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Abstract

Nonstationarity and outlying observations are commonly encountered in financial
time series. It is thus expected that models are able to accommodate these stylized
facts and the techniques used are suitable to specify such models. In this paper we
relax the assumption of stationarity and consider the problem of detecting smooth
changes in the unconditional variance in the presence of outliers. It is found
by simulation that the misspecification test for constancy of the unconditional
variance in GARCH models can be severely adversely affected in the presence of
additive outliers. An outlier robust specification procedure is also proposed to
mitigate the effects of outliers for building multiplicative time-varying volatility
models. The outlier robust variant of the test is shown to perform better than
the conventional test in terms of size and power. An application to commodity
returns illustrates the usefulness of the robust specification procedure.
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1 Introduction

Empirical evidence suggests that when fitting a sufficiently long return series with a

stationary GARCH model the estimated parameters are very close to those of an inte-

grated GARCH model. Diebold (1986) and Lamoureux and Lastrapes (1990) advocate

that the phenomena of high persistence in volatility can be well described by unmod-

elled deterministic shifts in the unconditional variance and therefore the assumption of

weak stationarity may be inappropriate under the evidence of changes in long series of

returns. One solution to deal with extreme persistence in volatility is to extend the

GARCH model by explicitly assuming the unconditional variance to be time-varying.

Examples of this line of research include models with multiplicative decomposition of

the variance into a stochastic component and a deterministic component. The paramet-

ric model introduced by Amado and Teräsvirta (2008) and further discussed in Amado

and Teräsvirta (2013, 2014, 2017) belongs to this class of models. Pioneered examples

of this view include Feng (2004) and van Bellegem and von Sachs (2004), and succeed-

ing approaches by Engle and Rangel (2008), Brownlees and Gallo (2010) and Mazur

and Pipień (2012).

In this paper, we investigate the properties of the data-driven strategy outlined by

Amado and Teräsvirta (2017) in the presence of outliers. In their approach the non-

stationary component of volatility is represented by a linear combination of generalised

logistic functions of rescaled time and it relies on statistical inference for specifying the

deterministic component. The modelling strategy for building the parametric structure

of the time-varying component consists of sequential hypotheses testing by means of La-

grange multiplier (LM) tests. If the statistical test suggests inadequacy of the GARCH

model, the specification of the model must be modified accordingly. Since neglected

outliers can suggest model misspecification, a careful specification and estimation of

the nonstationary component is needed for fitting an adequate model.

Outliers are known to severely affect the asymptotic properties of the test statistics

for nonlinearity; see for example van Dijk, Franses and Lucas (1999b) for LM test for

smooth transition autoregressive nonlinearity or van Dijk, Franses and Lucas (1999a)

and Franses, van Dijk and Lucas (2004) for test for autoregressive conditional het-

eroskedasticity (ARCH) in the presence of additive outliers. For effects of different

types of outliers on the LM tests for ARCH and bilinearity see Tolvi (2000). Balke and

Fomby (1994) find that after controlling for outliers much of the evidence of nonlinear-

ity in major macroeconomic time series is weakened and hence suggesting that extreme

observations are linked with nonlinear data structures. Therefore, when outliers are

neglected, one expects the test for constancy of the unconditional variance to be biased

and thus becoming difficult to discriminate between nonstationarity in the variance
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and outlying observations. Motivated by these issues, this paper intends to fill the gap

in the literature by examining the effects of additive outliers on the misspecification

test for stability of the unconditional variance. Our simulation results substantiate the

findings that additive outliers lead to spurious GARCH-type misspecification by reject-

ing the null hypothesis of constant unconditional variance too often when it is true.

We find that additive outliers distort the distributional properties of the test statis-

tics and thus incorrectly pointing toward nonstationarity. To overcome this limitation

this paper proposes a modified specification procedure for building multiplicative time-

varying GARCH models which is robust to the presence of additive outliers. A simple

modification to the maximization by parts described in Amado and Teräsvirta (2013)

is proposed by modifying the stochastic component with the bounding mechanism of

Muler and Yohai (2008) and thereby having more desirable properties in the presence

of outliers. Other ways of dealing with additive outliers in GARCH models have been

proposed by Franses and Ghijsels (1999) and Park (2002) for improving the quality

of volatility forecasts. It is also found by simulation that neglected additive outliers

bias the estimated parameters of the stochastic and deterministic components in finite

samples. Similar conclusions have been drawn for the GARCH model in Carnero, Peña

and Ruiz (2007, 2012) and Muler and Yohai (2008), among others. An empirical ap-

plication to daily commodity returns data shows that the robust data-based modelling

technique of the multiplicative decomposition of the variance supports the simulation

findings and a careful and thorough analysis must be carried out in the presence of

outliers.

This paper is organised as follows. In Section 2 we briefly review the multiplicative

time-varying GARCH model of Amado and Teräsvirta (2008, 2013) and the available

data-driven specification procedure. Section 3 attempts to provide further insight into

specifying the time-varying GARCH model in the presence of outliers and furthermore

discuss the outlier robust estimation of parameters. The effects of outliers on the

misspecification test of constancy unconditional variance are investigated in Section 4.

An empirical illustration is provided in Section 5 in which the robustified version of the

specification procedure is applied to a couple of commodity returns. Conclusions can

be found in Section 6.

2 Multiplicative time-varying GARCH

2.1 The model

In this paper the tool for modelling return series is the multiplicative time-varying

GARCH model of Amado and Teräsvirta (2008,2013) in which the unconditional vari-
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ance is assumed to evolve smoothly over time. To define the model, consider the

sequence of returns {yt}
yt = E(yt|Ft) + εt (1)

where Ft contains the historical information available at time t− 1 and the conditional

mean of the returns is assumed to have a time-varying structure, i.e., E(yt|Ft) = µt. Let

{εt} be an innovation sequence with conditional mean E(εt|Ft) = 0 and time-varying

conditional variance E(ε2
t |Ft) = σ2

t . The error term εt is further parameterized as

εt = ξth
1/2
t (2)

where ht describes conditional heteroskedasticity in the observed process yt and ξt is a

time-varying random variable satisfying

ξt = ζtg
1/2
t (3)

where {ζt} is a sequence of independent and identically random variables with Eζt = 0,

Eζ2
t = 1, Eζ3

t = 0 and E|ζ2
t |2+φ = 0 < ∞, φ > 0, and gt is a positive-valued deter-

ministic component which allows the unconditional variance of ξt to change smoothly

over time. The time-varying conditional variance is thus modelled using the following

multiplicative decomposition

σ2
t = htgt (4)

where the function ht describes the short-run dynamics of the variance of the returns

and follows the standard GARCH(p, q) model of Bollerslev (1986)

ht = ht(θ1,θ2) = α0 +

q∑
i=1

αiφ
2
t−i +

p∑
j=1

βjht−j (5)

where φt = εt/g
1/2
t , θ2 = (α0,α

′,β′)′ ∈ Θ2 = (α0×A×B) withα = (α1, ..., αq)
′ ∈ A, and

β = (β1, ...βp)
′ ∈ B and the parameter restrictions for positivity and stationarity of the

conditional variance of φt are satisfied; see Bollerslev (1986) and Nelson and Cao (1992).

This implies α0 > 0, αi ≥ 0, i = 1, ..., q − 1, βj ≥ 0, j = 1, ..., p, αq > 0 and
∑q

i=1 αi +∑p
j=1 βj < 1. In order to generate smooth changes in the unconditional variance and

introducing nonstationarity into σ2
t the function gt has the following representation

gt = gt(θ1, t/T ) = δ0 +
r∑
l=1

δlGl(t/T ; γl, cl) (6)

where θ1 = (δ′,γ ′, c′1, ..., c
′
r)
′ ∈ Θ1 = (∆ × Γ × C) with δ = (δ0, δ1, ..., δr)

′ ∈ ∆,

γ = (γ1, ...γr)
′ ∈ Γ, cl = (cl1, ..., clKl

)′ ∈ C, l = 1, ..., r, and Gl(t/T ; γl, cl) is the so-
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called transition function continuous and bounded between zero and one. A suitable

choice for Gl(t/T ; γl, cl) is the general logistic transition function defined as

Gl(t/T ; γl, cl) =

(
1 + exp

{
−γl

Kl∏
k=1

(t/T − clk)

})−1

. (7)

Following Amado and Teräsvirta (2017) the following assumptions are made about (6)

and (7):

AG1. The elements of δ ∈ ∆ are restricted such that δ0 > 0 is fixed, maxj=1,...,q|δj| ≤
Mδ <∞ and infδ1∈Θ1gt(θ1, t/T ) ≥ gmin > 0.

AG2. The slope parameter γl > 0, l = 1, ..., r, and the location parameters

c1k < c2k < ... < crk.

The assumptions δ0 fixed in AG1 and AG2 are identifying restrictions. The former

is needed due to the multiplicative decomposition and because both ht and gt contain

a positive constant. One of these constants must be fixed to achieve identification and

we set δ0 = δ∗0 (known constant).

The transition function Gl(t/T ; γl, cl) allows the unconditional variance to change

smoothly as a function of the calendar time t/T . The parameters clk and γl determine

the location and the speed of the transition between different regimes. The slope

parameter γl in (7) controls the degree of smoothness of the transition. When γl −→∞,
gt collapses into a step function and the process contains structural breaks at cl1 < cl2 <

... < clKl
and it switches instantaneously over time from one regime to another. The

order Kl ∈ Z+ determines the shape of the transition function. Typical choices for

the transition function in practice are K = 1 and K = 2. When r = 1 and K = 1

the model is suitable for describing monotonic changes in the unconditional variance

from δ0 to δ0 + δ1 with the location centred at t = c11T for return processes whose

dynamics is different before and after the smooth structural change. When r > 1

and K = 2 the parameterization is capable of describing nonmonotonic deterministic

changes in the unconditional variance. Under δ1 = ... = δr = 0, the unconditional

variance E(ε2
t ) = E(ζ2

t htgt) = gtE(ht) becomes constant and equals E(ε2
t ) = δ0E(ht).

This parameterization can explain systematic movements of the conditional variance

as in the GARCH process, but relaxing the assumption of constancy of the unconditional

volatility and therefore introducing nonstationarity in σ2
t . This formulation allows the

standard GARCH(p, q) to be nested in (4) when gt ≡ 1.

2.2 Specification of the unconditional variance

The model-building cycle for specifying the multiplicative time-varying GARCH model

is identical to the specific-to-general strategy for nonlinear models recommended by
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Granger (1993). We first begin by modelling the conditional variance ht under the

assumption that gt ≡ 1. The selection of the number of transitions r in (6) is determined

thereafter by sequential testing. The problem of testing constancy in the unconditional

variance by misspecification test was considered by Amado and Teräsvirta (2008, 2017)

and Silvennoinen and Teräsvirta (2016). For the purpose of discussing the test statistic

consider p = q = 1 in (5) and r = 1 in (6) and rewrite the conditional variance as

htgt = (α0 + α1φ
2
t−1 + β1ht−1)(δ0 + δ1G1(t/T ; γ1, c1)) (8)

We start by testing the null hypothesis of constant unconditional variance H0 : γ1 = 0

against H1 : γ1 > 0 in (8) at a predetermined significance level α(1). When the null

hypothesis holds,

δ1(G1(t/T ; γ1, c1)− 1/2) = 0 (9)

(δ1, c
′
1)′ is a vector of nuisance parameters (subtracting 1/2 from G1(t/T ; γ1, c1) for no-

tational convenience does not affect the conclusion). This makes the standard asymp-

totic inference invalid as the test statistic has a nonstandard asymptotic null distri-

bution. We circumvent this identification problem as in Luukkonen, Saikkonen and

Teräsvirta (1988) and approximate the transition function by its first-order Taylor ex-

pansion around γ1 = 0. This approach facilitates the derivation of a simple applicable

misspecification test. After merging terms we obtain

htgt = (α0 + α1φ
2
t−1 + β1ht−1)(ϕ0 + ϕ1(t/T ) + ϕ2(t/T )2 + ...+ ϕK(t/T )K +R1t) (10)

where ϕ0 = δ0 + γ1δ1c̃0, ϕk = γ1δ1c̃k, k = 1, ..., K, such that the parameters c̃k are

functions of the location parameters ck and R1t is the remainder. Using the repa-

rameterization (10) it follows that the null hypothesis of parameter constancy of the

unconditional variance becomes: H ′0 : ϕ1 = ... = ϕK = 0. Under H ′0, R1t = 0, thus

the remainder does not affect the asymptotic null distribution of the test statistic.

Constructing a LM test for testing parameter constancy in the unconditional vari-

ance has the advantage that the model is only estimated under the null hypothesis.

To introduce the test statistic, let the ”hats” denote the maximum likelihood esti-

mates, v̂t = (1, ε̂t, ĥt)
′ and denote ĥt the estimated ht evaluated under H0. Further-

more, let ϕ = (ϕ1, ..., ϕK)′, x̂1t = ĥ−1
t (∂ĥt/∂θ2)|H0 and x̂2t = ĝ−1

t (∂ĝt/∂ϕ)|H0 where

∂ĥt/∂θ2 = v̂t−1 + β̂1∂ĥt−1/∂θ2|H0 and ∂ĝt/∂ϕ|H0 = (t/T, (t/T )2, ..., (t/T )K)′ with ĝt

equal to gt estimated under H0. The standard LM test statistic derived by Amado and

Teräsvirta (2017) is given by

T s(θ̂)′(Σ̂22(θ̂)− Σ̂12(θ̂){Σ̂11(θ̂)}−1Σ̂21(θ̂))−1s(θ̂)
d−→ χ2

(K) (11)
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where s(θ̂) = (1/2T )
∑T

t=1(ε̂2
t/ĥt − 1)x̂′2t and Σ̂ij = (1/2T )

∑T
t=1 x̂itx̂

′
jt, i, j,= 1, 2, is

a consistent estimator of Σij assuming normality for ζt. The LM test statistic can be

computed in a fairly straightforward way by constructing an auxiliary regression version

of the test as T (SSR0 − SSR1)/SSR0, where SSR0 =
∑T

t=1(ε̂2
t/ĥt − 1)2 and SSR1 is

the sum of squared residuals from a regression of ε̂2
t/ĥt − 1 on x̂1t and x̂2t. After the

number of transitions r has been determined, one needs to specify the order K of the

polynomial of the transition function. For choosing K we use a model selection rule

based on a sequence of nested tests as in Amado and Teräsvirta (2017). Assume K = 3

to ensure a parameterization sufficiently flexible and test the sequence of hypotheses:

H03 : ϕ3 = 0 (12)

H02 : ϕ2 = 0|ϕ3 = 0 (13)

H01 : ϕ1 = 0|ϕ3 = ϕ2 = 0 (14)

One of the assumptions underlying the LM test is that the conditional fourth moment is

constant, but this condition will be violated in the presence of additive outliers. When

the errors are not normal, a robust version of the test statistic to certain departures

from normality can be derived to fit this situation. One can construct a robust version

of the LM-type statistic using the procedure by Wooldridge (1990, 1991). In practice

the test can be carried out in a straightforward way using an auxiliary regression as

follows:

1. Estimate the GARCH(1,1) model by quasi maximum likelihood and compute the

squared standardised residuals η̂2
t = ε̂2

t/ĥt, x̂1t and x̂2t, t = 1, ..., T.

2. Regress x̂1t on x̂2t and save the residual vectors wt, t = 1, ..., T.

3. Regress 1 on (η̂2
t − 1)wt and compute the SSR0 from this regression. Under

the null hypothesis, the test statistic ξLMR
= T − SSR0 has an asymptotic χ2

distribution with K degrees of freedom.

Next, estimate gt with a single transition function and test against another transition

at the significance level α(2) = τα(1), where τ ∈ (0, 1). In our application we set τ = 0.5.

The significance level is reduced at each stage by a factor τ in order to favour parsimony.

More generally, when gt has been estimated with r−1 transition functions one tests for

another transition in gt at the significance level ατ r−1 and proceed sequentially until

the first non-rejection of the null hypothesis.
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3 Model specification in the presence of outliers

We start by briefly reviewing the generating mechanism of an outlier in time series. Let

the observed series xt, t = 1, ..., T, with finite fourth-order moment be contaminated by

outliers of magnitude ω described by

xt = yt + ωv(L)ξ
(s)
t (15)

where the outlier-free time series yt follows an autoregressive (AR) process (for ARMA

models see Tsay (1986, 1988)) and ξ
(s)
t is an indicator variable such that ξ

(s)
t = 1 if t = s,

and ξ
(s)
t = 0 otherwise. Outliers are incorporated through the lag polynomial function

v(L) and its form depends on the types of outliers. Two types of contamination on time

series are considered in the standard outlier literature. They are the additive outlier

(AO) and innovational outlier (IO). For an AO only the disturbance of magnitude ω

affects the sth observation, and therefore v(L) = 1. In what follows, we denote the

additive outlier by ωAO. An IO is a disturbance ω affecting the innovation series εt in

(2) and future observations xs+1, xs+2, ... through the autoregressive dynamic pattern

v(L). In order to simplify the exposition, assume that yt follows

yt = φ0 + φ1yt−1 + εt, |φ1| < 1 (16)

where

εt = ζth
1/2
t g

1/2
t (17)

with ht and gt as in (5) and (6), respectively, and εt|Ft ∼ iid(0, σ2
t ). In this work, we

focus on additive outliers because the analysis lies on financial returns which are often

characterized by being weakly uncorrelated and thus the distinction between additive

outliers and innovative outliers becomes trivial. The additive outliers shall be assumed

as level outliers since they merely affect the level of the series but not the dynamics of

the underlying volatility and they can be interpreted as a deviation from conditional

normality and some type of misspecification in the conditional mean (see van Dijk et al.

(1999a) for details).

The specification problem for building the model consists first of estimating the

short-run component ht and thereafter specifying the long-run component gt. The idea is

to begin with a parsimonious model and proceed to more complicated ones sequentially

with LM tests until an adequate model has been obtained. This may be preceded by

employing an outlier detection technique to distinguish an AO from an IO using the

testing criteria of Chang, Tiao and Chen (1988). In what follows, we summarize the

different stages involved in the specification of the multiplicative time-varying GARCH
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model in the presence of outliers.

3.1 Modelling the short-run component of volatility

Instead of proceeding with an iterative procedure characterized by an outlier-detection

stage, correction and estimation to handle situations with an unknown number of out-

liers as in Tsay (1986, 1988) and Chang et al. (1988), among others, we shall use robust

estimation techniques to modify the specification procedure for building multiplicative

GARCH models in the presence of outliers. van Dijk et al. (1999b) show that the LM

test for testing linearity in the conditional mean can be severely distorted by additive

outliers and that neglected outliers in a linear time series may incorrectly suggest some

type of nonlinearity. The same authors derive a modified test statistic in the presence

of outliers when the model under the null hypothesis is estimated using a robust es-

timation technique. The same idea of estimating the model under the null using an

outlier robust estimator can also be used to robustify the LM test for testing constancy

in the unconditional variance in the presence of outliers.

We begin the model specification problem by first modelling the conditional variance

component ht as in (5) with p = q = 1. In this work the short-run component of

volatility is replaced by the robust estimator of Muler and Yohai (2008) who proposed a

robust estimation of the GARCH by limiting the propagation of the outlier effect on the

estimated volatility. These estimators belonging to the class of generalized M-estimators

downweight influential observations and thus are less sensitive to outliers than the quasi-

maximum likelihood (QML) estimators. These robust estimators are called Bounded-M

(BM) estimators. In this setting parameters are estimated maximizing a modified log-

likelihood with the following specification for the stochastic component

hBMt = α0 + α1h
BM
t−1 rc

(
φ2
t−1

hBMt−1

)
+ β1h

BM
t−1 (18)

where φt = εt/g
1/2
t , and rc(k) = k if k ≤ c, and rc(k) = c if otherwise. Carnero, Peña

and Ruiz (2012) show using Monte Carlo experiments that the robust method of Muler

and Yohai (2008) outperform maximum likelihood techniques to estimate volatility with

a GARCH model in the presence of outliers.

3.2 Specification of the unconditional variance in the presence

of outliers

The specification of the unconditional variance component involves two sets of decision

problems. First, one has to determine the number of transitions r in (6) and second, Kl

9



for each transition function in (7) has to be selected; see Amado and Teräsvirta (2017).

The choice of the number of transitions has been discussed in Section 2.2. Similarly to

the results of van Dijk et al. (1999a) for testing conditional heteroskedasticity in the

presence of additive outliers, one expects that the LM-type test discussed in Section 2.2

can also be severely affected by additive outliers. Monte Carlo experiments in Section

4 show that this is indeed the case. The outlier robust estimator discussed above for

estimating GARCH models can be used to construct outlier robust versions of the

LM-type test statistic presented in Section 2.2 where the model needs to be estimated

under the null employing the robust technique in Section 3.1. If the null hypothesis is

rejected, one proceeds to estimating the model with multiplicative decomposition of the

variance by robust maximization by parts as discussed in Section 3.3 as the tentative

specification for the model.

3.3 Outlier robust maximization by parts

In order to consider the maximum likelihood estimation of the model, write

ht = ht(θ1,θ2) and gt = gt(θ1, t/T )

and for notational simplicity let p = q = 1. Then the conditional (quasi) log-likelihood

function of the model for observation t has the form:

`t(θ1,θ2, ε) = −(1/2)ln2π−(1/2){lnht(θ1,θ2)+ln gt(θ1, t/T )}−(1/2)
ε2
t

ht(θ1,θ2)gt(θ1, t/T )
(19)

Since maximization of (19) is numerically very difficult, a solution lies in estimating the

unconditional and the conditional variance components separately using maximization

by parts; see Song, Fan and Kalbfleisch (2005) and Amado and Teräsvirta (2013) for

details. The algorithm proceeds as follows:

Iteration 1: Maximize

T∑
t=1

`Ut (θ1) = −(1/2)
T∑
t=1

{ln gt(θ1, t/T ) + ε̃2
t/gt(θ1, t/T )}

with respect to θ1 by constraining θ2 = (α0, 0, 0)′ and setting ε̃t = εt/{ht(θ1,θ2)}1/2.

At this stage, let ht(θ1,θ2) ≡ 1 and define

gt(θ1, t/T ) = δ∗0 +
r∑
l=1

δ∗lGl(t/T ; γl, cl) (20)
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where δ̂
∗(1)
l = δ̂

(1)
l /α̂

(0)
0 , j = 0, ..., r, and α̂

(0)
0 is the estimate of α0 > 0 obtained in

the 0th iteration. Denote the estimator as θ̂
(1)

1 .

Conditioning on θ̂
(1)

1 , maximize

T∑
t=1

`Ct (θ̂
(1)

1 ,θ2) = −(1/2)
T∑
t=1

{lnht(θ̂
(1)

1 ,θ2) + ε∗2t /ht(θ̂
(1)

1 ,θ2)}

with respect to θ2, where ε∗t = εt/{gt(θ̂
(1)

1 , t/T )}1/2. Call the resulting estimator

as θ̂
(1)

2 .

Iteration 2: Maximize

T∑
t=1

`Ut (θ1) = −(1/2)
T∑
t=1

{ln gt(θ1, t/T ) + ε̃2
t/gt(θ1, t/T )}

with respect to θ1, where ε̃t = εt/{ht(θ̂
(1)

1 , θ̂
(1)

2 )}1/2. This yields the estimator θ̂
(2)

1 .

Next, making use of θ̂
(2)

1 , maximize

T∑
t=1

`Ct (θ̂
(2)

1 ,θ2) = −(1/2)
T∑
t=1

{lnht(θ̂
(2)

1 ,θ2) + ε∗2t /ht(θ̂
(2)

1 ,θ2)}

with respect to θ2, where ε∗t = εt/{gt(θ̂
(2)

1 , t/T )}1/2. Call the resulting estimator

as θ̂
(2)

1 .

Iterate until convergence.

Iteration n: More generally, maximization by parts is carried out by solving the score

equations:

(1/2)
T∑
t=1

(
ε̃2
t

gt(θ̂
(n)

1 , t/T )
− 1

)
1

gt(θ̂
(n)

1 , t/T )

∂gt(θ̂
(n)

1 , t/T )

∂θ1

= 0

for θ1 assuming ε̃t = εt/{ht(θ̂
(n−1)

1 , θ̂
(n−1)

2 )}1/2, and

(1/2)
T∑
t=1

(
ε∗2t

ht(θ1, θ̂
(n)

2 )
− 1

)
1

ht(θ1, θ̂
(n)

2 )

∂ht(θ1, θ̂
(n)

2 )

∂θ1

= 0

for θ2, where ε∗t = εt/{gt(θ̂
(n)

1 , t/T )}1/2. The resulting estimators are denoted as

θ̂
(n)

1 and θ̂
(n)

2 . For further details see Amado and Teräsvirta (2013).

An important feature of the modelling strategy is that parameters of the short-run
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component are estimated robustly using maximum likelihood in the presence of out-

liers. In this work we modify the estimation of the multiplicative GARCH model by

maximization by parts where equation (5) with p = q = 1 is replaced by (18). This

mechanism bounds the propagation of the effect of outliers on the estimated condi-

tional variance and thus becoming robust to the presence of outliers. Provided that

some regularity conditions hold, the parameter vector θ2 can be consistently estimated,

and estimators of θ2 are asymptotically normal; for more details see Muler and Yohai

(2008) who prove consistency and asymptotic normality for BM estimators. Using the

asymptotic results from Amado and Teräsvirta (2013) and Muler and Yohai (2008)

one can conclude that parameters of the model (1)-(7) estimated by outlier robust

maximization by parts are also consistent and asymptotic normal.

4 Monte Carlo experiments

4.1 Simulation design

In this section, we conduct Monte Carlo simulations to investigate the finite sample

properties of the test for testing constancy in the unconditional variance in the presence

of additive outliers. In the experiments, 2000 artificial series are generated each of

lengths of T = 1000 and T = 3000 observations. To avoid the dependence of the

results on starting values, the first 1000 observations of each series have been discarded.

Following the suggestion of Bollerslev (1986), recursive computation of ht is initialized

using the estimated constant unconditional variance for the pre-sample values t ≤ 0.

Contaminated series xt are obtained by adding additive outliers to yt according to

(15). Following Tolvi (2000), we consider contamination with outliers of magnitude

ωAO = 3, 5, 7, 10. Outliers of large magnitudes are very likely to appear in financial

returns whereas smaller magnitudes are likely to appear in any type of data. Since

outliers are view as a rare events, in the experiments we consider the cases of a single

outlier and two consecutive outliers. Here we opted by assuming a more controlled

experiment instead of generating artificially outliers with the occurrence of a certain

probability. The standard robust test of Wooldridge and the outlier robust parameter

constancy test are applied to both the clean and contaminated series to obtain estimates

of their size and power. Results of the standard test are not presented as they perform

rather poorly compared to the robust tests, but they are available from the author upon

request. All tests are evaluated at the 1%, 5% and 10% and the asymptotic χ2 critical

values are used.

In our experiments, since the focus lies on modelling the dynamics of volatility of

weakly autocorrelated returns, we consider the effects of a small AR parameter in the
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specification of the conditional mean. In practice, the order of the linear AR model

needs to be decided. In our simulation study, we fix this order at p = 1. The behaviour

of size of the test statistic is examined for three data generating processes (DGP’s) that

can be nested in the following specification:

yt = φ0 + φ1yt−1 + εt, t = 1, ..., T

εt = ζtσt, ζt ∼ iid(0, 1)

σ2
t = (α0 + α1ε

2
t−1 + β1σ

2
t−1)(δ0 + δ1(1 + exp{−γ(t/T − c)})−1)

(21)

where φ0 = 0.05, φ1 = 0.10, γ = {5, 10}, δ0 = 1, δ1 = {−0.5, 0, 1.5}, and c = 0.5. The

data generating processes for the short-run component are as following:

DGP1: σ2
t = 0.05 + 0.15ε2

t−1 + 0.75σ2
t−1

DGP2: σ2
t = 0.05 + 0.10ε2

t−1 + 0.85σ2
t−1

DGP3: σ2
t = 0.05 + 0.05ε2

t−1 + 0.90σ2
t−1

The effects of isolated outliers on the size of the tests are analysed by generating the

process yt as the model (21) with δ1 = 0 with conditionally heteroskedastic GARCH(1,1)

errors given by DGP1-DGP3. To consider the power of the tests, the GARCH(1,1)

model is replaced by model (21) with δ1 = {−0.5, 1.5} with a gradual transition between

the two regimes at the threshold value c1 = 0.5. The power properties of the tests are

examined for three different specifications with the multiplicative decomposition of the

variance. The specifications differ in their degree of volatility persistence which varies

between moderate to high persistence. In practice, this is done by letting the short-run

component of the variance changing across the artificial series generated from DGP1-

DGP3.

4.2 Discussion of results

In this section we shall look at the small-sample properties for the two variants of the

LM test statistic and the empirical densities of the parameter estimators. First we

examine the rejection frequencies of the parameter constancy tests. Then we turn to

the empirical distributions of the estimators.

4.2.1 Size and power simulations

The effects of additive outliers on the size simulations are studied for series generated

from a GARCH(1,1) whose parameter values are defined in DGP1-DGP3. Rejection

frequencies of the null hypothesis for the robust variant of the LM test at 1%, 5% and

10% nominal significance levels for normally distributed ζ ′ts are reported in Table 1.
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The series are generated according to a weakly autocorrelated process with conditional

heteroskedasticity and constant unconditional variance with parameters δ0 = 1 and

δ1 = 0 in (21). It is assumed that the true autoregressive AR(1) in (21) is known. In

our simulations we conduct the experiments with parameter values of the conditional

mean set equal to (φ0, φ1) = (0.05, 0.10) which are typically found for financial series

and focus on modelling volatility clustering. Since isolated outliers are known to bias the

estimation of the autoregressive coefficient, the conditionally heteroskedastic residuals

of the model are also expected to be affected by their presence. The column headed

ωAO = 0 shows the empirical size when the test is applied to the series without outliers.

The size of the test in the case of no outliers is quite reasonable, but the test becomes

somewhat size-distorted for artificial data with higher volatility persistence for smaller

samples. The test applied to the ”clean” series becomes reasonably well-sized for larger

samples in all data generating processes which corroborates the findings of Amado and

Teräsvirta (2008,2017). The effects of isolated outliers on the size are investigated by

adding outliers of magnitude ωAO = 3, 5, 7, 10 to the model at s = T/2. In the presence

of outliers, the actual size of the test at conventional significance levels is always above

the nominal size for all DGPs, albeit to a less extent for T = 3000. It is seen that the size

distortion is an increasing function of the magnitude of the outlier. Outliers of larger

magnitude (ωAO = 7, 10) lead to more frequent rejection of the null, but the test results

become more accurate for larger samples. Moreover, the behaviour of the test tends to

overreject the null hypothesis more in the presence of two consecutive outliers than for

a single outlier. Overrejection of the null is even more pronounced in the presence of

consecutive outliers of larger magnitude. These results signal that the presence of very

large outliers tend to dominate the pattern of the data. As an attempt to correct the

size distortions we proceed with computation of the test based on the BM-estimator

discussed in 3.1. Table 2 shows the results of the rejection frequencies based on the

BM-estimator for the contaminated series generated by model (21) with δ0 = 1 and

δ1 = 0. The distortions in the level of the BM-based test are weaker for outliers of

small magnitude. For outliers of large magnitude, it is seen that the size of the BM-

based test becomes much smaller and very close to the nominal at the three significance

levels even for shorter samples. For longer series, the size of the test based on the BM

estimator becomes even closer to the nominal size. These findings are uniform across

all the DGPs. Our conclusion is that the outlier robust version of the test statistic is a

good approximation to the finite-sample distributions for all samples.

The effects on the power of the LM test are examined by generating series according

to the multiplicative time-varying GARCH model (21) for various combinations of δ1

and γ. Table 3 shows the rejection frequencies for these experiments when ζt is normally

distributed for the 5% nominal significance level. We allow the change to occur in the

14



middle of the sample. Silvennoinen and Teräsvirta (2016) conclude that shifts occurring

early are easier to detect than if similar shifts occur late in the sample. The location

of the shift is chosen halfway through the sample, but other simulations are available

upon request for shifts located elsewhere in the sample. The column ωAO = 0 shows

estimates of the power of the LM-type test statistic applied to the uncontaminated

series. The test statistic turns out to be very powerful for short time series when there

is moderate persistence in volatility. For large sample sizes, the selection frequencies

of the true model become quite high even for smooth changes. It is seen that the

correct model is selected more often for quicker changes in the unconditional variance

than for slow changes when δ1 is positive for uncontaminated series. Conversely, for a

negative δ1, the test is considerably more powerful when the transition is fairly smooth

with γ = 5 compared to the case of a higher change with γ = 10. We further observe

for δ1 < 0 that the estimated power is an increasing function of the magnitude and

number of outliers. It thus becomes easier to identify a single transition when two

consecutive outliers are present in the data compared to a single outlier for δ1 < 0.

Furthermore, when δ1 > 0 for DGP3 the test statistic has rather low if any power

at small samples when the smoothness parameter is small and approaches its size for

larger values of ωAO. However, the test has a considerable increase in power when the

smoothness parameter shifts from 5 to 10. If δ1 is positive, the power of the test in the

presence of two consecutive outliers is approximately equal to that of a single outlier.

Table 4 shows the rejection frequencies for the robust outlier test statistic when applied

to series generated by model (21) for different combinations of δ1 and γ. Monte Carlo

simulations suggest that the empirical performance of the estimated power of the test

based on the robust outlier estimation method is quite satisfactory. The BM-estimator

based test has reasonable power for smaller samples, but it has a loss of power compared

to the robust misspecification test when δ1 is negative. The results show that the test

is able to distinguish quite easily between stationary and nonstationary conditional

heteroskedastic processes. For δ1 > 0 the power loss of the test applied to data with

high persistence in volatility is corrected already for shorter samples.

4.2.2 Effects of outliers on the estimation of multiplicative GARCH models

In this section we compare the robustness properties of the quasi-maximum likelihood

estimator and the robust bounded-M estimator for estimating the time-varying un-

conditional volatility model from a series contaminated by outliers. Since estimation

by full maximum likelihood is computationally demanding we apply the iterative al-

gorithm maximization by parts for estimating the multiplicative GARCH model using

the non-robust and robust procedures. Simulation evidence is presented by means of
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Monte Carlo experiments to analyse the biases caused by isolated and consecutive ad-

ditive outliers on the QML and BM estimators of the parameters of the multiplicative

GARCH model. The simulations are carried out by generating 2000 artificial series of

sizes T = 1000 and 3000 from a multiplicative GARCH representation (21) with the

short-run component generated from DGP1-DGP3 while the long-run component has

been generated with δ1 = 1, γ1 = 5 and c1 = 0.5. The series have been contaminated

at s = T/2 first by an isolated outlier and second by two consecutive outliers of size

ωAO = 10. Table 5 reports the Monte Carlo medians and standard deviations for the

QML and BM estimates when T = 1000. We can observe that the QML estimators with

the exception of δ̂1 have small bias when there are no outliers. The same conclusions can

be obtained from Figure 1 which plots the corresponding kernel densities of the QML

estimators of the parameters of the short-run component and volatility persistence in

the case of no outliers. For the sake of saving space only the estimated densities for the

parameters of the stochastic component ht are plotted. The figure shows that the bias

for samples of smaller size becomes almost negligible for larger samples. On the other

hand, QML estimators are not robust to the presence of outliers. This is in line with the

simulations by Sakata and White (1998) and Carnero, Peña and Ruiz (2007) who found

that QML estimators of the parameters of GARCH models based on non-leptokurtic

distributions are not robust to outliers. We further observe that the outlier robust

maximization by parts has either the same or very competitive efficiency as the QML

maximization by parts for finite samples. We note that the autoregressive parameter

φ1 is severely overestimated in the presence of isolated outliers in small samples, but

the bias is reduced for larger samples as reported in Table 6. Similar observation can

be drawn for the QML and BM estimators of α0 whose sample distributions have large

positive bias when the data has been contaminated by two consecutive outliers. It is

also seen that the bias for the BM estimator of α0 is lower than that of the QML esti-

mator in the presence of a single outlier for DGP1-DGP2. As expected, the accuracy

in the parameter estimation improves with the sample size. In the presence of isolated

outliers, the sample distribution of QML and BM estimators of β1 shows large negative

bias for DGP1 and DGP3 when T = 1000, but the bias is noticeably reduced when the

sample increases. It is such that standard inference becomes unreliable in small samples

for α0 and β1 for series contaminated with large outliers. A visual inspection of Figure 2

with the kernel estimates of the densities of the QML and BM estimators of α0, α1 and

β1 validate these statements. We observe that, in the presence of isolated outliers, both

estimators have similar sample distributions with positive biases in smaller samples and

that the dispersion reduces for larger samples. With respect to the parameters of the

deterministic component, the QML and BM estimators of the smoothness parameter

are overestimated for DGP1 and DGP2, but the bias reduces with the sample size. On
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the other hand, the estimator of the location parameter c1 is unbiased for all studied

cases. It is also seen that the negative bias of both QML and BM estimators of δ1

persists even for large samples and its accuracy in estimation does not improve with

the sample size. Next, we compare the robustness of QML and BM estimators in the

presence of two consecutive outliers. We observe from Figure 3 that the effects caused

by two consecutive outliers on the QML and BM estimators resemble those caused by

the presence of a single outlier, but the bias is further aggravated for the estimators of

φ1 and parameters of the stochastic component ht. The QML and BM estimators of α1

are characterized by large positive biases for series contaminated with two consecutive

outliers in smaller samples, but the bias for QML estimator is slightly weaker than that

of the BM estimator. Monte Carlo densities of the QML and BM estimators plotted in

Figure 3 corroborate these findings.

5 Empirical illustration

In this section the above data-based modelling technique of the multiplicative decom-

position of the return variance is illustrated in practice by examining daily commodity

market futures prices of corn and sugar. Corn futures are traded in The Chicago Board

of Trade (CBOT) and sugar futures are available on the Intercontinental Exchange

(ICE). The sample covers the period from 08 January 1997 until 14 March 2022 which

amounts to 6272 observations. The daily prices data have been transformed into per-

centage logarithmic returns and the series are graphed in Figure 4. Because of the long

observation period it is unlikely that the series are stationary. Figure 4(a) displays the

corn returns and one can distinguish two different regimes in volatility for the series

apart from very large (absolute values) returns. It contains a period of higher volatility

following the 2008 financial crisis lasting until 2015 and thereafter descends to a lower

level of volatility. Sugar returns plotted in Figure 4(b) show a fairly high amplitude of

the clusters in volatility in the beginning and middle of the sample to decrease around

2014 to a smaller level of volatility. The exposition of the modelling cycle follows Amado

and Teräsvirta (2017). We begin the model specification problem by first modelling the

short-run volatility component ht as in (5) or (18) with gt = 1. Thereafter, the specifi-

cation of the deterministic function gt is determined by sequential testing. Parameter

constancy of the unconditional variance is tested using the robust and the outlier robust

versions of the Lagrange multiplier tests. For comparison purposes we also provide the

results of the standard LM test. The initial significance level of the sequence of tests

is α(1) = 0.05. At each stage of the sequence we halve the significance level of the test,

i.e. τ = 0.5. The test results appear in Table 7. For the sugar returns, constancy of

the deterministic component is strongly rejected using the robust version of the test,
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but the outlier robust version of the test fails to reject the null hypothesis of constancy.

This leads to the selection of a GARCH model whose parameter estimates are reported

in Table 8. Evidence in favour of the smoothly time-varying unconditional variance is

found for corn returns as the null hypothesis of constant unconditional variance is re-

jected for the robust and outlier robust versions of the tests. The shape of the transition

is determined as described in Section 2.2. It is seen that for both versions of the tests

the strongest rejection occurs for K = 2 with a p-value equal to 0.010 for the outlier

robust test and therefore K = 2 is selected as the exponent of the transition for the

corn returns. Fitting the model with one transition and testing for another transition

yields a p-value equal to 0.579 which is remarkably higher than the significance level

α(2) = 0.025. Thus, the LM test does not provide evidence of yet another transition,

so that the sequential testing leads to the specification of a multiplicative time-varying

GARCH model with a single transition as the final parameterization for corn returns.

The estimates along with their standard errors for the short-run component of

volatility can be found in Table 8. For comparison we also provide the estimates of

the GARCH(1,1) model. The estimation of the standard multiplicative time-varying

GARCH (MTV-GARCH) model and its robust BM counterpart (BM-MTV-GARCH)

has been carried out by maximization by parts to avoid convergence problems. For

estimating the model with time-varying unconditional variance we use the parameter

estimates of the time-varying variance model with ht = 1 as starting-values. A general

finding is that in-sample fit of the robust and standard multiplicative GARCH(1,1)

models are superior to the fit obtained by the GARCH(1,1) model. The results sug-

gest that models with deterministic nonstationary component outperforms the constant

unconditional variance model with the standard MTV-GARCH providing the best in-

sample fit. It is seen that the persistence measured by α̂1 + β̂1 reduces considerably

when the model accounts for slow movements in volatility by introducing the determin-

istic component gt into the model. The deterministic component may not have removed

all the long run dependence since the level of persistence is still high after the long-run

movements in the series have been taken into account. The final estimated determin-

istic components from the standard MTV-GARCH model equals (standard errors in

parentheses)

gt = 9.517
(−)
− 7.6481

(0.0439)
G(t/T ; γ̂1, ĉ1) (22)

where

G(t/T ; γ̂1, ĉ1) =

(
1 + exp

{
−31.396

(2.7660)
(t/T − 0.4963

(0.0723)
)(t/T − 0.4963

(0.0723)
)

})−1

(23)
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and the estimated time-varying component from the robust MTV-GARCH model has

the form:

gt = 9.517
(−)
− 5.8101

(0.0688)
G(t/T ; γ̂1, ĉ1) (24)

where

G(t/T ; γ̂1, ĉ1) =

(
1 + exp

{
−exp(17.079)

(7.1348)

(t/T − 0.4026
(0.0012)

)(t/T − 0.5958
(0.0003)

)

})−1

(25)

The shape of the fitted deterministic time-varying components from the MTV-

GARCH model appear in Figure 5. Note that since the intercept δ0 is kept fixed

to avoid identification problems it does not have a standard error. We observe rather

smooth slow movements in volatility for the standard multiplicative GARCH whereas

for its robust counterpart the transition function is very much close to a step function.

The estimates of the location parameters lie within the range 0.40 - 0.60. This range

contains the turbulent period of the global financial crisis indicating that the chang-

ing unconditional variance is associated with the largest economic recession during the

observation period. This is line with previous studies; see for example Amado and

Teräsvirta (2014).

Figure 6 shows the estimated conditional standard deviation obtained from the

GARCH model. The series looks clearly nonstationary. There is a systematic in-

creased in the baseline volatility from 2005 until 2015 and also at the beginning and

end of the sample period. On the other hand, conditional standard deviations from the

MTV-GARCH models do not show any signs of nonstationarity. The figure shows that

the deterministic time-varying component removes long-run movements in conditional

standard deviation between the years 2005 and 2015 and both ends. It is seen that the

spikes in the conditional standard deviations from the robust multiplicative GARCH

model are of smaller magnitude than those of its standard counterpart. This effect may

be explained to the bounding mechanism of propagation of the outlier effects used in

the estimation of the short run dynamics of volatility in the robust estimator of the

BM-MTV-GARCH model.

6 Conclusions

In this paper, we propose an outlier robust LM-type misspecification test for testing

smooth changes in the unconditional variance. Monte Carlo evidence suggests that

the robust variant of the misspecification test suffers from size distortions and loss

of power in the presence of outliers. It is further seen that the poor performance of

the robust misspecification test depends on the number and magnitude of outliers.
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On the other hand, the outlier robust version of the test statistic constructed from

an outlier-robust estimation technique performs quite satisfactorily in finite samples

in the presence of additive outliers. A modified data-driven strategy for building the

parametric deterministic time-varying component of the multiplicative GARCH model

based on the outlier-robust testing procedure can be designed and carried out which is

robust to the presence of additive outliers. An application to a couple of commodity

returns demonstrate the usefulness of the robust specification procedure. It is seen

that one should carefully interpret the evidence of nonstationarity from conventional

robust tests because the presence of a few outlying observations may cause spurious

nonstationarity. Exploring the forecasting properties of the out-of-sample volatility

for the multiplicative time-varying GARCH model in the presence of outliers warrants

further investigation.

References
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A Tables

Table 1: Rejection frequencies for the robust LM misspecification test for constancy of
the unconditional variance based on 2000 replications

1ωAO 2ωAO
T DGP α ωAO = 0 3 5 7 10 3, 3 5, 5 7, 7 10, 10
1000 DGP1 0.01 0.012 0.015 0.017 0.022 0.038 0.018 0.021 0.024 0.028

0.05 0.063 0.070 0.077 0.094 0.119 0.083 0.091 0.101 0.105
0.10 0.118 0.134 0.147 0.178 0.192 0.146 0.167 0.185 0.188

DGP2 0.01 0.017 0.021 0.023 0.034 0.058 0.023 0.032 0.045 0.067
0.05 0.093 0.100 0.106 0.118 0.165 0.106 0.124 0.153 0.176
0.10 0.160 0.172 0.183 0.205 0.255 0.184 0.217 0.246 0.279

DGP3 0.01 0.023 0.025 0.031 0.047 0.071 0.027 0.043 0.056 0.073
0.05 0.096 0.105 0.111 0.139 0.179 0.117 0.138 0.176 0.194
0.10 0.170 0.175 0.195 0.230 0.285 0.197 0.237 0.276 0.295

3000 DGP1 0.01 0.009 0.011 0.010 0.012 0.015 0.012 0.013 0.016 0.018
0.05 0.059 0.061 0.056 0.050 0.055 0.064 0.065 0.058 0.063
0.10 0.107 0.114 0.108 0.101 0.113 0.115 0.123 0.116 0.126

DGP2 0.01 0.014 0.014 0.016 0.015 0.017 0.014 0.016 0.017 0.024
0.05 0.060 0.067 0.071 0.065 0.068 0.067 0.077 0.080 0.082
0.10 0.118 0.122 0.127 0.122 0.128 0.126 0.136 0.145 0.157

DGP3 0.01 0.014 0.016 0.016 0.019 0.021 0.017 0.021 0.028 0.032
0.05 0.061 0.063 0.068 0.077 0.084 0.067 0.090 0.104 0.122
0.10 0.125 0.123 0.131 0.136 0.156 0.128 0.158 0.175 0.208
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Table 2: Rejection frequencies for the outlier robust LM misspecification test for con-
stancy of the unconditional variance based on 2000 replications

1ωAO 2ωAO
T DGP α 3 5 7 10 3, 3 5, 5 7, 7 10, 10
1000 DGP1 0.01 0.014 0.010 0.011 0.024 0.013 0.009 0.011 0.015

0.05 0.074 0.065 0.063 0.092 0.068 0.056 0.055 0.060
0.10 0.136 0.126 0.127 0.152 0.137 0.112 0.114 0.132

DGP2 0.01 0.016 0.015 0.014 0.016 0.020 0.015 0.012 0.012
0.05 0.086 0.081 0.072 0.067 0.094 0.080 0.068 0.063
0.10 0.162 0.153 0.134 0.122 0.169 0.151 0.139 0.129

DGP3 0.01 0.012 0.011 0.012 0.014 0.019 0.019 0.016 0.012
0.05 0.079 0.076 0.065 0.061 0.091 0.081 0.059 0.064
0.10 0.150 0.141 0.122 0.109 0.158 0.157 0.130 0.125

3000 DGP1 0.01 0.015 0.014 0.014 0.017 0.015 0.013 0.015 0.017
0.05 0.079 0.064 0.056 0.072 0.074 0.061 0.058 0.070
0.10 0.144 0.126 0.116 0.134 0.137 0.119 0.112 0.126

DGP2 0.01 0.019 0.016 0.016 0.016 0.019 0.016 0.015 0.013
0.05 0.076 0.075 0.063 0.056 0.078 0.071 0.063 0.063
0.10 0.141 0.133 0.126 0.117 0.140 0.136 0.123 0.119

DGP3 0.01 0.015 0.015 0.012 0.010 0.016 0.016 0.014 0.011
0.05 0.064 0.066 0.058 0.047 0.070 0.079 0.068 0.057
0.10 0.130 0.127 0.117 0.099 0.134 0.139 0.134 0.115
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Table 3: Estimated power for the robust LM misspecification test for constancy of the
unconditional variance based on 2000 replications

1ωAO 2ωAO
T DGP γ ωAO = 0 3 5 7 3, 3 5, 5 7, 7
δ1 = −0.5
1000 DGP1 5 0.787 0.843 0.901 0.930 0.937 0.958 0.949

10 0.775 0.782 0.856 0.899 0.935 0.964 0.955
DGP2 5 0.458 0.547 0.695 0.821 0.701 0.875 0.920

10 0.373 0.410 0.552 0.709 0.598 0.817 0.884
DGP3 5 0.242 0.312 0.522 0.765 0.510 0.841 0.928

10 0.130 0.155 0.311 0.577 0.320 0.698 0.886
3000 DGP1 5 0.999 0.996 0.901 0.930 0.937 0.958 0.949

10 0.993 0.989 0.975 0.976 0.998 0.999 1.000
DGP2 5 0.992 0.988 0.986 0.975 0.996 0.998 0.998

10 0.952 0.953 0.934 0.923 0.972 0.989 0.993
DGP3 5 0.677 0.689 0.713 0.765 0.510 0.841 0.928

10 0.384 0.376 0.409 0.511 0.500 0.752 0.911
δ1 = 1.5
1000 DGP1 5 0.687 0.688 0.693 0.697 0.688 0.695 0.698

10 0.927 0.926 0.927 0.925 0.927 0.925 0.924
DGP2 5 0.960 0.960 0.960 0.957 0.960 0.958 0.958

10 0.999 0.999 0.999 0.999 0.999 0.999 0.999
DGP3 5 0.045 0.046 0.048 0.054 0.047 0.049 0.060

10 0.239 0.237 0.241 0.249 0.238 0.240 0.246
3000 DGP1 5 0.989 0.990 0.989 0.989 0.990 0.990 0.989

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP2 5 0.999 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP3 5 0.484 0.485 0.500 0.491 0.499 0.497 0.497

10 0.891 0.890 0.882 0.883 0.885 0.887 0.889
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Table 4: Estimated power for the outlier robust LM misspecification test for constancy
of the unconditional variance based on 2000 replications

1ωAO 2ωAO
T DGP γ ωAO = 0 3 5 7 3, 3 5, 5 7, 7
δ1 = −0.5
1000 DGP1 5 0.778 0.789 0.789 0.859 0.881 0.917 0.953

10 0.752 0.703 0.694 0.820 0.848 0.918 0.962
DGP2 5 0.436 0.488 0.555 0.627 0.614 0.741 0.836

10 0.344 0.353 0.385 0.481 0.489 0.630 0.813
DGP3 5 0.219 0.254 0.340 0.480 0.398 0.621 0.748

10 0.118 0.123 0.153 0.278 0.207 0.424 0.676
3000 DGP1 5 0.998 0.997 0.988 0.968 0.998 0.998 0.998

10 0.995 0.986 0.951 0.937 0.993 0.987 0.998
DGP2 5 0.990 0.987 0.975 0.939 0.991 0.986 0.974

10 0.952 0.942 0.904 0.853 0.958 0.944 0.951
DGP3 5 0.627 0.620 0.613 0.607 0.680 0.756 0.841

10 0.361 0.345 0.327 0.326 0.419 0.518 0.643
δ1 = 1.5
1000 DGP1 5 0.998 0.998 0.997 0.997 0.998 0.997 0.997

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP2 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP3 5 0.729 0.731 0.733 0.738 0.733 0.738 0.746

10 0.952 0.951 0.953 0.956 0.951 0.955 0.959
3000 DGP1 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP2 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP3 5 0.999 0.999 0.999 0.999 0.999 0.999 0.999

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5: Monte Carlo medians and standard deviations of the multiplicative GARCH
estimates without outliers, an isolated outlier and two consecutive outliers of size ωAO =
10 for T = 1000 based on 2000 replications.

1ωAO 2ωAO
ωAO = 0 QML BM QML BM

DGP1 φ0 0.051 (0.028) 0.061 (0.028) 0.061 (0.028) 0.063 (0.025) 0.063 (0.025)
φ1 0.097 (0.041) 0.096 (0.039) 0.096 (0.039) 0.202 (0.037) 0.202 (0.037)
α0 0.068 (0.040) 0.093 (0.104) 0.059 (0.088) 0.119 (0.114) 0.084 (0.116)
α1 0.138 (0.040) 0.138 (0.087) 0.128 (0.082) 0.182 (0.081) 0.229 (0.091)
β1 0.755 (0.080) 0.718 (0.181) 0.778 (0.162) 0.640 (0.198) 0.661 (0.213)
δ1 0.397 (0.808) 0.455 (0.465) 0.458 (0.312) 0.526 (0.203) 0.558 (0.234)
γ1 9.678 (4.744) 9.775 (4.169) 9.779 (3.947) 9.746 (2.118) 9.748 (1.579)
c1 0.576 (0.172) 0.496 (0.030) 0.496 (0.029) 0.497 (0.023) 0.498 (0.019)

DGP2 φ0 0.051 (0.039) 0.061 (0.039) 0.061 (0.039) 0.067 (0.037) 0.067 (0.037)
φ1 0.097 (0.039) 0.096 (0.038) 0.096 (0.038) 0.156 (0.037) 0.156 (0.037)
α0 0.069 (0.067) 0.081 (0.129) 0.061 (0.094) 0.112 (0.173) 0.079 (0.161)
α1 0.091 (0.035) 0.088 (0.050) 0.088 (0.048) 0.117 (0.053) 0.132 (0.062)
β1 0.850 (0.071) 0.842 (0.127) 0.861 (0.099) 0.791 (0.165) 0.815 (0.158)
δ1 0.417 (0.792) 0.382 (0.576) 0.381 (0.640) 0.424 (0.563) 0.438 (0.608)
γ1 5.473 (3.500) 7.156 (2.494) 7.044 (2.546) 7.732 (2.451) 7.869 (3.221)
c1 0.547 (0.195) 0.493 (0.062) 0.493 (0.058) 0.495 (0.047) 0.495 (0.044)

DGP3 φ0 0.052 (0.039) 0.061 (0.039) 0.061 (0.039) 0.067 (0.037) 0.067 (0.037)
φ1 0.097 (0.035) 0.097 (0.035) 0.097 (0.034) 0.155 (0.034) 0.155 (0.034)
α0 0.066 (0.122) 0.089 (0.245) 0.092 (0.334) 0.193 (0.358) 0.216 (0.346)
α1 0.049 (0.025) 0.041 (0.042) 0.056 (0.040) 0.086 (0.044) 0.120 (0.050)
β1 0.894 (0.111) 0.879 (0.206) 0.864 (0.257) 0.758 (0.299) 0.719 (0.296)
δ1 0.356 (0.647) 0.387 (0.798) 0.365 (0.158) 0.508 (0.621) 0.430 (0.180)
γ1 4.999 (2.586) 5.018 (13.72) 5.018 (0.710) 5.049 (2.032) 5.053 (0.977)
c1 0.513 (0.159) 0.482 (0.038) 0.482 (0.029) 0.482 (0.029) 0.487 (0.027)
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Table 6: Monte Carlo medians and standard deviations of the multiplicative GARCH
estimates without outliers, an isolated outlier and two consecutive outliers of size ωAO =
10 for T = 3000 based on 2000 replications.

1ωAO 2ωAO
ωAO = 0 QML BM QML BM

DGP1 φ0 0.051 (0.016) 0.054 (0.016) 0.054 (0.016) 0.055 (0.015) 0.055 (0.015)
φ1 0.099 (0.024) 0.099 (0.023) 0.099 (0.023) 0.139 (0.023) 0.139 (0.023)
α0 0.064 (0.017) 0.072 (0.045) 0.062 (0.029) 0.081 (0.034) 0.073 (0.036)
α1 0.142 (0.028) 0.144 (0.039) 0.142 (0.039) 0.155 (0.039) 0.178 (0.042)
β1 0.761 (0.045) 0.750 (0.079) 0.770 (0.067) 0.726 (0.073) 0.722 (0.081)
δ1 0.330 (0.431) 0.323 (0.139) 0.323 (0.142) 0.349 (0.124) 0.367 (0.154)
γ1 7.628 (4.497) 7.307 (2.121) 7.300 (2.145) 7.530 (2.229) 7.744 (2.198)
c1 0.565 (0.163) 0.492 (0.042) 0.493 (0.040) 0.494 (0.025) 0.495 (0.025)

DGP2 φ0 0.051 (0.023) 0.054 (0.023) 0.054 (0.023) 0.056 (0.022) 0.056 (0.022)
φ1 0.099 (0.022) 0.099 (0.022) 0.099 (0.022) 0.121 (0.022) 0.121 (0.022)
α0 0.063 (0.049) 0.066 (0.054) 0.058 (0.035) 0.075 (0.066) 0.064 (0.054)
α1 0.087 (0.030) 0.085 (0.032) 0.088 (0.033) 0.096 (0.034) 0.101 (0.039)
β1 0.860 (0.054) 0.860 (0.060) 0.866 (0.046) 0.843 (0.071) 0.850 (0.065)
δ1 0.358 (0.626) 0.303 (0.685) 0.306 (0.643) 0.334 (0.604) 0.347 (0.630)
γ1 7.688 (8.018) 7.052 (5.894) 7.022 (2.942) 5.290 (11.29) 5.311 (25.05)
c1 0.548 (0.190) 0.491 (0.080) 0.491 (0.080) 0.491 (0.061) 0.491 (0.062)

DGP3 φ0 0.051 (0.023) 0.054 (0.023) 0.054 (0.023) 0.056 (0.022) 0.056 (0.022)
φ1 0.099 (0.020) 0.099 (0.020) 0.099 (0.020) 0.121 (0.019) 0.121 (0.019)
α0 0.050 (0.049) 0.056 (0.081) 0.064 (0.067) 0.081 (0.121) 0.089 (0.112)
α1 0.048 (0.022) 0.045 (0.023) 0.052 (0.015) 0.059 (0.024) 0.071 (0.020)
β1 0.912 (0.052) 0.911 (0.071) 0.899 (0.060) 0.876 (0.100) 0.863 (0.100)
δ1 0.212 (0.930) 0.214 (0.875) 0.293 (0.104) 0.258 (0.883) 0.311 (0.095)
γ1 4.999 (0.902) 5.002 (0.683) 5.014 (0.450) 5.010 (0.955) 5.125 (0.891)
c1 0.500 (0.090) 0.499 (0.059) 0.487 (0.047) 0.499 (0.066) 0.489 (0.034)
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Table 7: Results of the misspecification tests of constant unconditional variance

Standard test Robust test Outlier robust test
Corn Sugar Corn Sugar Corn Sugar

H0 : ϕ1 = ϕ2 = ϕ3 = 0 0.052 0.054 0.015 2× 10−5 0.017 0.126
H03 : ϕ3 = 0 0.410 0.568 0.383 0.585 0.390 0.301

H02 : ϕ2 = 0|ϕ3 = 0 0.018 0.564 0.018 0.555 0.010 0.076
H01 : ϕ1 = 0|ϕ2 = ϕ3 = 0 0.222 0.008 0.051 1× 10−6 0.301 0.187

Table 8: Estimation results of the ht component for the GARCH and MTV-GARCH
models (Standard errors in parentheses)

α0 α1 β1 Log-Lik
Sugar returns

GARCH 0.0186
(0.0054)

0.0338
(0.0039)

0.9621
(0.0044)

-12994.9

Corn returns

GARCH 0.0425
(0.0076)

0.0602
(0.0058)

0.9251
(0.0073)

-11659.9

MTV-GARCH 0.0443
(0.0083)

0.0670
(0.0078)

0.8913
(0.0139)

-11630.0

BM-MTV-GARCH 0.0195
(0.0039)

0.0692
(0.0073)

0.8987
(0.0128)

-11635.0
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Figure 1: Kernel densities of the QML estimators of the GARCH parameters without
outliers for T = 1000 (grey curve) and T = 3000 (blue curve).
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Figure 2: Kernel densities of the QML and BM estimators of the GARCH parameters
with a single outlier of size ωAO = 10.Kernel densities are plotted for the QML estimator
when T = 1000 (grey line) and T = 3000 (blue line) and BM estimator when T = 1000
(red line) and T = 3000 (dotted line).
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Figure 3: Kernel densities of the QML and BM estimators of the GARCH parameters
with two consecutive outliers of size ωAO = 10. Kernel densities are plotted for the
QML estimator when T = 1000 (grey line) and T = 3000 (blue line) and BM estimator
when T = 1000 (red line) and T = 3000 (dotted line).
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Figure 4: Daily logarithmic commodity returns for corn and sugar from 08 January
1997 until 14 March 2022 (T = 6272 observations).
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Figure 5: Estimated gt functions from the standard MTV-GARCH model (red curve)
and the robust MTV-GARCH model (blue curve), and estimated conditional standard
deviation for the commodity daily returns for corn from the GARCH model (grey curve).
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Figure 6: Estimated conditional standard deviations for the commodity daily returns
for corn from the GARCH model (grey curve), the MTV-GARCH model (red line) and
the robust MTV-GARCH model (blue curve).
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