
Journal of Systems Architecture 119 (2021) 102238

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Self-secured devices: High performance and secure I/O access in
TrustZone-based systems✩

Sandro Pinto ∗, Pedro Machado, Daniel Oliveira, David Cerdeira, Tiago Gomes
Centro ALGORITMI, Universidade do Minho, Portugal

A R T I C L E I N F O

Keywords:
TrustZone
Security
Virtualization
TEE
Self-secured devices

A B S T R A C T

Arm TrustZone is a hardware technology that adds significant value to the ongoing security picture. TrustZone-
based systems typically consolidate multiple environments into the same platform, requiring resources to be
shared among them. Currently, hardware devices on TrustZone-enabled system-on-chip (SoC) solutions can
only be configured as secure or non-secure, which means the dual-world concept of TrustZone is not spread
to the inner logic of the devices. The traditional passthrough model dictates that both worlds cannot use the
same device concurrently. Furthermore, existing shared device access methods have been proven to cause a
negative impact on the overall system in terms of security and performance.

This work introduces the concept of self-secured devices, a novel approach for shared device access in
TrustZone-based architectures. This concept extends the TrustZone dual-world model to the device itself,
providing a secure and non-secure logical interface in a single device instance. The solution was deployed
and evaluated on the LTZVisor, an open-source and lightweight TrustZone-assisted hypervisor. The obtained
results are encouraging, demonstrating that our solution requires only a few additional hardware resources
when compared with the native device implementation, while providing a secure solution for device sharing.
1. Introduction

For decades, virtualization technology has been efficiently used
in partitioning hardware resources between multiple virtual environ-
ments [1]. However, with the increase of the embedded system’s com-
plexity, there is an added ever-growing need for solutions capable of
fulfilling security and real-time requirements [2]. With the advent of
the Internet of Things (IoT), security emerged even further as a signif-
icant requirement in the embedded systems development. Therefore,
ensuring security in such systems is crucial, as they play a key role
in safety-critical applications (e.g., aviation, medical, transportation,
military), and attacks on cyber–physical systems can potentially cause
physical harm [3].

Arm TrustZone [4], Intel Security Guard Extensions (SGX) [5], and
Sanctum [6], are examples of security-oriented technologies that pro-
mote hardware as the initial root of trust [7,8]. The former is gaining
particular attention in the embedded space due to the large presence
of Arm processors and microcontrollers in the market. TrustZone tech-
nology splits the hardware and software resources into two worlds —
the secure world, dedicated to the secure processing, and the normal
world for everything else. A lot of research has been made around

✩ This work has been supported by FCT -Fundação para a Ciência e Tecnologia, Portugal within the R&D Units Project Scope: UIDB/00319/2020.
∗ Corresponding author.
E-mail addresses: sandro.pinto@dei.uminho.pt (S. Pinto), pedro.machado@dei.uminho.pt (P. Machado), daniel.oliveira@dei.uminho.pt (D. Oliveira),

david.cerdeira@dei.uminho.pt (D. Cerdeira), mr.gomes@dei.uminho.pt (T. Gomes).

TrustZone technology, ranging from efficient and secure virtualization
solutions [9–13] to Trusted Execution Environments (TEE) [14–17].
Both approaches, despite targeting different applications with different
requirements, consolidate multiple virtual environments in the same
platform. Thus, hardware resources are typically shared among them.

In TrustZone-enabled System-on-Chip (SoC) solutions, hardware de-
vices can only be configured as secure or non-secure, meaning that,
unlike the physical cores, the device does not enable two execution
states simultaneously. Consequently, if both worlds frequently require
access to a device through a direct assignment (passthrough) model,
this is reflected in a significant increase of the performance penalty.
In this case, the device would have to be replicated, which could
significantly increase the overall hardware costs.

Currently, shared device access on virtualization- and TrustZone-
based architectures can follow different approaches, e.g., (i) proxy
task [18], (ii) device emulation [19], (iii) para-virtualization [20,
21], (iv) para-TrustZone [9], (v) re-partitioning [22], and (vi) self-
virtualizing devices [23,24]. Among all these methods, some bring
platform independence and flexibility at the cost of an increased trusted
vailable online 12 July 2021
383-7621/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2021.102238
Received 4 February 2021; Received in revised form 6 May 2021; Accepted 7 July
 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:sandro.pinto@dei.uminho.pt
mailto:pedro.machado@dei.uminho.pt
mailto:daniel.oliveira@dei.uminho.pt
mailto:david.cerdeira@dei.uminho.pt
mailto:mr.gomes@dei.uminho.pt
https://doi.org/10.1016/j.sysarc.2021.102238
https://doi.org/10.1016/j.sysarc.2021.102238
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102238&domain=pdf


Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.
computing base (TCB) size and execution overhead, while others re-
quire considerable engineering efforts or/and hardware costs. Most
importantly, some of these approaches disregard fundamental security
aspects that may lead devices vulnerable to security attacks [17], which
would ultimately cause the device to fail.

In this article, we introduce the concept of self-secure devices
in TrustZone-based architectures. Standard TrustZone hardware con-
trollers only implement a single logical and physical interface while
offering a set of configuration registers to specify to which world the
interface is assigned. In contrast, our self-secured devices approach im-
plements two logical interfaces, simultaneously assigned to the secure
and normal worlds. Furthermore, current Arm TrustZone controllers
are placed at key points of the main bus, while the self-secure devices
solution implements all the logic at the device level at the cost of few
additional hardware resources.

The detailed contributions of this article are the following: (1)
the extension of the TrustZone concept to devices by separating their
hardware logic into a secure and non-secure interface, delivering a
new level of security for the overall TrustZone architecture; (2) a
quantitative study on the hardware costs introduced by the self-secured
devices approach, regarding the device’s complexity level; and (3)
comparison of the self-secured device approach with existing state-
of-the-art methods in terms of engineering effort, memory footprint,
performance, and security aspects.

2. Background

2.1. Mixed-criticality systems

An increasingly trend in the design of embedded (and real-time)
systems is the integration of components with different levels of crit-
icality onto the same hardware platform. These platforms have been
shifting from single- to multi-core architectures, and soon to many-
core configurations. Criticality is a designation of the level of as-
surance against failures, needed for a system component. Thus, a
mixed-criticality system (MCS) consolidates both environments and
applications with two or more distinct levels [25,26]. For example, in
automotive systems, network-connected infotainment is often deployed
alongside safety-critical control systems. Most of the embedded systems
found in embedded industries, e.g., automotive, avionics, medical, and
industrial control, are evolving into mixed-criticality systems in order
to meet the market pressure to minimize size, weight, power, and cost
(SWaP-C) metrics [26].

2.2. Arm TrustZone

Arm TrustZone consists of hardware security extensions introduced
into Arm application processors (Cortex-A) back in 2004 [4,27], and
more recently adapted to cover the new generation of Arm micro-
controllers (Cortex-M) [13,28,29]. This hardware security extension
splits all hardware resources by partitioning a physical processor into
two virtual cores: the secure and the normal world. Both worlds are
completely hardware isolated and granted uneven privileges, with nor-
mal world software prevented from directly accessing secure world
resources. TrustZone and TrustZone-M, at a high-level, are identical.
However, there are important differences between both processor fam-
ilies, i.e., Cortex-M MCUs are optimized for faster context switch and
low-power applications. For the remainder of this section, and under
the scope of this work, we will only focus on the description of the
TrustZone architecture for Cortex-A processors.

In the TrustZone architecture, the most important change at the
processor level consists in the addition of a 33rd bit, used to flag
the current processor security state. This bit is accessible through
the added Secure Configuration Register (SCR) present in the System
Control Co-processor (CP15), and exclusively accessible by the secure
world. Secure and normal world partitioning is not only restricted to
2

the processor, but also propagated to other system resources, such as
memory, peripherals, and buses. The memory infrastructure can be
partitioned into distinct memory regions, which can be configured to
be used by both worlds or exclusively by the secure world: (i) the
Memory Management Unit (MMU) is banked between secure states,
where each world has its unique translation table; (ii) at the cache level,
each entry is tagged with the non-secure bit of processor state upon the
access and, therefore, entries from both worlds can coexist removing
the need for duplication and cache flushing, which accelerates world
switching. To enable such memory infrastructure, TrustZone-enabled
platforms introduce the TrustZone Address Space Controller (TZASC)
and the TrustZone Memory Adapter (TZMA) hardware peripherals.
Briefly, TZASC can be used to configure specific memory areas of DRAM
as secure or non-secure, whereas TZMA can partition off-chip ROM and
SRAM.

To extend TrustZone features to the remaining parts of the SoC, the
TrustZone-enabled AMBA Advanced eXtensible Interface (AXI) system
bus carries extra control signals, the AWPROT and ARPROT, used to
restrict access to the main system bus with three different levels of
access protection: (1) normal or privileged, (2) instruction or data,
and (3) secure or non-secure. The secure or non-secure accesses are
controlled by adding an additional control bit to the system bus, i.e., the
non-secure bit, for each of the read and write channels on the main
system interconnection. This feature enables TrustZone architecture
to secure also system peripherals (e.g., interrupt controllers, timers,
and user I/O devices) by using the TrustZone Protection Controller
(TZPC), allowing to restrict devices either to secure or normal worlds.
The Generic Interrupt Controller (GIC) (both version 2 and version
3, i.e., GICv2 and GICv3) supports the robust management of secure
and non-secure interrupts by providing both secure and non-secure
prioritized interrupt sources. This prioritization mechanism allows con-
figuring secure interrupts with higher priority than the non-secure
interrupts, preventing potential denial-of-service attacks.

2.3. TrustZone-assisted Virtualization

TrustZone technology, although implemented for security purposes,
enables a specialized, hardware-assisted, form of system virtualization.
With a virtual hardware support for dual world execution, as well as
other TrustZone features like memory segmentation, it is possible to
provide time and spatial isolation between execution environments.
Basically, the non-secure software runs inside a VM whose resources
are completely managed and controlled by a hypervisor running in
the secure world. TrustZone-assisted virtualization is not particularly
considered full-virtualization neither paravirtualization, because, al-
though guest OSes can run without modifications on the normal world
side, they need to co-operate regarding the memory map and ad-
dress space they are using. According to the existing state of the art,
TrustZone-assisted virtualization solutions [4] support three types of
system configurations: single-guest, dual-guest, and multi-guest. The
dual-guest configuration is a perfect fit for embedded mixed-criticality
systems, and the one with most works described in the state-of-the-art.
LTZVisor [11], discussed in the next subsection, is a great example of
a system implementing such configuration.

In the single-guest configuration, the hypervisor runs in the monitor
mode, while the guest OS and its applications run in non-secure super-
visor and user mode, respectively. In the dual-guest configuration, the
hypervisor runs in the monitor mode, and the secure guest OS and its
applications run in secure supervisor and user mode, and the normal
world hosts the (non-privileged) VM. In the multi-guest configuration,
unmodified guest OSes are encapsulated between secure and normal
worlds: the active VM runs in the normal world, while the context of
inactive VMs is preserved in a secured memory area. This setup requires
the hypervisor to effectively handle shared hardware resources, mainly

processor registers, memory, caches, and MMU.



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.
Fig. 1. LTZVisor architecture overview [11].

2.4. LTZVisor

The LTZVisor is a lightweight TrustZone-assisted hypervisor [11].
As depicted by Fig. 1, LTZVisor implements the classic dual-guest
model: the secure world hosts the most-privileged virtual machine
(VM), i.e., a real-time operating system (RTOS), whereas a general-
purpose operating system (GPOS) VM is assigned to the normal world.

The LTZVisor runs in monitor mode, i.e., with the highest privileged
processor mode, which allows the hypervisor to have full control of
all hardware and software resources. LTZVisor is also responsible for
configuring memory, interrupts, and devices assigned to each VM, as
well as managing the Virtual Machine Control Block (VMCB) of each
VM during partition switches; whenever a VM is about to be executed,
the hypervisor saves the CPU state in the VMCB of the running VM
and restores the state of the new schedule VM. The secure VM, running
on the secure side, runs privileged code that can access or modify any
of the non-secure VM resources, such as its memory and associated
devices. Therefore, the OS hosted on the secure VM must be aware of
its virtualization and it is considered part of the TCB, hence it must
keep small TCB size. An RTOS is a perfect candidate to run on the
secure side due to its inherent small size and strict time constraints.
The non-secure VM, running on the normal world side is ideal to host
a GPOS, useful for running human–machine interfaces and containing
high-level libraries and other software drivers. The non-secure VM is
completely isolated from the privileged VM in the secure world, and
whenever an attempt from the normal world to access secure world’s
resources occurs, an exception to the hypervisor is triggered. Regarding
memory, devices, and interrupts, they are configured and assigned to
their respective partitions during system initialization and not shared
between the VMs.

3. Related work

In this article, we introduce the concept of self-secure devices
in TrustZone-based architectures, i.e., we extend the TrustZone dual-
world model to the device itself by providing a secure and non-secure
logical interface in a single device instance. The concept of self-secured
devices is based on the self-virtualizing approach [23,24]. In the re-
maining of this section we describe existing shared device access ap-
proaches for virtualization- and TrustZone-based architectures, namely
proxy task [18], para-TrustZone [9], and device re-partitioning [22].

3.1. Self-virtualization technique

A self-virtualizing device [23,24] features hardware logic to provide
3

I/O virtualization functionalities. With such resources, the device is
capable of: (i) multiplexing a large number of virtual devices mapped to
a single physical device; (ii) managing virtual devices through APIs on
the hypervisor; (iii) using APIs for accessing virtual devices and inter-
acting with guest domains; (iv) and taking maximum advantage of the
computing power of the hardware platform (e.g., multiple processing
cores).

Each device is represented by a virtual interface (VIF), which is
accessed from the guest OS through a device driver. The self-virtualized
device is responsible for creating, destroying, and managing a VIF.
The key task of a self-virtualized device consists of the ability to
multiplex/demultiplex several VIFs on a single physical I/O. When a
physical device requires to communicate with the processing system,
it uses a single communication channel that is then demultiplexed into
one of the existing VIF, and data is sent to the respective guest through
the VIF’s receiving queue.

Self-virtualized devices were designed, from the ground-up, for
servers and cloud requirements and materialized in the SRIOV for
PCIe [23]. Preeminent solutions for IO virtualization for (embedded)
mixed-criticality systems include BlueIO [30] and MCS-IOV [31].

3.2. Proxy task

Proxy Task is the simplest method for sharing devices [18], and
it consists of a client task in the secure world OS sending a request,
through a well-specified communication channel, to a proxy task run-
ning in the normal world OS. These requests are intended to access the
device through GPOS’s libraries and drivers [12,32]. The drawback of
this method lies in the fact that the requests require the collaboration
of the non-secure OS, which in the context of TrustZone architectures
is a piece of software that cannot be trusted.

3.3. Para-TrustZone

Para-TrustZone [9] is a variation of the para-virtualization tech-
nique, which requires the modification of the GPOS driver to send
requests to the secure world. This approach uses the Secure Moni-
tor Call (SMC) instruction to perform requests to the secure world.
Therefore, the SMC instruction requires kernel privileges and the GPOS
driver must be modified to add support for this instruction. This method
does not protect the device against the GPOS misbehavior and does
not control the request frequency. Therefore, a malicious GPOS can
intentionally perform massive SMCs to cause a denial-of-service (DoS)
attack and lead the device to block/fail.

3.4. Device re-partitioning

Device re-partitioning allows a device that has been already as-
signed to a security state to be dynamically re-assigned to another, at
run-time [22]. Devices can be configured and re-configured as part of
the secure or normal world through the TrustZone Protection Controller
(TZPC). As a result, devices can be directly accessed by both the secure
and normal worlds, which considerably reduces the performance over-
head. Reconfiguration operations (i.e., ‘‘PLUG’’ and ‘‘UNPLUG’’ events)
are managed by re-partition managers present in both OSes [32]. The
re-partitioning approach can be implemented in a pure or hybrid form.
The disadvantage of this approach is that the device state must be reset
when changing security states to guarantee a trustworthy state. This
strategy brings huge security implications since a malicious attacker
can get full control of the device while it is assigned to the GPOS,
making it possible to change and damage its normal operation.



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.

t
z

c

c

Fig. 2. Self-secured device generic architecture in a platform featuring GICv2.

4. Self-secured devices: Design

TrustZone-based systems are designed to take advantage of a dual
world environment, where one world is higher privileged than the
other. This concept also extends to devices, where those assigned to
the normal world can be accessed by the secure world but the normal
world cannot access devices marked as secure. Accesses are performed
through the system and peripheral buses, e.g., the Advanced eXtensible
Interface (AXI), which are able to propagate the secure state of the
CPU through the addition of a control bit on each read and write
channel. Therefore, when a request is performed from the normal world
(marked by the non-secure bit), the access to sensitive registers and
configurations assigned to the secure world is denied. When a device is
required by both worlds, current solutions usually follow a time-shared
approach or entirely replicate the device’s logic. However, time-sharing
can be a cumbersome solution and may not be possible to deploy
depending on the platform’s capabilities, while replicating the entire
device incurs on increased hardware costs.

Our approach creates a distinct device interface for each world,
securely isolating sensitive registers assigned to each interface (with
different banked registers in both interfaces). The solution can grant
device access both from the normal and secure worlds simultaneously,
without compromising the TrustZone security primitives. This means
that the secure world has access to both the secure and non-secure
logic interfaces, while the normal world access is restricted to the non-
secure logic interface. Moreover, any access from the normal world to
the device’s configurations can be performed under the supervision of
the secure side.

Fig. 2 illustrates the generic architecture of a device following the
self-secured approach. The hardware module provides two different
accesses, the non-secure and the secure interfaces, which can grant
access to different sets of registers, NS REGs and S REGs, respectively.
Moreover, the self-secure device must distinguish non-secure from
secure interrupts, routing them accordingly from the programmable
logic to the processing system. In the GICv2 interrupt controller, secure
interrupt sources are routed as Fast Interrupt Request (FIQ), while non-
secure interrupts are routed as Interrupt Request (IRQ). If the normal
world is executing and an FIQ arises, the execution is transferred to
the secure state and the interrupt is handled by the secure-OS (i.e., the
RTOS on LTZVisor), avoiding additional overheads in the interrupt
latency. On the other hand, when a non-secure IRQ arises and the
4

Fig. 3. Block diagram of an AXI timer.

secure world is executing, the OS behavior is not affected and the
interrupt will only be attended as soon as the normal world becomes
active again. In the GICv3, the implementation is simpler because
interrupts can be marked as secure or non-secure. Furthermore, IRQs
can be injected directly to S-EL1, which simplifies interrupt handling on
the secure monitor. Therefore, the self-secure device must only provide
separate interrupts for each world in a platform featuring GICv3. For
the remainder of this article, and due to the focus of our work in
the Zynq-7000 SoC architecture, we will drive our implementation for
GICv2.

5. Self-secured devices: Implementation

The self-secured device architecture was implemented on a Timer
(Fig. 3), and an Universal Asynchronous Receiver/Transmitter (UART)
device (Fig. 5). The solution was deployed and tested on a Xilinx Zynq-
7000 platform, which features a programmable SoC with a dual-core
ARM Cortex-A9 processor along with field-programmable gate array
(FPGA) fabric. These devices were selected according to their inner
logic complexity, being the UART logic more complex than the Timer,
since it requires not only control and status registers, but also data
FIFOs and state-machine blocks. This approach will help in understand-
ing the impact of our solution regarding AXI interfaces and registers
replication, which will cause a direct impact on hardware costs and
overall performance.

5.1. Self-secured device #1: Timer

The Timer device follows the reference implementation of the pri-
vate timer present in Arm Cortex-A9 MPCore processors [33]. As
depicted by Fig. 3, this CPU timer provides four registers: (i) the
32-bit Counter register, a classic decrementing counter with auto-
reload and single-shot modes; (ii) the Load register, which contains
he value copied to the Counter register when it decrements down to
ero with auto-reload mode enable; (iii) the Control register, which

provides bit assignments for the timer regarding interrupts, auto-reload
or single-shot modes, and an 8-bit length clock prescaler; (iv) and the
Interrupt Status register that flags automatically when the Counter
register reaches zero.

Fig. 4 depicts the design of the Timer device following the self-
secured approach. The device logic is accessed through two sepa-
rated interfaces (one for each world), preventing the normal world
from accessing the most sensitive logic, which could: (i) compro-
mise the counter value of the secure world; (ii) trigger unexpected
and unintended interrupts by changing interrupt configurations; (iii)
change device configurations that are normally performed at boot
time (e.g., prescaler); (iv) or tamper with the device’s normal flow
by changing the device’s secure configuration (e.g., timer mode). To
achieve such design some registers, given their atomic nature, must be
banked (e.g., Counter and Load registers), while others can be simply
extended (e.g., Control and Interrupt Status registers), allowing a dual
onfiguration/assignment of functionality bits.

The Counter and Load registers are entirely duplicated as they
ompose the functional part of the timer infrastructure. This is not the



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.

C

5

r
d
d
b
l
(
i
(
c
g
a

d
t
l
s
o
F
s
s
i

Fig. 4. Self-secured timer hardware architecture.

case of the Control and Interrupt Status registers, which can be only
extended and partially replicated. These registers feature additional
bits for the interrupt configuration and event flags, timer activation
(i.e., enable bit), and mode configuration (i.e., auto-reload or single-
shot). For instance, the prescaler, which influences the overall behavior
of counter tick, can only be accessed via the secure world. Likewise,
the configuration of interrupts is also exclusively configured by the
secure world as well as the FIQ event flag in the Interrupt Status reg-
ister. Furthermore, an additional interrupt source is provided to assign
different interrupt mechanisms for each counter overflow. The normal
world counter overflow triggers an IRQ, while the secure counter value
from the secure register bank, generates an FIQ.

To add these new features, the device AXI register map was ex-
tended to include the additional banked registers, i.e., the non-secure
Counter and Load registers. To allow the secure world to access both
interfaces and to cope with the required changes in the AXI register
addresses, the device driver only requires minor modifications, which
include additional functions for reading and writing the Load and
ounter registers of the non-secure interface.

.2. Self-secured device #2: UART

Fig. 5 illustrates the UART controller, a full-duplex asynchronous
eceiver and transmitter device used for serial data communication. The
evice is structured with separate Receiver (Rx) and Transmitter (Tx)
ata paths, and provides the following features: (i) a programmable
aud rate generator; (ii) a receiver and transmitter FIFO with 64 bytes
ength; (iii) programmable protocol (data size, and stop and parity bits);
iv) error detection for parity, framing, and overrun; (v) line-break and
nterrupt generation; (vi) multiple TX and RX operation modes; and
vii) modem control signals. In terms of hardware logic, the UART is
omposed of six modules: (i) control and status logic; (ii) baud rate
enerator; (iii) transmitter register and Tx FIFO; (iv) receiver register
nd Rx FIFO; (v) mode switch; and (vi) modem control.

Since the UART device is inherently more complex than the Timer,
eploying the self-secured device concept implies a more careful and
hroughout selection process of which functional, control, and data
ogic should be accessible from each world. Notwithstanding, this
election process should not compromise the security and functionality
f the device, while keeping the hardware costs to the bare minimum.
ig. 6 depicts the self-secured UART device with the secure and non-
ecure registers. Secure banked registers are exclusively accessed by the
ecure interface, while non-secure registers can be accessed by both
nterfaces.
5

Fig. 5. Block diagram of the UART peripheral.

The registers exclusive to the secure interface are explained as
follows:
Control: This register is assigned to the secure interface since its
configuration options (e.g., enable, disable, reset) could potentially
compromise the Tx and Rx modules;
Mode: This register is responsible for setting the data format (e.g., bit
length, parity bit) and selecting the mode of operation. Thus, it is only
available in the secure world;
Interrupt Enable/Disable/Mask: These registers, usually con-
figured during boot time, are used to control the UART interrupts. Its
modification during execution time could trigger unintended interrupts
and different execution flows;
Baud Rate Generator/Divider: These registers are used to con-
figure the Tx and Rx baud rate speeds. This configuration is typically
set at boot time, and, therefore, only accessed by the secure world.
Receiver Timeout: This register enables the detection of an idle
condition on the Rx data line, issuing an interrupt when the timeout
value is reached. It should only be changed by the secure world, oth-
erwise a misconfiguration could trigger unintended timeout interrupts;
Modem Control: This register controls the interface with the modem.
Only the secure world should be able to change the operation mode and
flow control.
Flow Control Delay: This register specifies the receiver FIFO level
at which the terminal request to send (RTS) signal is asserted/de-
asserted. Just like the Modem Control register, the Flow Control
Delay should only be accessible through the secure interface, since it
modifies the UART operation mode;

On the other hand, the registers that are accessible and banked
between both worlds are the following:

Fig. 6. Self-secured UART hardware architecture.



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.

T
t
C

Interrupt Status: This register reflects the state of interrupts.
herefore it must be replicated to the non-secure register bank to enable
he normal world to be aware of its own interrupts status;
hannel and Modem Status: These registers enable the continuous

monitoring of the raw unmasked status information of the UART. They
must be replicated by both register banks to enable the secure and
non-secure FIFO status to be accessible by their respective interfaces;
Transmit (Tx) FIFO: This register holds data to be sent by the
transmitter. A copy of this register is required in both the secure
and non-secure interfaces, preventing secure data from being accessed
and/or corrupted;
Receiver (Rx) FIFO: This register contains the last received data.
A copy of this register is also required in both the secure and non-secure
register banks.
Tx/Rx FIFO Trigger Level: These registers are used to set the
value at which the Tx and Rx FIFO values triggers an interrupt event.
These registers must be replicated to be accessible by both the secure
and non-secure interfaces.

Following the same interrupt model as in the self-secure Timer
device, secure and non-secure interrupts are independent and accessed
separately. Therefore, interrupts from the UART in the secure interface
are routed as FIQs to the secure world, while interrupts from the non-
secure interface are routed as IRQs to the normal world. The AXI
address space is also extended with the register banks dedicated to
the normal world, filtering the write and read operations according to
the extended TrustZone AWPROT and ARPROT protection signals. The
transmitter and receiver hardware modules are also slightly modified
in the sense that incoming data is stored in the respective FIFO queue,
according to their interface type, i.e., secure or non-secure.

Given the higher privilege nature of secure applications using the
UART through the secure interface, secure data transmission and recep-
tion must be prioritized, which is achieved at the level of transmitter
and receiver modules. Secure data transmission prioritization is en-
sured by only transmitting non-secure data when the secure FIFO is
empty. On the other hand, the reception of secure data is ensured by
continuously monitoring both secure and non-secure Rx signals. Upon
detecting a start bit in the secure interface, the device prioritizes its
reception, whether if the module is in idle mode or receiving non-secure
data. In the latter, non-secure data will be dumped and the receiver will
immediately start receiving the secure data.

6. Evaluation

The evaluation was thoroughly conducted on a Zybo Board, fea-
turing a Zynq-7000 SoC with the processor running at a clock speed
of 50 MHz. Since dual-OS configurations for mixed-critical solutions
based on Trust-Zone typically deploy a GPOS running in the normal
world and an RTOS on the secure world, the self-secure approach
was developed in the context of LTZVisor. LTZVisor is a lightweight
and TrustZone-based hypervisor that supports a dual-OS configuration,
which by design protects the real-time property of the RTOS against
GPOS (or other external) attacks to the secure world. The LTZVisor
was configured to run the FreeRTOS (version 7.0.2) on the secure
VM, and the Linux (2015.4 Xilinx version) on the non-secure VM.
The self-secured devices approach, deployed on the Timer and UART
devices, was evaluated in terms of (i) number of source lines of code
(SLoC) required to modify the native implementation, i.e., hardware
modules and software drivers; (ii) memory footprint; (iii) performance;
(iv) hardware costs; and (v) security premises. The self-secure device
approach is further qualitatively compared with the most relevant
6

state-of-the-art methods for shared devices.
Table 1
Source lines of code (SLoC) for the LTZVisor, RTOS — FreeRTOS (secure world) and
GPOS — Linux (normal world).

Devices Software modules

LTZVisor

Native Para-TrustZone Re-Partitioning Self-secured

Timer 2259 2302 2259 2265
UART 2259 2334 2259 2265

RTOS: FreeRTOS

Native Para-TrustZone Re-Partitioning Self-secured

Timer 2298 2298 2333 2311
UART 2458 2458 2505 2476

GPOS: Linux

Native Para-TrustZone Re-Partitioning Self-secured

Timer 95 159 131 107
UART 225 305 279 243

HDL verilog

Native Para-TrustZone Re-Partitioning Self-secured

Timer 637 – – 771
UART 1695 – – 1970

6.1. Source lines of code (SLoC)

To assess the engineering effort associated with the implementation
of the self-secured devices, we have evaluated the impact, in terms of
SLoC (summarized in Table 1), required to modify the following com-
ponents: (1) hardware modules; (2) the LTZVisor; (3) the FreeRTOS;
and (4) the GPOS.
Hardware Modifications. Both devices are implemented in Verilog, a
hardware description language (HDL) used to model low-level logical
systems. For the Timer device, the additional effort to implement the
self-secured approach required almost the full replication of the device
itself, since the critical logic was independently needed by both the
secure and normal worlds. However, the hardware logic to be repli-
cated was simple. For the UART device, and considering that the device
complexity is a bit higher than the Timer, the engineering effort had
more impact in terms of choosing the critical registers to be replicated
than the implementation itself. This is due to the device being classified
as a medium complexity device and some registers should not be
replicated but exclusively accessed from the secure-interface.

The self-secured Timer device requires 771 SLoC, which represents
an increase of nearly 20% when compared with its base implementation
(637 SLoC). With a device duplication approach, it would require the
full duplication of the number of SLoC. Because the Timer is considered
a low-complexity device with few registers to be replicated, the 20%
increase is highly related to the additional AXI interface required
for the normal world access. For the UART device, the SLoC for the
native implementation is 1695, while in the self-secure device approach
the SLoC is 1970, which represents an increase of nearly 15%. This
can be explained by the fact this device, despite presenting a higher
level of complexity, requires less registers and hardware logic to be
replicated (most of important registers are exclusively assigned to the
secure-interface). From our experience in developing hardware devices
and given the obtained results, we can conclude that the overhead
caused by modifying a device to our approach decreases meanwhile
its complexity increases. Thus, in future implementations of self-secure
devices with higher level of complexity, e.g., ethernet interface, it is
expected the overhead to be smaller.
LTZVisor Modifications. Table 1 illustrates the number of SLoC
required for each software component, using different device sharing
methods. Regarding the LTZVisor, the required modifications are re-
lated to the security configuration and the routing of the separated
interrupts coming from the secure and non-secure device interfaces.

While the re-partitioning approach does not require any changes to



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.

T
r
s
c
t
a
o
s
t
t
a
a
G
s
n
i
c
a
U
r
e
i
S
r

6

r
a
c
w
w
a
a
s
a
r

6

(
r
e
t
p

Table 2
LTZVisor and FreeRTOS memory footprint.

Memory footprint in bytes

LTZVisor image .text .data .bss Total

Self-secured Timer 51828 468 460440 512736
Timer Re-partitioning 52375 476 460448 513299
Timer Para-TrustZone 52898 468 460456 513822

Self-secured UART 52341 500 460472 513313
UART Re-partitioning 52818 508 460488 513814
UART Para-TrustZone 53582 500 460504 514586

the hypervisor (since the pure method mechanisms are entirely im-
plemented at the OS level), the Para-TrustZone approach is the most
intrusive, since is the one that requires more modifications on the
LTZVisor. This is a consequence of the hypervisor having to handle ev-
ery SMC issued by the GPOS driver and the respective device operation
based on the passed arguments of every request.
FreeRTOS Modifications. Regarding the FreeRTOS, the para-

rustZone method does not require any modifications, since it only
elies on LTZVisor to handle the non-secure requests. However, the self-
ecure Timer approach requires some minor modifications, that merely
onsist in providing support for the secure world to perform accesses
o both the secure and non-secure device interfaces. In contrast, the
dditional SLoC in the re-partitioning approach are due to the addition
f the required re-partitioning mechanisms, which are responsible for
ending the ‘‘PLUG’’ event whenever the RTOS requests the device, and
he ‘‘UNPLUG’’ event when it is no longer needed. Furthermore, upon
hese events, the RTOS must save and restore every device register
t each device re-partition, as well as reconfigure the device security
ccording to the world’s context switch event.
POS Modifications. Regarding the GPOS, the modifications on the

elf-secured approach only consisted of re-mapping the accesses to the
on-secure interface registers and providing support for the non-secure
nterface interrupt handling. In the re-partitioning method, there are
onsiderable user-level modifications in the GPOS. These modifications
re related to the task that runs continuously, checking for upcoming
NPLUG and PLUG events, which are responsible for unloading and

e-loading the device driver, respectively. The Para-TrustZone requires
xtensive modification to the GPOS driver, as a consequence of replac-
ng the device’s operations for SMCs with adequate arguments. This
MCs enable the GPOS to access the secure device through operation
equests, sent out directly to the hypervisor.

.2. Memory footprint

Table 2 contains the LTZVisor and FreeRTOS memory footprint,
etrieved with the size tool of the Arm GNU toolchain, for different
pproaches of the two implemented devices. Because the RTOS is
ompiled with the hypervisor, all the software stack is considered, as
ell the hypervisor code, bootloader code, libraries, and FreeRTOS
ith respective device drivers. The Para-TrustZone, and Re-partitioning
pproach, introduce the highest memory footprint increase, due to the
dditional amount of code required to implement this method. Table 3
hows the size of the GPOS device driver for the different implemented
pproaches. Once again, and for the same reason, Para-TrustZone and
e-partitioning introduce the highest memory footprint increase.

.3. Performance

The performance was evaluated using the Performance Monitor Unit
PMU) module to accurately determine the number of clock cycles
equired by read/write operations and the latency associated with
ach device re-partitioning event. Results shown in Table 4 represent
he average of one hundred samples and demonstrate a considerable
erformance overhead introduced by the para-TrustZone method. In
7

Table 3
Device drivers memory footprint.

Memory footprint in bytes

Device drivers .text .data .bss Total

Native Timer 1764 164 292 2220
Timer Re-partitioning 1764 164 292 2220
Self-secured Timer 1780 164 292 2236
Timer Para-TrustZone 1856 164 300 2324

Native UART 1884 164 548 2496
UART Re-partitioning 1884 164 548 2496
Self-secured UART 1904 164 548 2616
UART Para-TrustZone 1986 164 564 2714

contrast, both the self-secure and re-partitioning approaches are similar
to the native execution. This is an expected behavior, due to device
accesses being performed directly to the hardware. Even though the
re-partitioning method does not incur any overhead on read/write
accesses, it still introduces considerable device latency (7055 clock
cycles) on re-partitioning events, since the FreeRTOS has to wait to
reliably use the device.

6.4. Resource utilization

Table 5 summarizes the hardware resources utilization for the Timer
and UART devices, relatively to: (1) their native implementations; (2)
the self-secured method; and (3) with the device duplication approach.
Results were gathered from the Vivado utilization report, which in-
dicates the number of registers, Look-Up Tables (LUTs), I/Os, Global
Buffers (BUFGs), Digital Signal Processing (DSP) blocks, and Flip-flops
(FFs) required for each implementation. In general, adding more logic
to the current design results in a higher utilization of these resources.
Self-secured Timer. For the self-secure and native implementations,
the utilization rate of BUFGs and distributed RAM (LUTRAM) remained
the same, while the LUTs utilization increased from 3,5% to 4,5%. The
FFs utilization had a slight increase from 2% to 2,6%. However, in case
of device duplication the following hardware costs are increased: FFs
utilization from 2% to 3.2%; LUT utilization from 3,5% to 5,7%; and
LUTRAM has a slight increase of 0,05%. The LUTs and FFs utilization
had a relative change of 28% and 30%, respectively. In contrast, with
device duplication, the LUTs and FFs utilization had a relative change
of 60% and 63%, and also a 5% increase of LUTRAM utilization.
Self-Secured UART. With the self-secured approach, the utilization
rate of BUFGs, DSP blocks and LUTRAM, remained the same, while
the I/O utilization increased from 8% to 10%, the required block
RAM (BRAM) from 1,7% to 3,33%, FFs utilization raised from 3,9%
to 4,7%, and LUTs increased from 39% to 40,5%. However, if the
device is completely replicated, the hardware costs are the following:
I/O utilization increased from 8% to 16%; DSP blocks utilization raised
from 1,25% to 2,5%; BRAM from 1,7% to 3,33%; FFs utilization
increased from 3,9% to 6,9%; LUTRAM had a slight increase from
1% to 1,03%; and the LUTs had the highest increase, from 39% to
74%. Therefore, with the self-secured method, I/Os, BRAM, FFs and
LUTs utilization had a relative change of 25%, 95,8%, 20,5% and
3,8%, respectively. However, when duplicating the entire device, the
utilization rate of I/Os, DSP blocks, BRAM, FFs, LUTRAM, and LUTs,
has a considerable relative increase of 100%, 100%, 95,8%, 77%, 89%
and 3%, respectively.

Table 4
Number of clock cycles for write/read device operations and incurred device latency.

Write Read Latency

Native 46 129 0
Self-secured 46 129 0
Re-partitioning 46 129 7055
Para-TrustZone 2233 2125 0



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.

a
i
a
h

T
Q

Table 5
Post-implementation hardware costs for the self-secured Timer and UART.

Timer UART

Resource Native Self-sec. Dup. Native Self-sec. Dup.

LUT 610 808 1000 6834 7126 13024
LUTRAM 60 60 62 60 60 62
FF 705 938 1125 1364 1677 2415
BRAM 0 0 0 1 2 2
DSP 0 0 0 1 1 2
IO 0 0 0 8 10 16
BUFG 1 1 1 1 1 1
6.5. Security analysis

Regarding the security properties of the self-secured devices, we
have experimentally configured the normal world to access a device
through the secure interface. At each attempt, an exception was trig-
gered to the hypervisor, which takes the appropriate actions. Addition-
ally, our approach enforces three fundamental security aspects:

1. Self-secured devices provide confidentiality by means of TrustZone’s
strong spatial isolation mechanisms. The GPOS cannot access any
data allocated on the secure interface nor registers stored in the se-
cure register bank, because the implemented protection mechanism
denies any unauthorized access.

2. With the self-secure approach, the device ensures the successful
completion of secure operations. Meaning, that an operation per-
formed by the secure world must be completed, regardless of op-
eration requests coming from the non-secure side. This is achieved
by restricting non-secure attempts to configure registers that may
tamper with the device’s normal behavior.

3. The secure world has full control of the device through the secure
interface, preventing any action from the normal world that may
compromise or inhibit the utilization of the device’s resources.
Additionally, due to the co-existence of privileged (FIQs) and un-
privileged (IRQs) interrupt sources, FIQs belonging to the secure in-
terface can preempt the execution of the GPOS, even when executing
an IRQ request.

6.6. Qualitative comparison

Each approach to sharing devices in TrustZone has its own strengths
nd weaknesses. Table 6 provides a side by side qualitative compar-
son of all the collected evaluations against the self-secure devices
pproach. For the two software-only methods evaluated, both save the
ardware costs. However, device Para-TrustZone introduces overhead

able 6
ualitative comparison between all evaluated device sharing methods.
8

caused by the read/write device operation, which requires a significant
engineering effort to handle and carry out each SMC. This is due the
Para-TrustZone method granting GPOS accesses to the secure device
through an SMC. In what concerns the device Re-partitioning method,
this overhead is not observed, since it dynamically reassigns the device
security in run-time, and once the device is assigned, it allows both
OSes to perform read/write accesses. However, the reassignment mech-
anism implementation requires considerable engineering efforts and
introduces performance overhead. Moreover, during the reassignment
process period, the device is unusable, incurring a considerable device
latency that may be unsuitable for time-critical applications. Most
importantly, in both methods, the frequency of GPOS accesses is not
limited, which in case of GPOS misbehavior, a large number of requests
may be performed, potentially causing the secure device to fail.

From a general point of view, both existing methods lack in terms of
security and performance, especially when compared with the approach
proposed in this work. Regarding the hardware-assisted implementa-
tions, in the device duplication method each guest OS owns a dedicated
copy of the device by simply duplicating the entire hardware logic
(without any required modifications or additional engineering effort),
leaving no margin for security issues or performance degradation.
However, and since this solution requires huge hardware costs, it can
be unsuitable for embedded systems with a small form factor.

Regarding the self-secured approach, when applied to a low-
complexity device, the additional hardware costs are low, requiring
minimal protection mechanisms implementations and minimal device
driver modifications. This approach achieves native performance and
security, guaranteed by TrustZone extensions. When the concept was
applied to a medium-complexity device, the incurred hardware costs
are still minimal, given the performance-security-hardware spectrum
this solution provides.

7. Discussion

In this section, we briefly discuss (i) how to address direct memory
access (DMA) support, and (ii) the scalability of our solution.
Self-secure DMA devices. DMA-capable devices were not taken into
consideration in the first iteration of this work. Notwithstanding, the
generic self-secure device concept and model is broad enough to cover
such feature. The concept, in its primitive form, proposes two logic
interfaces per physical interface. DMA devices are not much different.
We envision DMA support as (i) being integrated into other devices
(i.e., DMA is a block embedded into a bigger device) or (ii) as a
standalone peripheral. In both cases, the main deviation (or extension)
from the already provided infrastructure, is the requirement for the
normal world logical interface to not read and write content from
secure world addresses. The inclusion of DMA support is one of our
main priorities and will be addressed in the near future.
Self-secure devices scalability. We believe the timer and UART are
examples of devices with low and middle complexity, respectively. The
results presented in Section 6 clearly demonstrated that the higher the
complexity of the device, the smaller the hardware overhead, i.e., the
additional hardware resources required for the UART device are smaller
than those required for the timer. This conclusion seems intuitively

valid, as the additional hardware for the additional logical interface



Journal of Systems Architecture 119 (2021) 102238S. Pinto et al.
tends to be diluted in the overall logic of the device. Notwithstanding,
we want to experimentally validate this conclusion by applying the
concept to devices with higher complexity. Thus, we plan to address,
as part of future work, network devices, e.g., an Ethernet controller.
Naturally, for each device, the self-secure approach involves a trade-
off between different metrics, and we not only want to validate the
hardware costs, but also understand the overall engineering effort.

8. Conclusions

This work presented a novel approach for shared device access
in TrustZone-based architectures, extending the dual-world concept of
TrustZone to the inner logic of the device by splitting the device’s
logic into a secure and non-secure interface. To accomplish this, it
was imperative to identify the vulnerable part of the device’s logic,
that can potentially be exploited, and restrain accesses through the
TrustZone extended protection signals, present in the main system
bus. This concept was put into practice through the implementation
of low- and medium-complexity devices, i.e., a Timer and a UART,
in order to evaluate the hardware costs behind such implementations
and link them to their complexity level. The results are encouraging,
managing to keep the additional hardware costs acceptable for the
achieved security enhancements. Increasing the device’s complexity,
the additional hardware costs are considerable low, when compared
to the overall required hardware.

Hereafter, some future work can be pointed: (1) deploy the self-
secured approach in a high-complexity device to keep evaluating the
trade-off between the hardware costs and the required logic; and (2)
extend the self-secure devices to modern microcontrollers that already
feature TrustZone-M technology, such as Arm Cortex-M33.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] G. Pék, L. Buttyán, B. Bencsáth, A survey of security issues in hardware
virtualization, ACM Comput. Surv. 45 (2013) 40:1–40:34.

[2] T. Shimada, T. Yashiro, N. Koshizuka, K. Sakamura, A real-time hypervisor
for embedded systems with hardware virtualization support, in: 2015 TRON
Symposium, TRONSHOW, 2014, pp. 1–7.

[3] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Secur. Priv. 9
(2011).

[4] S. Pinto, N. Santos, Demystifying arm trustzone: A comprehensive survey, ACM
Comput. Surv. 51 (6) (2019).

[5] V. Costan, S. Devadas, Intel SGX explained, 2016, Cryptology ePrint Archive,
Report 2016/086.

[6] V. Costan, I. Lebedev, S. Devadas, Sanctum: Minimal hardware extensions for
strong software isolation, in: 25th USENIX Security Symposium (USENIX Security
16), USENIX Association, Austin, TX, 2016.

[7] P. Nasahl, R. Schilling, M. Werner, S. Mangard, HECTOR-V: A heterogeneous
CPU architecture for a secure RISC-V execution environment, 2020, URL arXiv:
2009.05262.

[8] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi,
E. Stapf, CURE: A security architecture with customizable and resilient enclaves,
in: 30th USENIX Security Symposium, USENIX Security 21, USENIX Association,
Vancouver, B.C., 2021.

[9] T. Frenzel, A. Lackorzynski, A. Warg, H. Härtig, ARM TrustZone as a virtualiza-
tion technique in embedded systems, in: Proceedings of Twelfth Real-Time Linux
Workshop, Nairobi, Kenya, 2010.

[10] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, H. Guan, vTZ: Virtualizing ARM trust-
zone, in: Proceedings of the 26th USENIX Conference on Security Symposium,
SEC’17, 2017, pp. 541–556.
9

[11] S. Pinto, J. Pereira, T. Gomes, A. Tavares, J. Cabral, LTZVisor: TrustZone is
the key, in: 29th Euromicro Conference on Real-Time Systems, ECRTS 2017,
in: Leibniz International Proceedings in Informatics, LIPIcs, vol. 76, 2017, pp.
4:1–4:22.

[12] A. Oliveira, J. Martins, J. Cabral, A. Tavares, S. Pinto, TZ-VirtIO: Enabling
standardized inter-partition communication in a trustzone-assisted hypervisor, in:
2018 IEEE 27th International Symposium on Industrial Electronics, ISIE, 2018,
pp. 708–713.

[13] S. Pinto, H. Araujo, D. Oliveira, J. Martins, A. Tavares, Virtualization
on TrustZone-enabled microcontrollers? Voilà! in: 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2019.

[14] A.M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, P. Ning, SKEE: A
lightweight secure kernel-level execution environment for ARM, in: Proceedings
of the Network and Distributed System Security Symposium, 2016.

[15] S. Pinto, T. Gomes, J. Pereira, J. Cabral, A. Tavares, IIoTEED: An enhanced,
trusted execution environment for industrial IoT edge devices, IEEE Internet
Comput. 21 (2017) 40–47.

[16] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, E. Stapf, SANCTUARY: ARM-
ing TrustZone with user-space enclaves, in: Network and Distributed Systems
Security, NDSS Symposium, 2019.

[17] D. Cerdeira, N. Santos, P. Fonseca, S. Pinto, SoK: Understanding the prevailing
security vulnerabilities in trustzone-assisted TEE systems, in: 2020 IEEE Sympo-
sium on Security and Privacy, SP, IEEE Computer Society, Los Alamitos, CA,
USA, 2020, pp. 636–652.

[18] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, T. Li, Building trusted path on
untrusted device drivers for mobile devices, in: Proceedings of 5th Asia-Pacific
Workshop on Systems, APSys ’14, 2014.

[19] J. Sugerman, G. Venkitachalam, B.-H. Lim, Virtualizing I/O devices on VMware
workstation’s hosted virtual machine monitor, in: Proceedings of the General
Track: 2001 USENIX Annual Technical Conference, 2001, pp. 1–14.

[20] S. Kim, C. Lee, M. Jeon, H. Kwon, H. Lee, C. Yoo, Secure device access for
automotive software, in: 2013 International Conference on Connected Vehicles
and Expo, ICCVE 2013 - Proceedings, 2013, pp. 177–181.

[21] S.A. Babu, M.J. Hareesh, J.P. Martin, S. Cherian, Y. Sastri, System performance
evaluation of para virtualization, container virtualization, and full virtualization
using Xen, OpenVZ, and XenServer, in: 2014 Fourth International Conference on
Advances in Computing and Communications, 2014, pp. 247–250.

[22] D. Sangorrín, S. Honda, H. Takada, Reliable device sharing mechanisms for
Dual-OS embedded trusted computing, in: TRUST’12 Proceedings of the 5th
International Conference on Trust and Trustworthy, vol. 7344, 2012, pp. 74–91.

[23] H. Raj, K. Schwan, High performance and scalable I/O virtualization via self-
virtualized devices, in: Proceedings of the 16th International Symposium on High
Performance Distributed Computing, HPDC ’07, 2007.

[24] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A.L. Cox, W. Zwaenepoel,
Concurrent direct network access for virtual machine monitors, in: Proceedings
of the 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, HPCA ’07, 2007.

[25] A. Burns, R.I. Davis, A survey of research into mixed criticality systems, ACM
Comput. Surv. 50 (6) (2017).

[26] J. Martins, A. Tavares, M. Solieri, M. Bertogna, S. Pinto, Bao: A lightweight
static partitioning hypervisor for modern multi-core embedded systems, in: M.
Bertogna, F. Terraneo (Eds.), Workshop on Next Generation Real-Time Embedded
Systems (NG-RES 2020), in: OpenAccess Series in Informatics (OASIcs), vol. 77,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2020, pp.
3:1–3:14.

[27] ARM, ARM® Cortex® -a Portfolio ARMv8-a, Tech. Rep., ARM, 2016, pp. 1–6.
[28] T. Nyman, J.-E. Ekberg, L. Davi, N. Asokan, CFI CaRE: Hardware-supported call

and return enforcement for commercial microcontrollers, in: International Sym-
posium on Research in Attacks, Intrusions, and Defenses, Springer International
Publishing, 2017, pp. 259–284.

[29] N. Asokan, T. Nyman, N. Rattanavipanon, A. Sadeghi, G. Tsudik, ASSURED:
Architecture for secure software update of realistic embedded devices, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 (11) (2018) 2290–2300.

[30] Z. Jiang, N. Audsley, P. Dong, BlueIO: A scalable real-time hardware I/O
virtualization system for many-core embedded systems, ACM Trans. Embed.
Comput. Syst. 18 (3) (2019).

[31] Z. Jiang, N. Audsley, P. Dong, N. Guan, X. Dai, L. Wei, MCS-IOV: Real-time
I/O virtualization for mixed-criticality systems, in: 2019 IEEE Real-Time Systems
Symposium, RTSS, 2019, pp. 326–338.

[32] D. Sangorrín, S. Honda, H. Takada, Reliable and efficient dual-os communications
for real-time embedded virtualization, Inf. Media Technol. 8 (1) (2013) 1–17.

[33] ARM, Cortex -A9 MPCore: Technical Reference Manual, Tech. Rep., ARM, 2012.

http://refhub.elsevier.com/S1383-7621(21)00165-X/sb1
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb1
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb1
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb3
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb3
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb3
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb4
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb4
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb4
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb5
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb5
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb5
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb6
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb6
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb6
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb6
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb6
http://arxiv.org/abs/2009.05262
http://arxiv.org/abs/2009.05262
http://arxiv.org/abs/2009.05262
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb8
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb15
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb15
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb15
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb15
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb15
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb17
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb25
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb25
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb25
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb26
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb27
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb28
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb29
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb29
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb29
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb29
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb29
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb30
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb30
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb30
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb30
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb30
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb32
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb32
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb32
http://refhub.elsevier.com/S1383-7621(21)00165-X/sb33

	Self-secured devices: High performance and secure I/O access in TrustZone-based systems
	Introduction
	Background
	 Mixed-criticality systems
	Arm TrustZone
	 TrustZone-assisted Virtualization
	LTZVisor

	Related work
	Self-virtualization technique
	Proxy task
	Para-TrustZone
	Device re-partitioning

	Self-secured devices: Design
	Self-secured devices: Implementation
	Self-secured device #1: Timer
	Self-secured device #2: UART

	Evaluation
	Source lines of code (SLoC)
	Memory footprint
	Performance
	Resource utilization
	Security analysis
	Qualitative comparison

	Discussion
	Conclusions
	Declaration of competing interest
	References


