a failed state, where it has to manually be checked for further
resubmission.

Name Value

host 127.0.0.1
port 8000

certpath
Read from the credentials folder in a

file named smartbox.crt.pem

Sm
ar

t
B

ox

keypath
Read from the credentials folder in a

file named smartbox.key.pem

token path
Located in the config folder

in the file tokens.json

ticket info path
Located in the app data folder

in the file ticket info.json

pending path
Located in the app data folder

in the file pending.json

failed path
Located in the app data folder

in the file failed.json
max pending submissions 5 submissions

resubmission interval 5 seconds
max retries 3 retries

A
pp

pending interval 10 seconds

host 192.168.1.231

port 3001

A
ut

h
A

PI

pubkeypath
Read from the credentials folder

from file jwt.pub.key

C
A certpath

Read from the credentials folder
from file ca.crt.pem

host 192.168.1.231

Ti
ck

et
s

A
PI

port 3000

Table 19: Common configuration parameters of the smart boxes from station X and Y

5.1. Experiment Setup 111

Aside from the common configuration parameters assigned to either station X’s smart box
communicator and station Y’s smart box communicator, there is a major difference in the
station section of the configurations.

Table 20 shows the configuration parameters that were passed to the smart box communi-
cator associated with station X in the station section of the parameters, i.e, the one running
in pi1. As it can be seen in the table, the id parameter is equal to the station X identifier
provided in Figure 18. Additionally, the station’s private and public keys for authentication
purposes are read from the files indicated in the table and the smart box’s serial number is
160690.

Name Value

id 5fad74f075c459001915bb8d

key
Read from the credentials folder

from file station.jwt.key.pem

keypub
Read from the credentials folder
from file station.jwt.key.pub.pem

terminal 160690

St
at

io
n

weighbridges * (described below)

Table 20: Configuration of the station section of station X’s smart box communicator

The weighbridges parameter is hard to describe in a table format since it is an object,
thus it is provided in the configuration file as follows:

1 weighbridges:

2 P191021852:

3 - id: ”7450332.0”

4 address: 127.0.0.1

5 port: 8888

6 - id: ”7450333.0”

7 address: 127.0.0.1

8 port: 8889

9 - id: ”7450339.0”

10 address: 127.0.0.1

11 port: 8890

12 - id: ”7450340.0”

13 address: 127.0.0.1

14 port: 8891

15 P220120900:

16 - id: ”7550332.0”

5.1. Experiment Setup 112

17 address: 127.0.0.1

18 port: 8892

19 - id: ”7550333.0”

20 address: 127.0.0.1

21 port: 8893

22 - id: ”7550339.0”

23 address: 127.0.0.1

24 port: 8894

25 - id: ”7550340.0”

26 address: 127.0.0.1

27 port: 8895

The above configuration essentialy tells the smart box communicator that it has the
capability to monitor two weighbridges, with serial numbers P191021852 and P220120900,
which both have four load cells each. For each of the four load cells in each weighbridge,
their serial number (id), the address and the port where they listen are provided. The
address in this case is the local host, since the loadcells, running in Docker, also transmit
their traffic to the local host’s port specified in this configuration file

Table 20 shows the configuration parameters that were passed to the smart box communi-
cator associated with station Y in the station section of the parameters, i.e, the one running
in pi2. As it can be seen in the table, the id parameter is equal to the station Y identifier
provided in Figure 18. Additionally, the station’s private and public keys for authentication
purposes are read from the files indicated in the table and the smart box’s serial number is
270100.

Name Value

id 5fad74ac75c459001915bb8c

key
Read from the credentials folder

from file station.jwt.key.pem

keypub
Read from the credentials folder
from file station.jwt.key.pub.pem

terminal 270100

St
at

io
n

weighbridges * (described below)

Table 21: Configuration of the station section of station Y’s smart box communicator

Again, the weighbridges parameter is hard to describe in a table format, thus it is
described in the following excerpt:

5.1. Experiment Setup 113

1 weighbridges:

2 P141140200:

3 - id: ”7650332.0”

4 address: 127.0.0.1

5 port: 8888

6 - id: ”7650333.0”

7 address: 127.0.0.1

8 port: 8889

9 - id: ”7650339.0”

10 address: 127.0.0.1

11 port: 8890

12 - id: ”7650340.0”

13 address: 127.0.0.1

14 port: 8891

15 P300200111:

16 - id: ”7750332.0”

17 address: 127.0.0.1

18 port: 8892

19 - id: ”7750332.0”

20 address: 127.0.0.1

21 port: 8893

22 - id: ”7750332.0”

23 address: 127.0.0.1

24 port: 8894

25 - id: ”7750332.0”

26 address: 127.0.0.1

27 port: 8895

The above configuration essentialy tells the smart box communicator that it has the
capability to monitor two weighbridges, with serial numbers P141140200 and P300200111,
which both have four load cells each. For each of the four load cells in each weighbridge,
their serial number (id), the address and the port where they listen are provided. The
address in this case is the local host, since the loadcells, running in Docker, also transmit
their traffic to the local host’s port specified in this configuration file.

After correctly configuring each of the stations with the adequate parameters, the only
remaining task to perform is to copy the dataset generated in Subsection 5.1.2 to the appro-
priate directories, where the data will be read by the smart box and load cell communicators
in order to build and transmit the weighing tickets.

5.1. Experiment Setup 114

As it may be recalled, in Subsection 5.1.2, 20 files were generated, one per weighbridge,
totalling 4 and one per load cell, totalling 16 files. So, in this step, by using the tool scp
(Secure Copy), which essentially copies files from one host to the other through the Secure
Socket Shell (SSH) protocol, the files were adequately put in their corresponding directories,
which means that:

• The files from Station X’s weighbridges, called P191021852.json and P220120900.json,
were copied to the smart box communicator workspace, in pi1;

• The files from Station X’s load cells, called 7450332.0.json, 7450333.0.json, 7450339.0.json,
7450340.0.json, 7550332.0.json, 7550333.0.json, 7550339.0.json, 7550340.0.json, were copied
to the load cells communicators workspace, in pi1;

• The files from Station Y’s weighbridges, called P141140200.json and P300200111.json,
were copied to the smart box communicator workspace, in pi2;

• The files from Station Y’s load cells, called 7650332.0.json, 7650333.0.json, 7650339.0.json,
7650340.0.json, 7750332.0.json, 7750333.0.json, 7750339.0.json, 7750340.0.json, were copied
to the load cells communicators workspace, in pi2.

At this point, the communicators in both of the stations were executed, since they already
had all the configurations and data required to transmit the weighing tickets. The ”boot
up” of the load cell communicators just required an action to start all the Docker containers.
The load cells from station X (pi1) can be seen running in Figure 19 and the load cells from
station Y (pi2) can be seen running in Figure 20.

Figure 19: Load cells from station X active

5.1. Experiment Setup 115

Figure 20: Load cells from station Y active

After the load cells are running in each station, the smart box communicators can also be
executed in each of the stations. The execution of each of these communicators is the same
in both the stations, since essentially, a script is run that:

1. Launches an instance of the communicator with the –submit pending flag, which is the
instance that will continuously look for pending tickets to transmit;

2. Continuously, launches an instance of the communicator that emits a weighing ticket
from the first weighbridge, waits for three seconds, launches an instance of the
communicator that emits a weighing ticket from the second weighbridge and waits for
three seconds.

Since all the required software components are already running, the next step is to
introduce some mechanism to demonstrate that the communication between them is secure
and, in this case, a packet sniffer which can intercept packets that are transmitted in the
network was used, namely Wireshark [55].

An instance of Wireshark was ran in each of the devices running the smart box commu-
nicators, pi1 and pi2, listening in the loopback network, which means that it will listen in
the localhost, which is where the smart box communicator communicates with the load cell
communicators and another instance of Wireshark was ran in the laptop running the cloud
system, listening in the wireless network 192.168.1.0/24, where the smart box communicators
communicate with the cloud system.

Finally, in order to be able to demonstrate if the fault-tolerance mechanism was working
as requested, the Weighing Tickets API was stopped for approximately 30 seconds, in order
to ensure that the smart box communicators could not transmit weighing tickets in that
period of time, putting the fault-tolerance mechanism to test. After that period of time of
approximately 30 seconds, the Weighing Tickets API was started again and the execution
resumed until there were no more weighing tickets to transmit from the data, at which point,
the communicators in pi1 and pi2 were stopped, leaving only the cloud system running in
order to be able to perform queries to the Weighing Tickets API.

The result of the queries that were made, as well as significant aspects retrieved from
the captures made by Wireshark and screenshots from the logs produced by the smart box

5.2. Results 116

communicators when they were in fault-tolerance mode, are presented in the next section as
the results from this proof of concept, being later discussed in terms of their correctness and
validity.

5.2 results

The purpose of this section is to illustrate and provide the results obtained in this proof
of concept both during and after its execution. During its execution, logs produced by the
smart box communicators as well as by the weighing tickets API and screenshots from the
packet captures performed in both networks are shown to facilitate the evaluation of the
solution during communication. After the execution, queries to the weighing tickets API
are made and their results are presented as to facilitate the evaluation of the data that the
blockchain ledger holds, i.e., if the data it holds has the same characteristics of the original
dataset, or not.

Following the previously defined order, the results are presented first during execution
and then after the execution. In the first case, the results shown will be related with
secure communication, evidence of ticket registration and finally the application of the
fault-tolerance mechanism by the smart box comunicators.

5.2.1 Weighing Ticket Building and Registration

The first result obtained at the beggining of the weighing tickets communication process
is, of course, the information that demonstrates the registration of weighing tickets, i.e, the
logs indicating weighing ticket transmission and reception by the smart box communicators
and the weighing tickets API, respectively. Figure 21 and Figure 22 show the logs produced
on ticket transmission and recognition of registration in station X and Y, respectively.
Figure 23 shows information produced on the weighing tickets API upon ticket reception
and registration in the ledger.

5.2. Results 117

Figure 21: Logs indicating weighing ticket transmission and registration at Station X

Figure 22: Logs indicating weighing ticket transmission and registration at Station Y

Figure 23: Logs indicating weighing ticket reception and registration at the Weighing Tickets API

Additionally, in the previous figures, it could be seen the statement that the smart box
communicators are receiving weights from the load cells. Figure 24 illustrates the logs
produced on the load cell communicators when receiving a weight request.

Figure 24: Logs indicating the reception of weight requests in the load cells

5.2. Results 118

5.2.2 Fault Tolerant Communication

After providing the results produced on weighing ticket submission and, continuing in
that line of thought, the results obtained when the smart box communicators entered the
fault-tolerance mode are now presented. Figure 25 shows the logs produced when station X
entered the fault-tolerance mode and as it can be seen, three attemps are made to submit a
weighing ticket (value given in the smart box’s communicator configurations) and, when
those attempts are all spent, the ticket is put into a pending state.

Figure 25: Logs showing station X in fault-tolerance mode

Figure 26 shows the logs produced when station Y is in fault-tolerance mode, and despite
having similar behavior to what was seen in Figure 25, it can also be seen that an attempt to
submit an already pending ticket was performed, but it could not be transmitted.

Figure 26: Logs showing station Y in fault-tolerance mode

After some time, the weighing tickets API is back up again and it is expected that the
communicators are able to exit fault-tolerance mode and continue submitting weighing
tickets, including the ones that are pending. Figure 27 and Figure 28 show the logs produced
when the communicators resume communication in station X and Y, respectively, after being
in fault-tolerance mode and, essentially, what can be perceived is that normal weighing
ticket submission is happening again, as well as the submission of tickets that were in a
pending state and now have to be transmitted.

5.2. Results 119

Figure 27: Resuming normal execution in station X with pending tickets submission

Figure 28: Resuming normal execution in station Y with pending tickets submission

Additionally, in order to provide clearer results of the fault-tolerance mechanism working,
Figure 29 and Figure 30, show the contents of the JSON file which holds pending tickets
prior entering fault-tolerance mode, when the communicators are in fault-tolerance mode
and finally, when the communicators resume normal communication, with the goal to
demonstrate that in the first stage there are no pending weighing tickets to submit, then
in the second stage there is one pending ticket to submit in each station and, finally, after
pending tickets are submitted in each station none is left.

Figure 29: Evolution of pending tickets in station X

5.2. Results 120

Figure 30: Evolution of pending tickets in station Y

5.2.3 Secure Communication

Having presented the results that demonstrate the registration of weighing tickets from either
station, as well as the application of the fault-tolerance mechanism, there is one significant
aspect of the communication that is left to cover, which is the secure communication, both
between the smart box and load cell communicators, as well as between the smart box
communicators and the cloud system APIs.

Figure 31 and Figure 32 illustrate a communication excerpt between the smart box
communicator and the load cells in station X and station Y, respectively. In those figures,
DTLS exchanges are highlighted, since the client sends its hello message, the certificates are
verified, until the server terminates its hello, terminating with the exchange of application
data. Other client hellos are also present since it has to be remembered that the smart box
communicator communicates with up to eight load cells, four per weighbridge, in each
station.

Figure 31: Excerpt of communication in the loopback network of station X’s pi1

5.2. Results 121

Figure 32: Excerpt of communication in the loopback network of station Y’s pi2

Although the two previous figures illustrate a DTLS data exchange process, some addi-
tional aspects can be further highlighted and thus, Figure 33 and Figure 34 show the actual
contents of an application data packet, where the first is a packet being sent from the smart
box communicator to a load cell in station X and the second is a packet being sent from
a load cell to the smart box communicator in station Y. Additionally, the figures clearly
highlight the fact that data exchange is encrypted, illustrated in the parameter Encrypted
Application Data inside the Datagram Transport Layer Security section of the packet.

Figure 33: Sample packet captured in Station X’s pi1 loopback network

5.2. Results 122

Figure 34: Sample packet captured in Station Y’s pi2 loopback network

Finally, to end the presentation of results for secure communication, Figure 35 illustrates
TLS communication between station Y’s pi2 and the cloud system APIs in the first exchange,
as well as between station X’s pi1 and the cloud system APIs in the second exchange.
Additionally, Figure 36 illustrates an actual sample of application data packet, where pi1
transmits a packet to the weighing tickets API, whose data is encrypted as demonstrated by
the parameter Encrypted Application Data in the Transport Layer Security section.

Figure 35: Excerpt of communication in the wireless network 192.168.1.0/24

5.2. Results 123

Figure 36: Sample packet captured in wireless network 192.168.1.0/24

5.2.4 Querying and Applicational Logic Validation

With the results from the secure communication point of view presented, the demonstration
that belongs to the more communicational aspect of this proof of concept is concluded and
what remains now is to present the results obtained after the execution, done by querying
and understanding the characteristics of the data that is stored in the blockchain ledger as to
perceive if there were no communication and applicational logic problems in the execution
of the proof of concept and if the weighing tickets were all stored correctly, since it is already
known that they were, at the very least, securely transmitted.

In summary, the results that are left to show should provide the capability to verify that all
the weighing tickets from the original data were transmitted (600), that each of the stations
transmitted 300 weighing tickets, and that there are 150 tickets per weighbridge. Additionally,
the remaining results should also provide the ability to verify intrinsic characteristics of the
data as established in Subsection 5.1.2, such as how many weighing tickets had a scaleStatus
of OK, or how many tickets had a total weight between 50 KG and 1000 KG for example.

Prior starting the illustration of query results, it is worth mentioning that all requests were
made using a tool called Postman [56], which allows the issuing of requests to REST APIs,
receiving the responses in clear user interfaces, visually ideal to demonstrate results.

The first result to be presented is the amount of weighing tickets associated with each
station since that can clarify if, at least, all weighing tickets from the different stations were
correctly transmitted. Figure 37 and Figure 38 show the result of issuing two requests to
the weighing tickets API, the first one to collect and count all weighing tickets belonging to
station X and the second one to collect and count all weighing tickets belonging to station Y.
Both requests were made to the URL https://192.168.1.231:3000/tickets?count=true with the
sole difference that, in the first case an authorization token from customer X’s administrator

5.2. Results 124

was used and, in the second case an authorization token from customer Y’s administrator
was used. As it can be seen in the figures, both stations have 300 weighing tickets associated
to them.

Figure 37: Total of weighing tickets associated with station X

Figure 38: Total of weighing tickets associated with station Y

The next step is to ensure that the weighing tickets per station are correctly distributed,
i.e., that each weighbridge from each station has 150 weighing tickets associated with them.

Figure 39 illustrates the result obtained when issuing a request to the URL
https://192.168.1.231:3000/tickets?count=true&scale serial number=P191021852 with customer
X’s authorization token, which requests the API to collect and count all weighing tickets that
are associated with weighbridge P191021852. As it can be seen this weighbridge has 150

weighing tickets associated to it.

5.2. Results 125

Figure 39: Total of weighing tickets associated with station X and its weighbridge P191021852

Since the remaining tests to perform in the 3 weighbridges that are left, are really similar
to the one presented in figure 39, the remaining tests and respective results are provided
in Appendix A, in Section A.1 (see figures 46, 47 and 48), which provide evidence that the
global results show the correct amount of weighing tickets per weighbridge.

Having provided the results that show the correct amount of weighing tickets per station
and per weighbridge, the next step is to demonstrate that the intrinsic characteristics of the
original data are retained.

Beggining with the scaleStatus attribute, Figure 40 shows the response to a request to URL
https://192.168.1.231:3000?count=true&scale serial number=P191021852&scale status=OK, which
collects and counts all weighing tickets associated with station X’s weighbridge P191021852

which have a scaleStatus of OK.

Figure 40: Total weighing tickets with status OK associated with station X and weighbridge
P191021852

5.2. Results 126

In Section A.2, located in Appendix A, an equal test was performed for the remaining 3

weighbridges as the one described for figure 40 (see figures 49, 50 and 51) and these global
results show that the initial characteristics in terms of the weighing tickets’ scaleStatus
attribute remain unchanged.

The characteristic that is left to demonstrate is the total weight of the weighing tickets,
i.e., showing the results that allow to ensure that the distribution of the total weight in the
weighing tickets remain unchanged for values under 50 KG, from 50 KG until 1000 KG and
from 1000 KG, for each weighbridge.

Figure 41 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P191021852&until weight=50, which
collects and counts all weighing tickets associated with station X’s weighbridge P191021852

which have a total weight under 50 KG.

Figure 41: Total weighing tickets with a total weight until 50 KG (exclusive) associated with station
X and weighbridge P191021852

Figure 42 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P191021852&from weight=50
&until weight=1000, which collects and counts all weighing tickets associated with station
X’s weighbridge P191021852 which have a total weight equal or above 50 KG and under
1000 KG.

5.2. Results 127

Figure 42: Total weighing tickets with a total weight between 50 KG (inclusive) and 1000 KG
(exclusive) associated with station X and weighbridge P191021852

Figure 43 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P191021852&from weight=1000, which
collects and counts all weighing tickets associated with station X’s weighbridge P191021852

which have a total weight equal or above 1000 KG.

Figure 43: Total weighing tickets with a total weight from 1000 KG (inclusive) associated with station
X and weighbridge P191021852

Similar tests to the ones presented in figures 41, 42 and 43 were performed for all remaining
3 weighbridges recognized in the system, which are shown in Appendix A, in Section A.3
(see figures 52 to 60). These set of tests and results allow to make evidence that the weight
distribution per weighbridge in the aforementioned intervals is retained.

To conclude this section of illustration and demonstration of the results obtained in the
execution of the proof of concept, an additional aspect is presented next, more related to the

5.2. Results 128

guarantee of confidentiality between customers, i.e., the fact that a certain customer cannot
access another customer’s data.

Figure 44 illustrates the result obtained when an user possessing an access token associated
with customer X, attempts to collect the tickets issued by station Y’s weighbridge P141140200,
by issuing a request to URL https://192.168.1.231:3000/tickets?scale serial number=P141140200.
As it can be seen in the figure, nothing is returned, since the weighbridge is not associated
with the authenticated user.

Figure 44: Result obtained when consulting customer Y’s weighing tickets from an user belonging
to customer X

Figure 45 illustrates the result obtained when an user possessing an access token associated
with customer Y, attempts to collect the tickets issued by station X’s weighbridge P220120900,
by issuing a request to URL https://192.168.1.231:3000/tickets?scale serial number=P220120900.
As it can be seen in the figure, nothing is returned, since the weighbridge is not associated
with the authenticated user.

Figure 45: Result obtained when consulting customer X’s weighing tickets from an user belonging
to customer Y

5.3. Discussion 129

These two last figures conclude the results demonstration process, since it has gone
through the communication aspects of the solution, such as the ticket transmission and
registration, the fault-tolerance mechanism and the security applied in the communication
as well as the application logic correctness of the solution since it correctly stores all the
weighing tickets transmitted and allows easy querying of them, while not permitting the
access of one customer to another customer’s weighing tickets.

In the next section, the results presented in this section are thoroughly discussed and
compared to what should be obtained in order to evaluate the correctness and validity of
the results that were shown.

5.3 discussion

The purpose of this discussion is to evaluate the results presented in the previous section,
comparing them with the objectives for this solution in order to clearly state whether the
solution complies with the goals or not. Some goals are more related to the broad aspects of
the solution, such as:

• The ability to establish a secure communication between devices for the buiding
process and transmission of weighing tickets;

• The capability of the communication system to be fault tolerant, i.e., ensure one
delivery per weighing ticket;

• The development of a cloud system capable of correctly receiving, storing and querying
weighing tickets in the ledger.

Additionally, there are other goals that must be upheld, which relate to more specific
aspects of the solution, such as:

• The retainment of all the characteristics of the data that is registered in the ledger, i.e.,
correctly registering the weighing tickets as they were created, without change to the
quantity or the actual content of them;

• The security provided by the network structure, which must ensure that each customer
only has access to its tickets.

In order to verify that the solution retains the characteristics of the weighing tickets that
are sent, it is worth remembering the structure of the experiment given in Subsection 5.1.1
as well as the description provided on the dataset that is used for the proof of concept in
Subsection 5.1.2 in order to compare it with the results obtained. Essentially, the experiment
and the dataset can together be described as follows:

5.3. Discussion 130

• Two customers exist. Customer X and Customer Y. Each of these customers possess
one station, station X and station Y, respectively;

• Station X holds two weighbridges with four load cells each. The serial numbers of
station X’s weighbridges are P191021852 and P220120900;

• Station Y holds two weighbridges with four load cells each. The serial numbers of
station Y’s weighbridges are P141140200 and P300200111;

• The dataset used for the experiment contains 600 weighing tickets. 300 associated with
weighbridges belonging to station X and 300 associated with weighbridges belonging
to station Y;

• Each of the weighbridges is associated with exactly 150 weighing tickets;

• Station X’s weighbridge P191021852 has 147 weighing tickets with a scaleStatus of OK,
3 with a scaleStatus of FAULTY;

• Station X’s weighbridge P220120900 has 148 weighing tickets with a scaleStatus of OK,
2 with a scaleStatus of FAULTY;

• Station Y’s weighbridge P141140200 has 150 weighing tickets with a scaleStatus of OK,
0 with a scaleStatus of FAULTY;

• Station Y’s weighbridge P300200111 has 146 weighing tickets with a scaleStatus of OK,
4 with a scaleStatus of FAULTY;

• Station X’s weighbridge P191021852 has 28 weighing tickets with a total weight until
50 KG (exclusive), 7 with a total weight from 50 KG (inclusive) to 1000 KG (exclusive)
and 115 with a total weight from 1000 KG (inclusive);

• Station X’s weighbridge P220120900 has 50 weighing tickets with a total weight until
50 KG (exclusive), 16 with a total weight from 50 KG (inclusive) to 1000 KG (exclusive)
and 84 with a total weight from 1000 KG (inclusive);

• Station Y’s weighbridge P141140200 has 15 weighing tickets with a total weight until
50 KG (exclusive), 1 with a total weight from 50 KG (inclusive) to 1000 KG (exclusive)
and 134 with a total weight from 1000 KG (inclusive);

• Station Y’s weighbridge P300200111 has 37 weighing tickets with a total weight until
50 KG (exclusive), 8 with a total weight from 50 KG (inclusive) to 1000 KG (exclusive)
and 105 with a total weight from 1000 KG (inclusive).

5.3. Discussion 131

Having clearly defined the goals and the characteristics to check for in the results, the
discussion on the outcomes obtained by comparison with what should be the outcome can
be initiated.

In a first instance, the solution had to be capable of building and trasmitting weighing
tickets, securely, i.e., granting the confidentiality and authenticity of the weighing tickets
it sends and, in the results provided there are figures that can actually demonstrate ticket
building and secure transmission, namely figures 21 to 24 and figures 31 to 36, which
show the transmission of weights from the load cells to the smart box communicators, the
transmission of the weighing ticket from the smart box communicator and reception by the
weighing tickets API and, finally, that the packets that comprise those transmissions all have
their application data encrypted.

While it can be seen that the communicators that operate in the stations are able to
correctly and securely transmit the weighing tickets, it has to be taken into account that it
cannot be expected a 100% uptime of the weighing tickets API and, thus, a fault-tolerance
mechanism had to be put in place and it has to be verified. Figures 25 to 30 demonstrate the
correctness of the fault-tolerance mechanism, since in the first two figures, it can be seen that,
in the moment the weighing tickets API does not respond, the fault-tolerance mechanism
immediately kicks off, attempting to resubmit tickets and, when it cannot be done after a
configurable number of retries, putting them into a pending state. Additionally, Figures
27 and 28 show the submission of weighing tickets that were in a pending state, which is
the required and expected behaviour of the fault tolerance mechanism. Finally, figures 29

and 30 provide evidence of this mechanism’s validity, since they show that, at first neither
of the stations had pending weighing tickets to submit, then they both have at least one
and, finally they have none again, since the pending tickets were already submitted, which
definitively demonstrates that both the RETRY and RECOVER stages of the fault tolerance
mechanism are working.

With the demonstration of the correctness of the communication system, what is left to
demonstrate is the capability of the weighing tickets API to provide rich querying on the
weighing tickets that are stored in the ledger and, of course, provide the evidence required
to ensure that the application logic of both the communicators and the weighing tickets
API are well developed and maintain the exact characteristics of the weighing tickets that
pass through them. This demonstration of retainment of charachteristics can be done by
essentially providing evidence that the weighing tickets stored in the ledger comply with
the data characteristics defined above and in Subsection 5.1.2.

The first characteristic to prove is the actual amount of weighing tickets that were stored
in the ledger, since it provides immediate clarity in the capability of the communicators to
transmit all weighing tickets. Figures 37 and 38 demonstrate that the total count of weighing
tickets for station X and Y, respectively is 300 for both, which totals 600. This demonstrates

5.3. Discussion 132

that 600 weighing tickets were transmitted, and that of those 600, 300 were transmitted
from each of the stations existent in the system. Additionally, figure 39 and figures 46 to 48

(Section A.1 in Appendix A) illustrate and demonstrate that each of the four weighbridges
existent in the system (two from station X and two from station Y) are associated with 150

weighing tickets.
After demonstrating that the correct amount of weighing tickets per station and per

weighbridge were transmitted, it is now required to ensure that the characteristics of the
data were maintained, namely that the distribution of weighing tickets with a scaleStatus of
OK and that the distribution of weighing tickets with a total weight under 50 KG, from 50

KG to 1000 KG and above or equal to 1000 KG, remain unchanged.
Figure 40 and figures 49 to 51 (Section A.2 in Appendix A) illustrate the amount of

weighing tickets in each of the weighbridges that have a scaleStatus attribute value of OK.
For this characteristic, it was expected that: i) station X’s weighbridge P191021852 had 147

weighing tickets with a scaleStatus of OK, which is demonstrated in Figure 40; ii) station
X’s weighbridge P220120900 had 148 weighing tickets with a scaleStatus of OK, which is
demonstrated in Figure 49; station Y’s weighbridge P141140200 had 150 weighing tickets
with a scaleStatus of OK, which is demonstrated in Figure 50; And, finally iv) that station
Y’s weighbridge P300200111 had 146 weighing tickets with a scaleStatus of OK, which is
demonstrated in Figure 51.

In terms of dataset characteristics, only the distribution of total weighing in the weighing
tickets is left to discuss. For this specific characteristic, it was expected that: i) station X’s
weighbridge P191021852 had 28 weighing tickets with a total weight under 50 KG (exclusive),
7 weighing tickets with a total weight from 50 KG (inclusive) to 1000 KG (exclusive) and
115 weighing tickets with a total weight from 1000 KG (inclusive), which can be seen
demonstrated in figures 41, 42 and 43, respectively; ii) station X’s weighbridge P220120900

had 50 weighing tickets with a total weight under 50 KG (exclusive), 16 weighing tickets
with a total weight from 50 KG (inclusive) to 1000 KG (exclusive) and 84 weighing tickets
with a total weight from 1000 KG (inclusive), which can be seen demonstrated in figures 52,
53 and 54 (Section A.3 in Appendix A), respectively; iii) station Y’s weighbridge P141140200

had 15 weighing tickets with a total weight under 50 KG (exclusive), 1 weighing ticket with
a total weight from 50 KG (inclusive) to 1000 KG (exclusive) and 134 weighing tickets with
a total weight from 1000 KG (inclusive), which can be seen demonstrated in figures 55, 56

and 57 (Section A.3 in Appendix A), respectively; And, finally iv) station Y’s weighbridge
P300200111 had 37 weighing tickets with a total weight under 50 KG (exclusive), 8 weighing
tickets with a total weight from 50 KG (inclusive) to 1000 KG (exclusive) and 105 weighing
tickets with a total weight from 1000 KG (inclusive), which can be seen demonstrated in
figures 58, 59 and 60 (Section A.3 in Appendix A), respectively.

5.4. Summary 133

In terms of the goals that were initially established, there is only one aspect left to
demonstrate, which is the capability of the cloud system to correctly separate data of one
customer from the other, i.e., ensuring weighing tickets’ confidentiality between different
customers. Figures 44 and 45 demonstrate this exact notion since, in the first figure, a request
is made to the weighing tickets API with a customer X’s authorization token, in which
an attempt to consult weighing tickets from weighbridge P141140200, which belongs to
customer Y, is made. What can be seen in that figure is that the amount of weighing tickets
returned is 0, whilst it has already been seen that weighbridge P141140200 holds, in fact, 150

weighing tickets. The second figure, demonstrates the exact opposite, an attempt from an
authorized customer Y user to consult weighing tickets from weighbridge P220120900, which
belongs to costumer X, whose response is also 0 and no weighing tickets are returned. The
weighing tickets API returns an empty array instead of, for example, an unauthorized error
code because it is completely abstracted from weighbridge serial numbers. For example, in
the first case, while the user associated with customer X placed a serial number of a customer
Y’s weighbridge, what happens is that customer X’s stations do not possess weighing tickets
associated with that weighbridge in the smart contract and, thus no tickets are returned.

This last demonstration concludes the discussion on the results obtained in this proof of
concept, since all the results have been studied and discussed, which comply with the goals
that were defined.

5.4 summary

This chapter covered the preparation, execution and discussion of results of the proof of
concept that had the intent to demonstrate the capability of the proposed solution to comply
with the goals defined in the beggining of this dissertation.

The initial section of this chapter showed and explained the experiment architecture, i.e.,
the way how the proof of concept was assembled, specifically, which devices would be used
and which components would be used in each of the devices. Additionally, the structure of
the blockchain network used was also clarified, indicating the number of nodes that were
launched and to what entity they were associated with. After discussing the experiment
architecture, the preparation of the dataset that was used in the proof of concept was showed,
by describing the original set of weighings received, how they were transformed to serve
as basis for the experiment and how they were structured. Finally, the section concludes
with a clear description on the characteristics of the data after being completely transformed,
in order to facilitate later evaluation of the results obtained. With the dataset prepared
for execution, the chapter continues with the actual execution of the proof of concept,
by showing the characteristics of the devices, such as their IP address, by demonstrating
how the components were configured to run , both in the cloud system as well as in the

5.4. Summary 134

communication system and, finally, by showing the step-by-step execution of the proof of
concept, with an explanation per step on why it was included in the process.

In the second section of the chapter, all the results obtained from the proof of concept
were showed, in a complete illustration on all the functionalities provided by the solution,
such as the correct building and secure transmission of the weighing tickets, the application
of the fault tolerance mechanism, the adequate storage of weighing tickets in the blockchain
ledger and the rich querying system provided by the weighing tickets API.

Finally, the chapter ends (excluding this section) with a discussion on the correctness and
validity of the results obtained in the previous section. Essentially, a comparison is made
between the results that were expected and the ones that were obtained in order to assess if
the solution and the experiment were successful.

6

C O N C L U S I O N

This chapter concludes this dissertation, by overviewing the work done in a small summary
of the document and, finally, by indicating the prospect for possible future work that might
arise.

6.1 summary

The work performed along the writing of this dissertation can be essentially categorized in
three main areas, as previously stated in Chapter 1: Introduction:

1. Research, by having reviewed literature and the state of the art for the technologies
and concepts associated with the problem in study;

2. Development, by having proposed a clearly defined solution that might mitigate
problems & challenges offered either by the technologies or the problem themselves.
Additionally, it also includes the development stage, where the proposed solution is
actually implemented into tangible software components;

3. Evaluation, by having built an experiment capable of evaluating the solution that was
built in terms of its compliability with the initially proposed goals.

The first point presented, Research, is comprised by Chapter 1: Introduction and Chapter 2:
State of the Art. In the first chapter, problem assessment and definition is made by providing
the context and motivation for the creation of the project and by defining the objectives for the
project, which can be used as a measure of success of this dissertation. The second chapter,
with the context provided by the first one, explores the technologies that are relevant to the
creation of a solution capable of complying with the proposed goals, researching blockchain
and IoT technologies and their integration to a reasonable extent. First the chapter explores
IoT technologies, by reviewing and describing some of its most common applications as well
as the challenges that might arise from the development of solutions using such technologies.
After this initial contextualization on IoT, state of the art communication protocols and how

135

6.1. Summary 136

they can be secured were explored, namely by overviewing their characteristics in terms of
its communication type, pattern and paradigm as well as the underlying transport protocol.

Having discussed and explored IoT technologies, the chapter proceeds with the study
of blockchain technology, by presenting essential constructs and concepts of blockchain,
in order to provide insights on why that technology is suitable for the use case in study,
namely how it can ensure the weighing tickets’ immutability after they are put in the ledger
by the smart contract. Additionally, existent blockchain platforms were presented and
summarily described, such as Ethereum [23], Quorum [31], Hyperledger Fabric [29] and Corda
[30], allowing the establishment and definition of each platform’s unique characteristics and
how they approach blockchain-based applications.

Finally, the chapter ends with a small study in the integration of both tecnologies
(blockchain & IoT). First, it presents some possible improvements that the utilization of
blockchain brings to IoT applications, depending on the way how the technologies are
integrated, ranging from all-inclusive approaches where all data generated is sent through
the blockchain application, to less inclusive applications where only a select set of data
is actually put in the ledger. In the end, some real use cases of the integration of these
technologies are also presented with the goal to highlight the growing utilization of them.

The second point described, Development is essentially comprised by Chapter 3: Problem,
Challenges and Proposed Solution and Chapter 4: Development. The third chapter leans
more to the design and architecture part of the solution, since it explores the possible
problems and challenges that might arise and, finally, presents a solution capable of, in
some way, mitigating those challenges while, of course, complying with the established
goals. Furthermore, in this chapter, the technological choice for the components that are
part of the cloud system was also presented, indicating: i) the blockchain platform that was
going to be used, which was Quorum and why; ii) the database engine that was used; iii)
the programming language and framework used to develop the APIs; And, finally, iv) the
protocol definition for the secure communication between the devices that operate in the
weighing stations and the cloud system.

The fourth chapter, as its name suggests, explores the development of the solution that
was proposed, by exploring prior-implementation decisions that had to be made and the
actual implementation of each of the software components defined in the solution. The first
task was definitely to decide a number of aspects that directly impacted the development of
the solution, such as:

• The software components to be built, by analyzing the proposed solution and clearly
defining what components had to be built in order to comply with that solution;

• The structure of the blockchain network, i.e., how all its members were going to be
organized in order to promote data privacy;

6.1. Summary 137

• The requirements of the smart contract, which essentially defined what the smart
contract application had to be able to do to fully provide all the required functionality;

• How the complexity introduced by a blockchain-based application could be abstracted
from the end user;

• How the entities that participate in the system would authenticate themselves and,
furthermore, how they would authorize the requests that they made to the cloud
system APIs.

After clearly describing the decisions made for each of the aforementioned aspects, the
chapter goes on to describe the implementation process of each of the software components
that were built, namely:

• The authentication & authorization process, which explains how entities can authen-
ticate themselves in the cloud system and how they can be authorized when issuing
further requests;

• The Smart Contract, which possesses all the required functionality to manage weighing
ticket assets in the blockchain;

• The Data Models, which model the data relevant to the cloud system such as the entities
that participate in it and their attributes;

• The Cloud System APIs, where the implementation of the Authentication & Management
API and the Weighing Tickets API is shown, keeping in mind that while the first API
serves the purpose of enabling simple entity management and authentication, the
second API simplifies the management and manipulation of weighing tickets for each
entity;

• The Smart Box Communicator, which implements mechanisms to securely communicate
weighing tickets from the weighing stations to the blockchain, in a fault-tolerant
manner;

• The Load Cell Communicator, which implements a simple process to securely transmit
the weight it measures to the requesting Smart Box Communicator.

The presentation and description of the implementation process of each of the software
components ends the chapter, providing a clear insight on how the solution was built.

The third point presented, Evaluation can be directly associated to Chapter 5: Proof of
Concept, where an experiment is assembled to demonstrate the ability of the solution of
complying with the proposed objectives, beggining with an overview of the experiment, such
as its architecture, the dataset that was used and how the actual experiment was executed,

6.2. Future work 138

then the results extracted from that execution are shown and, finally, a discussion on the
validity and correctness of those results is done. It is worth mentioning that the goal of this
proof of concept was to demonstrate, functionality-wise, the capabilities of the developed
solution, such as its ability to securely transmit weighing tickets or the ability to facilitate the
querying of weighing tickets already registered, through the query system of the Weighing
Tickets API.

The main takeaway that can be noted with the conclusion of the proof of concept’s chapter
is that the solution that was built was capable of complying with all the proposed functional
goals for this dissertation.

6.2 future work

With the dissertation concluded, an analysis has to be made on the prospect for future work
that will be associated with this project. In functional and conceptual terms, the solution
presented here complies with all the requirements laid out in the beggining of the project,
however there will certainly be aspects more related to integration and optimization that
will still occur.

These aspects can be simply described in four essential points:

• The integration of the cloud system in a solution capable of fitting current systems
owned by the company, such as for example, replacing the authentication component
with a possible system the company already uses;

• The integration of the station communicators in real smart boxes and load cells, with
the capability of reading the weight measured by the sensors and building tickets from
that live data;

• The optimization of the load cell communicator, since this program will be run in
highly restrained devices, which might oblige a review of the structure and technology
used in the implementation of the program, but not its functionality and applicational
logic;

• Finally, the testing of the solution in a real-world scenario, instead of a simulated one.

These four last points define and summarize the tasks that this project may face from here
on out, with the assurance that, functionaly, it has already reached a good maturity level.

B I B L I O G R A P H Y

[1] WELMEC. European Cooperation in Legal Metrology. https://www.welmec.org, 2001.
[Online; Accessed 17-October-2020].

[2] Rolf H. Weber. Internet of Things - New security and privacy challenges. Computer Law
and Security Review, 26(1):23–30, 2010. ISSN 02673649. doi: 10.1016/j.clsr.2009.11.008.
URL http://dx.doi.org/10.1016/j.clsr.2009.11.008.

[3] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications. IEEE Communications Surveys and Tutorials, 17(4):2347–2376, 2015. ISSN
1553877X. doi: 10.1109/COMST.2015.2444095.

[4] Debasis Bandyopadhyay and Jaydip Sen. Internet of things: Applications and challenges
in technology and standardization. Wireless Personal Communications, 58(1):49–69, 2011.
ISSN 09296212. doi: 10.1007/s11277-011-0288-5.

[5] Ioannis Andrea, Chrysostomos Chrysostomou, and George Hadjichristofi. Internet
of Things: Security vulnerabilities and challenges. Proceedings - IEEE Symposium on
Computers and Communications, 2016-Febru(July):180–187, 2016. ISSN 15301346. doi:
10.1109/ISCC.2015.7405513.

[6] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey.
IEEE Transactions on Industrial Informatics, 10(4):2233–2243, 2014. ISSN 15513203. doi:
10.1109/TII.2014.2300753.

[7] Ibrar Yaqoob, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib Ibrahim Ab-
dalla Ahmed, Abdullah Gani, Muhammad Imran, and Mohsen Guizani. Inter-
net of Things Architecture: Recent Advances, Taxonomy, Requirements, and Open
Challenges. IEEE Wireless Communications, 24(3):10–16, 2017. ISSN 15361284. doi:
10.1109/MWC.2017.1600421.

[8] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security, privacy and trust
in Internet of things: The road ahead. Computer Networks, 76:146–164, 2015. ISSN
13891286. doi: 10.1016/j.comnet.2014.11.008. URL http://dx.doi.org/10.1016/j.comnet.

2014.11.008.

139

https://www.welmec.org
http://dx.doi.org/10.1016/j.clsr.2009.11.008
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1016/j.comnet.2014.11.008

bibliography 140

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787–2805, 2010. ISSN 13891286. doi: 10.1016/j.comnet.2010.
05.010. URL http://dx.doi.org/10.1016/j.comnet.2010.05.010.

[10] Samer Jaloudi. Communication protocols of an industrial internet of things environment:
A comparative study. Future Internet, 11(3), 2019. ISSN 19995903. doi: 10.3390/
fi11030066.

[11] Internet Engineering Task Force. Hypertext Transfer Protocol version 2. https://tools.

ietf.org/html/rfc7540, 2015. [Online; Accessed 5-January-2015].

[12] Internet Engineering Task Force. The Constrained Application Protocol. https://tools.

ietf.org/html/rfc7252, 2019. [Online; Accessed 5-January-2019].

[13] OASIS. MQTT - Message Queuing Telemetry Transport. http://docs.oasis-open.org/

mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, 2019. [Online; Accessed 5-January-2019].

[14] Internet Engineering Task Force. Tls - transport layer security. https://tools.ietf.org/

html/rfc8446, 2018. [Online; Accessed 21-October-2020].

[15] Internet Engineering Task Force. Dtls - datagram transport layer security. https:

//tools.ietf.org/html/rfc6347, 2012. [Online; Accessed 21-October-2020].

[16] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Journal for General
Philosophy of Science, 39(1), 2008. ISSN 09254560. doi: 10.1007/s10838-008-9062-0.

[17] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An
Overview of Blockchain Technology: Architecture, Consensus, and Future Trends.
Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017,
pages 557–564, 2017. doi: 10.1109/BigDataCongress.2017.85.

[18] MLS Dev. Blockchain architecture basics: Components, struc-
ture, benefits & creation. https://medium.com/@MLSDevCom/

blockchain-architecture-basics-components-structure-benefits-creation-beace17c8e77,
2019. [Online; Accessed 27-December-2019].

[19] Damien Cosset. What is in a block ? https://dev.to/damcosset/

blockchain-what-is-in-a-block-48jo, 2017. [Online; Accessed 27-December-2019].

[20] Ralph C. Merkle. Protocols for public key cryptosystems. Proceedings - IEEE Symposium
on Security and Privacy, (April 1980):122–134, 2012. ISSN 10816011. doi: 10.1109/SP.1980.
10006.

http://dx.doi.org/10.1016/j.comnet.2010.05.010
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347
https://medium.com/@MLSDevCom/blockchain-architecture-basics-components-structure-benefits-creation-beace17c8e77
https://medium.com/@MLSDevCom/blockchain-architecture-basics-components-structure-benefits-creation-beace17c8e77
https://dev.to/damcosset/blockchain-what-is-in-a-block-48jo
https://dev.to/damcosset/blockchain-what-is-in-a-block-48jo

bibliography 141

[21] Ralph C Merkle. Comments in 2012 about the 1979 paper: A Certified Digital Signature
A CERTIFIED DIGITAL SIGNATURE. 2012. URL http://www.merkle.com/papers/

Certified1979.pdf .

[22] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.
ISSN 15584593. doi: 10.1145/357172.357176.

[23] Ethereum. Proof of Stake - Ethereum. https://docs.ethhub.io/ethereum-roadmap/

ethereum-2.0/proof-of-stake/, 2019. [Online; Accessed 28-December-2019].

[24] Elli Androulaki, Artem Barger, Vita Bortnikov, Srinivasan Muralidharan, Christian
Cachin, Konstantinos Christidis, Angelo De Caro, David Enyeart, Chet Murthy, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,
Sharon Weed Cocco, and Jason Yellick. Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains. Proceedings of the 13th EuroSys Conference, EuroSys
2018, 2018-Janua, 2018. doi: 10.1145/3190508.3190538.

[25] The Linux Foundation. The hyperledger project. https://www.hyperledger.org/. [Online;
Accessed 28-December-2019].

[26] Nick Szabo. The Idea of Smart Contracts. https://nakamotoinstitute.org/

the-idea-of-smart-contracts/, 1990. [Online; Accessed 28-December-2019].

[27] Ethereum. Developer Resources. https://ethereum.org/developers/#getting-started,
2019. [Online; Accessed 3-January-2019].

[28] Hollander, Luit. The Ethereum Virtual Machine - How does it work? https://

medium.com/mycrypto/the-ethereum-virtual-machine-how-does-it-work-9abac2b7c9e,
2019. [Online; Accessed 3-January-2019].

[29] Hyperledger Fabric. Smart contracts and chaincode. https://hyperledger-fabric.

readthedocs.io/en/release-1.4/smartcontract/smartcontract.html, 2019. [Online; Ac-
cessed 3-January-2019].

[30] R3 Foundation. Corda Technical White Paper. https://www.r3.com/reports/

corda-technical-whitepaper/, 2019. [Online; Accessed 27-June-2020].

[31] Quorum. Quorum - The proven blockchain for business. https://www.goquorum.com/,
2015. [Online; Accessed 8-June-2020].

[32] Quorum. Quorum - Documentation. http://docs.goquorum.com/en/latest/, 2019. [On-
line; Accessed 8-June-2020].

http://www.merkle.com/papers/Certified1979.pdf
http://www.merkle.com/papers/Certified1979.pdf
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/proof-of-stake/
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/proof-of-stake/
https://www.hyperledger.org/
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://ethereum.org/developers/#getting-started
https://medium.com/mycrypto/the-ethereum-virtual-machine-how-does-it-work-9abac2b7c9e
https://medium.com/mycrypto/the-ethereum-virtual-machine-how-does-it-work-9abac2b7c9e
https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html
https://www.r3.com/reports/corda-technical-whitepaper/
https://www.r3.com/reports/corda-technical-whitepaper/
https://www.goquorum.com/
http://docs.goquorum.com/en/latest/

bibliography 142

[33] Ana Reyna, Cristian Martı́n, Jaime Chen, Enrique Soler, and Manuel Dı́az. On
blockchain and its integration with IoT. Challenges and opportunities. Future Generation
Computer Systems, 88(2018):173–190, 2018. ISSN 0167739X. doi: 10.1016/j.future.2018.05.
046.

[34] Abderahman Rejeb, John G. Keogh, and Horst Treiblmaier. Leveraging the Internet of
Things and blockchain technology in Supply Chain Management. Future Internet, 11(7):
1–22, 2019. ISSN 19995903. doi: 10.3390/fi11070161.

[35] Arshdeep Bahga and Vijay K. Madisetti. Blockchain Platform for Industrial Internet
of Things. Journal of Software Engineering and Applications, 09(10):533–546, 2016. ISSN
1945-3116. doi: 10.4236/jsea.2016.910036.

[36] F. Callegati, W. Cerroni, and M. Ramilli. Man-in-the-middle attack to the https protocol.
IEEE Security Privacy, 7(1):78–81, 2009.

[37] Spring. Production-grade Spring applications. https://spring.io/projects/spring-boot,
2014. [Online; Accessed 27-June-2020].

[38] Pallets. Flask - Web development one drop at a time. https://flask.palletsprojects.com/

en/1.1.x/, 2010. [Online; Accessed 27-June-2020].

[39] Open JS Foundation. Node.JS - a javascript runtime. https://nodejs.org/en/, 2012.
[Online; Accessed 27-June-2020].

[40] Ethereum Foundation. Solidity Types. https://solidity.readthedocs.io/en/v0.5.3/types.

html, 2020. [Online; Accessed 30-September-2020].

[41] IETF - Internet Engineering Task Force. JSON Web Token (JWT). https://tools.ietf.org/

html/rfc7519, 2015. [Online; Accessed 30-September-2020].

[42] auth0. jsonwebtoken - npm. https://www.npmjs.com/package/jsonwebtoken, 2018. [On-
line; Accessed 13-October-2020. Version 8.5.1].

[43] Mongo DB, Inc. MongoDB - The database for modern applications. https://www.

mongodb.com/, 2009. [Online; Accessed 27-June-2020].

[44] Automattic. Mongoose - mongodb object modeling for node.js. https://github.com/

Automattic/mongoose, 2018. [Online; Accessed 14-October-2020]. Version 5.10.9.

[45] Google. Golang. https://golang.org/, 2020. [Online; Accessed 21-October-2020. Version
1.15].

[46] Google. Golang- net http package. https://golang.org/pkg/net/http/, 2020. [Online;
Accessed 21-October-2020].

https://spring.io/projects/spring-boot
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://nodejs.org/en/
https://solidity.readthedocs.io/en/v0.5.3/types.html
https://solidity.readthedocs.io/en/v0.5.3/types.html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://www.npmjs.com/package/jsonwebtoken
https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/Automattic/mongoose
https://github.com/Automattic/mongoose
https://golang.org/
https://golang.org/pkg/net/http/

bibliography 143

[47] Google. Golang- crypto tls package. https://golang.org/pkg/crypto/tls/, 2020. [Online;
Accessed 21-October-2020].

[48] Pion. Pion dtls - a go implementation of dtls. https://github.com/pion/dtls, 2020.
[Online; Accessed 21-October-2020].

[49] The Hybrid Group. Gobot - Golang powered robotics. https://gobot.io/, 2019. [Online;
Accessed 21-October-2020.].

[50] embeddedgo. Embedded GO - GO for microcontrollers. https://github.com/

embeddedgo, 2020. [Online; Accessed 21-October-2020.].

[51] TinyGO Org. TinyGO - A GO compiler for small places. https://tinygo.org/, 2020.
[Online; Accessed 21-October-2020.].

[52] Docker Inc. Docker. https://www.docker.com/, 2020. [Online; Accessed 13-November-
2020].

[53] Raspberry PI Foundation. Raspberry pi. https://www.raspberrypi.org/, 2020. [Online;
Accessed 13-November-2020].

[54] OpenSSL Software Foundation. Openssl - cryptography and ssl/tls toolkit. https:

//www.openssl.org/, 1999. [Online; Accessed 17-November-2020].

[55] The Wireshark Foundation. Wireshark. https://www.wireshark.org/, 2020. [Online;
Accessed 18-November-2020].

[56] Inc. Postman. Postman - the collaboration platform for api development. https://www.

postman.com/, 2020. [Online; Accessed 18-November-2020].

https://golang.org/pkg/crypto/tls/
https://github.com/pion/dtls
https://gobot.io/
https://github.com/embeddedgo
https://github.com/embeddedgo
https://tinygo.org/
https://www.docker.com/
https://www.raspberrypi.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.wireshark.org/
https://www.postman.com/
https://www.postman.com/

A
Q U E RY I N G R E S U LT S

a.1 count per weighbridge

Figure 46 illustrates the result provided when issuing a request to the URL
https://192.168.1.231:3000/tickets?count=true&scale serial number=P220120900 with customer
X’s authorization token, which requests the API to collect and count all weighing tickets that
are associated with weighbridge P220120900. As it can be seen this weighbridge has 150

weighing tickets associated to it.

Figure 46: Total of weighing tickets associated with station X and its weighbridge P220120900

Figure 47 illustrates the result provided when issuing a request to the URL
https://192.168.1.231:3000/tickets?count=true&scale serial number=P141140200 with customer
Y’s authorization token, which requests the API to collect and count all weighing tickets that
are associated with weighbridge P141140200. As it can be seen this weighbridge has 150

weighing tickets associated to it.

144

A.2. Scale status per weighbridge 145

Figure 47: Total of weighing tickets associated with station Y and its weighbridge P141140200

Figure 48 illustrates the result provided when issuing a request to the URL
https://192.168.1.231:3000/tickets?count=true&scale serial number=P300200111 with customer
Y’s authorization token, which requests the API to collect and count all weighing tickets that
are associated with weighbridge P300200111. As it can be seen this weighbridge has 150

weighing tickets associated to it.

Figure 48: Total of weighing tickets associated with station Y and its weighbridge P300200111

a.2 scale status per weighbridge

Figure 49 shows the response to a request to URL
https://192.168.1.231:3000?count=true&scale serial number=P220120900&scale status=OK, which
collects and counts all weighing tickets associated with station X’s weighbridge P220120900

which have a scaleStatus of OK.

A.2. Scale status per weighbridge 146

Figure 49: Total weighing tickets with status OK associated with station X and weighbridge
P220120900

Figure 50 shows the response to a request to URL
https://192.168.1.231:3000?count=true&scale serial number=P141140200&scale status=OK, which
collects and counts all weighing tickets associated with station Y’s weighbridge P141140200

which have a scaleStatus of OK.

Figure 50: Total weighing tickets with status OK associated with station Y and weighbridge
P141140200

Figure 51 shows the response to a request to URL
https://192.168.1.231:3000?count=true&scale serial number=P300200111&scale status=OK, which
collects and counts all weighing tickets associated with station Y’s weighbridge P300200111

which have a scaleStatus of OK.

A.3. Weight distribution per weighbridge 147

Figure 51: Total weighing tickets with status OK associated with station Y and weighbridge
P300200111

a.3 weight distribution per weighbridge

Figure 52 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P220120900&until weight=50, which
collects and counts all weighing tickets associated with station X’s weighbridge P220120900

which have a total weight under 50 KG.

Figure 52: Total weighing tickets with a total weight until 50 KG (exclusive) associated with station
X and weighbridge P220120900

Figure 53 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P220120900&from weight=50
&until weight=1000, which collects and counts all weighing tickets associated with station

A.3. Weight distribution per weighbridge 148

X’s weighbridge P220120900 which have a total weight equal or above 50 KG and under
1000 KG.

Figure 53: Total weighing tickets with a total weight between 50 KG (inclusive) and 1000 KG
(exclusive) associated with station X and weighbridge P220120900

Figure 54 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P220120900&from weight=1000, which
collects and counts all weighing tickets associated with station X’s weighbridge P220120900

which have a total weight equal or above 1000 KG.

Figure 54: Total weighing tickets with a total weight from 1000 KG (inclusive) ssociated with station
X and weighbridge P220120900

Figure 55 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P141140200&until weight=50, which
collects and counts all weighing tickets associated with station Y’s weighbridge P141140200

which have a total weight under 50 KG.

A.3. Weight distribution per weighbridge 149

Figure 55: Total weighing tickets with a total weight until 50 KG (exclusive) associated with station
Y and weighbridge P141140200

Figure 56 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P141140200&from weight=50
&until weight=1000, which collects and counts all weighing tickets associated with station
Y’s weighbridge P141140200 which have a total weight equal or above 50 KG and under
1000 KG.

Figure 56: Total weighing tickets with a total weight between 50 KG (inclusive) and 1000 KG
(exclusive) associated with station Y and weighbridge P141140200

Figure 57 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P141140200&from weight=1000, which
collects and counts all weighing tickets associated with station Y’s weighbridge P141140200

which have a total weight equal or above 1000 KG.

A.3. Weight distribution per weighbridge 150

Figure 57: Total weighing tickets with a total weight from 1000 KG (inclusive) associated with station
Y and weighbridge P141140200

Figure 58 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P300200111&until weight=50, which
collects and counts all weighing tickets associated with station Y’s weighbridge P300200111

which have a total weight under 50 KG.

Figure 58: Total weighing tickets with a total weight until 50 KG (exclusive) associated with station
Y and weighbridge P300200111

Figure 59 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P300200111&from weight=50
&until weight=1000, which collects and counts all weighing tickets associated with station
Y’s weighbridge P300200111 which have a total weight equal or above 50 KG and under
1000 KG.

A.3. Weight distribution per weighbridge 151

Figure 59: Total weighing tickets with a total weight between 50 KG (inclusive) and 1000 KG
(exclusive) associated with station Y and weighbridge P300200111

Figure 60 shows the result of performing a request to the URL
https://192.168.1.231:3000?count=true&scale serial number=P300200111&from weight=1000, which
collects and counts all weighing tickets associated with station Y’s weighbridge P300200111

which have a total weight equal or above 1000 KG.

Figure 60: Total weighing tickets with a total weight from 1000 KG (inclusive) associated with station
Y and weighbridge P300200111

