
Universidade do Minho
Escola de Engenharia

Afonso Rafael Carvalho Sousa

Orchestrator selection process for
cloud-native machine learning
experimentation

February, 2022



Universidade do Minho
Escola de Engenharia

Afonso Rafael Carvalho Sousa

Orchestrator selection process for
cloud-native machine learning
experimentation

Master’s Dissertation

Integrated Master’s in Informatics Engineering

Work supervised by

João Miguel Lobo Fernandes

André Leite Ferreira

February, 2022



COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt


STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

,

(Location) (Date)

(Afonso Rafael Carvalho Sousa)



Acknowledgements

I would like to acknowledge the contributions of all people who helped me during the course of this masters

degree. First, I must give my thanks to my university supervisor Professor João Miguel Lobo Fernandes

and co-supervisor Professor André Leite Ferreira from University of Minho for their support and availability

during the course of this dissertation.

I also want to express my gratitude to the people at Bosch Car Multimedia S.A. for their welcome and

support, and to Sascha Lange for his guidance and suggestions, resourcefulness, and ensuring I was well

integrated with the teams at B52 and had access to any material and compute infrastructure necessary

for this thesis. I must also express my thanks to Raja from Bosch India (RBEI) for this support over several

frustrating weeks during the first deployment of Kubeflow, and to all from across company locations who

took out of their time and participated during the interviews.

Lastly, a big thank you to all the professors and colleagues from the University of Minho who guided

me through my academic course, with a special mention to Professor José Nuno Oliveira for his availability

and support over the years, plus for the opportunity to take part in the organization of the 2019 Formal

Methods World Congress, and giving me a ride to the venue after my car broke down.

iii



Abstract

Machine learning (ML) model development is a very experimental, repetitive, and error prone task,

because ML is itself very obscure - there is no way to know what model works best for our goals beforehand,

so practitioners have an incentive to experiment with as many models, approaches and techniques as they

can. Additionally, going from raw data to a well adjusted model is a delicate process that often requires

complex, multi-step pipelines. Combine the two factors and it becomes apparent how easy it is to get lost

within a sea of artifacts and results without a well defined process, hindering the development process

with poor reusability, lots of technical debt, and integration-hell. This makes adherence to best practices -

MLOps - paramount.

However, with the recent boom experienced in this field came a plethora of different tools and services,

all trying to satisfy different subsets of needs of the model life cycle, meaning that, more often than not, ML

practitioners do not know what the best set of tools for their use case might be. The experimental nature

of ML means we should indeed try different tools, but there is a high risk that it might not fit the necessary

requirements, generating needless costs. One particularly relevant type of tool is the orchestrator - a central

piece of the experimentation process which controls the communication and execution of the components

of a model pipeline.

This work follows the creation process for an enterprise ML cloud environment, with particular focus

on the selection of an adequate orchestrator for cloud-native setups. Additionally, it presents MetaTool, a

web application designed to speed up future tool selection processes by leveraging knowledge gathered

during previous instances.

Finally, it reaches two key conclusions: first, broader organizational factors that might seem out of

scope can influence or even alter the final choice, and second, although using a tool like MetaTool might

speed up the decision-making process, it requires significant organizational commitment.

Keywords: Kubeflow, Kubernetes, Machine learning, MLOps, Orchestration.

iv



Resumo

O desenvolvimento de modelos de machine learning (ML) é uma atividade muito experimental, repe-

titiva e propícia a erros, porque ML é muito obscura - não há forma de saber de antemão qual o modelo

mais adequado para os nossos objetivos, pelo que os praticantes têm um incentivo para experimentar com

o maior número possível de modelos, abordagens e técnicas que conseguirem. Adicionalmente, passar

de dados para um modelo bem ajustado é um processo delicado que frequentemente requer pipelines

complexas e com vários passos. Combinando os dois fatores fica aparente o quão fácil é ficar perdido

num mar de artefactos e resultados sem um processo bem definido, dificultando o processo de desenvol-

vimento com fraca capacidade de reutilização, muita technical debt, e integration hell. Isto torna a adesão

às melhores práticas - MLOps - imperativa.

Contudo, com o recente avanço verificado neste domínio veio uma abundância de diferentes ferra-

mentas e serviços, todos tentando satisfazer diferentes subconjuntos de necessidades do ciclo de vida dos

modelos, pelo que os praticantes de ML acabam frequentemente na dúvida de qual poderá ser o melhor

conjunto de ferramentas para os seus casos de uso. A natureza experimental de ML faz com que se devam

experimentar diferentes ferramentas, mas há um grande risco de escolher algo não satisfaça os requisitos

necessários, levando a custos desnecessários. Uma categoria de ferramentas particularmente relevantes

são os orquestradores - uma peça central no processo de experimentação que controla a comunicação e

execução dos componentes da pipeline do modelo.

Este trabalho acompanha a criação dum ambiente cloud industrial para ML, com particular foco na

escolha do orquestrador adequado para ambientes na nuvem. Adicionalmente, apresenta MetaTool, uma

aplicação web pensada para acelerar futuros processos de tomada de decisão empregando conhecimento

adquirido durante processos anteriores.

Finalmente, alcança duas conclusões chave: primeiro, fatores organizacionais aparentemente irrele-

vantes podem influenciar ou até alterar a escolha final, e segundo, apesar de ferramentas como MetaTool

poderem acelerar o processo de tomada de decisão, requerem um empenho da organização.

Palavras-chave: Kubeflow, Kubernetes, Machine learning, MLOps, Orquestração.

v



Contents

List of Figures viii

List of Tables x

Glossary xi

Acronyms xii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the art 6

2.1 Machine Learning Model Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Challenges in ML development . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 What is MLOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Manual workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Workflow with automated model pipeline . . . . . . . . . . . . . . . . . . 12

2.3.3 Full MLOps Automated Retraining . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Machine learning workflow orchestration . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Understanding workflows . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Orchestration as a role . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Analysis of ML orchestrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Apache Airflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Kubeflow and Kubeflow Pipelines . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 MLflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Selecting a tool for cloud pipeline orchestration 23

3.1 Gen2Cloud contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Orchestrator requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



CONTENTS

3.3 Comparing orchestrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Deployment and demo pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Kubeflow deployment setup . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Demo pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Kubeflow operation and findings . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Team opinions about Kubeflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 MetaTool 36

4.1 Application requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Knowledge base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 User interface walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Consult knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Obtain a recommendation . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Knowledge IO operations . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Results and discussion 51

5.1 Gen2 and Kubeflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 MetaTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Closing note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 55

6.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Closing note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

Annexes 61

I Kubeflow deployment 61

I.1 Kfctl configuration used for Kubeflow deployment, with correction. . . . . . . . . . . 61

I.2 Images from Kubeflow deployment . . . . . . . . . . . . . . . . . . . . . . . . . 62

II Exported knowledge base sample 63

III MetaTool user interface 75

vii



List of Figures

1.1 Demand for deep learning over time supported by computation (Raj, 2021) . . . . . . . . 3

2.1 Machine learning lifecycle (Ashmore, Calinescu, & Paterson, 2021) . . . . . . . . . . . . 7

2.2 Only a small fraction of real-world ML systems is composed of the ML code, as shown by the

small black box in the middle. The required surrounding infrastructure is vast and complex.

(Sculley et al., 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 MLOps intersection (Alla & Adari, 2021) . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Manual ML steps to serve the model as a prediction service. (Google, 2020) . . . . . . . 11

2.5 ML pipeline automation for CT. (Google, 2020) . . . . . . . . . . . . . . . . . . . . . . 12

2.6 CI/CD and automated ML pipeline. (Google, 2020) . . . . . . . . . . . . . . . . . . . 14

2.7 Representing workflows as pipelines versus DAGs. . . . . . . . . . . . . . . . . . . . . 16

2.8 Star history comparison(Schmitt, 2020). . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Basic Apache Airflow architecture. (“Quick Start — Airflow Documentation,” n.d.) . . . . . 19

2.10 Kubeflow map (Brys, 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Overview of the CI/CD tools, architecture and workflow of the MLflow centralized hub for

model management. (Parkhe, Ann Hong, Damji, & Mewald, 2020) . . . . . . . . . . . . 21

3.1 Gen2Cloud - Zeus, DaiVs and VisualizationUI architectural concept. . . . . . . . . . . . . 24

3.2 Schema of an extended Weighted Sum Model (WSM) method. . . . . . . . . . . . . . . 27

3.3 Decision-matrix with pairwise comparison. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Diagram of intra-cluster network errors. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Kubeflow deployment sequence diagram. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Demo pipeline diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Graph view of a successful run of the demo pipeline. . . . . . . . . . . . . . . . . . . . 33

3.8 Kubeflow experiment GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Integration of knowledge base into WSM method. . . . . . . . . . . . . . . . . . . . . 38

4.2 MetaTool use case diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 MetaTool domain diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 MetaTool web application component diagram. . . . . . . . . . . . . . . . . . . . . . . 42

4.5 MetaTool web application class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



LIST OF FIGURES

4.6 MetaTool UI: Explorer - Explore Catalog page. . . . . . . . . . . . . . . . . . . . . . . 45

4.7 MetaTool UI: Explorer - Explore Knowledge page. . . . . . . . . . . . . . . . . . . . . . 45

4.8 MetaTool UI: Explorer - Edit tool page. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9 MetaTool UI: Explorer - Edit criterion page. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 MetaTool UI: Evaluator page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 MetaTool UI: Recommendation filter selection page. . . . . . . . . . . . . . . . . . . . 48

4.12 MetaTool UI: Recommendation criteria selection page. . . . . . . . . . . . . . . . . . . 49

4.13 MetaTool UI: Recommendation results page. . . . . . . . . . . . . . . . . . . . . . . . 49

4.14 MetaTool UI: Knowledge validation detecting errors in uploaded file. . . . . . . . . . . . . 50

I.1 Dashboard view of demo pipeline’s YAML configuration. . . . . . . . . . . . . . . . . . 62

III.1 MetaTool UI: Explorer - Explore Knowledge page, grouped by domain, opened. . . . . . . 75

III.2 MetaTool UI: Explorer - Explore Knowledge page, grouped by domain, collapsed. . . . . . 76

III.3 MetaTool UI: Explorer - Explore Catalog page, grouped by role, opened. . . . . . . . . . . 76

III.4 MetaTool UI: Explorer - Explore Catalog page, grouped by role, collapsed. . . . . . . . . . 77

III.5 MetaTool UI: Explorer - Edit filter page. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

III.6 MetaTool UI: Explorer - Edit role page. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

III.7 MetaTool UI: Explorer - Edit domain page. . . . . . . . . . . . . . . . . . . . . . . . . 78

III.8 MetaTool UI: Settings page, attempt to empty knowledge base, with JSON structure being

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



List of Tables

2.1 Common steps in experimentation pipelines . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Summary of demo pipeline steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Implementation conceptual abstractions. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Explorer sorting methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



Glossary

cluster Set of computers that work together so that they can be viewed and used as a single, atomic

system.

continuous integration (CT) Process of automating the build and testing of code and artifacts every

time a team member commits changes to version control.

continuous delivery (CD) Process to build, test, configure, and deploy from a development or build

environment to a production environment.

continuous training (CI) Process of automating the retraining of models to adapt to changes that occur

in the data.

domain specific language (DSL) Programming language created to be used for a specific application

domain. Uses concepts and rules from its application domain.

grid computing Decentralized computing resources executing non-interactive workloads to reach a com-

mon goal.

manifest Specification of the desired state of a Kubernetes API object in JSON or YAML format.

mutual TLS Method for two-way authentication, ensures parties at each end of a network connection are

who they claim to be.

xi



Acronyms

AAD Azure Active Directory

AKS Azure Kubernetes Service

API Application Programming Interface

AWS Amazon Web Services

CI/CD Continuous Integration/Continuous Delivery

CRUD Create, Read, Update, Delete

DAG Directed Acyclic Graph

ETL Extract, Transform, Load

GDPR General Data Protection Regulation

KCD Kubeflow Central Dashboard

KFP Kubeflow Pipelines

MADM Multi-Attribute Decision Making

MCDM Multi-Criteria Decision Making

ML Machine Learning

MLaaS Machine Learning as a Service

MLOps Machine Learning Operations

MODM Multi-Objective Decision Making

OIDC OpenID Connect

PoC Proof of Concept

SIMD Single Instruction Multiple Data

WSM Weighted Sum Model

xii



C
h
a
p
te

r

1
Introduction

This chapter looks at the evolution of the field of machine learning, the pain points currently being experi-

enced by practitioners and how choosing the right set of tools is such an important decision, followed by

an overview of the scope of this thesis and an analysis of what objectives can be define in order to evaluate

its success.

1.1 Context

This masters thesis aims to address a problem being experienced by a recently created machine learning

and data science team for the RideCare project being developed at the Cross-Computing division at Bosch

Car Multimedia Portugal S.A., in Braga, Portugal. In particular the team’s goal is to develop machine

learning models capable of identifying violence situations in car interiors. Those models will take data

from multiple sensors placed throughout the car interior such as audiovisual feeds, and process those

inputs locally, embedded on a device, to throw alerts in real time.

Being subject to the limitations of an embedded device with limited computing power makes model

development particularly challenging, as compute power will be very limited. It also makes the adoption of

best practices absolutely fundamental to optimize what is expected to be an arduous project. Additionally,

instead of the company’s traditional on-premises approach, they are nowmoving to a cloud native approach

i.e. moving its development process to the cloud as much as possible. Due to Bosch’s partnership with

Microsoft for their cloud operations and infrastructure, this masters thesis will reveal a preference for Azure

services.

One problem raised concerns how to create a cloud environment - Gen2Cloud - that is well adjusted

to the needs of this project because, among other reasons:

• Unlike with software, model development is highly experimental and there needs to be some way

for the team to keep track of everything associated with it, e.g. sensor data, ground truth, models,

1



CHAPTER 1. INTRODUCTION

results, tests, among others.

• The raw data that is going to be sued for model training contains videos from actors whose identities

must be protected in the context of General Data Protection Regulation (GDPR), requiring very strong

and safe data handling.

• The processes used by the team need to be well integrated with other teams’ also working on the

same project.

This masters thesis is focused on the first point, attempting to create an adequate cloud environment by

figuring out the right tools to be used for the use case at hand. Decisions made during the course of this

internship were subject to any and all restrictions imposed by the company.

1.2 Motivation

Back in the 1990s, when the Internet began to really reach the masses, the amount of data available began

to grow rapidly, and, naturally, processes that could produce useful tools or bring relevant insights from

this newly found data source soon experienced high demand. From then until now, the field of machine

learning has grown immensely, with its techniques now taking part on a wide variety of software applications

from many diverse fields, ranging from image, audio and natural language processing, all the way to

stock market investing and weather forecasting, passing through network intrusion detection systems and

recommendation systems (e.g. social media feeds). Although impossible to accurately predict the future

of Machine Learning (ML), we can make some educated guesses by comparing the evolution of ML with

that of other, more mature software domains.

Let us consider the following example: just a decade ago, setting up an e-commerce store was a

non-trivial and time-consuming task, requiring teams to spend time and effort on technicalities and tasks

ranging from setting up an environment and necessary infrastructure, to one of choosing from a set of

options and tools which should better fit their use case, all of this in addition to the programming, deploy-

ment and operation of the e-store itself. Nowadays, launching an e-commerce store can be done in just

a few minutes as easily as a few clicks on a web browser. All that is left is the operation of the store i.e.

adding products, setting prices, registering stock, etc.

Even by judging this ease of use by itself we can clearly see that, after many years of maturing, the

remaining tasks are the ones that sit at the core of the business and reside mostly around the human

aspect. This reality is probably somewhere in the future for the field of machine learning.

Like software (Ozkaya, 2019), machine learning has become pervasive, greatly advancing computer

vision, speech, language understanding, and many other fields, and it promises to help with the grand

challenges facing our society (Dean, Patterson, & Young, 2018), ranging from modelling fracture growth

of brittle materials (Moore et al., 2018) to classification of internet traffic (Nguyen & Armitage, 2008).

However, because ML is not just code, like in traditional software development, but code plus data, care

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Demand for deep learning over time supported by computation (Raj, 2021)

must be taken to bridge the two together in development so they evolve in a controlled way, towards a

robust and scalable ML system (Raj, 2021). This is easier said than done, and the difficulty in achieving

such a system has real world impact. For example, a 2020 survey indicates that 55% of companies using

ML have not deployed a single machine learning model to production (Algorithmia, 2020; Raj, 2021).

The demand for ML is out there (Makridakis, 2017), there are more papers being published, more ap-

plications being developed, and more funding and investment being provided (Algorithmia, 2020; Perrault

et al., 2019), but its foundation is still riddled with very important questions that must be addressed in

order to truly bring out its potential (Sculley et al., 2015).

Although machine learning will undoubtedly reach a point of maturity sometime into the future, some

difficulties still stand. On the computational front, the end of Moores law and Dennard scaling has led to

the end of rapid improvement in general-purpose program performance. The computations at the core of

ML, and in particular deep learning, are low-precision linear algebra, known for its significant data-level

parallelism. Advances in Single Instruction Multiple Data (SIMD) architectures and some domain-specific

processing units, namely Googles Tensor Processing Units (Amodei & Hernandez, 2018), plus the adoption

of approaches that allow greater algorithmic parallelism such as huge batch sizes, architecture search, and

expert iteration, have greatly increased the amount of compute available for training and inference, at least

for some applications (Amodei & Hernandez, 2018), as shown in figure 1.1.

In terms of development, some pain points can be addressed with the application of DevOps principles,

originally meant for software development, in the context of model development, but others are inherent

to model development, to the uncertain nature of data quality and its correlativity (Kanwarpal et al., 2021).

One such pain point comes from the large number of stages and tools used during the model lifecycle,

3



CHAPTER 1. INTRODUCTION

and concerns the management and integration of all those pieces in a way that streamlines the process of

model development as much as possible. Such tools, called orchestrators, are meant to satisfy this need,

and in this masters dissertation, we will look at such tools, and undergo a decision-making process to

select one for an enterprise use-case.

This is an important step for large scale projects - because of the role it plays in coordinating the many

programs that fulfill the use cases, the orchestrator interacts with most components of the workflows of the

project, thus any features and restrictions implied by the chosen solution can have an impact, be it positive

or negative, on project development and maintenance. Sub-optimal selection increases the likelihood of an

eventual migration to the newly-found, more adequate tool, generating a hidden cost during development

(Sculley et al., 2015).

Additionally, this masters dissertation will move towards a tool that lets practitioners focus their efforts

on a reduced set of recommended options, obtained from a set of desired functionalities and given pref-

erences, e.g. cost, licence, performance, compatibility with some specific tool or cloud infrastructure, etc.

This will allow for more meaningful analysis and reduce efforts wasted analyzing and experimenting with

sub-par or unfeasible solutions.

1.3 Objectives

This masters thesis is centered around the development of a machine learning pipeline in the cloud,

which leads to the production of three artifacts: the pipeline itself, a knowledge base with learnings from

the pipeline development, plus a web application that can leverage this knowledge base and accelerate

future projects.

With this in mind, the objectives can be categorized into two blocks: model pipeline and web application.

For the pipeline, the main goals are:

1. Support the team during the comparison of the three options being considered for pipeline orches-

tration - Apache Airflow, Kubeflow and MLflow, while annotating the comparison criteria.

2. Prepare an Azure Kubernetes Service (AKS) instance with adequate configurations for the deploy-

ment of the chosen orchestrator.

3. Deploy and configure the chosen orchestrator on the AKS instance, while ensuring compliance with

company policies and best practices.

4. Develop a functional, reproducible and well documented Proof of Concept (PoC) pipeline for model

inference and result validation.

For the web application, ensure it:

5. Speeds up the tool discovery process, allowing users to obtain a filtered set of options that satisfy

indicated parameters, e.g. ”license must not have copyleft”, and ”available REST API”.

4



CHAPTER 1. INTRODUCTION

6. Facilitates the comparison of admissible options in relation to criteria that describe the needs of the

use case, e.g. ”quality of documentation”.

7. Is easy to use, maintain, deploy and modify, while remaining a low-cost operation.

8. Promotes the retention of developers’ decision-making and procedural knowledge in a central knowl-

edge base, thus building organizational knowledge.

1.4 Document Structure

The following chapters of this masters dissertation have the following structure: First, chapter 2 presents the

current state of the art for machine learning pipelines in cloud-native environments. Section 2.1 performs

a quick overview of the challenges for in ML development, helping better understand the purpose and

value of the artifacts to be presented in this document. Then, section 2.2 does an introduction to the

concept of Machine Learning Operations (MLOps), the domain of this document, in order to explain how

the traditional ML activities have many others that support them, linking them together into a lifecycle.

With this context, section 2.3 looks at one of those support activities - orchestration, and its purpose in the

model lifecycle. Finally, section 2.4 shows analysis for the three reference orchestrators in focus for this

master dissertation.

Next, chapter 3 follows the decision-making process used in the company to determine which orches-

trator to use and how it gets deployed. Starting with section 3.1, it begins with a brief contextualization and

description of the use case for this deployment. Then, section 3.2 goes over the requirements imposed to

possible orchestrators, and criteria used to differentiate them Section 3.3 then studies the process used

to take those criteria and produce a decision, as well as the adopted option. Section 3.4 presents a demo

pipeline aimed at providing first-hand experience with Kubeflow, the deployment process and associated

challenges Closing this chapter, section 3.5 reveals how the team feels in relation to this solution. Due to

force majeure reasons, it was not possible to perform model experimentation beyond this small demo.

Chapter 4 follows with MetaTool, a web application created to store knowledge from decisions made by

the team, and take advantage of it to speed up that process with precise and accurate tool recommenda-

tions. It begins with a requirements analysis listing what the team wants from this application, split between

must-haves and nice-to-haves. Then, section 4.2 introduces the architectures for both MetaTool and the

knowledge base. Section 4.3 concerns itself with the functional aspects of the application, conveying the

core of MetaTool’s user experience with an application walkthrough.

With all the artifacts presented, chapter 5 analyzes the outcome of this masters dissertation. First,

section 5.1 does a follow up on the selection for an orchestrator to understand how the activities in chapter

3 impacted the project. It also provides a reflection on the currently available orchestrators, their features,

and what could be done to promote their adoption. Then, section 5.2 discusses the pros and cons of

MetaTool, and what kind of impact it can have at the company. Afterwards it goes over the lessons learned

and future work.

5



C
h
a
p
te

r

2
State of the art

2.1 Machine Learning Model Lifecycle

Machine learning provides mechanisms for the extraction of models (or patterns) from data (Ashmore,

Calinescu, & Paterson, 2021). On a high level, the steps taken during the model lifecycle can be grouped

into four major stages:

1. Data Collection - Obtain, analyze, preprocess and augment ground truth, storing it in a standardized

format.

2. Model Production - Load data from storage, use it to train and validate a model, storing it in a model

registry.

3. Deployment - Using a developed model from the model registry, ensure proper integration with the

production environment. If adequate, deploy into production.

4. Monitoring - Obtain and inspect operational data e.g. model performance. Act accordingly, possibly

by tweaking production environment or updating requirements for future models.

Ground truth is first collected and analyzed, possibly with the help of an expert in the domain in

question, to determine whether or not the data is meaningful. Then, steps are taken to process the data in

its raw form into something usable. Such changes can include cleaning, removal of outliers, and encoding.

When the data is in a usable format, it is stored for later use. These processes are usually called Extract,

Transform, Load (ETL).

Next, some data is loaded from data storage, and further processed if necessary, into a dataset.

Paired with a selected model, the two are then used during the learning process to produce a trained

model, the main object of model development. The newly trained model is then validated with a subset of

data unused during training to simulate real-world input, indicating the quality of its results. Further tuning

6



CHAPTER 2. STATE OF THE ART

Figure 2.1: Machine learning lifecycle (Ashmore, Calinescu, & Paterson, 2021)

may be necessary to comply with requirements. With a satisfactory result, the model is then packaged

and stored in a model registry, helping keep track of these artifacts and their properties.

An adequate, trained model is then chosen from the model registry to be rolled out into production.

Before this occurs, it is first integrated into the current software solution which makes use of this model,

and tested to ensure it is working adequately and satisfies all requirements such as computational load,

inference times and GDPR compliance, just to name a few.

Lastly, thanks to careful preparations built into the production environment or software solution, the

developers obtain and analyze operational data describing the performance of the application, including

model performance metrics and input drift.

There are other activities that support ML projects such those commonly associated with project man-

agement e.g. problem definition, stakeholder consulting and infrastructure setup, but these stand out of

the scope for model lifecycles.

2.2 Challenges in ML development

ML is code plus data, and although subject to similar difficulties as software development in terms of

requiring version control, unit testing, integration testing, among others, model development is an iterative,

costly, work-intensive process (Alla & Adari, 2021), subject to additional difficulties and with specific need,

namely:

• Human: Practitioners who focus on exploratory data analysis, model development, and experi-

mentation, might not be experienced software engineers who can build production-class services

7



CHAPTER 2. STATE OF THE ART

Figure 2.2: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the
small black box in the middle. The required surrounding infrastructure is vast and complex. (Sculley et al.,
2015)

(Google, 2020). Also, machine learning teams require domain experts to support the ML specialist

to analyze and synthesize the data, or qualify the data for use (Kanwarpal et al., 2021).

• Data collection and drift: Raw data requires processing to remove data points such as null values

and faulty data values. Alternatively, we may need to process the raw data to extract only the useful

information among all of the noise (Alla & Adari, 2021). Also, in many practical applications, changes

in the relationship of the response and predictor variables are regularly observed over time, resulting

in the deterioration of the predictive performance of these models, often called data drift.

• Model production: Models are subject to overfitting, and it is not always possible to solve it without

fixing the training set by introducing more variety or increasing the number of data points (Alla &

Adari, 2021), which can require a lot of effort to obtain. Manually iterating through the ML lifecycle

two or three times might be doable, but over time, with dozens or hundreds of iterations, it becomes

unfeasible. Developers become tired of doing the same thing and, since everything is manual, there

is a chance for human error, inducing the need for more complex pipelines with higher adherence

to the MLOps principles.

• Configuration and Scale: Bringing one model to life is just a small part of the many steps and

efforts involved in developing a real-world machine learning system, which often consume most

of the effort. Overlooking these activities can be incredibly costly in the long term (Sculley et al.,

2014). Just not keeping track of the surrounding components and how they are configured raises

the difficulty in perceiving the consequences from small configuration changes, an afterthought

which Sculley et al. noted between researchers and engineers, raising the problem of configuration

debt. On top of this, as pointed out by TA and NGUYEN, training complex ML models with large

datasets often requires powerful computing infrastructure, which is costly to acquire and maintain.

As a result of this, ML developers move their operations to the cloud in order to take advantage of

the on-demand and elastic resource provisioning capabilities. Poorly configured cloud environments

can be a serious hurdle, leading to low performance, poorly trained models and risk significant cost

(TA & NGUYEN, 2018).

8



CHAPTER 2. STATE OF THE ART

• Deployment and Maintenance: ML systems can require the deployment of multi-step pipelines to

automatically retrain and deploy model. Pipelines add complexity and requires automation of steps

that are manually done before deployment by data scientists to train and validate new models

(Google, 2020). Also, machine learning requires a greater operational effort, since unlike traditional

software systems, a machine learning solution is constantly at risk of degradation because of its

dependency on data quality, raising the need to collect operational data, track summary statistics of

our data and monitor the online performance of the model (Google, 2020; Kanwarpal et al., 2021)

to take proper action when values deviate from our expectations.

• Technologies: ML practitioners keep trying new tools and approaches on their quest for better ac-

curacy, unlike with traditional software development, where teams select one tool for each phase

(Zaharia et al., 2018). Even at academic level, students are encouraged to build the same model

type on different frameworks and tools, e.g. TensorFlow1, Caffe2, PyTorch3, Knime4, and compare

their outcomes. This exploration, combined with the increasing popularity of ML, led to hundreds

of software tools for each phase of ML development, most of which neither me nor the reader will

never even known of their existence. Also, there is often no guarantee that any two tools might inter-

face correctly together, increasing the difficulty of the tool selection process. ML developers made

attempts at solving this problem by building ML oriented development platforms, namely Google’s

TFX5 and Databricks6, plus all the Machine Learning as a Service (MLaaS) from public cloud ser-

vice providers, e.g. Amazon Web Services (AWS) Sagemaker, Azure ML and Google AI Platform.

However, the framework may be too closed, to the point where it becomes difficult to integrate with

other options and technologies, which can be a deal breaker for projects requiring custom or legacy

tools. MLaaS can be particularly problematic for enterprise solutions as cost, vendor lock-in and

data privacy concerns must also be factored in.

• Experiment Tracking and Reproducibility: Keeping track of experiment results and all the necessary

artifacts to reproduce the obtained results is one of the most important, yet most difficult things to

achieve when producing ML models. Even though a model might feature high levels of accuracy, its

creators might need to re-implement it, as is usually the case, due to some reason that might not

be obvious during development, as described in (O’Leary & Uchida, 2020). One way to mitigate this

is by using adequate tools to keep track of performed experiments, training runs, hyperparameters

and training data. Another approach would be to make ML developers produce pipelines instead

of models, or pieces of code to produce models. It should be noted that, according to O’Leary and

Uchida, a pipeline-centric workflow is challenging because it requires formalizing programs before

and after model training in ways that can be properly unit tested and deployed. However, model
1https://www.tensorflow.org
2https://caffe.berkeleyvision.org/
3https://pytorch.org
4https://www.knime.com
5https://www.tensorflow.org/tfx/
6https://databricks.com/solutions/machine-learning

9



CHAPTER 2. STATE OF THE ART

Figure 2.3: MLOps intersection (Alla & Adari, 2021)

development with a formal pipeline program is slower than with an iterative environment such as

notebook, due to the overhead of added software abstractions. This aspect is a major reason for

the popularity of tools capable of generating pipelines from notebooks, such as Kale7, enabling the

best of both worlds.

2.3 What is MLOps

The DevOps methodology has improved the efficiency of development teams (Virmani, 2015) by seeking all

the pieces of a software delivery lifecycle work like a well oiled machine with rapid and automated software

delivery and quality assurance from source code changes with CI/CD pipelines (Humble & Farley, 2010),

feedback with production monitoring, and configuration consistency with infrastructure-as-code or data

(Mäkinen et al., 2021)(Jabbari, bin Ali, Petersen, & Tanveer, 2016). It is center around (Treveil et al.,

2020):

• Robust automation and trust between teams

• Collaboration and increased communication between teams

• The end-to-end service life cycle (build, test, release)

• Prioritizing continuous delivery and high quality

MLOps has emerged as the result of applying DevOps methodologies and best practices to machine

learning models in place of software (Alla & Adari, 2021). It unites the developmental cycles followed by

data scientists and machine learning engineers with that of operational teams to help ensure continuous

delivery of high-performance machine learning models (Alla & Adari, 2021).

MLOps streamlines the development, deployment, and monitoring pipeline for ML applications, uni-

fying the contributions from the different teams involved and ensuring that all steps in the process are
7https://kubeflow-kale.github.io/

10



CHAPTER 2. STATE OF THE ART

Figure 2.4: Manual ML steps to serve the model as a prediction service. (Google, 2020)

recorded and repeatable (Raj, 2021) by using tooling and workflows to automate one or more of the

phases of the lifecycle (Mäkinen et al., 2021). This is done through the creation of pipelines, an infras-

tructure that contains a sequence of components manipulating information as it passes through (Alla &

Adari, 2021) to automatically build, test, release and configure software release (Humble & Farley, 2010)

aiming to streamline the practice of model changes and updates. Also, the deployment of machine learn-

ing models into production is fundamentally different from software code. Data is always changing, which

means machine learning models are constantly learning and adapting — or not — to new inputs (Treveil

et al., 2020), making continuous performance monitoring and adjusting essential.

This methodology manifests itself in the types of setups used for model development, usually dis-

tributed into three (Alla & Adari, 2021; Google, 2020) or five (Microsoft, 2021) distinct categories, each

corresponding to increasing stages of automation and adherence to MLOps principles.

2.3.1 Manual workflow

With this approach, both stages - experimentation and production - are done manually. This process is

usually driven by experimental code that is written and executed in notebooks by data scientist interactively,

until a workable model is produced (Google, 2020). If used for more serious purposes, manual workflows

tend to be inefficient as chances are high that practitioners will have to update it to maintain its performance

on the new data, forcing the model development team to update the model and repeat the entire process

again by hand (Alla & Adari, 2021). Although the process may not be that bad the second time around,

there is still the issue of fixing any potential bugs that may arise from the new model. This makes it difficult

to manage the machine learning model lifecycle (Microsoft, 2021). Refer to figure 2.4.

These are some of the characteristics with no MLOps adherence:

• When the entire process of analyzing new trends, training, testing, and validating data is manual,

this may require significant resources over time, which may become unfeasible for a company

without the resources to spare (Alla & Adari, 2021).

11



CHAPTER 2. STATE OF THE ART

Figure 2.5: ML pipeline automation for CT. (Google, 2020)

• The process separates data scientists who create the model and engineers who serve the model

as a prediction service, which can lead to train-serving skew (Google, 2020; Microsoft, 2021).

• Heavily reliant on data scientist expertise to implement new models (Microsoft, 2021).

• Lack of continuous integration (CT)/continuous delivery (CD) leads to longer integration cycles,

resulting in so called ”integration hell”, a situation where delivery is in halt for a long-period of time

(Mäkinen et al., 2021). Usually, testing the code is part of the notebooks or script execution.

• Predominant use of notebooks leads to lack of proper experimentation tracking and version control

(Microsoft, 2021), difficult to keep track of different results and reproduce the experiments.

2.3.2 Workflow with automated model pipeline

The next step is to move the training process away from manual operation with the automation of the ML

pipeline to achieve continuous training of the model (Alla & Adari, 2021; Google, 2020; Microsoft, 2021),

enabling continuous delivery of model prediction service. This is a more advanced setup which is more

difficult to implement due to the additional services it relies on.

These are some of the characteristics for setups capable of continuous training (CI):

12



CHAPTER 2. STATE OF THE ART

• Artifact being manually deployed is now an entire, automated pipeline to automatically and recur-

rently run to serve the trained model as the prediction service (Alla & Adari, 2021; Google, 2020).

This shift from model to pipeline production is arguably the most important step of MLOps.

• Code modularization and use of containers to make code reproducible between development and

production environments (Google, 2020).

• Automated collection of performance metrics and new user data, plus automated feature extraction.

• Training code and resulting models are now version controlled (Microsoft, 2021).

• Triggering the training and retraining of new models can be manual or automatic - based on triggers

from operational data e.g. data drift reaches a certain threshold (Google, 2020).

• Integration of extra services to reach continuous training (CI), such as model registries, experiment

trackers, and feature or data stores.

• Still heavily reliant on data scientist expertise to implement new models (Microsoft, 2021).

2.3.3 Full MLOps Automated Retraining

The last level makes use of all MLOps principles and achieves full Continuous Integration/Continuous

Delivery (CI/CD) of pipelines. Alla and Adari sees this as a big advantage, as it means businesses can

now keep up with significant changes in the data requiring the creation of new models and new pipelines,

and can also capitalize on the latest machine learning trends and architectures all thanks to rapid pipeline

creation and deployment combined with continuous delivery of model services from the previous setup.

Refer to figure 2.6.

These are some of the characteristics for setups fully compliant to MLOps principles:

• Iterative experimentation of new models with orchestrated experiment steps (Google, 2020).

• CI/CD process with unit and integration tests for model and application releases (Microsoft, 2021).

• Semi-automated deployment to a pre-production environment, for example, a deployment that is

triggered by merging code to the main branch after reviewers approve the changes (Google, 2020).

• The pipeline and its components are built, tested, and packaged when new code is committed or

pushed to the source code repository (Google, 2020).

2.4 Machine learning workflow orchestration

Data processing, model training and inference are very heavy workloads, so it is natural that businesses

will tend to use large computational infrastructures to fulfill their business problems. Arguably the single,

13



CHAPTER 2. STATE OF THE ART

Figure 2.6: CI/CD and automated ML pipeline. (Google, 2020)

biggest advantage provided by cloud service providers is the abstraction of compute infrastructure - it

enables the amortization of infrastructure costs through the many customers, as opposed to in-house

infrastructure and compute clusters, often only available to large entities.

Existing mainstream cloud service providers have prevalently adopted container technologies in their

distributed system infrastructures for automated application management (Zhong, Xu, Rodriguez, Xu, &

Buyya, 2021), which brings clear benefits, including reusability, scalability, and ease of change (Atamel,

2020). Having these huge, elastic (Treveil et al., 2020) - they automatically adapt to an increase in usage

without the need to permanently provision resources that are rarely required - microservice ready infrastruc-

ture behind a pay-as-you-go business model lowers the barrier to access the necessary computing power

for very complex and computationally expensive workloads. This makes cloud services very attractive for

heavy workloads, including ML workloads like training deep neural networks and inference on random tree

forests (Treveil et al., 2020). With microservices, developers are pushed into making applications that run

through many small components. These can have hundreds or thousands of components to keep track of

(Lohr et al., 2021), all of which need to be coordinated for many reasons e.g. resource allocation, even if

they do not integrate the same application.

As previously mentioned, in the context of ML experimentation, we want to produce pipelines which,

when executed, output a usable model plus any desired metadata. Observing figure 2.5 we can identify

five generic steps which constitute such a pipeline:

On both cases, the components, although independent from each other, need to be coordinated in

order to achieve some broader goal. There are two major approaches (Atamel, 2020) one can take: either

14



CHAPTER 2. STATE OF THE ART

Step Description Inputs Outputs

Data
valida-
tion

Ingest and validate data into the pipeline, ensuring that the
data is meaningful and well adjusted to the purpose of the
experiment.

Data Validated
dataset

Data
prepa-
ration

Do any necessary preprocessing e.g. remove outliers,
normalize, encode, and split the data into train, test and
validation sets.

Validated
dataset

Training set,
test set,
validation set

Model
train-
ing

Train model with the data allocated for model training to
obtain model parameters that fit the data.

Training
set, test set

Trained
model

Model
evalu-
ation

Test the model parameters on data it has never seen i.e.
holdout test set, evaluating how well the model fits the data.

Trained
model,
validation
set

Verified
model,
verification
results

Model
valida-
tion

Confirm the model predictive performance is better than a
certain baseline, as well as other desired characteristics e.g.
model size and inference times.

Verified
model

Validation
results

Table 2.1: Common steps in experimentation pipelines

we take all components and implement a publisher-subscriber system where each component registers for

and emits events as they need, or we take a more centralized approach and add a new service dedicated

to defining the interactions and controlling the flow of communications between components (Lohr et al.,

2021). These two approaches are choreography and orchestration, respectively.

Container orchestration is already widely prevalent within cloud service providers, with Kubernetes

standing as the go-to solution. It is offered by major cloud providers and is often offered as a managed

service. However, in the context of ML experimentation, there isn’t a dominant, industry-standard solution to

turn a set of components into an actual pipeline. Instead, there are many alternatives, each with different

approaches, each better suited to different use cases. Some well known options are Apache Airflow8,

Argo9, Luigi10, MLflow11, Kubeflow Pipelines12, and Prefect13.

2.4.1 Understanding workflows

Before analyzing and looking into what it means to be an orchestrator and what it does, it is important to

build an understanding of the concepts used by them. One such concept is the one sitting at the heart of

workflow orchestration: the workflow itself.

Workflows are often described as a set of repetitive activities occurring in a particular order. IBM

describes them as ”the mechanism by which people and enterprises accomplish their work, whether
8https://airflow.apache.org/
9https://argoproj.github.io/

10https://github.com/spotify/luigi
11https://mlflow.org
12https://www.kubeflow.org/docs/components/pipelines/
13https://www.prefect.io/

15



CHAPTER 2. STATE OF THE ART

Workflow representation
Pi

pe
lin

e

Data validation Data preparation Model training Model evaluation Model validation
Data

D
A

G

Data validation

Validation set

Training set
Test set

Trained modelValidated

dataset

Validation results

Experiment Tracker

Validation metricsIngested data Generated sets Training results Model Verification results

Verification

results

No valid data Verification failed

Data preparation Model training Model evaluation Model validation
Data

Figure 2.7: Representing workflows as pipelines versus DAGs.

manufacturing a product, providing a service, processing information or any other value-generating activity”

(IBM, 2020). In the context of ML, a workflow is how ML engineers abstract a multi-step operation through

which data can pass through, with dependencies dictating the order of execution.

If we recall the experimentation pipeline example in figure 2.5 and the artifacts listed in table 2.1,

it should become apparent that pipelines, although easy to understand, are not an accurate description

of the structure underneath because the flow between each step is not solely and strictly dependant on

one preceding step i.e. not a chain of execution. While the input of any step is dependant on the output

of the previous, it can also be dependant on other outputs. Refer to figure 2.7 and observe how step 4

- Model evaluation depends on two artifacts, the trained model from step 3 - Model training, but also a

validation set from step 2 - Data preparation. This dependency would be impossible to describe with a

pipeline. Thus, workflows, although often interpreted as a pipeline, have their dependencies described as

a Directed Acyclic Graph (DAG).

2.4.2 Orchestration as a role

ML orchestrators have two key purposes in an ML workflow (Lohr et al., 2021):

1. Define the interactions between the different components that implement the model pipeline;

2. Ensure the flow of communications between components according to the dependencies between

them.

These tools take in an explicit description of the workflow, usually some code in a domain specific language

(DSL) or a YAML specification, indicating tasks i.e. code to run or commands to execute, the dependencies

between those tasks, and possibly additional workflow control logic - conditions, loops, etc. From this, the

orchestrator can schedule these tasks for sequential or parallel execution (Gubala & Hoheisel, 2007).

16



CHAPTER 2. STATE OF THE ART

In order to operate, orchestrators need to be in contact with all components in the pipeline. This

centrality makes orchestrators very important for the general ease of use of the entire setup, and the

presence - or absence - of features can significantly impact the overall usability.

When describing the needs for scientific workloads with grid computing, a very complex system to

orchestrate, Gubala and Hoheisel highlights the importance of:

• having the workflow language and the infrastructure that surrounds it support more than one level

of abstraction in the resource description;

• use the dynamic scheduling for as-late-as-possible decisions to allow scheduling based on the most

recent infrastructure information;

• introduce a certain level of fault-tolerance so the workflow engine can recover from a failure;

• allow the user to modify the workflow during runtime, e.g., dependent on intermediate workflow

results.

Given that, as previously discussed in section 2.4, ML workloads are taking advantage of containers

to improve modularity and reusability, the orchestrator does not need to, at this level, manage the infras-

tructure and its resources, e.g., GPU access. This is handled by a container orchestrator, e.g. Kubernetes.

2.5 Analysis of ML orchestrators

When machine learning on the cloud began to gain traction, there were no tools dedicated to orchestrating

ML pipelines, leading to the adoption of generic workflow managers for ML activities, as was the case

with Apache Oozie and Airflow, Luigi and others. Later and on opposite direction we saw tools from the

field of ML branching out to perform the role of workflow manager. This is the case of Kubeflow Pipelines

(TensorFlow Extended, itself a TensorFlow pipeline manager, and Argo CD, a Kubernetes-only GitOps tool),

currently one of the most prominent ML workflow managers for cloud deployments.

The tools used for ML pipeline orchestration can generally be classified in terms of their approach with

one of two labels: dedicated orchestrator, and re-purposed tool.

Dedicated orchestrators represent tools developed to be, and used as, workflow orchestrators. They

may include some useful functionalities, but their scope is strictly aimed at this role. Popular, free and open-

source tools of this category include Apache Airflow, Luigi and Kubeflow. Re-purposed tools are considered

to be pieces of software which were not created with orchestration in mind, but developers were able to

leverage their functionalities and use them as such. MLflow is a great example of this.

For this analysis we will focus on three particular options, the ones considered for the project as they

satisfied the use case requirements. Refer to 3.2 for further details.

17



CHAPTER 2. STATE OF THE ART

Figure 2.8: Star history comparison(Schmitt, 2020).

2.5.1 Apache Airflow

According to its creator Maxime Beauchemin, Airbnb was experiencing increasingly complex workflows

back in 2014, which lead to the creation of Airflow. It was born as a framework with which to schedule and

monitor such kinds of jobs and run the pipelines smoothly, for consistent output (Singh, 2019). Although it

can and does orchestrate ML workflows, the use cases it is meant to fulfill are not just those of ML. In fact,

Airflow is capable of orchestrating all kinds of generic workflows, and run them on top of several execution

backends, which it abstracts as Executors. These include:

• Local Executor - runs tasks by spawning processes in a controlled fashion in different modes.

• Dask Executor - enables Airflow tasks in a Dask Distributed cluster.

• Kubernetes Executor - creates a new pod for every task instance.

According to its documentation (“Quick Start — Airflow Documentation,” n.d.), Airflow pipelines are

configuration as Python code, allowing for dynamic pipeline generation. Thanks to its modular architecture -

message queues to any number of workers, the only limit to Airflow’s scalability is the ammount of available

computational resources. Being capable of running on top of a Kubernetes cluster on a public cloud, its

scalability is virtually infinite. This makes it appealing for enterprise solutions, where the necessary scale

can often be a key factor.

18



CHAPTER 2. STATE OF THE ART

Figure 2.9: Basic Apache Airflow architecture. (“Quick Start — Airflow Documentation,” n.d.)

Its pure Python base, with no extensions added to the language, makes it very user friendly for machine

learning engineers and data scientists.

2.5.2 Kubeflow and Kubeflow Pipelines

Kubeflow14 is a free and open source, Kubernetes-native platform, made to enhance and simplify the

process of deploying machine learning workflows on top of Kubernetes clusters. Kubeflow Pipelines (KFP)

is the workflow orchestrator at the core of this platform. It provides a simple way for building and deploying

containerized machine learning workflows on top of Kubernetes, without bothering on the low-level details

of managing a Kubernetes cluster (Bisong, 2019).

Kubeflow bundles software necessary to create end-to-end ML pipelines and manage the entire life

cycle, capable of fulfilling all needs and performing all activities, from development to deployment, and

has a large and vibrant multi-vendor community behind it.

The Kubeflow Pipeline platform consists of (Authors, 2020; Bisong, 2019):

• A user interface (UI) for managing and tracking experiments, jobs, and runs;

• An engine for scheduling the ML pipeline activities, described on the multi-step workflows;

• An SDK for defining and manipulating pipelines and components;

• Notebooks for interacting with the system using the SDK.
14https://www.kubeflow.org/

19



CHAPTER 2. STATE OF THE ART

Figure 2.10: Kubeflow map (Brys, 2019)

It is well suited for orchestration of common machine learning tasks such as experiment tracking,

model training and serving, but imposes a high user burden to design technically sophisticated compo-

nents or common ML steps (O’Leary & Uchida, 2020). ML teams seem to be interested in out-of-the-box

components and component templates, that could make it easier to adopt and customize workflow steps.

In situations requiring the use of custom components, these must be implemented in particular ways to

properly interface with the out-of-the-box components, e.g. integrating an application with the Kubeflow

Central Dashboard (KCD).

Kubeflow requires an underlying Kubernetes cluster and interfaces directly with the cluster via the

Kubernetes API. Opting for this tool reduces the spectrum of admissible options for cluster management to

Kubernetes-based solutions, but fortunately most, if not all of the public cloud providers offer the possibility

to deploy Kubernetes on their infrastructure, some even providing managed Kubernetes environments.

2.5.3 MLflow

Developed by Databricks, MLflow15 represents a different take on workflow orchestration. Although it is not

an orchestrator, nor is this a role it aims to fulfill, it is sometimes used for this purpose. As its initial paper

points out (Zaharia et al., 2018), it was created as an out-of-the-box way to manage ML experiments and

deployments, allowing developers to log information such as model parameters, as well as the resulting

trained models. According to its creators, it was designed to allow for maximum flexibility by defining

general interfaces for each abstraction, that ”allow users to bring their own code or workflows”.
15https://mlflow.org/

20



CHAPTER 2. STATE OF THE ART

Figure 2.11: Overview of the CI/CD tools, architecture and workflow of the MLflow centralized hub for
model management. (Parkhe, Ann Hong, Damji, & Mewald, 2020)

MLflow began with three core components, according to Zaharia et al., with Model Registry being

added later (Parkhe, Ann Hong, Damji, & Mewald, 2020):

• MLflow Tracking, which is an API for recording experiment runs, including code used, parameters,

input data, metrics, and arbitrary output files. These runs can then be queried through an API or

UI.

• MLflow Projects, a simple format for packaging code into reusable projects. Each project defines

its environment (e.g., software libraries required), the code to run, and parameters that can be

used to call the project programmatically in a multi-step workflow or in automated tools such as

hyperparameter tuners. MLflow projects can be submitted to cloud platforms for remote execution.

• MLflow Models, a generic format for packaging models (both the code and data required) that can

work with diverse deployment tools (e.g., batch and real-time inference).

• MLflow Model Registry, a centralized model store, set of APIs, and UI, to collaboratively manage

the full life cycle of an MLflow Model.

By creating a project for each step, scheduling desired tasks in a programatic way, and using MLflow’s

Tracking API to store metadata about the state of operations instead of experiment results, MLflow can be

used to orchestrate multi-step workflows of any nature, not just about machine learning. It is due to the

lack of structure on how the multi-step workflows can be defined, e.g. by using DAGs, and possibility of

scheduling runs inside an executing run via API, that MLflow can be taken advantage of to orchestrate ML

pipelines. In return for this generic operation, the lack of rigidity leaves more opportunities for mistakes by

the developers.

21



CHAPTER 2. STATE OF THE ART

Unlike with Kubeflow, MLflow does not have particular requirements for the underlying environment.

22



C
h
a
p
te

r

3
Selecting a tool for cloud pipeline orchestration

3.1 Gen2Cloud contextualization

Gen2Cloud is an ML deployment PoC produced in the context of the company’s push towards cloud

native solutions, and is meant to test the feasibility of such approach. It integrates RideCare, the in-vehicle

sensing project aimed at producing ML models capable of detecting in-vehicle violence from audiovisual

surveillance data, i.e. video and audio captured inside the car, for integration in embedded systems, and

follows the paper by Marcondes et al. - ”In-vehicle violence detection in carpooling: A brief survey towards

a general surveillance system”.

Due to the aforementioned cloud native approach and partnership with Microsoft, Gen2Cloud was to

be created with strong integration of Azure services when possible. Alongside the services to be deployed

for model experimentation, the deployment was also to contain three internally developed services on the

same AKS instance.

• Zeus - dataset manager that handles acquired ground truth.

• DaiVs - model training and inference engine for developed algorithms e.g. action detection (bounding

boxes), semantic segmentation on input video, producing JSON formatted results.

• VisualizationUI - web application to allow easy validation, render and display ground truth i.e. labels,

or algorithm results on the respective source video.

Figure 3.1 provides a representation as to how these three services integrate with Azure services.

23



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

Azure Cosmos DB

Instance 2

Algorithm results

Instance 1

Pipeline run metadata

Azure Kubernetes Service

API endpoint
Labels


(Ground Truth)

Zeus container

API endpoint

DaiVs container

Engine

Azure DevOps

Labels

(Ground truth)

Video
Video

Algorithm

Results

Azure Blob Storage

In-vehicle video

Ground

Truth

Algorithm

Results

Users Public IP address Azure

Conditional


Access

Visualization UI contaier

0:00/3:53

Web playerRender overlay

Visualization UI contaier

0:00/3:53

Web player

Figure 3.1: Gen2Cloud - Zeus, DaiVs and VisualizationUI architectural concept.

3.2 Orchestrator requirements

From the broader objectives for this project, three requirements were defined for an orchestrator to be

considered admissible:

1. The solution must be compliant with company policies.

2. The solution must be capable of executing tasks as containers on AKS instances.

3. The solution must be able to schedule tasks that interface with internally developed dataset manager

and inference engine.

4. The solution must work in other managed and unmanaged Kubernetes clusters to reduce vendor

lock-in.

Verifying whether or not a solution satisfied these few requirements was done rapidly and efficiently. The

first requirement was verified through information disclosed by the software vendors. Alternatively, in the

cases of free and open-source software, through the license that accompanies said software. The second

point was determined by checking if the tool could be deployed and used on Kubernetes-based envi-

ronments, as it would assure compatibility with AKS. Doing so also satisfied the third requirement as it

would always be possible to pass communications through an Application Programming Interface (API) or

24



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

container-to-container communications. The fourth requirement seemed somewhat contradictory to the

stated intent of integrating with Azure services. However, it was deemed necessary as an orchestrator was

itself likely to cause lock-in due to its role, making this requirement important. A major consequence of

this was the exclusion of several paid options, including Azure Pipelines1, a first-party service.

If these requirements were met, the admissible option would then be further analyzed and undergo

experimentation. Web searches was by far the main collection method, providing the vast majority of

options. Other methods included first-hand experience, contacts with peers and associates, and analysis

of internal documents about previous projects.

At this stage, the requirements, although important, allowed for a large set of admissible and third-

party solutions e.g. Apache Airflow. Notably, there was no requirement for options to be orchestrators as

described in 2.4.2, leaving most automation tools as admissible. This led us to create a set of attributes

that were deemed desirable and adding them to the previous requirements.

5. The solution must be aimed at ML workflow orchestration.

6. The solution must be free or low-cost to minimize project costs.

7. The solution must have good first-party documentation to accelerate deployment and familiarization

with the software.

8. The solution must have widespread adoption and good community support to ease the resolution

of undocumented and obscure situations.

9. The solution must have its development backed by some major entity to ensure long term support.

The new extra requirements severely reduced the number of admissible options, particularly the fifth

requirement, which removes generic automation solutions such as Jenkins2.

With this larger set of requirements, it became evident that the main direction of this process was

mostly concerned with costs, either direct through software licensing, or indirectly through vendor lock-in

and time spent:

• Requirement 1 concerns compliance matters e.g. GDPR, no copyleft licence;

• Requirements 2, 3, and 5 represent functional aspects;

• Requirements 4, 6, 7, 8 and 9 reduce effort and cost.

One notable omission was the desire for open-source code, which usually comes associated with the

desire for free software. This was deemed insignificant beyond the increased community support because

forking the software and implementing the necessary changes left the team at a vulnerable situation -
1https://azure.microsoft.com/en-us/services/devops/pipelines/
2https://www.jenkins.io

25



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

if the maintainers did not accept a pull request, maintaining the internal version up-to-date with future

developments was very likely to become prohibitively costly.

Evaluating the current set of admissible options according to these further reduced its size, leaving just

three solutions deemed likely to satisfy the needs of the project: Apache Airflow, Kubeflow, and MLflow.

This number of orchestrators was small enough to be scrutinized in more detail.

3.3 Comparing orchestrators

Multi-Criteria Decision Making (MCDM) is a widely known branch of decision making, often associated with

Multi-Attribute Decision Making (MADM), which concentrates on problems with discrete decision spaces

i.e. a known finite set of alternatives (Triantaphyllou, 2000). According to the author, MCDM also includes

Multi-Objective Decision Making (MODM), which studies decision problems in which the decision space is

continuous e.g. linear programming problems with more than one objective function, often called multi-

objective linear programs. In the context at hand, deciding which solution to adopt is a MADM problem,

as there are three options being considered, and a single dimension to the problem - which to choose

for orchestration. Triantaphyllou, 2000 claims a WSM is probably the most commonly used approach for

these situations. This method consists of finding the option with the greatest resulting score, defined by the

product of how the option evaluates according to a criterion, by the weight of the criterion (Triantaphyllou,

2000):

𝐴∗𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 =𝑚𝑎𝑥
𝑖

𝑛∑
𝑗=1

𝑎𝑖 𝑗 ×𝑤 𝑗 , 𝑓 𝑜𝑟 𝑖 = 1, 2, 3, . . . ,𝑚. (3.1)

where: 𝐴∗𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 is the WSM score of the best alternative, 𝑛 is the number of decision criteria, 𝑎𝑖 𝑗
is the actual value of the 𝑖 -th alternative in terms of the 𝑗 -th criterion, and𝑤 𝑗 is the weight of importance

of the 𝑗 -th criterion.

In a decision making process, criteria can be split as objective i.e. the criterion can be independently

verified, and subjective i.e. the criterion requires judgment in its application (Chou, Chang, & Shen, 2008).

If the values for a given criterion are discrete and crisp, particularly objective criteria, the criterion can be

used to exclude options that do not have those values, filtering them, as was done previously in section 3.2

e.g. with requirement 5, which would have Boolean values - those that are orchestrators, and those that

are not. The extension of the WSM method (Triantaphyllou, 2000) with these actions results in a process

shown in figure 3.2.

We used this extended method and resorted to an internal decision-matrix template built as an Excell

spreadsheet to facilitate the WSM method. The criteria were weighted according to the following method:

• If the row criterion is less important than the column criterion, assign value 0.

• If the row criterion is as important as the column criterion, assign value 1.

• If the row criterion is more important than the column criterion, assign value 2.

26



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

Deciding

Agent

Problem

Definition

Option

Identification

Decision-making

Requirements

FilterObjective

Subjective

?

Criterion

Option

?

Define relative
importance

Calculate

Weighted Sum

Evaluate
according to

Criterion

Admissible Option

Result

Figure 3.2: Schema of an extended WSM method.

The 𝑎𝑖 𝑗 values attributed to each alternative were simple coefficients to be multiplied with the respective

𝑤 𝑗 , in orange, and did not have any restrictions as to that values could be used. Figure 3.3 shows a

representation of the template applied to a fictitious example, with 𝑎𝑖 𝑗 ∈ [0, 10]. Only white cells are

assigned for user input.

For the criteria, usability was the most in-focus aspect. We sought something easy to deploy and man-

age in order to avoid dedicating someone just to maintaining the infrastructure, versatile i.e. adaptable to

different use cases, and easy to program. However, it was impossible to have an accurate, albeit subjec-

tive, evaluation on how the three alternatives being considered - Airflow, Kubeflow, and MLflow - scored

against the criteria without undertaking serious experimentation with all of them, as no members of the

team had any experience nor familiarity with these. This was deemed unfeasible.

In order to circumvent the lack of experience with these tools, we approached other collaborators

within the company and requested their opinions in relation to them. Intuitively, this approach seemed like

a good course of action as the feedback given was more likely to be adjusted to the company’s operations.

In parallel, additional efforts were made to gather information from online sources.

In the end of this process, we decided to select the solution that had left the best impression over

the course of this process and use it to develop a small demo pipeline. Kubeflow was the chosen option

27



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

Paired Comparison
C

ri
te

ri
on



A

Criterion

A

Criterion

B


0

Criterion

C


1

Criterion

D

1

Absolute

Importance


(Wabs)

2

Relative

Importance


(Wrel)

0.4

Ranking

(Criterion)

3

Weighting

(Criterion)


 (W%)

16.66%

C
ri

te
ri

on



B 2 2 1 5 1 1 41.66%

C
ri

te
ri

on



C 1 0 0 1 0.2 4 8.33%

C
ri

te
ri

on



D 1 1 2 4 0.8 2 33.33%

100%

Decision Table

Option A

6

Option B

6

Option C

4

Option D

3

R
eq

 B

1 3 2 3

R
eq

 C

9 6 1 1

R
eq

 D

2 5 10 3

283 442 492 283

Figure 3.3: Decision-matrix with pairwise comparison.

for being not just an orchestrator but an entire Kubernetes-native toolkit, leading us to believe it would

minimize deployment, maintenance and integration efforts. Kubeflow also seems to be the closest to a de

facto cloud-native solution for MLOps (The Kubeflow Authors, 2021d).

Due to the importance associated with interoperability with the internal tools described in section 3.1,

the pipeline was to run inference on a set of videos on trained models, storing back the result and the

executed configuration.

3.4 Deployment and demo pipeline

3.4.1 Kubeflow deployment setup

Kubeflow has distributions dedicated for major cloud providers3, including Azure, available through its

official documentation. These are configuration YAML files meant to be applied against the Kubernetes

cluster, triggering the correct deployment of all its components. We made use of these instructions during

the deployment process.

Official documentation requires kfctl, a command-line interface for deploying and managing Kubeflow,

exclusive to Linux based systems. It did not impact the deployment as it was performed entirely from Azure

Cloud Shell, which satisfies this requirement. The deployment was performed with contributor level per-

missions on a dedicated AKS cluster, with consent and approval by the owner for certain actions, namely

modifying network policies and cluster resources. This setup was based on Kubernetes 1.18.14, and ran

Kubeflow v1.2 alongside the three containers from figure 3.1 on a single node pool of Standard_NC6 ma-

chines, scaling up to three virtual machines. Joining these to the deployment would allow for better resource

optimization as the entry-level nodes with the necessary GPU acceleration (Kanchanahalli, McKittrick, &

Hughes, 2021) - Standard_NC6 - were expected to have too much CPU compute power relative to the

needs of this demo.
3https://www.kubeflow.org/docs/distributions/

28



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

AKS
instance

Virtual

Network

Kubeflow

Central


Dashboard

pods

Network policy

ml-pipeline-ui

Pod
Pod

Pod
Pod

Pod
Pod

Pod
Pod

Pod
Pod

Pod
Pod

Other
namespaces

Pod
Pod

Pod
Pod

Service
exposed
with an
external
address

No firewall
rules

blocking
traffic

Firewall

jupyter-web-app-deployment Jupyter

pods

ml-pipeline
Users

istio

namespace

Pod
istio-ingressgateway


(LoadBalancer service)

Pod

kubeflow

namespace

Figure 3.4: Diagram of intra-cluster network errors.

3.4.2 Challenges

Deploying Kubeflow proved itself to be significantly more difficult than expected due to severe errors within

the deployment instructions and missing information. Following the available guide (The Kubeflow Authors,

2021b), we were first unable to successfully deploy Kubeflow with all of its components. It had several faults

that had to be circumvented in order to make progress. Smaller situations such as referencing nonexistent

kfctl releases4 were easy to work around, whilst others were more difficult to identify and solve.

3.4.2.1 Intra-cluster network

During deployment attempts with the standard instructions (The Kubeflow Authors, 2021b), two networking

problems occurred. The first was an apparent lack of connectivity between KFP and the Jupyter notebook

server. Kubeflow advertises its Jupyter integration (The Kubeflow Authors, 2021d) as a feature that facil-

itates experimentation. Its integration would let users create pipelines for Kubeflow’s orchestrator - KFP -

directly from the code, either by describing a pipeline and its components with the KFP domain specific

language (DSL), or by mapping each cell to a step in the pipeline. This level of ease of use was one of the

factors that led us to choose this solution. Not being able to use it was a major downside. After consultation

with support agents from both Microsoft Azure support and other internal teams, we discovered that the

Calico network policy, an internally recommended option, was negatively impacting communications with

the pod running the Jupyter server. Altering this to any of the other options - None and Azure - resolved

the issue. In the second issue, the KCD was unreachable. Refer to figure 3.4. Upon running the Nmap5

4On 5th of November of 2021, The Kubeflow Authors made several corrections to the documentation. These include the
referenced kubectl version, now pointing to version v1.2. instead of v1.3.

29



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

alt

Azure
Cloud Shell

Store user config

return

return

Set environment variables

kfctl

Build manifests from configuration

Obtain local path

Obtain local path

Obtain local path

AKS
instance

Execute manifests

kfctl apply -V -f

kfctl_azure_aad.v1.2.0.yaml apply -V -f


kfctl_azure_aad.v1.2.0.yaml

Administrator

Build manifests from configuration

[if cache hit] return manifests

Get manifests from local path (.cache/manifests/{ID}/)

[else] return

Apply manifests

return
return

Save manifests in local path (.cache/manifests/{ID}/)

return

Save manifests in local path (.cache/manifests/{ID}/)

kfctl build -V -f

kfctl_azure_aad.v1.2.0.yaml build -V -f


kfctl_azure_aad.v1.2.0.yaml

return

Figure 3.5: Kubeflow deployment sequence diagram.

utility against the external IP address, it was noted the connection was being filtered. Removing all the fire-

wall rules did not alter this status. A simple NGINX6 server was then deployed onto the same cluster and

exposed to the exterior. Running Nmap against this other address produced the same result. Performing

a scale up and draining the old node did not solve the issue.

After further investigation, it was discovered that Istio, a widely popular service mesh included with

the deployment and responsible for network load balancing, had mutual TLS enabled by default to grant

transport layer authentication. However, the Kubeflow dashboard was not authenticating properly, causing

upstream connection errors. Disabling mutual TLS in the destination rules of the dashboard pods made it

accessible, albeit at the cost of reduced network security.

3.4.2.2 Kfctl configuration file

Another official guide (The Kubeflow Authors, 2021a) instructs on how to deploy Kubeflow whilst using

OpenID Connect (OIDC) to authenticate users which, in effect, shifted the entire burden of authentication
5”Nmap (”Network Mapper”) is a free and open source (license) utility for network discovery and security auditing”. -

https://nmap.org/
6”NGINX is open source software for web serving, reverse proxying, caching, load balancing, media streaming, and more.-

- https://www.nginx.com/resources/glossary/nginx/

30



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

to Azure Active Directory (AAD). Observe the sequence diagram in figure 3.5, describing a high level view

of how a configuration would get deployed to AKS. In this process there are two types of artifacts, one

configuration file describing which components are to be deployed, and the manifests to be applied on the

Kubernetes cluster, these generated by kfctl. At the first application of the configuration file, or if the user

used the parameter ”build”instead of ”apply”, kfctl builds and store the Kubernetes manifests for the com-

ponents described within, allowing the user to validate and modify the files. After this, all the generated

manifests were applied and executed on the cluster, deploying all of Kubeflow’s components. Securing

access with conditional access to the KFP dashboard using AAD required, among other things, modify-

ing two of the generated manifests in order to configure OIDC authentication, and remove ”groups”from

admissible OIDC scopes.

After modifying and applying these manifests with kfctl, it would always fail to find the manifests in

cache. Surprisingly, kfctl was unable to determine the local path for the manifests because the contents

of the YAML configuration file did not include the fields that define it, causing kfctl to build the manifests

again, and place them under an apparently random path. This was an unexpected situation as the official

guide (The Kubeflow Authors, 2021a) instructs the user to perform these modifications7.

The issue was solved by appending the necessary fields. Refer to annex I.1 for the corrected configu-

ration. Ultimately, using this configuration did not manifest the problems mentioned in 3.4.2.1, and lead

to the successful deployment used for the demo pipeline.

3.4.3 Demo pipeline

The pipeline defined for this activity was fairly simple, consisting of a simple inference on a pre-trained

algorithm. The project had a data storage structure that was centered around unique identifiers associated

to recorded sessions i.e. videos. These would then serve to indicate the loading tasks which content needed

to be obtained. In this example, these identifiers would define the videos themselves, indicate which ground

truth data needed to be aggregated and loaded, and also serve as an index for the JSON file with the

results. Artifacts are used between steps with a simple alias defined in the pipeline specification. KFP

controls the name of the files, and maintains an association between its paths, the containers where they

were produced, and their aliases, circumventing the need for extra storage options for this demo.

This pipeline was defined with KFP’s domain specific language (DSL), and compiled accordingly. Its

steps and objectives are as described in table 3.1 Figure 3.6 shows a representation of these dependencies.

In terms of the resulting workflow, it should be noted that even though there are two tasks which do not

depend on one another in any way i.e. the two tasks under load-config, this does not test how Kubeflow

handles parallel execution precisely for being executed under the same step. Performing a topological

reduction of this DAG leads to a de facto pipeline without branching nor merging, as shown in figure 3.7.
7As of writing, the latest version of this configuration is still missing the fields relative to the local path. It is available at

https://github.com/kubeflow/manifests/blob/v1.2-branch/kfdef/kfctl_azure_aad.v1.2.0.yaml.

31



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

Demo pipeline
A

rt
ifa

ct
s

init-pipeline

Video Identifiers Algorithm

load-config

Ground truth
Ground truth

Ground truth

Results JSON

run-inference store-run-config

Py
th

on Parse
arguments

Ze
us Prepare ground

truth

D
ai

Vs Run inference Compare with
GT

A
zu

re
 B

lo
b

St
or

ag
e

Fetch videos

A
zu

re



C
os

m
os

 D
B

Store results

Figure 3.6: Demo pipeline diagram.

Component name Activities
init-pipeline Process the execution arguments, identifying which videos are to be executed,

and which model is to be used, e.g. body pose estimation.
load-config For each video identifier, Zeus fetches video’s ground truth from latest branch,

adding it to the dataset, and the video is requested from binary storage.
run-inference DaiVs runs the algorithm on each video, and compares the results with those

expected from ground truth.
store-run-config The execution is stored into a database, with the identifiers and algorithm used,

plus a JSON file with results produced by its application versus video ground
truth.

Table 3.1: Summary of demo pipeline steps.

3.4.4 Kubeflow operation and findings

When accessing Kubeflow, the user is asked to login with the application. Given the authentication integra-

tion with company’s AAD through OIDC, the user is redirected into Bosch’s authentication page, returning

if the user has successfully logged in. In case the user token is unknown to Kubeflow, it proceeds with

the creation of a new user. This is important as it allows separation of pipelines, experiments and other

functionalities according to its creator.

From here, the user is presented with the KCD, a web application that allows users to navigate between

other sub-applications, including Pipelines i.e. KFP, Notebook Servers i.e. Jupyter, among others. As briefly

mentioned in 2.5.2, Kubeflow allows developers to customize this e.g. to add quick access to an internal

web application, a feature that could become rather useful in case of a major commitment to this solution.

According to the authors, the pipeline lifecycle, in the perspective of KFP, is as follows (The Kubeflow

32



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

Figure 3.7: Graph view of a successful run of the demo pipeline.

Authors, 2021c):

• Create components or specify a pipeline using the Kubeflow Pipelines domain-specific language

(DSL).

• Compile the pipeline with KFP’s DSL compiler, transforming the pipeline’s Python code into a static

configuration (YAML).

• Call KFP’s Pipeline Service to create a new pipeline run from the static configuration. This will trigger

the creation of the necessary Kubernetes resources (CRDs) to run the pipeline.

• A set of orchestration controllers execute the containers needed to complete the pipeline. The

containers execute within Kubernetes Pods on virtual machines. An example controller is the Argo

Workflow controller, which orchestrates task-driven workflows, and is used by default.

• Whilst operational, KFP’s Pipeline web server gathers data from various services to display relevant

views: the list of pipelines currently running, the history of pipeline execution, the list of data artifacts,

debugging information about individual pipeline runs, execution status about individual pipeline

runs.

Architecturally, KFP relies on compiled manifests described with its domain specific language (DSL)

for executing pipelines in all circumstances, be it through its API, a Jupyter notebook with its cells mapped

to steps in the pipeline, or for pipelines defined as code - at some point, the pipeline went through KFP’s

compiler. These compiled pipelines i.e. YAMLmanifests that describe how Kubeflow and Kubernetes should

proceed in order to execute the steps correctly, include among other information:

33



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

Figure 3.8: Kubeflow experiment GUI.

• KFP’s API version, target namespace for execution, and some metadata e.g. name of the pipeline.

• Pipeline parameters i.e. user inputs given before starting the execution, e.g. the value for some

variable that we want to test.

• Components’ specifications - python code, base image, parameters, restart count, container ID.

• Network configurations - host and pod IP addresses.

Kubeflow groups pipeline executions under Experiments, granting a good overview of how the exper-

imentation process is proceeding. One experiment can have runs from more than one pipeline. Refer to

figure 3.8 for an example of this view, with the demo experiments.

3.5 Team opinions about Kubeflow

The team unanimously agreed Kubeflow was a viable solution in terms of features and how adequately

it fulfills the needs, not just for model experimentation, but ML in general, including data processing

pipelines, hyper-parameter tuning and training at scale. Also, having the dashboard only accessible through

the company’s authentication process meant complete compliance in this regard.

In terms of usability, there was consensus that Kubeflow has a non-trivial learning curve and requires

lots of experience before users could define experiments with the desired level of ease, in reference to its

own DSL. The flip side to Kubeflow’s usage static configuration files is YAML files makes them easy to store,

migrate and version. Additionally, the inclusion of Jupyter Notebooks and its integration with KFP and the

remaining infrastructure facilitated the development process and allowed us, for example, to ignore any

34



CHAPTER 3. SELECTING A TOOL FOR CLOUD PIPELINE ORCHESTRATION

authentication and network concerns when calling KFP’s API to compile the pipeline, making the creation

of new pipelines faster when performed on those notebooks rather than somewhere else, e.g. on a local

editor. Also on a positive note, with these notebooks executing on a Kubernetes cluster granted a high

degree of flexibility in relation to the compute needs for a given workload - if the user happened to be

playing with a large model and ran out of resources, he could simply scale the deployment temporarily

and provision some more to the server.

The major downside to this solution was the sheer number of hurdles faced during the deployment

process - they laid bare just how much attention to detail Kubeflow still lacks. Having to resort to community

forums in search for solutions was not unreasonable, but situations as those already described in section

3.4.2.1 took a rather long time to solve, even with the help of an internal support team as well as Microsoft

Azure Support agents, are a strong indicator that, as an option for orchestration, Kubeflow carries some

risks.

It was also noted that its everything in one package approach made it bloated. Whereas Apache Airflow

and MLflow are small solutions aimed at solving specific pain points, Kubeflow is a big amalgamation of

many different components into a single package. For context, performing a fresh deployment on a new

cluster using the Azure OIDC manifest created over eighty different pods. It was not necessarily a problem

in this context, as there were plenty of resources available, but with the team being part of a project that

is developing models for embedded systems, there was some suspicions as to whether or not it could

negatively impact the project.

In conclusion, Kubeflow seems like a good option if the team can spare enough time and effort to set

everything up properly, maintain its many components, and assimilate its workflow.

35



C
h
a
p
te

r

4
MetaTool

The previous chapter made clear just how much time and effort it can take in order to select which tool to

use. In order to make that decision, decision-makers went through a whole process, starting with problem

definition i.e. requirements, followed with identification of admissible options. Due to a lack of knowledge,

there was no way to properly follow the decision-matrix process, as the evaluations of each tool in relation

to the criteria was unknown. Sadly, project constraints did not allow experimentation with all alternatives,

leading to experimentation with the tool deemed most likely to be adopted in order to obtain the missing

knowledge. After this, the obtained knowledge could then be used for decision-making.

But the question now brought forward is how can the company avoid having to repeat this activity and

not incur in needless costs? The knowledge was gathered at a great effort and used for one decision, but

could we not have done it better? What will happen when others face a similar situation? Will they too

incur on the same costs associated with this? Those other decision-makers could be aware somebody else

had already produced knowledge that could be useful to them, and so they could approach the team for

help, just like we tried to ourselves at the start of this process. But even then, what if those who held the

knowledge had forgotten it or simply gone away? Any medium where one could write to would be able to

solve this e.g. text files and spreadsheets, but over time they would become too cumbersome, negatively

impacting its usage.

MetaTool’s purpose is thus two fold: provide a central location for engineers and developers to store

their knowledge about the tools they are familiar with, and allow others to access that knowledge, either as

a simple catalog, or helping with the search for the tool that is best adjusted to their needs. Thus, MetaTool

takes advantage of knowledge within the company, and uses it to accelerate tool discovery and selection.

36



CHAPTER 4. METATOOL

4.1 Application requirements

In general, we could argue that MetaTool’s usefulness is proportional to the product of howmuch knowledge

it contains and users’ trust. While more contributors lead to more contributions, having everyone contribute

to the same place leaves it vulnerable to bad contributions. Contributors could, for example, have a bad

experience with some particular tool due to some fault of their own, and go update its information in a

negative way. This situation leaves the application in a tough spot. On one side, the whole point of the

application is to enable all users to extend it with information that was previously unknown, so having

some authority, i.e. curators, validate contributions could lead to stagnation as passing all operations

through a central point leaves the application with a bottleneck - curators could be unable to corroborate

modifications in a timely manner. On the other, ignoring the risks and letting everyone manipulate all the

content would ultimately render it useless as users would not be able to trust it.

For this reason, let us assume the former approach and separate users into two categories, one for

those who use the application - Users, and the other for those responsible for maintaining the application

and curating the information - Maintainers.

When using large catalogs, users generally like the ability to browse it through categories e.g. searching

for racing games in a mobile app store, or a particular genre of music in Spotify. Although its catalogue

is not expected to reach such dimensions, the users of this application will be well versed with digital

technologies, and therefore make good use of shortcuts. Thus, it makes sense for the application to

provide similar mechanisms, enabling fast and accurate browsing. If, for example, the user is searching

for an orchestrator, he should have some way of finding just those tools capable of orchestration. Similarly,

if the user is looking for a particular factor such as being free, he should be able to reach it through its

domain e.g. Costs.

Another important aspect to this application concerns the recommendation process. Recall how in

section 3.3 the team sought to use a weighted decision matrix in order to determine which orchestrator to

use. This process is easy to automate following the equation 3.1, using the catalogued tools as a source of

options, objective criteria to filter those into a set of 𝑖 alternatives for the matrix, and subjective criteria for

its 𝑗 criteria. The values of 𝑎𝑖 𝑗 are the evaluations contained within the knowledge base. Users should be

able to execute a decision matrix and obtain a recommendation simply by describing the use case through

which filters should be applied, and the importance i.e.𝑤 𝑗 for each desired criteria. In comparison to the

process described in figure 3.2, this new process in figure 4.1 is much easier on the user, requiring only

the description of his use case.

Finally, MetaTool is meant to be a web application accessible only to those within the company’s virtual

private network due to security and intellectual concerns. This could be done in several ways, most notably

by applying network restrictions to the IP ranges, allowing just those associated with the VPN exit nodes,

or through OIDC integration. With it being a web application, it is important that whenever a user makes

some change to his current knowledge base, it should not impact those of others, unless performed by

a maintainer. Also, it is fundamental to have the knowledge kept in a way that allows for easy validation,

37



CHAPTER 4. METATOOL

User

Problem

Definition

Option

Identification

Decision-making

Requirements

FilterObjective

Subjective

?

Criterion

Option

?

Define relative
importance

Calculate

Weighted Sum

Evaluate
according to

Criterion

Admissible Option

Result

Session knowledge
base

Figure 4.1: Integration of knowledge base into WSM method.

ideally automated by the application, and in a portable and versionable format for easy storage and CI/CD,

e.g. with a dataframe, CSV or JSON file. MetaTool will also be subject to some non-functional objectives

imposed by the company.

The aforementioned objectives induce the following set of requirements:

1. Functional requirements:

a) Users must be able to import and export their knowledge base.

b) Users must be able to perform Create, Read, Update, Delete (CRUD) - create, read, update,

and delete - operations on their knowledge base.

c) Users must be able to provide a set of factors and obtain a recommendation.

d) Users must be able to consult factors available for a set of domains.

e) Users must be able to consult options available for a set of roles.

f) Users must be able to consult detailed information about domains and factors.

g) Users must be able to consult detailed information about roles and options.

h) Maintainers must be able to update the base knowledge - domains and factors.

i) Maintainers must be able to update the base catalog - roles and options.

j) The application must be able to validate knowledge bases.

k) The application must be able to indicate invalid knowledge.

l) The application must be able to import valid knowledge bases.

38



CHAPTER 4. METATOOL

Validator

MetaTool System

Recommendation Engine

Update base knowledge

Update knowledge

Maintainer

User

See catalog

Obtain recommendation

Import knowledge

Export knowledge

Validate knowledge

Use

See options for a role

See knowledge about
domain

Update base catalog

Update catalog

See knowledge

Use

Use

Use

Knowledge:


Criteria
Evaluations
Filters
Domains

Catalog:


Options
Roles

Figure 4.2: MetaTool use case diagram.

m) The application must allow different users to have different knowledge bases.

2. Non-functional requirements:

a) The application must be a web-based application.

b) The application must have its source code and documentation written in English.

c) The application must only be accessible through internal corporate network.

d) The application must be written in Python 3.

e) The application must be deployed in an AKS instance.

Figure 4.2 models the use cases for this application from the set of functional requirements.

4.2 Architecture overview

Conceptually, the application is split into three major functional groups:

• Recommendation Engine: Component that holds all the necessary logic and data structures for the

decision matrix. It implements 1c and keeps the session knowledge base.

• Validator: Parser that ensures consistency of the knowledge base, and alerts the user in case some

error is found, fulfilling requirements 1j, 1k, and 1l.

39



CHAPTER 4. METATOOL

is set of

containscontains

Knowledge

references

has

is a

Option

has admissiblereferenced in

about

is a

is a

Factor

belongs to

Evaluationcontains

Values

is a

iis a

Collection

Filter

is a

Criterion

is set of

Group

is a

Category BaseObject

1

1 1

1

1

1

1

11

11

1

1

1

N

N1

N

N

1

1

1

N

1

N

N

N

1

1 N

1

N

1

1

1

usesRecommendation

modifiesUser

is curated by

is maintained by

Maintainer

containscontains

Knowledge

Option

belongs tohas admissible

Factor

is in 

is created from  Default Knowledge
Base

Session Knowledge
Base

Role Domain

about

belongs to

Evaluation

1

1

1

1

1

1

1

1

N

1

N
N

11

N

N

N

N

N

1

N

NN

11

N

1

N

N

N

1

N

1

has

fulfills

containsrecommends

requests creates contains

1

Value

N

1

N

1

Group

Application Knowledge

Figure 4.3: MetaTool domain diagram.

• Presentation: Front-end components that interface with the recommendation engine, allowing users

to access application’s functionalities such as navigate and manipulate session knowledge, provide

input for a recommendation, see its result, and request knowledge import or export. This fulfills

requirements 1b, 1d, 1e, 1f, and 1g.

Requirements 2a, 2c and 2e can be ensured by deploying the application, for example, as a Docker

container, and using the aforementioned approach of applying an IP whitelist to the virtual network’s

rules, allowing through just those of the company’s VPN exit nodes. This still leaves 1a, 1h, 1i and 1m

unaccounted for, coincidentally all associated with the user-maintainer separation.

It was decided to make MetaTool have a default knowledge base stored in disk i.e. the one curated

by the maintainers, thus modifiable by them. Then, whenever a user accesses the website, it would load

a copy into his session, which would be the subject of all his modifications. Doing so grants it the user

separation required by 1m. In order to comply with 1h and 1i, it was decided that users would only be able

to save their contributions to memory, but not to disk. If desired, users could download their knowledge,

and pass it to maintainers for verification. Lastly, requirement 2d will be met with the use of Streamlit.
1 The approach chosen took into account the fact that we are dealing with a web application, which can

implement a session state and use it to hold the knowledge, and the need for knowledge to be dumped

into some file format to comply with 1a. For convenience, the knowledge file would adopt the JSON format.

For the sake of abstraction, when referring to knowledge and its structure, instead of ”Role”and ”Domain”,

these will be referred to as ”Category”and ”Group”, respectively, as highlighted in figure III.7.

4.2.1 Web application

The application is split into twomajor blocks: a front-end layer encompassing the necessary components for

the user interface, plus a logic layer with the control logic, decision matrix implementation and knowledge
1Streamlit is a free and open-source Python framework for building web apps for Machine Learning and Data Science.

https://streamlit.io

40



CHAPTER 4. METATOOL

storage, plus an implementation of session state2. Figure 4.5 shows this application in the light of a class

diagram. Its components are as follows:

• evaluator.py - render the ‘Evaluator‘ application.

• explorer.py - render the ‘Explore Catalog‘ and ‘Explore Knowledge‘ applications.

• form.py - render the ‘Recommendation Engine‘ application.

• index.py - code entry point, define Streamlit properties and render features common to all pages:

logo, MultiApp navigation.

• settings.py - render the ‘Settings‘ application.

• multiapp.py - controller that implements navigation through multiple pages, executes the app()

function of the currently selected application.

• recommendation.py - implement recommendation logic and data structures.

• sessionstate.py - stores a globally available state that is kept through multiple reruns of the python

code.

• utils.py - accessory functions for list and string manipulation, download button and custom styles.

• validator.py - parse knowledge to check if its contents represent a consistent knowledge base.

Index is the entry-point component, responsible for starting the web application, defining its outer ele-

ments e.g. page title, logo, and watermark, plus registering the four front-end applications - form, explore,

evaluator, and settings - with a new MultiApp instance. MultiApp - MetaTool’s controller - implements a

globally available navigation menu for those applications, and keeps one instance of SessionState, used

to store all information associated with a user’s session, i.e. which page they are visiting, parameters

e.g. content sorting criteria, color schemes, inputs e.g. criteria for a recommendation, and an instance

of Recommendation, which keeps the knowledge base. SessionState is completely generic and in no way

associated with the domain of this application.

The functions that implement MetaTool’s four front-end applications can be categorized into four pur-

poses:

• app - main function with the purpose of preparing the base environment for that front-end applica-

tion, including app-specific variables and navigation between its own pages.

• page - function to render exactly one view of the front-end application, receives session state, where

all information is stored, and aware of the current page_explorer_object.
2MetaTool is built on Streamlit 0.82.0. This feature has since been added and is now available for release 0.84.0 and later

- https://github.com/streamlit/streamlit/releases/tag/0.84.0

41



CHAPTER 4. METATOOL

MetaTool

LogicFront-end

MultiAppIndexUtils

ValidatorExplore

Recommendation

Streamlit

Form

Evaluator

Settings

SessionState

Storage

Figure 4.4: MetaTool web application component diagram.

• render - function to render a type of object as a row in a list, receives the current session state plus

the identifier of the object to be rendered.

• form - function to render a view with the purpose of receiving user input for a particular object, used

within a page.

For the purpose of example, a user consulting the detailed information of a given role e.g. orchestration

would have invoked page_details_category(s), which uses category_form(). The user would be presented

with the information for that particular role and widgets to alter it. Should he perform modifications such

as changing the name, the function will call for its application directly on the referenced object, which

points to the category in his session state. Since the same session state is used for all of his interactions,

those changes will take effect across the entire web application, ensuring consistency.

For the recommendation logic, this application relies on a single class - Recommendation - that oper-

ates as a single recommendation process, and is thus in charge of the yellow components at figure 4.1.

MetaTool has a three-stage process for generating a recommendation:

1. User identifies the must-have requirements for his use-case, indicating a set of filters and their

respective admissible values, allowing for the identification of admissible options.

2. User identifies criteria that describe his desires, and informs the application of how important each

criteria is to him.

3. User is presented with the results of his recommendation, displaying

42



CHAPTER 4. METATOOL

Recommendation

MetaTool

Extends

«class»

BaseObject

+uid : String
+name : String
+description : String
+notes : String
+creation_date : DateTime
+last_update : DateTime

+init(json:Dict, uid:String, name:String, description:String, 
	 notes:String)
+update(name:String, description:String, notes:String)
-_new_update()
+type() : String

Settings

+ app(s:SessionState)
+ page_settings(s:SessionState)

Streamlit

Explore

+ app(s:SessionState)
+ page_catalog(s:SessionState)
+ page_knowledge(s:SessionState)
+ render_option(s:SessionState, o:Option, suffix:String)
+ render_criterion(s:SessionState, c:Factor, suffix:String)
+ render_filter(s:SessionState, f:Factor, suffix:String)
+ render_category(s:SessionState, ct:Collection)
+ render_group(s:SessionState, g:Collection)

+ page_details_option(s:SessionState)
+ page_details_criterion(s:SessionState)
+ page_details_filter(s:SessionState)
+ page_details_category(s:SessionState)
+ page_details_group(s:SessionState)
+ page_add_option(s:SessionState)
+ page_add_criterion(s:SessionState)
+ page_add_filter(s:SessionState)
+ page_add_category(s:SessionState)
+ page_add_group(s:SessionState)

+ option_form(o:Option, s:SessionState, 
label_save:String, label_no_save:String)
+ criterion_form(c:Factor, s:SessionState, 
label_save:String, label_no_save:String)
+ filter_form(f:Factor, s:SessionState, 
label_save:String, label_no_save:String)
+ category_form(ct:Collection, s:SessionState, 
label_save:String, label_no_save:String)
+ group_form(g:Collection, s:SessionState, 
label_save:String, label_no_save:String)
+ evaluate_filter_form(f:Factor, s:SessionState, 
label:String)
+ evaluate_criterion_form(f:Factor, s:SessionState, 
label_save:String)
+ other_operations_form(f:Factor, s:SessionState)
+ sorter(s:SessionState, list:[BaseObject], sort:String): [BaseObject]

Validator

+ validate_knowledge()

+ validate_consistency()
+ validate_option()
+ validate_factor()
+ validate_collection()
+ validate_base_object()
+ key_type()

Form

+ app(s:SessionState)
+ page_main(s:SessionState)
+ page_properties(s:SessionState)
+ page_weights(s:SessionState)
+ page_results(s:SessionState)

Evaluator

+ app(s:SessionState)
+ page_evaluator(s:SessionState)
+ render_option(s:SessionState, o:Option)
+ render_factor(s:SessionState, cf:Factor)

Index

Use

«class»

Factor

values : [String]
groups : [String]
resolution : int

+init(json:Dict, uid:String, name:String, 
	 description:String, notes:String, 
	 groups:[String], values:[String])
+update_data(groups:[String], values:[String], resolution:int)
+reset_data()

«class»

Collection

elements : [String]

+init(json:Dict, uid:String, name:String, 
description:String, notes:String, 
elements:[String])
+add_element(element:String)

+remove_element(element:String)

+reset_data()


«class»

Option

categories : [String]
criteria : Dict

filters : Dict


+init(json:Dict, uid:String, name:String, 
description:String, notes:String, categories:[String])
+update_data(categories_uid:[String], factor_uid:String, 
	 values:[String])
+reset_data()
Extends

Extends

«class»

Reccommendation

+do_refresh : Bool
+as_json : Dict
+knowledge : Dict
+form : Dict
+settings : Dict

+init(json:Dict, uid:String, name:String, description:String, notes:String, elements:[String])
+recommendation()

+reset(object:Object, remove_object:Bool)

+uid_generator(type:String) : String
+compute(stage:String) : DataFrame

+import_knowledge(json:Dict)
+export_knowledge()

knowledge["Group"]knowledge["Category"] knowledge["Option"] knowledge["Criterion"] knowledge["Filter"]

** *

*

*

Object identification

through UID:


Option	 - prefix "o"
Category	 - prefix "ct"
Group	 - prefix "g"
Filter	 - prefix "f"
Criterion	 - prefix "c"

«class»

MultiApp

+apps : [{String:method_descriptor}]
+state : SessionState
+json_path : String
+json : Dict
+err : [String]

+init()
+add_app(title:String, function:method_descriptor)

+run(object:Object, remove_object:Bool)

+read_json(): Dict

SessionState

11 11 1

Figure 4.5: MetaTool web application class diagram.

4.2.2 Knowledge base

Due to the desire for a fast user interface, the knowledge is stored as a multi-layer dictionary, as Python im-

plements these as hash tables. All knowledge objects are extensions of a generic class named BaseObject.

It provides all the common attributes and methods for knowledge objects. From it, other classes extend

its definition with the properties associated with each concept. This leads to the implementation of three

other classes - Collection, Factor, and Object.

The first two classes are not then extended to produce what would be Group and Category, and Filter

and Criterion respectively. Although Group and Category represent different concepts, their translation into

code is exactly the same, only diverging in the types of elements they associate. Filter and Criterion would

not be as similar. Even though both have a set of values that represent its scope, Criterion would have

been more specific given that the indication of its relative weight needs to be on an axis common to all

criteria.

This implementation makes use of the unique identifier inherited from BaseObject to differentiate

between purposes for the same class. These identifiers are formatted as 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑠𝑒𝑟𝑖𝑎𝑙 , with 𝑝𝑟𝑒 𝑓 𝑖𝑥

indicating its type, and 𝑠𝑒𝑟𝑖𝑎𝑙 , a 32 digit number, differentiating between objects of the same type. The

association between these abstractions, their prefixes and their concept is defined in table 4.1. Annex II

shows an example of a knowledge base exported as a JSON file, featuring data about the three orchestrators

featured in section 3.3, used in section 4.3 and annex III.

43



CHAPTER 4. METATOOL

Class Abstracts Prefix Concept

Collection
Category c Role
Group g Domain

Factor
Criterion c Criteria
Filter f Filters

Table 4.1: Implementation conceptual abstractions.

4.3 User interface walkthrough

The user interface is comprised of four applications, as aforementioned. Users can navigate between them

on the sidebar through the radial buttons. This action triggers the corresponding app() function, rendering

the sub-application. Extra content placed on the sidebar is always located below this navigation.

4.3.1 Consult knowledge

The user interface implements the separation between decision knowledge and options catalog as two

separate pages under the Explore component, accessible through the radial selector. When visiting this

application, users are presented with the respective list of objects added to the knowledge base, sortable as

per table 4.2. Each element is rendered with the same format, with its descriptive data - name, description,

notes, as well as values and collections and number of references where applicable. The text used within

the Notes field of a BaseObject is interpreted with a Markdown format, but does not allow for custom

HTML within it.

Sorting Method Available to
Alphabetical BaseObject
Last Update BaseObject
Creation Date BaseObject
Most Data Option
Most Roles Option
Most Referenced Factor
Number of values Factor

Table 4.2: Explorer sorting methods.

All objects displayed in this application have a button placed underneath their names for the user to

open it in a more detailed page. The application also provides a shortcut menu on its lower sidebar for

the user to create new objects and add them to his knowledge base. As required by requirement 1b, all

knowledge objects, that is, instances of BaseObject, allow for CRUD operations on their descriptive data -

name, description, notes, as well as values and collections, if applicable.

In the Explore Catalog sub-application the user is served with all tools currently known i.e. registered

in his session’s knowledge base, sorted alphabetically by default. For better navigation with big catalogs, it

44



CHAPTER 4. METATOOL

Figure 4.6: MetaTool UI: Explorer - Explore Catalog page.

Figure 4.7: MetaTool UI: Explorer - Explore Knowledge page.

also provides a checkbox to collapse the list into a set of expandable boxes, one for each known role, with

the list of tools that fulfill it. Tools that fulfill more than one role will be shown on all corresponding lists.

The other Explorer sub-application, Explore Knowledge, is analogous to the previous, adding some

necessary adjustments to accommodate criteria and filters, including renaming some UI components,

adjusting sorting methods (table 4.2) and providing a textual indicator of the type of factor being shown.

Due to it dealing with two concepts, new radial buttons are made available, indicating which to show - just

45



CHAPTER 4. METATOOL

Figure 4.8: MetaTool UI: Explorer - Edit tool page.

criteria, just filters, or both. Sorting is done alphabetically by default. Both criteria and filters can also be

grouped, now according to their domains. These groupings will still separate the aforementioned factor

types as selected.

On either sub-application, when grouping content by their collections, the currently selected sorting

method is mapped into each of the resulting lists.

MetaTool has pages dedicated to displaying each type of knowledge object. If the user presses the

button to open the object in more detail, the application takes the corresponding view and sets the widget

values to those currently in the object (figure 4.8). Conversely, if the user presses the button to add a new

object, these are displayed with default values i.e. blank input boxes. In the latter, if the object is of type

Option or Factor, the page will not have a mini-evaluator at the bottom of the page, as adding evaluations

relative to an object before it is created could lead to inconsistencies. Refer to figures III.5, III.7 and III.6for

the detailed page of domains and roles, respectively.

For evaluations, i.e. how an option’s values relate with those of a factor, users have two places where

they can provide that input. The first is the Evaluator application (figure 4.10), which is completely dedicated

to this activity. It features a set of widgets for quick pin-pointing of what Option is to be evaluated, as well

as the target factor. This could be either a Criterion or a Filter and, depending on the type, the application

will display different widgets suited for its inputs.

If a user visits the details page of an Option or factor, he is in effect selecting one of the two entities

of an evaluation. As such, the details page for these feature a mini-evaluator, allowing the user to quickly

update multiple evaluations. It also provides a tabular view of the object in question is evaluated with other

objects.

46



CHAPTER 4. METATOOL

Figure 4.9: MetaTool UI: Explorer - Edit criterion page.

Figure 4.10: MetaTool UI: Evaluator page.

47



CHAPTER 4. METATOOL

Figure 4.11: MetaTool UI: Recommendation filter selection page.

4.3.2 Obtain a recommendation

The recommendation process begins with the selection of filters. The user uses a selection box to indicate

what to add, or remove, from his form. To facilitate navigation, the UI allows filtering these according to

the domains they are associated with.

Added filters are displayed with a multi-selection box, allowing the user to indicate the set of values

he desires. These values can be interpreted differently, depending on how the user wishes to interpret

and apply them. MetaTool allows the user to indicate whether to use an existential (∃) or universal (∀)
quantifier. For situations when some tools may not have data in relation to the filter in question, these can

be assumed to be either compliant or not compliant. Selection settings can be applied globally through

the sidebar selectors, or individually. After the filters are applied, the user is presented with a page for the

introduction of criteria. In the same fashion as with filters in the previous page, the user indicates which

criteria to add. Those are displayed with an interval slider, used to indicate the weight of the criterion. Being

an interval is important to account for situations where the user is not absolutely sure about his needs. In

those cases, the computation will be performed with an average of the two bounds.

As before, the application lets the user decide whether to include or exclude options without an evalu-

ation for some of the criteria i.e. how to handle undefined knowledge. Proceeding to the next page submits

the form for computation by the Recommendation component, producing the MCDM matrix and dumping

its results into a DataFrame, as seen on the lower half of the page. The results page then transforms that

data into interactive plots, allowing easy visualization of the outcome. Here, the user can alter the settings

used for plotting e.g. the plot type as shown on the sidebar. These results can then be exported from the

applications, if desired. The data used and produced with this recommendation can be sorted within the

48



CHAPTER 4. METATOOL

Figure 4.12: MetaTool UI: Recommendation criteria selection page.

Figure 4.13: MetaTool UI: Recommendation results page.

interactive DataFrame, increasing the ease of use and explainability of the result.

4.3.3 Knowledge IO operations

The settings page is where the user can interface with the entire session knowledge base. The sidebar pro-

vides an upload widget for the user to send knowledge JSONs into his session. This content is put through

validation mechanisms to ensure its consistency. Errors discovered during this process are presented here.

49



CHAPTER 4. METATOOL

Figure 4.14: MetaTool UI: Knowledge validation detecting errors in uploaded file.

Figure 4.14 shows a situation with four manually inserted mistakes: delete a name field, remove one value

from the list of values for a Filter, make an Option have an evaluation with a value that does not exist, and

have a non-symmetric reference between a Collection and one of its elements i.e. one not mentioning the

other.

This page also allows the user to download his session knowledge, either as a JSON or serialized into a

Pickle file format, and visualize what the exported knowledge base would look like. For convenience in case

the user wants to start anew, this page allows emptying the entire session knowledge, if the confirmation

checkbox is selected. Figure III.8shows this page in more detail.

50



C
h
a
p
te

r

5
Results and discussion

5.1 Gen2 and Kubeflow

The selection process of an adequate orchestrator was performed according to the internal process of the

company in order to ensure it would be well adjusted to its operations.

However, due to changes in the direction of the project, it was not possible to take this process fur-

ther, meaning it is not possible to determine how well adjusted Kubeflow would be when used for proper

model experimentation, not just a proof of concept. It would be interesting to see how it would affect the

perceptions about it, and what kind of criteria would be discovered.

Still, its deployment was performed to corporate standards, and there are some findings worthy of

analysis:

• During consultation with other teams from different locations worldwide, when questioned about

their experience with ML orchestrators, there was a dominant factor that lead them to not adopt

any of the ones being considered: they are not offered as a managed service. Teams wanted the

ability to simply rent an instance with the orchestrator deployed and maintained by the provider,

akin to how it is currently done with container orchestration and Kubernetes.

Their motivation was centered around reducing costs, which meant reducing time spend managing

infrastructure. If we take into account the quick release cycles of the most popular ML orchestra-

tors, and that some, including Kubeflow, are community projects, we find most tools will be very

time consuming if adopted at their current state, as can be seen by the problems found during

Kubeflow’s deployment (section 3.4). As such, instead of adopting orchestrators, they resorted to

simpler automation tools such as Jenkins, Azure DevOps, or simple shell scripts.

• During the course of the project, it was decided that Kubeflow would not be adopted and the AKS

instance would have to be decommissioned because other parts of the project were using AWS

51



CHAPTER 5. RESULTS AND DISCUSSION

and its ML platform SageMaker, and taking the same approach would allow for better synergies,

collaboration and knowledge sharing.

Naturally, this move comes at the cost of the effort spent on the previous approach and has some

downsides i.e. vendor lock-in, but it reveals just how important it can be to adopt solutions previously

used within the organization, even with increased costs and sacrifice of desired attributes, since

their integration process will be more streamlined.

This leads to the conclusion that solutions such as Kubeflow could experience increased adoption if they

too became offered as managed service, and remained easy to integrate with major cloud providers. This

seems unlikely, precisely due to how immature this field still is, turning this whole situation into a dilemma:

practitioners do not use them because they require lots of effort, leading to the desire of manages services;

but if they are offered as such, they would probably be mature enough to be managed internally, as occurs

with Jenkins. Thus, it becomes a matter of waiting for orchestrators to become mature.

From this we conclude the objectives 1, 2 and 3 of this thesis were reached, but 4 was not due to

aforementioned changes in the direction of the project.

5.2 MetaTool

In general, the MetaTool web application meets the objectives outlined for it. It speeds up the tool discovery

process because it keeps them available on a single location searchable with different factors, thanks to

grouping and the recommendation process, since users can use it without any criteria to obtain the set

of admissible options. The recommendation process also facilitates the comparison of admissible options

with its automation and easy to interpret results.

In terms of the last two objectives i.e. ease of use and promote knowledge retention/build organizational

knowledge, the current approach has some downsides. First, although easy to maintain technologically

- Python application with a web server deployed as a simple Docker container, it does require human

intervention in order to maintain a high quality knowledge base. Then, in relation to knowledge retention,

the current architecture will suffer from the problems usually associated with version control, possibly

hindering its adoption - what if a user got his knowledge base from an old default, and has since made

manymodifications in one direction, but someone else has done the same in another direction, not merging

nor rebasing with newer defaults? Will the maintainer be able to handle such big diversions? What if users

become too attached to their knowledge and refuse to rebase? Would a simple version control system e.g.

GIT allow maintainers to sustain the application in the long term, with thousands of different tools and

factors? Also, it is absolutely possible for different perspectives to be valid at the same time, but each

knowledge base can only hold one evaluation between pairs. The current implementation would imply

disregarding all but one.

Besides these points, there are other considerations that should be taken into account:

52



CHAPTER 5. RESULTS AND DISCUSSION

• As the catalog grows and becomes ever more rich, users might become too dependant on it, and

not even consider looking for alternatives yet unknown, leading to biased selection.

• Although the recommendation form allows users to indicate logic quantifiers for the application of

inputs, these might not be enough for more complex situations, such as ”either it satisfies A, or B

and C”.

• The application treats omission as a lack of an evaluation. Thus, users must create some null value

to differentiate between this and situations where a tool does not meet any of the values associated

with the target factor.

• A platform with user-generated content needs serious commitment before achieving critical mass.

Without it, it will be forgotten.

• As users become more experienced in one particular field, they will be less interested in using this

tool, as they will be aware of what exists and what is best for the use case. The negative impact is

doubled by the loss of potential highly quality knowledge.

5.3 Lessons learned

In order to build the initial knowledge base, there were a series of interviews planned for knowledge collec-

tion, which would take place after MetaTool’s development, so that collected knowledge could immediately

be added into an initial knowledge base. By doing so, it was expected that the initial version would be quick

to create, and rich in substance.

Unexpectedly, the interviewed practitioners did not provide much feedback besides the reason why

their team does not use ML orchestrators in general. This was not a total loss as it provides data for

excluding non-admissible options, but does not give any information about criteria related to usability,

performance, etc. This did not occur due to lack of contribution, as many people, mostly from other Bosch

locations, were willing to be interviewed and provided their feedback. This left actual experimentation as

the only viable approach, as consulting with people outside the company would risk making the knowledge

impure and poorly adjusted to internal needs. Thus, there was a small reference pipeline developed, which

was then used with all of the three orchestrators in order to obtain first-hand experience and accurately

populate the knowledge base.

5.4 Future work

Taking into account the current state of the application, there are multiple areas where improvement can

be made if the application gets further development:

• As MetaTool’s user base grows, it will be interesting to see how its users are interacting with the

tool, particularly what type of tools are most often demanded, and what criteria they include for

53



CHAPTER 5. RESULTS AND DISCUSSION

their recommendations. Such information can provide important insights, both on a per-team level,

as well as to the company in general. It could, for example, indicate areas of expertise where the

company may need to hire more developers, or invest in formations.

• So far, the only users of MetaTool are the members of the team hosting this masters dissertation,

and the application has been designed with their input. It would be good to get feedback from other

teams as they are likely to have constructive ideas for how to improve the application.

• The dependency on maintainers is a tangible operational cost to its operation. Implementing a way

for automatic knowledge base merging, albeit technically challenging, could tremendously improve

the company’s willingness to adopt MetaTool on a large scale.

5.5 Closing note

In order to produce MetaTool and jump-start the knowledge base, its development went through a series

of time-consuming stages, culminating with the presented results. Still, MetaTool’s success is dependant

on its level of adoption by the teams at Bosch. Hopefully, it will prove itself valuable over time.

54



C
h
a
p
te

r

6
Conclusion

6.1 Lessons learned

In order to build the initial knowledge base, there were a series of interviews planned for knowledge collec-

tion, which would take place after MetaTool’s development, so that collected knowledge could immediately

be added into an initial knowledge base. By doing so, it was expected that the initial version would be quick

to create, and rich in substance.

Unexpectedly, the interviewed practitioners did not provide much feedback besides why it is their team

does not use ML orchestrators in general. This was not a total loss as it provides data for excluding non-

admissible options, but does not five any information about criteria related to usability, performance, etc.

This did not occur due to lack of contribution, as many people, mostly from other Bosch locations, were

willing to be interviewed and provided their feedback. This left actual experimentation as the only viable

approach, as consulting with people outside the company would risk making the knowledge impure and

poorly adjusted to internal needs. Thus, there was a small reference pipeline developed, which was then

used with all of the three orchestrators in order to obtain first-hand experience and accurately populate the

knowledge base.

6.2 Future work

Taking into account the current state of the application, there are multiple areas where improvement can

be made if the application gets further development:

• As MetaTool’s user base grows, it will be interesting to see how its users are interacting with the

tool, particularly what type of tools are most often demanded, and what criteria they include for

their recommendations. Such information can provide important insights, both on a per-team level,

55



CHAPTER 6. CONCLUSION

as well as to the company in general. It could, for example, indicate areas of expertise where the

company may need to hire more developers, or invest in formations.

• So far, the only users of MetaTool are the members of the team hosting this masters dissertation,

and the application has been designed with their input. It would be good to get feedback from other

teams as they are likely to have constructive ideas for how to improve the application.

• The dependency on maintainers is a tangible operational cost to its operation. Implementing a way

for automatic knowledge base merging, albeit technically challenging, could tremendously improve

the company’s willingness to adopt MetaTool on a large scale.

6.3 Closing note

In order to produce MetaTool and jump-start the knowledge base, its development went through a series

of time-consuming stages, culminating with the presented results. Still, MetaTool’s success is dependant

on its level of adoption by the teams at Bosch. Hopefully, it will prove itself valuable over time.

56



Bibliography

Algorithmia. (2020). 2020 state of enterprise machine learning. Retrieved December 1, 2021, from https:

/ / info . algorithmia . com / hubfs / 2019 / Whitepapers / The - State - of - Enterprise - ML - 2020 /

Algorithmia_2020_State_of_Enterprise_ML.pdf

Alla, S., & Adari, S. K. (2021). What is mlops? In Beginning mlops with mlflow: Deploy models in aws

sagemaker, google cloud, and microsoft azure (pp. 79–124). DOI 10.1007/978-1-4842-6549-9_3.

Berkeley, CA: Apress.

Amodei, D., & Hernandez, D. (2018). Ai and compute. Retrieved December 8, 2021, from https://openai.

com/blog/ai-and-compute/

Ashmore, R., Calinescu, R., & Paterson, C. (2021). Assuring the machine learning lifecycle: Desiderata,

methods, and challenges. ACM Computing Surveys (CSUR), 54(5), 1–39.

Atamel, M. (2020, January 1). Better service orchestration with workflows. Retrieved November 4, 2021,

from https://cloud.google.com/blog/topics/developers-practitioners/better-service-orchestration-

workflows

Authors, T. K. (2020). Overview of Kubeflow Pipelines. Retrieved February 5, 2021, from /docs/pipelines/

overview/pipelines-overview/

Bisong, E. (2019). Kubeflow and Kubeflow Pipelines. In Building Machine Learning and Deep Learning

Models on Google Cloud Platform (pp. 671–685). DOI 10.1007/978-1-4842-4470-8_46. Apress,

Berkeley, CA.

Brys, M. (2019). Kubeflow — a machine learning toolkit for Kubernetes. Retrieved February 5, 2021, from

https : / /medium . com/@michal . brys / kubeflow - a - machine - learning - toolkit - for - kubernetes -

d8686f6c91b6

Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weighting system under group

decision-making for facility location selection with objective/subjective attributes. European Journal

of Operational Research, 189(1), 132–145. DOI 10.1016/j.ejor.2007.05.006.

Dean, J., Patterson, D., & Young, C. (2018). A new golden age in computer architecture: Empowering the

machine-learning revolution. IEEE Micro, 38(02), 21–29. DOI 10.1109/MM.2018.112130030.

Google. (2020, January 7). Mlops: Continuous delivery and automation pipelines in machine learning.

Retrieved September 3, 2021, from https://cloud.google.com/architecture/mlops-continuous-

delivery-and-automation-pipelines-in-machine-learning

57

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
http://doi.org/10.1007/978-1-4842-6549-9_3
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://cloud.google.com/blog/topics/developers-practitioners/better-service-orchestration-workflows
https://cloud.google.com/blog/topics/developers-practitioners/better-service-orchestration-workflows
/docs/pipelines/overview/pipelines-overview/
/docs/pipelines/overview/pipelines-overview/
http://doi.org/10.1007/978-1-4842-4470-8_46
https://medium.com/@michal.brys/kubeflow-a-machine-learning-toolkit-for-kubernetes-d8686f6c91b6
https://medium.com/@michal.brys/kubeflow-a-machine-learning-toolkit-for-kubernetes-d8686f6c91b6
http://doi.org/10.1016/j.ejor.2007.05.006
http://doi.org/10.1109/MM.2018.112130030
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning


BIBLIOGRAPHY

Gubala, T., & Hoheisel, A. (2007). Highly dynamic workflow orchestration for scientific applications. In

Coregrid integration workshop 2006 (ciw06) (pp. 309–320).

Humble, J., & Farley, D. (2010). Continuous delivery: Reliable software releases through build, test, and

deployment automation. Pearson Education.

IBM. (2020). What is Workflow? Retrieved February 4, 2021, from https://www.ibm.com/cloud/learn/

workflow

Jabbari, R., bin Ali, N., Petersen, K., & Tanveer, B. (2016). What is devops? a systematic mapping study

on definitions and practices. In Proceedings of the scientific workshop proceedings of xp2016. DOI

10.1145/2962695.2962707, Edinburgh, Scotland, UK: Association for Computing Machinery.

Kanchanahalli, V., McKittrick, M., & Hughes, L. (2021, July 9). Nc-series. Retrieved December 15, 2021,

from https://docs.microsoft.com/en-us/azure/virtual-machines/nc-series

Kanwarpal, M., Buck, A., Ghodratigohar, M., Zwiefel, E., Weaver, A., Eikelenboom, D., … WendyRing.

(2021). Machine learning devops guide. Retrieved from https://docs.microsoft.com/en-us/azure/

cloud-adoption-framework/ready/azure-best-practices/ai-machine-learning-mlops

Lohr, H., Boher, S., Ross, E., Schmid, M., Wilhite, C., & Schonning, N. (2021, December 11). Windows

container orchestration overview. Retrieved December 12, 2021, from https ://docs .microsoft .

com/en-us/virtualization/windowscontainers/about/overview-container-orchestrators

Mäkinen, S. et al. (2021). Designing an open-source cloud-native mlops pipeline.

Makridakis, S. (2017). The forthcoming artificial intelligence (ai) revolution: Its impact on society and firms.

Futures, 90, 46–60.

Marcondes, F. S., Durães, D., Gonçalves, F., Fonseca, J., Machado, J., & Novais, P. (2021). In-vehicle

violence detection in carpooling: A brief survey towards a general surveillance system. In Y. Dong,

E. Herrera-Viedma, K. Matsui, S. Omatsu, A. González Briones, & S. Rodríguez González (Eds.),

Distributed computing and artificial intelligence, 17th international conference (pp. 211–220). DOI

10.1007/978-3-030-53036-5_23. Cham: Springer International Publishing.

Microsoft. (2021). Machine learning operations maturity model. Retrieved from https://docs.microsoft.

com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model

Moore, B. A., Rougier, E., O’Malley, D., Srinivasan, G., Hunter, A., & Viswanathan, H. (2018). Predictive

modeling of dynamic fracture growth in brittle materials with machine learning. Computational

Materials Science, 148, 46–53. DOI 10.1016/j.commatsci.2018.01.056.

Nguyen, T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine

learning. IEEE Communications Surveys & Tutorials, 10(4), 56–76. DOI 10.1109/SURV.2008.080406.

O’Leary, K., & Uchida, M. (2020). Common problems with Creating Machine Learning Pipelines from

Existing Code. Retrieved October 29, 2020, from https://research.google/pubs/pub48984/

Ozkaya, I. (2019). The golden age of software engineering [from the editor]. IEEE Software, 36(01), 4–10.

DOI 10.1109/MS.2018.2877032.

58

https://www.ibm.com/cloud/learn/workflow
https://www.ibm.com/cloud/learn/workflow
http://doi.org/10.1145/2962695.2962707
https://docs.microsoft.com/en-us/azure/virtual-machines/nc-series
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/ai-machine-learning-mlops
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/ai-machine-learning-mlops
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/overview-container-orchestrators
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/overview-container-orchestrators
http://doi.org/10.1007/978-3-030-53036-5_23
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
http://doi.org/10.1016/j.commatsci.2018.01.056
http://doi.org/10.1109/SURV.2008.080406
https://research.google/pubs/pub48984/
http://doi.org/10.1109/MS.2018.2877032


BIBLIOGRAPHY

Parkhe, M., Ann Hong, S., Damji, J., & Mewald, C. (2020). How to Share and Control ML Model Access

with MLflow Model Registry. Retrieved February 5, 2021, from https : //databricks . com/blog/

2020/04/15/databricks-extends-mlflow-model-registry-with-enterprise-features.html

Perrault, R., Shoham, Y., Brynjolfsson, E., Clark, J., Etchemendy, J., Grosz, B., … et al. (2019). The ai index

2019 annual report. AI Index Steering Committee, Human-Centered AI Institute, Stanford University,

Stanford. Retrieved from https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf

Quick Start — Airflow Documentation. (n.d.). Retrieved February 5, 2021, from https://airflow.apache.

org/docs/apache-airflow/stable/start.html#basic-airflow-architecture

Raj, E. (2021). Engineering mlops. Birmingham, England: Packt Publishing.

Schmitt, M. (2020). Airflow vs Luigi vs Argo vs Kubeflow vs MLFlow. Retrieved February 5, 2021, from

https://www.datarevenue.com/en-blog/airflow-vs-luigi-vs-argo-vs-mlflow-vs-kubeflow

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., … Young, M. (2014). Machine learning:

The high interest credit card of technical debt. In Se4ml: Software engineering for machine learning

(nips 2014 workshop).

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., … Dennison, D. (2015). Hidden

Technical Debt in Machine Learning Systems. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,

& R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 2503–2511).

Curran Associates, Inc. Retrieved from http://papers.nips.cc/paper/5656-hidden-technical-debt-

in-machine-learning-systems.pdf

Singh, P. (2019). Airflow. In Learn PySpark (pp. 67–84). DOI 10.1007/978-1-4842-4961-1_4. Apress,

Berkeley, CA.

TA, N. B. D., & NGUYEN, Q. S. (2018). Distributed machine learning on IAAS clouds. Proceedings of the

5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing,

China, 2018 November 23-25. DOI 10.1109/CCIS.2018.8691150.

The Kubeflow Authors. (2021a, November 5). Authentication using oidc in azure. Retrieved December 15,

2021, from https://www.kubeflow.org/docs/distributions/azure/authentication-oidc/

The Kubeflow Authors. (2021b, November 5). Install kubeflow - instructions for deploying kubeflow. Re-

trieved December 15, 2021, from https://www.kubeflow.org/docs/distributions/azure/deploy/

install-kubeflow/

The Kubeflow Authors. (2021c, November 24). Introduction - an introduction to the goals and main con-

cepts of kubeflow pipelines. Retrieved December 17, 2021, from https://www.kubeflow.org/docs/

components/pipelines/introduction/

The Kubeflow Authors. (2021d, November 19). Kubeflow notebooks. Retrieved December 17, 2021, from

https://www.kubeflow.org/docs/components/notebooks/

Treveil, M., Omont, N., Stenac, C., Lefevre, K., Phan, D., Zentici, J., … Heidmann, L. (2020). Introducing

mlops. O’Reilly Media, Inc.

59

https://databricks.com/blog/2020/04/15/databricks-extends-mlflow-model-registry-with-enterprise-features.html
https://databricks.com/blog/2020/04/15/databricks-extends-mlflow-model-registry-with-enterprise-features.html
https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf
https://airflow.apache.org/docs/apache-airflow/stable/start.html#basic-airflow-architecture
https://airflow.apache.org/docs/apache-airflow/stable/start.html#basic-airflow-architecture
https://www.datarevenue.com/en-blog/airflow-vs-luigi-vs-argo-vs-mlflow-vs-kubeflow
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://doi.org/10.1007/978-1-4842-4961-1_4
http://doi.org/10.1109/CCIS.2018.8691150
https://www.kubeflow.org/docs/distributions/azure/authentication-oidc/
https://www.kubeflow.org/docs/distributions/azure/deploy/install-kubeflow/
https://www.kubeflow.org/docs/distributions/azure/deploy/install-kubeflow/
https://www.kubeflow.org/docs/components/pipelines/introduction/
https://www.kubeflow.org/docs/components/pipelines/introduction/
https://www.kubeflow.org/docs/components/notebooks/


BIBLIOGRAPHY

Triantaphyllou, E. (2000). Multi-criteria decision making methods. In Multi-criteria decision making meth-

ods: A comparative study (pp. 5–21). DOI 10.1007/978-1-4757-3157-6_2. Boston, MA: Springer

US.

Virmani, M. (2015). Understanding devops bridging the gap from continuous integration to continuous

delivery. In Fifth international conference on the innovative computing technology (intech 2015)

(pp. 78–82). DOI 10.1109/INTECH.2015.7173368.

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Ann Hong, S., Konwinski, A., … Zumar, C. (2018). Accel-

erating the Machine Learning Lifecycle with MLflow. Databricks Inc.

Zhong, Z., Xu, M., Rodriguez, M. A., Xu, C., & Buyya, R. (2021). Machine learning-based orchestration of

containers: A taxonomy and future directions. arXiv: 2106.12739 [cs.LG]

60

http://doi.org/10.1007/978-1-4757-3157-6_2
http://doi.org/10.1109/INTECH.2015.7173368
https://arxiv.org/abs/2106.12739


A
n
n
e
x

I
Kubeflow deployment

I.1 Kfctl configuration used for Kubeflow deployment, with

correction.
1 apiVersion: kfdef.apps.kubeflow.org/v1
2 kind: KfDef
3 metadata:
4 creationTimestamp: null
5 namespace: kubeflow
6 spec:
7 applications:
8 - kustomizeConfig:
9 repoRef:

10 name: manifests
11 path: namespaces/base
12 name: namespaces
13 - kustomizeConfig:
14 repoRef:
15 name: manifests
16 path: application/v3
17 name: application
18 - kustomizeConfig:
19 repoRef:
20 name: manifests
21 path: stacks/azure/application/istio-1-3-1-stack
22 name: istio-stack
23 - kustomizeConfig:
24 repoRef:
25 name: manifests
26 path: stacks/kubernetes/application/cluster-local-gateway-1-3-1
27 name: cluster-local-gateway
28 - kustomizeConfig:
29 repoRef:
30 name: manifests
31 path: stacks/azure/application/istio
32 name: istio
33 - kustomizeConfig:
34 repoRef:
35 name: manifests
36 path: stacks/azure/application/cert-manager-crds
37 name: cert-manager-crds
38 - kustomizeConfig:
39 repoRef:
40 name: manifests
41 path: stacks/azure/application/cert-manager-kube-system-resources
42 name: cert-manager-kube-system-resources
43 - kustomizeConfig:
44 repoRef:
45 name: manifests
46 path: stacks/azure/application/cert-manager
47 name: cert-manager
48 - kustomizeConfig:

61



ANNEX I. KUBEFLOW DEPLOYMENT

49 repoRef:
50 - kustomizeConfig:
51 repoRef:
52 name: manifests
53 path: knative/installs/generic
54 name: knative
55 - kustomizeConfig:
56 repoRef:
57 name: manifests
58 path: kfserving/installs/generic
59 name: kfserving
60 - kustomizeConfig:
61 repoRef:
62 name: manifests
63 path: metacontroller/base
64 name: metacontroller
65 - kustomizeConfig:
66 repoRef:
67 name: manifests
68 path: stacks/azure/application/oidc-authservice
69 name: oidc-authservice
70 - kustomizeConfig:
71 repoRef:
72 name: manifests
73 path: stacks/azure
74 name: kubeflow-apps
75 repos:
76 - name: manifests
77 uri:

https://github.com/kubeflow/manifests/archive/ebeb4c285a0cf49750c4f07015b58cc27ca4c3a1.tar.gz↩→
78 version: v1.2-branch
79 # These lines were appended, missing on the official documentation, found the solution on a

github issue.↩→
80 status:
81 reposCache:
82 - localPath: '”.cache/manifests/manifests-ebeb4c285a0cf49750c4f07015b58cc27ca4c3a1/”'
83 name: manifests

I.2 Images from Kubeflow deployment

Figure I.1: Dashboard view of demo pipeline’s YAML configuration.

62



A
n
n
e
x

II
Exported knowledge base sample

1 {
2 ”Option”: {
3 ”o_2506746548”: {
4 ”uid”: ”o_2506746548”,
5 ”name”: ”Kubeflow”,
6 ”description”: ”End-to-end framework that fulfills the entire machine learning workflow

and model lifecycle on a Kubernetes cluster.”,↩→
7 ”notes”: ”- deployment on Azure is incompatible with `Calico`networking policy\n- easy

to orchestrate (DAG based) and re-use components and pipelines to quickly cobble
together new workflows, without having to rebuild each time.”,

↩→
↩→

8 ”createdate”: ”2021-08-11 11:22:27.940505”,
9 ”lastupdate”: ”2021-10-20 14:52:58.878752”,

10 ”categories”: [
11 ”t_52105614”,
12 ”t_2444859668”,
13 ”t_468989116”,
14 ”t_2244916060”
15 ],
16 ”criteria”: {
17 ”c_52105614”: [
18 4,
19 5
20 ],
21 ”c_2244916060”: [
22 1,
23 1
24 ],
25 ”c_468989116”: [
26 1,
27 4
28 ],
29 ”c_2506746548”: [
30 1,
31 3
32 ],
33 ”c_2444859668”: [
34 0,
35 1
36 ],
37 ”c_3142990153”: [
38 2,
39 2
40 ],
41 ”c_4129612440”: [
42 5,
43 6
44 ],

63



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

45 ”c_2370669921”: [
46 7,
47 7
48 ],
49 ”c_470901851”: [
50 3,
51 3
52 ]
53 },
54 ”filters”: {
55 ”f_2506746548”: [
56 ”Free”
57 ],
58 ”f_52105614”: [
59 ”Once”
60 ],
61 ”f_2444859668”: [
62 ”No”
63 ],
64 ”f_2244916060”: [
65 ”No”
66 ],
67 ”f_470901851”: [
68 ”Apache 2.0”
69 ],
70 ”f_4129612440”: [
71 ”Yes”
72 ],
73 ”f_2414592160”: [
74 ”Yes”
75 ],
76 ”f_3142990153”: [
77 ”S3”
78 ],
79 ”f_2684722482”: [
80 ”LDAP”,
81 ”Open ID”,
82 ”REMOTE_USER”,
83 ”OAUTH”
84 ],
85 ”f_2472200801”: [
86 ”Role Based Access Control (RBAC)”
87 ],
88 ”f_2370669921”: [
89 ”Kubernetes”
90 ],
91 ”f_468989116”: [
92 ”Third-party”
93 ]
94 }
95 },
96 ”o_468989116”: {
97 ”uid”: ”o_468989116”,
98 ”name”: ”Apache Airflow”,
99 ”description”: ”Generic workflow orchestrator”,

100 ”notes”: ”- free and open-source with Apache license\n- 'Operators' are a great feature
[documentation](https://airflow.apache.org/docs/apache-airflow/stable/concepts/operators.html)”,↩→

101 ”createdate”: ”2021-08-18 09:36:30.374236”,
102 ”lastupdate”: ”2021-10-20 14:54:54.161618”,
103 ”categories”: [
104 ”t_2244916060”
105 ],
106 ”criteria”: {
107 ”c_52105614”: [
108 4,
109 5
110 ],
111 ”c_2244916060”: [
112 5,
113 6
114 ],
115 ”c_468989116”: [
116 6,
117 7

64



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

118 ],
119 ”c_2506746548”: [
120 3,
121 3
122 ],
123 ”c_2444859668”: [
124 0,
125 0
126 ],
127 ”c_3142990153”: [
128 4,
129 5
130 ],
131 ”c_4129612440”: [
132 6,
133 7
134 ],
135 ”c_2370669921”: [
136 0,
137 0
138 ],
139 ”c_470901851”: [
140 2,
141 3
142 ]
143 },
144 ”filters”: {
145 ”f_2506746548”: [
146 ”Free”
147 ],
148 ”f_52105614”: [
149 ”Once”
150 ],
151 ”f_468989116”: [
152 ”Third-party”
153 ],
154 ”f_2444859668”: [
155 ”Yes”
156 ],
157 ”f_2244916060”: [
158 ”No”
159 ],
160 ”f_470901851”: [
161 ”Apache 2.0”
162 ],
163 ”f_4129612440”: [
164 ”Yes”
165 ],
166 ”f_2414592160”: [
167 ”Yes”
168 ],
169 ”f_3142990153”: [
170 ”DBFS”,
171 ”S3”
172 ],
173 ”f_2370669921”: [
174 ”Kubernetes”,
175 ”Native”,
176 ”Docker Compose”
177 ],
178 ”f_2472200801”: [
179 ”Role Based Access Control (RBAC)”,
180 ” Resource Based Access Control(Permissions)”
181 ],
182 ”f_2684722482”: [
183 ”Database”,
184 ”Open ID”,
185 ”LDAP”,
186 ”REMOTE_USER”,
187 ”OAUTH”
188 ]
189 }
190 },
191 ”o_4129612440”: {

65



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

192 ”uid”: ”o_4129612440”,
193 ”name”: ”MLflow”,
194 ”description”: ”Open source platform to manage the ML lifecycle, including

experimentation, reproducibility, deployment and model registry.”,↩→
195 ”notes”: ”Great integration with Databricks. Some features like authentication are only

available with [managed
service](https://databricks.com/product/managed-mlflow).\n\nhttps://mlflow.org/docs/latest/index.html”,

↩→
↩→

196 ”createdate”: ”2021-10-18 16:03:01.530348”,
197 ”lastupdate”: ”2021-10-20 14:55:32.092895”,
198 ”categories”: [
199 ”t_2444859668”,
200 ”t_2244916060”,
201 ”t_468989116”
202 ],
203 ”criteria”: {
204 ”c_52105614”: [
205 3,
206 3
207 ],
208 ”c_2506746548”: [
209 2,
210 3
211 ],
212 ”c_3142990153”: [
213 3,
214 4
215 ],
216 ”c_2444859668”: [
217 0,
218 0
219 ],
220 ”c_2244916060”: [
221 5,
222 6
223 ],
224 ”c_468989116”: [
225 6,
226 6
227 ],
228 ”c_4129612440”: [
229 6,
230 7
231 ],
232 ”c_2370669921”: [
233 4,
234 4
235 ],
236 ”c_470901851”: [
237 3,
238 4
239 ]
240 },
241 ”filters”: {
242 ”f_2506746548”: [
243 ”Free”,
244 ”Subscription”,
245 ”Free trial”
246 ],
247 ”f_470901851”: [
248 ”Apache 2.0”
249 ],
250 ”f_4129612440”: [
251 ”Yes”
252 ],
253 ”f_2414592160”: [
254 ”Yes”
255 ],
256 ”f_3142990153”: [
257 ”DBFS”,
258 ”S3”
259 ],
260 ”f_2244916060”: [
261 ”No”
262 ],

66



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

263 ”f_2444859668”: [
264 ”Yes”
265 ],
266 ”f_468989116”: [
267 ”First-party”,
268 ”Third-party”
269 ],
270 ”f_2370669921”: [
271 ”Kubernetes”,
272 ”Docker Compose”,
273 ”Native”,
274 ”Databricks”
275 ],
276 ”f_52105614”: [
277 ”Never”
278 ],
279 ”f_2472200801”: [
280 ”Role Based Access Control (RBAC)”
281 ]
282 }
283 }
284 },
285 ”Factor”: {
286 ”f_2244916060”: {
287 ”uid”: ”f_2244916060”,
288 ”name”: ”Internally Developed”,
289 ”description”: ”Tool is/was developed within Bosch”,
290 ”notes”: ””,
291 ”createdate”: ”2021-08-10 08:57:44.559243”,
292 ”lastupdate”: ”2021-10-18 23:24:54.017777”,
293 ”values”: [
294 ”Yes”,
295 ”No”
296 ],
297 ”groups”: [
298 ”g_2244916060”
299 ]
300 },
301 ”f_2506746548”: {
302 ”uid”: ”f_2506746548”,
303 ”name”: ”License Cost Structure”,
304 ”description”: ”Type of cost for the software license”,
305 ”notes”: ””,
306 ”createdate”: ”2021-08-11 14:43:39.504885”,
307 ”lastupdate”: ”2021-10-18 17:49:49.605889”,
308 ”values”: [
309 ”Free”,
310 ”Free trial”,
311 ”One-time license”,
312 ”Subscription”
313 ],
314 ”groups”: [
315 ”g_2244916060”
316 ]
317 },
318 ”f_468989116”: {
319 ”uid”: ”f_468989116”,
320 ”name”: ”Team Support (incl. Consultants)”,
321 ”description”: ”Available sources of help with using the tool”,
322 ”notes”: ””,
323 ”createdate”: ”2021-08-11 16:20:24.500056”,
324 ”lastupdate”: ”2021-10-20 14:04:27.737316”,
325 ”values”: [
326 ”First-party”,
327 ”Third-party”,
328 ”Internal”
329 ],
330 ”groups”: [
331 ”g_2506746548”
332 ]
333 },
334 ”f_2444859668”: {
335 ”uid”: ”f_2444859668”,
336 ”name”: ”Offered as managed service”,

67



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

337 ”description”: ”Possibility to obtain the tool as a managed service instead of having
the team deal with its maintenence”,↩→

338 ”notes”: ””,
339 ”createdate”: ”2021-08-18 09:37:58.193159”,
340 ”lastupdate”: ”2021-10-18 16:10:07.578036”,
341 ”values”: [
342 ”Yes”,
343 ”No”
344 ],
345 ”groups”: [
346 ”g_2244916060”,
347 ”g_2506746548”,
348 ”g_468989116”,
349 ”g_4129612440”
350 ]
351 },
352 ”f_52105614”: {
353 ”uid”: ”f_52105614”,
354 ”name”: ”Previously used by project teams”,
355 ”description”: ”Wether or not there is previous experience within the project teams”,
356 ”notes”: ””,
357 ”createdate”: ”2021-08-18 09:39:36.809722”,
358 ”lastupdate”: ”2021-08-18 09:39:36.809722”,
359 ”values”: [
360 ”Never”,
361 ”Once”,
362 ”A few times”
363 ],
364 ”groups”: [
365 ”g_2506746548”,
366 ”g_52105614”
367 ]
368 },
369 ”f_3142990153”: {
370 ”uid”: ”f_3142990153”,
371 ”name”: ”IO with distributed storage”,
372 ”description”: ”Take input from, and write output to, distributed storage systems.”,
373 ”notes”: ””,
374 ”createdate”: ”2021-10-18 16:04:35.049917”,
375 ”lastupdate”: ”2021-10-18 23:16:45.694368”,
376 ”values”: [
377 ”DBFS”,
378 ”S3”
379 ],
380 ”groups”: [
381 ”g_4129612440”,
382 ”g_3142990153”
383 ]
384 },
385 ”f_4129612440”: {
386 ”uid”: ”f_4129612440”,
387 ”name”: ”Parallel job execution”,
388 ”description”: ”Run mutiple jobs concurrently”,
389 ”notes”: ””,
390 ”createdate”: ”2021-10-18 16:12:29.609906”,
391 ”lastupdate”: ”2021-10-18 18:10:08.078912”,
392 ”values”: [
393 ”Yes”,
394 ”No”
395 ],
396 ”groups”: [
397 ”g_4129612440”
398 ]
399 },
400 ”f_2370669921”: {
401 ”uid”: ”f_2370669921”,
402 ”name”: ”Execution environments”,
403 ”description”: ””,
404 ”notes”: ””,
405 ”createdate”: ”2021-10-18 17:46:43.037561”,
406 ”lastupdate”: ”2021-10-19 15:45:01.659657”,
407 ”values”: [
408 ”Native”,
409 ”Docker Compose”,

68



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

410 ”Kubernetes”,
411 ”Hadoop”,
412 ”Databricks”
413 ],
414 ”groups”: [
415 ”g_2444859668”,
416 ”g_468989116”,
417 ”g_4129612440”
418 ]
419 },
420 ”f_470901851”: {
421 ”uid”: ”f_470901851”,
422 ”name”: ”OSS License type”,
423 ”description”: ”Open Source Software Licenses”,
424 ”notes”: ”- Permissive: Apache 2.0, BSD 3-Clause, MIT\n\n- Copyleft:\n - Strong: GPL

v2, GLP v3, AGPL\n - Weak: LGPL, Mozilla Public License 2.0\n\n\n”,↩→
425 ”createdate”: ”2021-10-18 17:59:25.711274”,
426 ”lastupdate”: ”2021-10-18 18:09:28.533397”,
427 ”values”: [
428 ”Apache 2.0”,
429 ”MIT”,
430 ”GPL v2”,
431 ”GPL v3”,
432 ”BSD 3-Clause”,
433 ”AGPL”,
434 ”LGPL”,
435 ”Mozilla Public License 2.0”
436 ],
437 ”groups”: [
438 ”g_2244916060”
439 ]
440 },
441 ”f_2414592160”: {
442 ”uid”: ”f_2414592160”,
443 ”name”: ”REST API”,
444 ”description”: ”Use the application in a programatic way through a REST API.”,
445 ”notes”: ””,
446 ”createdate”: ”2021-10-18 18:19:41.399399”,
447 ”lastupdate”: ”2021-10-18 18:20:31.519990”,
448 ”values”: [
449 ”Yes”,
450 ”No”
451 ],
452 ”groups”: [
453 ”g_52105614”,
454 ”g_3142990153”
455 ]
456 },
457 ”f_2472200801”: {
458 ”uid”: ”f_2472200801”,
459 ”name”: ”User access control”,
460 ”description”: ””,
461 ”notes”: ””,
462 ”createdate”: ”2021-10-18 23:29:09.737840”,
463 ”lastupdate”: ”2021-10-18 23:32:45.883891”,
464 ”values”: [
465 ”Role Based Access Control (RBAC)”,
466 ” Resource Based Access Control(Permissions)”
467 ],
468 ”groups”: [
469 ”g_2370669921”
470 ]
471 },
472 ”f_2684722482”: {
473 ”uid”: ”f_2684722482”,
474 ”name”: ”Supported Authentication Types”,
475 ”description”: ”Supported Authentication Types”,
476 ”notes”: ”Bosch authentication is integrated with Microsoft Active Directory (Azure), an

LDAP server.”,↩→
477 ”createdate”: ”2021-10-18 23:32:28.774499”,
478 ”lastupdate”: ”2021-10-20 13:53:25.520648”,
479 ”values”: [
480 ”Database”,
481 ”Open ID”,

69



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

482 ”LDAP”,
483 ”REMOTE_USER”,
484 ”OAUTH”
485 ],
486 ”groups”: [
487 ”g_2370669921”
488 ]
489 },
490 ”c_2244916060”: {
491 ”uid”: ”c_2244916060”,
492 ”name”: ”Flexibility and Customization”,
493 ”description”: ”Adaptation to the specific needs of the use case”,
494 ”notes”: ””,
495 ”createdate”: ”2021-08-11 14:39:45.371149”,
496 ”lastupdate”: ”2021-10-19 16:09:28.239088”,
497 ”values”: [
498 ”Hard”,
499 ”Flexible”
500 ],
501 ”groups”: [
502 ”g_52105614”
503 ],
504 ”resolution”: 8
505 },
506 ”c_2506746548”: {
507 ”uid”: ”c_2506746548”,
508 ”name”: ”Reliability”,
509 ”description”: ”How stable and dependable is the tool”,
510 ”notes”: ”Consider different factors, namely:\n- uptime and bugs\n- how easily does it

get patched, automatically or with intervention”,↩→
511 ”createdate”: ”2021-08-11 15:14:00.550003”,
512 ”lastupdate”: ”2021-10-19 16:09:34.144685”,
513 ”values”: [
514 ”Unreliable”,
515 ”Reliable”
516 ],
517 ”groups”: [
518 ”g_468989116”
519 ],
520 ”resolution”: 4
521 },
522 ”c_468989116”: {
523 ”uid”: ”c_468989116”,
524 ”name”: ”Official Documentation”,
525 ”description”: ”Quality of the first-party docs”,
526 ”notes”: ””,
527 ”createdate”: ”2021-08-11 16:15:16.087546”,
528 ”lastupdate”: ”2021-08-11 16:15:16.087546”,
529 ”values”: [
530 ”Poor”,
531 ”Good”
532 ],
533 ”groups”: [
534 ”g_2506746548”
535 ],
536 ”resolution”: 8
537 },
538 ”c_2444859668”: {
539 ”uid”: ”c_2444859668”,
540 ”name”: ”Internal Documentation”,
541 ”description”: ”Documentation within EnterpriseSearch and Docupedia”,
542 ”notes”: ””,
543 ”createdate”: ”2021-08-11 16:16:48.106476”,
544 ”lastupdate”: ”2021-08-11 16:16:48.106476”,
545 ”values”: [
546 ”Poor”,
547 ”Good”
548 ],
549 ”groups”: [
550 ”g_2506746548”
551 ],
552 ”resolution”: 6
553 },
554 ”c_52105614”: {

70



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

555 ”uid”: ”c_52105614”,
556 ”name”: ”Community Support”,
557 ”description”: ”How much support can be found in online forums”,
558 ”notes”: ””,
559 ”createdate”: ”2021-08-11 17:07:03.553758”,
560 ”lastupdate”: ”2021-08-11 17:07:03.553758”,
561 ”values”: [
562 ”Low”,
563 ”High”
564 ],
565 ”groups”: [
566 ”g_2506746548”
567 ],
568 ”resolution”: 6
569 },
570 ”c_3142990153”: {
571 ”uid”: ”c_3142990153”,
572 ”name”: ”Ease of programming”,
573 ”description”: ”Degree of added difficulty when coding for the tool. Does it require

lots of refactoring?”,↩→
574 ”notes”: ”Describes code development overhead to use the tool in question, how

accessible and intuitive it is - just some API calls or is it more complex and with
lots of small details?”,

↩→
↩→

575 ”createdate”: ”2021-10-18 18:27:30.281460”,
576 ”lastupdate”: ”2021-10-20 13:51:23.012160”,
577 ”values”: [
578 ”Difficult”,
579 ”Easy”
580 ],
581 ”groups”: [
582 ”g_52105614”
583 ],
584 ”resolution”: 6
585 },
586 ”c_4129612440”: {
587 ”uid”: ”c_4129612440”,
588 ”name”: ”State of Development”,
589 ”description”: ”How complete is the tool according to its scope.”,
590 ”notes”: ””,
591 ”createdate”: ”2021-10-19 16:13:52.990168”,
592 ”lastupdate”: ”2021-10-19 16:15:33.601358”,
593 ”values”: [
594 ”Incomplete”,
595 ”Complete”
596 ],
597 ”groups”: [
598 ”g_2506746548”,
599 ”g_52105614”
600 ],
601 ”resolution”: 8
602 },
603 ”c_2370669921”: {
604 ”uid”: ”c_2370669921”,
605 ”name”: ”Versatility”,
606 ”description”: ”How multipurpose is the software, and to what degree can it cover the ML

lifecycle.”,↩→
607 ”notes”: ””,
608 ”createdate”: ”2021-10-19 16:19:09.891676”,
609 ”lastupdate”: ”2021-10-20 13:50:02.876766”,
610 ”values”: [
611 ”Narrow”,
612 ”Versatile”
613 ],
614 ”groups”: [
615 ”g_52105614”
616 ],
617 ”resolution”: 8
618 },
619 ”c_470901851”: {
620 ”uid”: ”c_470901851”,
621 ”name”: ”Update Frequency”,
622 ”description”: ”How regularly does the tool get updated (release cycle)”,

71



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

623 ”notes”: ”| More than a year | Year | Semester | Trimester | Month | Less than a
month|\n|--------------|\n|Incredibly infrequent | Pretty infrequent | Somewhat
infrequent | Somewhat frequent | Very Frequent | Incredibly frequent|”,

↩→
↩→

624 ”createdate”: ”2021-10-20 14:45:47.493845”,
625 ”lastupdate”: ”2021-10-20 14:55:36.021324”,
626 ”values”: [
627 ”Infrequent”,
628 ”Frequent”
629 ],
630 ”groups”: [
631 ”g_2506746548”,
632 ”g_2244916060”
633 ],
634 ”resolution”: 6
635 }
636 },
637 ”Collection”: {
638 ”g_2244916060”: {
639 ”uid”: ”g_2244916060”,
640 ”name”: ”Administrative and Legal”,
641 ”description”: ”Cost, licencing, compliance, etc.”,
642 ”notes”: ””,
643 ”createdate”: ”2021-08-09 22:54:07.692393”,
644 ”lastupdate”: ”2021-10-20 14:45:47.493874”,
645 ”elements”: [
646 ”f_2506746548”,
647 ”f_2244916060”,
648 ”f_2444859668”,
649 ”f_470901851”,
650 ”c_470901851”
651 ]
652 },
653 ”g_2506746548”: {
654 ”uid”: ”g_2506746548”,
655 ”name”: ”Support and Documentation”,
656 ”description”: ”Help with the software during the project lifecycle.”,
657 ”notes”: ”Prioritize sources and resources _within_ Bosch, namely `EnterpriseSearch` and

`Docupedia`.”,↩→
658 ”createdate”: ”2021-08-09 22:58:27.340108”,
659 ”lastupdate”: ”2021-10-20 14:45:47.493868”,
660 ”elements”: [
661 ”c_468989116”,
662 ”c_2444859668”,
663 ”f_468989116”,
664 ”c_52105614”,
665 ”f_2444859668”,
666 ”f_52105614”,
667 ”c_4129612440”,
668 ”c_470901851”
669 ]
670 },
671 ”g_468989116”: {
672 ”uid”: ”g_468989116”,
673 ”name”: ”Deployment and Maintenence”,
674 ”description”: ”Move the software system to production and maintain it during its

lifecycle”,↩→
675 ”notes”: ””,
676 ”createdate”: ”2021-08-09 23:22:05.416900”,
677 ”lastupdate”: ”2021-10-18 17:46:43.037627”,
678 ”elements”: [
679 ”c_2506746548”,
680 ”f_2444859668”,
681 ”f_2370669921”
682 ]
683 },
684 ”g_2444859668”: {
685 ”uid”: ”g_2444859668”,
686 ”name”: ”Cloud”,
687 ”description”: ””,
688 ”notes”: ””,
689 ”createdate”: ”2021-08-09 23:22:42.308331”,
690 ”lastupdate”: ”2021-10-18 17:46:43.037609”,
691 ”elements”: [
692 ”f_2370669921”

72



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

693 ]
694 },
695 ”g_52105614”: {
696 ”uid”: ”g_52105614”,
697 ”name”: ”Development”,
698 ”description”: ”Tool attributes that affect the project development”,
699 ”notes”: ””,
700 ”createdate”: ”2021-08-09 23:25:37.684513”,
701 ”lastupdate”: ”2021-10-19 16:19:09.891692”,
702 ”elements”: [
703 ”c_2244916060”,
704 ”f_52105614”,
705 ”f_2414592160”,
706 ”c_3142990153”,
707 ”c_4129612440”,
708 ”c_2370669921”
709 ]
710 },
711 ”g_3142990153”: {
712 ”uid”: ”g_3142990153”,
713 ”name”: ”Features”,
714 ”description”: ”Integration with other solutions, plus some extra *nice to have*s”,
715 ”notes”: ””,
716 ”createdate”: ”2021-08-09 23:32:02.983417”,
717 ”lastupdate”: ”2021-10-18 23:16:45.694364”,
718 ”elements”: [
719 ”f_2414592160”,
720 ”f_3142990153”
721 ]
722 },
723 ”g_4129612440”: {
724 ”uid”: ”g_4129612440”,
725 ”name”: ”Performance and Scalability”,
726 ”description”: ”Handling of increasing volumes of data.”,
727 ”notes”: ””,
728 ”createdate”: ”2021-10-18 16:05:21.172396”,
729 ”lastupdate”: ”2021-10-18 23:16:45.694360”,
730 ”elements”: [
731 ”f_2444859668”,
732 ”f_4129612440”,
733 ”f_2370669921”,
734 ”f_3142990153”
735 ]
736 },
737 ”g_2370669921”: {
738 ”uid”: ”g_2370669921”,
739 ”name”: ”Security”,
740 ”description”: ””,
741 ”notes”: ””,
742 ”createdate”: ”2021-10-18 16:06:08.366821”,
743 ”lastupdate”: ”2021-10-18 23:32:28.774533”,
744 ”elements”: [
745 ”f_2472200801”,
746 ”f_2684722482”
747 ]
748 },
749 ”t_2244916060”: {
750 ”uid”: ”t_2244916060”,
751 ”name”: ”Orchestrator”,
752 ”description”: ”Coordinate the components of a workflow”,
753 ”notes”: ””,
754 ”createdate”: ”2021-08-10 16:35:38.036014”,
755 ”lastupdate”: ”2021-10-19 15:36:24.608079”,
756 ”elements”: [
757 ”o_2506746548”,
758 ”o_468989116”,
759 ”o_4129612440”
760 ]
761 },
762 ”t_2506746548”: {
763 ”uid”: ”t_2506746548”,
764 ”name”: ”Data Store”,
765 ”description”: ”Keep processed data for future use”,
766 ”notes”: ””,

73



ANNEX II. EXPORTED KNOWLEDGE BASE SAMPLE

767 ”createdate”: ”2021-08-10 16:35:55.067677”,
768 ”lastupdate”: ”2021-10-19 15:36:04.989029”,
769 ”elements”: []
770 },
771 ”t_468989116”: {
772 ”uid”: ”t_468989116”,
773 ”name”: ”Serving”,
774 ”description”: ”Expose trained models for end-user”,
775 ”notes”: ””,
776 ”createdate”: ”2021-08-10 16:36:11.312708”,
777 ”lastupdate”: ”2021-08-10 16:36:11.312708”,
778 ”elements”: [
779 ”o_2506746548”,
780 ”o_4129612440”
781 ]
782 },
783 ”t_2444859668”: {
784 ”uid”: ”t_2444859668”,
785 ”name”: ”Model Store and Versioning”,
786 ”description”: ”Maintain catalog of developed models”,
787 ”notes”: ””,
788 ”createdate”: ”2021-08-10 16:36:29.440321”,
789 ”lastupdate”: ”2021-08-10 16:36:29.440321”,
790 ”elements”: [
791 ”o_2506746548”,
792 ”o_4129612440”
793 ]
794 },
795 ”t_52105614”: {
796 ”uid”: ”t_52105614”,
797 ”name”: ”End-to-end Framework”,
798 ”description”: ”Framework capable of fulfilling entire workflows and model lifecycles”,
799 ”notes”: ””,
800 ”createdate”: ”2021-08-10 16:37:00.777762”,
801 ”lastupdate”: ”2021-08-10 16:37:00.777762”,
802 ”elements”: [
803 ”o_2506746548”
804 ]
805 },
806 ”t_3142990153”: {
807 ”uid”: ”t_3142990153”,
808 ”name”: ”Inference”,
809 ”description”: ”Take imput data and trained model to generate the prediction”,
810 ”notes”: ””,
811 ”createdate”: ”2021-08-11 12:27:15.714723”,
812 ”lastupdate”: ”2021-08-11 12:27:15.714723”,
813 ”elements”: []
814 },
815 ”t_4129612440”: {
816 ”uid”: ”t_4129612440”,
817 ”name”: ”Role ABC”,
818 ”description”: ””,
819 ”notes”: ””,
820 ”createdate”: ”2021-08-11 15:20:17.104446”,
821 ”lastupdate”: ”2021-08-18 09:35:34.422814”,
822 ”elements”: []
823 }
824 }
825 }

74



A
n
n
e
x

III
MetaTool user interface

Figure III.1: MetaTool UI: Explorer - Explore Knowledge page, grouped by domain, opened.

75



ANNEX III. METATOOL USER INTERFACE

Figure III.2: MetaTool UI: Explorer - Explore Knowledge page, grouped by domain, collapsed.

Figure III.3: MetaTool UI: Explorer - Explore Catalog page, grouped by role, opened.

76



ANNEX III. METATOOL USER INTERFACE

Figure III.4: MetaTool UI: Explorer - Explore Catalog page, grouped by role, collapsed.

Figure III.5: MetaTool UI: Explorer - Edit filter page.

77



ANNEX III. METATOOL USER INTERFACE

Figure III.6: MetaTool UI: Explorer - Edit role page.

Figure III.7: MetaTool UI: Explorer - Edit domain page.

78



ANNEX III. METATOOL USER INTERFACE

Figure III.8: MetaTool UI: Settings page, attempt to empty knowledge base, with JSON structure being
shown.

79


	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Context
	Motivation
	Objectives
	Document Structure

	State of the art
	Machine Learning Model Lifecycle
	Challenges in ML development
	What is MLOps
	Manual workflow
	Workflow with automated model pipeline
	Full MLOps Automated Retraining

	Machine learning workflow orchestration
	Understanding workflows
	Orchestration as a role

	Analysis of ML orchestrators
	Apache Airflow
	Kubeflow and Kubeflow Pipelines
	MLflow


	Selecting a tool for cloud pipeline orchestration
	Gen2Cloud contextualization
	Orchestrator requirements
	Comparing orchestrators
	Deployment and demo pipeline
	Kubeflow deployment setup
	Challenges
	Demo pipeline
	Kubeflow operation and findings

	Team opinions about Kubeflow

	MetaTool
	Application requirements
	Architecture overview
	Web application
	Knowledge base

	User interface walkthrough
	Consult knowledge
	Obtain a recommendation
	Knowledge IO operations


	Results and discussion
	Gen2 and Kubeflow
	MetaTool
	Lessons learned
	Future work
	Closing note

	Conclusion
	Lessons learned
	Future work
	Closing note

	Bibliography
	Annexes
	Kubeflow deployment
	Kfctl configuration used for Kubeflow deployment, with correction.
	Images from Kubeflow deployment

	Exported knowledge base sample
	MetaTool user interface

		2022-02-22T18:56:42+0000
	Afonso Rafael Carvalho Sousa




