
Towards a Heterogeneous Fault-Tolerance
Architecture based on Arm and RISC-V Processors

Cristiano Rodrigues, Ivo Marques, Sandro Pinto, Tiago Gomes, and Adriano Tavares
Centro ALGORITMI, University of Minho (PORTUGAL)

Corresponding author: mr.gomes@dei.uminho.pt

Abstract—Computer systems are permanently present in our
daily basis in a wide range of applications. In systems with mixed-
criticality requirements, e.g., autonomous driving or aerospace
applications, devices are expected to continue operating properly
even in the event of a failure. An approach to improve the
robustness of the device’s operation lies in enabling fault-
tolerant mechanisms during the system’s design. This article
proposes Lock-V, a heterogeneous architecture that explores a
Dual-Core Lockstep (DCLS) fault-tolerance technique in two
different processing units: a hard-core Arm Cortex-A9 and a soft-
core RISC-V-based processor. It resorts a System-on-Chip (SoC)
solution with software programmability (available trough the
hard-core Arm Cortex-A9) and field-programmable gate array
(FPGA) technology, taking advantages from the latter to support
the deployment of the RISC-V soft-core along with dedicated
hardware accelerators towards the realization of the DCLS.

Index Terms—Dual-core lockstep, fault tolerance, heteroge-
neous architectures, field programmable gate array, RISC-V,
Arm.

I. INTRODUCTION

Processors industry keeps moving fast towards reduced

transistor’s size, higher clock frequencies, and lower operating

core voltages. However, many problems to digital systems

have emerged due to such progress, like system failures

caused by bit-flipping induced by many possible sources, e.g.,

radiation and voltage glitch. These problems can result in

critical issues, not only in aerospace applications but also on

daily basis systems [1]–[6]. This boosts research towards the

necessity of developing and deploying fault tolerance systems

in order to mitigate several failure situations, while keeping

other important requirements such as system robustness, reli-

ability, performance and security.

One way to deploy reliable devices in mixed-critical ap-

plications, is to provide them with fault tolerance techniques.

Redundancy is one of the most used forms of fault tolerance

mechanisms and several solutions can be already found in the

literature. While some techniques replicate processing units in

a technique called dual-core lockstep (DCLS) -implemented

either loosely- or tightly-coupled to the processor- [4,7]–[11],

others apply a triple modular redundancy (TMR) mechanism,

where the processing units are triplicated and a voter module is

added to the system [12]. Other techniques can be used in or-

der to achieve fault tolerance systems, such as time redundancy

applied to low-cost architectures [13], and virtualization-based

systems [14], where several guests can virtually run over the

same processing unit as if they were individually running

each of them in one unique processor. This way, each guest

operating system (OS) can replicate the execution of the same

software application, while another guest acts as the voter

module. These software-based systems can behave similarly

to a hardware-based TMR without the need of replicating the

hardware resources.

Fault tolerance techniques can be performed both in soft-

ware and/or hardware, according to the available resources.

With the ongoing technological trends, hybrid system-on-chip

(SoC) solutions provide software programmability, available

through hard-core processors, and field-programmable gate ar-

ray (FPGA) technology that can be resorted for deploying soft-

core processors or dedicated hardware accelerators in order

to enhance the computation of several types of algorithms in

terms of speed and energy consumption [15]–[17]. Despite

several architectures and techniques for fault-tolerance being

available in the literature, to the best of our knowledge, none

of them targets heterogeneous architectures that resort hybrid

SoC solutions to implement different processor architectures,

either deployed in hard- or soft-core approaches.

This article presents the Lock-V, a heterogeneous archi-

tecture that explores a Dual-Core Lockstep (DCLS) fault

tolerance technique in different processing units: a hard-core

Arm Cortex-A9 and a soft-core RISC-V-based processors.

The solution handles the system heterogeneity at different

levels, such as at processors architecture (different instruction

set architecture (ISA)), execution conditions, clock domains,

etc. The available FPGA is used not only to deploy a soft-

core processor, but also custom accelerators in a loosely-

coupled fashion. These latter support the DCLS fault tolerance

mechanism in order to synchronize and to verify the system’s

integrity during run-time execution.

The main contributions of this article are: (1) the Lock-V,

a heterogeneous architecture that explores a DCLS fault toler-

ance technique; (2) the deployment of the DCLS on a hybrid

SoC, providing support to multi-core heterogeneity (dual-core

Arm Cortex-A9 processors, along with an untethered soft-

core RISC-V-based processor, the lowRISC); (3) a loosely-

coupled hardware accelerator, the xLockstep, used to support

the DCLS architecture; and (4) the Lock-V framework that will

allow the programmer to adapt the DCLS solution according

to the application needs through the available application

programming interface (API), and with future implementations

of code-generation mechanisms.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND OVERVIEW

This section addresses three main topics to understand

the development of the proposed fault tolerance system: (1)

understanding the differences between a fault, an error and

a failure; (2) the lockstep concept used as a fault tolerance

technique; and (3) the RISC-V open-source ISA.

A. Fault, Error, and Failure

It is important to understand the concepts of fault, error and

failures and how they can trigger a fault tolerance system to

successfully recover from failure situations caused by errors.

A fault tolerance system must continue to provide the specified

service, even at the event of a fault, and should react to errors

caused by faults, preventing the error propagation to a state of

system failure. In [18] it is provided the main concepts and

terminologies for the fault tolerance context:

• Fault: is defined as a logical manifestation caused by

one or more physical defects, which change the normal

operation of a component in a system;

• Error: is caused by one or more faults in a system when

it transits into an internal state;

• Failure: occurs when some event deviates the delivered

service from the specified service, a specified service is

defined as a previously agreed description of the system

behavior.

B. Redundancy and Dual-Core Lockstep (DCLS)

Fault tolerance characteristics can be added to a system

by applying redundancy techniques, which can be both in

hardware and/or software. Traditionally, hardware techniques

use multiple instances of the same module, where each of

them receives the same input and compares the generated

output. However, such approaches can lead to a diagnostic

decision for verifying if a fault had occurred when the outputs

are different [19]. In the event of a fault, an error is usually

generated, which is easily detected if the generated outputs are

different. Depending on the implemented technique, the fault-

tolerant system can adopt different approaches to perform a

fast system recovery.

The most common redundancy hardware mechanisms are

the duplication with comparison (DWC) and the TMR, which,

respectively, duplicates and triplicates the execution of the

main module. The main advantage of the TMR over the DWC

is when fault occurs in just one execution module, the voter

system can still determine which module produced the error

and choose the valid output from the other two. However, this

TMR-based solution is the most costly in terms of required

hardware (and other related resources), since a third execution

module and a voter must be added to the system [12]. The

DCLS technique has proven to be a good option for fault

tolerant systems, while requiring less resources than the TMR.

It is a hybrid fault tolerance method based on the DWC,

which uses dedicated hardware for error detection and core

duplication. Likely the DWC, each core receives the same

input and the extra hardware compares the output from each

core, and when the outputs are different from each other,

Application

Compiler

Application for
Arm

Application for
RISC-V

Soft-Core

RISC-V

Processing System Programmable Logic

Hard-Core

Arm

Output 2Output 1

Target Hardware

S
o
ft
w
ar
e

H
ar
d
w
ar
e

Synchro

Checker

xLockstep

Lockstep
Framework

AXI4-Lite AXI4-Lite

AXI4-LiteAXI4-Lite

Fig. 1. Proposed DCLS heterogeneous architecture.

the mechanism detects an error. In case of error detection

the system can: (1) continue its normal execution, giving

priority to the output of one of the modules; (2) restore the

system to a well-known integrity point (software execution

checkpoint), which requires the system to create restore points;

(3) completely restart or stop the system.

Despite all efforts in providing fault tolerance solutions, it is

not possible to guarantee that a system is 100% error-free. In

some techniques, a fault can affect redundant components all at

the same time, which makes it hard to detect. This is known

as a common-mode fault, and it can only be mitigated by

introducing design diversity in the whole system. In a lockstep-

based redundancy technique, this can be achieved by using

different processors’ architectures, as proposed by Lock-V.

C. RISC-V

RISC-V is an open-source ISA [20] based on a reduced

instruction set computer (RISC). It was designed focusing

embedded systems, Internet of Things (IoT), and other modern

devices. RISC-V allows a new level of software and hardware

freedom on architectures in an open extensible way. This ISA

allows the implementation of RISC-V ISA-based cores and

adapts them to fault tolerance techniques, in this case to DCLS.

It is possible to create new processor instructions due to the

architecture freedom, and target them to a specific purpose.

III. LOCK-V

The Lock-V system, depicted in Fig. 1, can be split into

two main components: the software block and the hardware

block. Regarding the software, the Lockstep framework is

responsible to generate the final machine binary code for a

given application. Such binary, compiled for the two target

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

architectures (Arm and RISC-V), was generated and patched

from the same source code application. The framework also

provides a set of functionalities in order to allow users to

insert and configure execution checkpoints in the source code.

The checkpoints are predefined verification points, introduced

prior the compilation time, in order to endow the system with

lockstep functionalities. Such checkpoints are essential for the

auxiliary mechanism of the DCLS architecture, the Synchro
and Checker blocks. Their main tasks are, respectively, the

synchronization of both cores and the verification of the

processors’ output in order to detect data integrity problems

during code execution.

Regarding the hardware, the Lock-V is divided into two

main areas, the processing system (PS) and the programmable

logic (PL). The PS is mainly composed by a hard-core

Arm Cortex-A9 processing unit and the associated software

application. By its turn, the PL hosts a soft-core RISC-V

processor (where the same software application also runs), and

the hardware accelerators, which are responsible for deploying

the lockstep functionalities, performed by the Synchro and

Checker sub-modules. The PS and PL execute concurrently

and are both connected through a standard advanced micro-

controller bus architecture (AMBA) protocol, the advanced

extensible interface (AXI), in order to exchange information

among all hardware modules. The main hardware components

of the Lock-V architecture are detailed as follows:

• Arm Cortex-A9 processor: a 32-bit processor that fol-

lows the ARMv7-A architecture and available in the PS

as a hard-core processor. It runs the application machine

binary code in parallel with the soft-core processor.

• RISC-V processor: a soft-core processor deployed in the

FPGA fabric of the PL and it also runs the application

code. This 64-bit processor is based on the lowRISC, an

untethered implementation of the RISC-V ISA based on

the Rocket Chip.

• Lockstep accelerator (xLockstep): a hardware accel-

erator deployed in the PL following a loosely-coupled

approach, which was developed under the specification of

the Chisel hardware construction language [21]. Such ap-

proach provides several advantages when compared with

the tightly-coupled design, such as hardware customiza-

tion, flexibility, and portability for using the xLockstep

in other SoC and processor architectures. The xLockstep

is responsible for the auxiliary lockstep mechanism and

its main tasks are: (1) the synchronization of the code

execution on both cores; (2) the comparison and verifica-

tion of the outputs from each processor; (3) the control

on the code execution when the compared outputs are

validated and coherent; and (4) the ability to suspend the

processors’ execution when an error is found, until the

error is processed and marked as solved.

A. lowRISC

Most of the freely available RISC-V soft-core implementa-

tions require host environment features, both for the booting

Idle

Checker

Error

sync

Synchro

first_checkpoint

recovered_error

resumes_execution

Resume

success

timeout_error

error

Fig. 2. Main finite state machine (FSM) of the xLockstep.

process and for the processor to run and execute the appli-

cation. Such implementations, e.g., Rocket Chip, are called

tethered processors [22], as they require a host processor to

start up and to interact with the environment. For this reason,

we have selected the lowRISC core, which is an untethered

processor built upon the Rocket Chip implementation of the

RISC-V ISA that eliminates the need for a companion core,

which is replaced with FPGA peripherals. The lowRISC pro-

cessor has three important characteristics that fit with the soft-

core requirements for the Lock-V: (1) it is an untethered soft-

core processor, which is a key aspect for the implementation

of the lockstep mechanism since each processor (Arm Cortex-

A9 and RISC-V) have to execute their own binary machine

code independently; (2) it is a 64-bit processor, different from

the 32-bit Arm Cortex-A9; and (3) it is a customizable core,

enabling the refactoring of the lowRISC processor to the

project requirements, such as adding a master/slave Not A

STandard Interface (NASTI) bus, which is similar to AXI, and

tightly-coupled accelerators that can work as co-processors.

B. xLockstep

The xLockstep is a memory-mapped AXI-compliant periph-

eral deployed in the PL. It has two slave AXI-Lite interfaces,

one for each processor. The accelerator has an exclusive bank

of registers dedicated for each processor, being their access

restricted by hardware. Therefore, each processor can only

access their register bank. The xLockstep has more three sub-

modules, two instances of the Synchro and one of the Checker

modules. The module Synchro is responsible for ensuring that

both processors are synchronized and the module Checker

is responsible for comparing the output of both processors.

Fig. 2 depicts the FSM of the xLockstep accelerator, which is

composed of five states: Idle, Synchro, Checker, Resume, and

Error. The FSM stays in the Idle state until the first checkpoint

(from Arm or RISC-V processor) is reached. When this event

occurs, the FSM changes the state to Synchro and waits for the

second checkpoint to be reached, until a programmer-defined

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

timeout occurs. If that time is exceeded, an error by timeout

in synchronizations is signalized and the FSM changes to the

Error state. If the timeout is not exceeded, the FSM changes

to Checker state. In the Checker state, a vector of outputs

from both processors is compared and if they are different,

the FSM changes its state to Error. Otherwise, if the outputs

are the same, the FSM changes its state to Resume state in

order to resume each processor execution. In the case of the

FSM being in the Error state, the xLockstep stays in that state

until both processors signalize that the error was corrected and

the system is ready to recover from that state.

C. Synchro

Due to the difference in clock domains and architectures

between the soft-core and hard-core processors, the program

execution between them is asynchronous, demanding for the

synchronization of both processors. For this purpose, it was

created the Synchro module, which is used in two differ-

ent scenarios. First, to synchronize the processors when a

checkpoint is achieved, and second, to simultaneously return

the code execution after the verification mechanisms of the

lockstep have actuated. In both system operation scenarios, the

xLockstep has to wait for both processors to indicate that they

are ready to synchronize. This is achieved when: (1) the pro-

gram reaches the checkpoint, and (2) both processors are ready

to resume the execution. Therefore, to achieve those func-

tionalities, the Synchro module implements a FSM with three

states: Idle, Ready, and Sync. In the Ready state, the Synchro

module expects both processors to enable the b_ready_to_sync
bit, and afterwards, the Synchro gives feedback to both cores

and enables the b_ready bit. Then, the state of the FSM

changes to the state Sync. At this moment, the Synchro module

is waiting for the synchronization’s acknowledgment from

each processor, which consists in disabling b_ready_to_sync
bit. As a result, the processors’ synchronization ends and both

cores are synchronized.

D. Checker

For implementing the lockstep mechanism, both processors

outputs must be compared. For that purpose, each core sends

its output vector to the Checker module in order to perform

their verification. The received outputs are stored in two

different memory regions (one for each processor) by the

Checker using a last in first out (LIFO) approach. Because both

parts are involved in the data transfer process (processors and

checker), both of them need to know the state of each other.

For that, the Checker uses a control bit, b_Tx, to coordinate

the data transfer, which works in the following way: (1) when

the Checker is available to receive and store an output, it puts

its b_Tx bit to 0, signalizing the processor that it is available

to perform the transaction. Next, it waits for the processor to

signalize its availability to initialize a data transfer. After the

data transfer, the Checker module clears the b_Tx bit and it is

ready for another transaction. (2) after the data is received from

both processors, at a given checkpoint, the Checker performs

the comparison of the entire LIFO contents, checking for data

83C0001C ARM_STATUS_REG 8000001C RISCV_STATUS_REG

83C00018 UNUSED 80000018 UNUSED

83C00014 UNUSED 80000014 UNUSED

83C00010 UNUSED 80000010 UNUSED

83C0000C UNUSED 8000000C UNUSED

83C00008 ARM_TIMEOUT_REG 80000008 RISCV_TIMEOUT_REG

83C00004 ARM_CONTROL_REG 80000004 RISCV_CONTROL_REG

83C00000 ARM_DATA_REG 80000000 RISCV_DATA_REG

Fig. 3. The xLockstep peripheral memory address space.

integrity errors. There are two possible error cases that can be

detected and signalized by the Checker to both processors. The

first case occurs when an element from LIFO 1 is different

from the respective element from LIFO 2. The second case

results when the number of written outputs in both LIFO

memories is different. The Checker LIFOs work as a circular

buffer with limited size. Therefore, if one processors’ output

vector size cannot be accommodated by its respective LIFO,

the Checker signalizes to the processor a busy state. This way,

the Checker module is unaware of the data size and content,

being the main concern only its storage and comparison. While

the data is being processed, the processor waits for the Checker

confirmation for the data processing in order to allow new data

to be transferred (for the next checkpoint or for repeating the

previous one).

E. xLockstep Framework

The xLockstep framework (currently under development)

aims to be a tool that will help programmers to easily

configure and use the Lock-V architecture, as well as to

provide an API that is used to interact with the xLockstep

accelerator. The framework will later support other features

such as code inspection an code injection after the final

application is done. The xLockstep API is composed by four

functions: initXLockstep(), sync(), checker(), and

errorFixed(), which are used to interact with the xLock-

step. The initXLockstep() function is responsible to

setup and initialize the xLockstep, as well as all the memory

address space registers for each processor (Fig. 3). This func-

tion also sets the timeout value for the next checkpoint. The

sync() function, is used for processors’ synchronization. If

the synchronization is not possible, an error is returned. The

checker() function is responsible to handle the Checker

functionalities, returning an error if both processor outputs,

reported by the Checker module, are different. When an

error occurs, the programmer should define the desired be-

havior, according to the application needs. After that, the

errorFixed() function is called. This function signalizes

the xLockstep accelerator that the error was processed and that

the system is already in a normal state, reached after the error

recovery.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CHECKER FUNCTIONAL TESTS.

VA / VB Size NB = 0 NB = 1 NB = 2 NB = 3 NB = 4 NB = 5 VA0,VB0 VA1,VB1 VA2,VB2 VA3,VB3 VA4,VB4 State

NA = 0 � � � � � � � = = = = �

NA = 1 � � � � � � = � = = = �

NA = 2 � � � � � � = = � = = �

NA = 3 � � � � � � = = = � = �

NA = 4 � � � � � � = = = = � �

NA = 5 � � � � � � = = = = = �

� Error; �Success; � Element VAn different from VBn ; = Element VAn equal to VBn .

IV. EVALUATION

The Lock-V architecture, and its main components, was

deployed on a Zynq-7000 SoC, featuring a dual-core Arm

Cortex-A9 and FPGA fabric used to host the RISC-V soft-

core processor. In this implementation, the Arm Cortex-A9 is

running at the frequency of 666 MHz and the lowRISC at

the frequency of 25 MHz. These different clock domains will

allow to check all the Synchro functionalities. In order to test

the Lock-V and its main components, we have created three

software modules: (1) a simple application to run on both

processor architectures; (2) a test for the Synchro module,

which prevents a checkpoint from being reached; and (3) a

module for testing the Checker, that changes the output vectors

for one of the cores. These software modules were inserted in

the application with the purpose of testing the behavior of the

xLockstep accelerator in the two fault detection situations:

• A processor never achieves the checkpoint: this can

occur when a fault originates a bit-flip in the code

memory, and the execution fails to match its original

purpose. In such case, an error occurs due to the code

execution never meeting the desired checkpoint or due a

checkpoint timeout;

• The processors output vectors are different: the fault

is detected when the VAn element is different from the

VBn element, or when the number of expected elements

in the vector VA is different from the vector VB.

A. Checker Module Functional Tests

Table I depicts a summary of the tests performed to the

Checked module, where the size of the output vectors, as well

as their content, are tested and compared. The possible input

combinations for the Checker module depend on the output

vector’ size defined by the programmer. For the purpose of our

tests, the vector size was set to five (one more element than

the maximum storage size supported by each Checker’s LIFO,

which was set to four). The left side of Table I depicts the

thirty-six possible combinations for testing the vector output’s

size. When VA has a different size from VB, the Checker

module outputs an error. Besides the vector size, the Checker

module also verifies the content of each vector’s element. The

right side of Table I depicts all the combinations that we have

tested for testing the values of both vectors’ elements, where

two vectors of 5 elements were compared. The symbol � is

used when one element VAn does not match the content of

respective element VBn . When the content of both vectors is

different the Checker module outputs an error.

B. Synchro Module Functional Tests

Table II shows all combinations for the Synchro input

signals that were tested, which can be summarized as follows:

• Both processors reach the checkpoint before the timeout;

• Only one of the checkpoints is reached before the timeout;

• None of the checkpoints is reached before the timeout.

Whenever the execution time between checkpoints is higher

than the timeout, the Synchro outputs an error to the xLock-

step. On the other hand, when both checkpoints are reached

within the timeout value, the Synchro signalizes that both

processes reached the checkpoint and the synchronization

operation was executed with success.

C. PL Resources Utilization

Table III shows the hardware resources needed, after imple-

mentation, for the lowRISC soft-core and all the xLockstep

modules. The results are expressed in terms of look-up tables

(LUTs) and flip-flops (FFs). The lowRISC module is the most

costly in terms of hardware needed, representing around 98%

(34138 out of 34579) of LUTs and nearly 96% (16324 out

of 16996) of FFs. This is due to the deployment of a soft-

core RISC-V processor, rather than a hard-core implemen-

tation, which is one of the trade-offs of our solution. The

solution provides flexibility and the possibility to customize

the RISC-V architecture, but it comes with the cost of FPGA

resources. Regarding the resources needed by the xLockstep

accelerator (441 LUTs and 672 FFs), it is possible to conclude

TABLE II
SYNCHRO FUNCTIONAL TESTS.

Checkpoint Arm Checkpoint RISC-V State

*Y **Y �

**Y *Y �

Y N timeout �

N Y timeout �

N N �

N Checkpoint Not Reached; Y Checkpoint Reached;
* Arrives First; ** Arrives in Second; � Don’t Care.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

TABLE III
POST-IMPLEMENTATION RESULTS OBTAINED FROM VIVADO 2016.2

HW module LUT FF

lowRISC 34138 16324

xL
oc

ks
te

p

Axi_RISCV_Slave 135 267
Axi_ARM_Slave 122 269

TopxLockstep 25 40
Checker 148 90
Synchro 6 3

Synchro_to_Resume 5 3

lowRISC + xLockstep 34579 (65%) 16996 (16%)

that the xLockstep has a lightweight implementation, and if

both processors were available in the SoC in a hard-core

implementation, the solution could resort an FPGA with less

resources. Because the xLockstep follows a loosely-coupled

approach, it is a good candidate to be used in other solutions,

both in terms of hardware or processor architectures.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a heterogeneous and fault-tolerance

architecture, Lock-V, that explores a DCLS technique applied

to different processor architectures. The proposed accelerator,

the xLockstep, was deployed in a loosely-coupled fashion

and connects a hard-core Arm Cortex-A9 and a soft-core

RISC-V lowRISC, providing the lockstep capabilities to both

processors at a very reduced hardware cost.

Hereafter, in order to keep improving the functionalities of

the xLockstep accelerator, new features will be added: (1) a

mechanism dedicated to perform fault-injection, which will be

helpful in simulating the wrong device’s operation due to bit-

flipping; (2) the framework optimization in order to provide

code injection capabilities. This feature will allow the code

application to be automatically analyzed by the framework,

which will choose the best places to deploy the lockstep

checkpoints, and later create the data to configure the xLock-

step accelerator; and (3) the exploration of the RISC-V open-

source ISA, which will allow the creation of ISA instructions

customized to the xLockstep peripheral. This will allow a

complete deployment of the lockstep mechanism on the RISC-

V architecture in a tightly-coupled fashion, which will help in

understanding the advantages between both approaches, i.e.,

loosely-coupled and tightly-coupled.

VI. ACKNOWLEDGMENTS

This work has been supported by national funds through

FCT -Fundação para a Ciência e Tecnologia within the

Project Scope: UID/CEC/00319/2019.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced semi-
conductor technologies,” IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, pp. 305–316, Sep. 2005.

[2] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection,
Isolation, and Reconfiguration Methods,” IEEE Transactions on Control
Systems Technology, vol. 18, no. 3, pp. 636–653, May 2010.

[3] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New
Techniques for Improving the Performance of the Lockstep Architecture
for SEEs Mitigation in FPGA Embedded Processors,” IEEE Transac-
tions on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug. 2009.

[4] Á. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing
Lockstep Dual-Core ARM Cortex-A9 Soft Error Mitigation in freeRTOS
Applications,” in Proceedings of the 30th Symposium on Integrated
Circuits and Systems Design Chip on the Sands - SBCCI ’17. Fortaleza,
Ceará, Brazil: ACM Press, 2017, pp. 84–89.

[5] E. Ozer, B. Venu, X. Iturbe, S. Das, S. Lyberis, J. Biggs, P. Harrod,
and J. Penton, “Error Correlation Prediction in Lockstep Processors for
Safety-Critical Systems,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Fukuoka: IEEE, Oct. 2018,
pp. 737–748.

[6] J. Han, Y. Kwon, Y. C. P. Cho, and H.-J. Yoo, “A 1GHz Fault Tolerant
Processor with Dynamic Lockstep and Self-Recovering Cache for ADAS
SoC Complying with ISO26262 in Automotive Electronics,” in 2017
IEEE Asian Solid-State Circuits Conference (A-SSCC). Seoul: IEEE,
Nov. 2017, pp. 313–316.

[7] J. S. Klecka, W. F. Bruckert, and R. L. Jardine, “Error self-checking and
recovery using lock-step processor pair architecture,” May 21 2002, US
Patent 6393582.

[8] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A.
Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira,
“Lockstep Dual-Core ARM A9: Implementation and Resilience Analysis
Under Heavy Ion-Induced Soft Errors,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1783–1790, Aug. 2018.

[9] A. Hanafi, M. Karim, and A. E. Hammami, “Dual-Lockstep Microblaze-
Based Embedded System for Error Detection and Recovery with Re-
configuration Technique,” in 2015 Third World Conference on Complex
Systems (WCCS). Marrakech: IEEE, Nov. 2015, pp. 1–6.

[10] H.-M. Pham, S. Pillement, and S. J. Piestrak, “Low-Overhead Fault-
Tolerance Technique for a Dynamically Reconfigurable Softcore Proces-
sor,” IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179–1192,
Jun. 2013.

[11] R. D. Kral, J. S. M. Chong, and A. L. Schreiber, “Implementation
of a loosely-coupled lockstep approach in the xilinx zynq-7000 all
programmable soc for high consequence applications.” Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2017.

[12] P. Garcia, T. Gomes, F. Salgado, J. Cabral, P. Cardoso, M. Ekpanyapong,
and A. Tavares, “A Fault Tolerant Design Methodology for a FPGA-
Based Softcore Processor,” IFAC Proceedings Volumes, vol. 45, no. 4,
pp. 145–150, 2012.

[13] M. Pignol, “DMT and DT2: Two Fault-Tolerant Architectures developed
by CNES for COTs-based Spacecraft Supercomputers,” in 12th IEEE
International On-Line Testing Symposium (IOLTS’06). Como, Italy:
IEEE, 2006, pp. 203–212.

[14] S. Pinto, A. Tavares, and S. Montenegro, “Space and time partition-
ing with hardware support for space applications,” Data Systems In
Aerospace, European Space Agency, ESA SP 736, 2016.

[15] M. Berg and C. Michael, “FPGA Mitigation Strategies for Critical
Applications, support of NASA/GSFC,” Sep. 2018.

[16] T. Gomes, F. Salgado, A. Tavares, and J. Cabral, “CUTE Mote, A
Customizable and Trustable End-Device for the Internet of Things,”
IEEE Sensors Journal, vol. 17, no. 20, pp. 6816–6824, Oct. 2017.

[17] F. Salgado, T. Gomes, J. Cabral, J. Monteiro, and A. Tavares, “DBTOR:
A Dynamic Binary Translation Architecture for Modern Embedded Sys-
tems,” in 2019 IEEE International Conference on Industrial Technology
(ICIT), Feb 2019, pp. 1755–1760.

[18] J.-C. Laprie, “Dependable Computing and Fault Tolerance: Concepts
and Terminology,” in Twenty-Fifth International Symposium on Fault-
Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’.
Pasadena, CA: IEEE, 1995, p. 2.

[19] Z. Gao, C. Cecati, and S. X. Ding, “A Survey of Fault Diagnosis
and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-
Based and Signal-Based Approaches,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 6, pp. 3757–3767, Jun. 2015.

[20] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architec-
ture Atlas, 1st ed. Strawberry Canyon, Nov. 2017.

[21] J. W. Jonathan Bachrach, Krste Asanović, “Chisel 3.0 Tutorial,” EECS
Department, UC Berkeley, Tech. Rep., 2017.

[22] M. Nöltner-Augustin, “RISC-V — Architecture and Interfaces The
RocketChip,” COMPUTER ENGINEERING, p. 6, 2016.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

